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Morsifications of Rational Functions

V. V. Goryunov

ABSTRACT. The paper is devoted to enumerative problems of the theory of real sin-
gularities,. We calculate the number of connected components of the set of rational
functions on a real line having as many poles and critical points as possible. In the
Appendix, in terms of snakes en Dynkin diagrams, we obtain the numbers of topolog-
ically different real morsifications of simple function-germs Ey with g distinet critical
values.

A series of recent papers [1-3] by Arnold was devoted to the study of a new
invariant of a real isolated function singularity, the number of its topologically different
very nice morsifications. These are morsifications with as many real critical values as
possible. Calculations done by Vakulenko [6] show that for an 4, singularity the value
of the invariant is equal either to an Euler number or to a tangent number. The values
for the other infinite series, D, of the simple function-germs were obtained in [16] (see
also [12, 13]). They turned out to be closely related to similar invariants for Laurent
polynomials with a simple pole. In the present note, extending the area of study, we
consider the space of rational functions on the real line. We calculate the number of
connected components of a set of M-functions, the ones with as many real critical
points and poles as possible. This numerical invariant is rougher than the invariant
introduced by Armnold. Say a set of M-morsifications of an 4, singularity, i.e., the
space of M -polynomials of fixed degree, is connected. But for rational functions the
situation is far from such simplicity.

In the Appendix we calculate the numbers of connected components of the set of
very nice morsifications of Eg, E7, and Eg function singularities. These numbers are
82, 768, and 4036 respectively, The calculation is based on the bijection between the
set of connected components of space of M -morsifications and different R-diagrams
of a simple singularity.

Let Ay = R#TY be the space of rational functions in one variable

r(x) = plx}/g(x) = (x# + A 4o+ 107 4+ Agarx™ ™ b o Apy)

For generic values of the parameters, the number of distinct complex critical points
of the function is either g + v — 1 if g # v, or 2u — 2 if & = v. This is the maximal
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possible number of critical points. In this case all of them are Morse, p and ¢ are
relatively prime and all the » poles are simple.

DERNITION. A rational function r{x) is called a rational M -function if
(1) it has the above maximal number of critical points;
(2) all the critical points are real;
(3) all the poles of r are real too.

We denote the set of all rational M -functions in Ay by My . Our goal is to
calculate the number m,, ,, of connected components of this set.

Exampres. 1. The set of all M-polynomials of fixed degree is connected, i.e., we
have m, g == 1 [1].

2. The set of all Laurent M -polynomials with a single pole of order 1 has m,; =
i — 1 components [16]. In this case, shifting the pole to the origin, we get the ath
component formed by the functions with « critical points positive and # — a critical
points negative, 0 < o < u.

For the general case we prove the following

THEOREM. The number of connected components of the set My v of rational M-
Junctions is equal fo

( {u - vi(p+2v —1)!

P T s
2 — g +2v -1
m,u.v — #(25'1)1#' ] J_:f,u < Vv,
4(3v +1)! —
{2v -+ 2}t Fu=v.

Our enumeration of the connected components is based on the consideration of
the curves y{r) = {Imr(x) = 0} in C up to orientation-preserving diffeomorphisms
of C ~ R?, R. In the simplest cases, for v = 0 or z = 0, all the rational M -functions
r have equivalent curves y(r). We show them in Figure 1. The nodal points there are
the critical points and the crosses are the poles.

e e
" T

4 — 1 critical points v poles and v — 1 critical points

Figure 1. Inverse image y(r) of the real axis under a rational M-
function r

In the other cases, up to the above diffeomorphisms, the following inductive
surgery procedure is valid.

LemMA 1. The curve y(r) = {Im#(x) = 0} of a rational M-function r € My,
i # v, is obtained from the curve y (') = {Imr'(x) = 0} of some rational M-function
r' € My ;v\ by replacing one of the p + 2v — 3 intervals into which the poles and the
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critical points of v’ cut the real axis, by an elementary block with the following circular

component.
If (z,v) # (2,1), then among the intervals mentioned in Lemma | there are two
infinite ones. If (z, v) = (2, 1), the only interval we have is the whole real axis.

REMARK. The case i = v is easily seen to give the same curvesas v = g + L.

ExampLEs. The families represented in Figure 2 (see p. 88) have less than x4 + v
parameters due to linear transformations of the source and the target. The reduced
parameter space is subdivided into several open regions (some of them are connected
components of the set M, , of rational M -functions) by a bifircation diagram. The
diagram is formed by the values of the parameters corresponding to functions having:

degenerate critical points (%),
nonsimple poles (X, ),
numerator and denominator with commeon roots (Zo),
a critical point at x = co (4, for # = v only).
Each connected component of M, , is marked with the corresponding curve y.

The proof of Lemnma 1 is very close to the proofs of similar statements in [2, 16].
We only point out the facts the proof is based on.
(1) The closure 7 of the curve y(r) is smooth except for the nodes on R at the
critical points of r.
(2) Exactly 2} — v] branches of the curve y(r) go to infinity.
(3} Circulating by the gradient flow of r along 7 U {x = co}, we can make a cycle
only having passed through a pole. Here x = oo is regarded as a pole if g > v.
(4) All the equivalence classes of the curves are realizable.
For (4) one constructs the corresponding mapping between the Riemann spheres as in

2, §2].
ReMARK. The surgery of the Lemma relates a particular pole to each circular
component of y.

The mapping in (4), i.e., a rational M -function, depends continuously on the
possible choice of the critical values and on the positions of the critical points and the
poles while we stay in the same equivalence class of the curves ¥. As in the polynomial
case [2, §2] and the Laurent case [16], the set of M -functions r having equivalent curves
7(r) is easily seen to be connected and, moreover, contractible (see the end of the main
part of this note). Thus, we get

COROLLARY 2. The number my .y, p # v, of connected components of the set of
rational functions is equal to the number of equivalence classes of the curves y(r) of
Lemma 1.

Now we consider the three cases of the Theorem. In what follows by “a curve
y” we mean its equivalence class. We say that a node (resp. pole) is free if it has two
infinite whiskers (resp. is not contained in a disk bounded by a circular component of
y}. The curve y has
for i > vi v circles, # — v — 1 free nodes and no free poles;
for 4 < v: pcircles, v — g — | free nodes and v — g free poles.
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pe=1,v=2, r(0) =+ o Vo2 + ) ty
2 T } o
p oy
Zy
=2, =2, r(x) = (ax + o)/ (x* + )
zp
T

FiGURE 2. Bifurcation diagrams and sets of rational A -functions
for low values of u

An exterior circle of y is its circular component not contained in the disk bounded
by any other circular component.

i > v. Let us slightly change the notation to indicate the number § = y — v ~ 1
of free nodes:

Spy = Mygiy Sy =0,
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Thus, we need to show that

_{(B+D(Bv+ AN
YT Qv+ g+ DIt

Let us start with §# = 0: no free poles, no free nodes, all the 2v critical points
participate in the v circles. Denote by n, ¢ the number of curves y with exactly s
exterior circles,

?p

LeEMMA 3. We have

My s = Z Z (k + l)na—i,k”vma,s—l: vzl.

a2zl kz0

Proor. Take an exterior circle of y, the first from the right on the real axis. Let
o — 1 be the number of circles inside it, and k& the number of exterior circles in this
subconfiguration of ¢ — 1 circles. There are k + 1 possibilities for the position of the
pole corresponding to the above circle of 7 (see our latter remark} with respect to the
subconfiguration.

Let us introduce the generating function

N(x,y) = Z Ry gx” psH

v,5 20
aN
COROLLARY 4. We have N (x,y) = xy Em(x, DN (e y) + .
Y

Let us take the partial y-derivative of this relation and evaluate both the derivative
and the initial relation at y = 1. Introducing

$lx) = N(x, 1) = ¢ovx",  wlx)= %—i\j (x, 1),
20

we obtain
¢ =xpp+1, wo=xp(p+y)+1.
Excluding v, we obtain

COROLLARY 5. x¢? — ¢ +1 =0,

RemaRK, Replacing here the degree 3 by 2, we get the generating function for the
Catalan numbers.

The assertion of the Theorem for = v +1 is equivalent to the recurrence relation

303y 4+ 1)(3v +2)
Povi1 = 2(v+1)(2v + 3)

go  with ¢pg = 1.

This means that the function ¢ (x) must satisfy the differential equation
2(2x0x + 1) x0+¢ = 3x(3x0x + 1)(3x0x + 2)

being its unigue solution at x = 0 with ¢{0) = 1. Elementary calculations show that
this follows from the last Corollary.
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Nowletu —-v—1=8>0. Let

D(x,z) = Z Z ¢‘g',,x"z'3

Az0vz20
be a generating function. Then
LEMMA 6. @ = ¢/{1 — z¢).

Proor. For f# > 0 let us consider the free node of y, the first from the right on the
real axis. Let o be the number of circles to the right of this node. Then

‘;b,@,v = Z ¢0,a¢ﬂml,v«&a .

@20

For the generating functions, this means ®(x, z) = z¢(x) @(x, z} + ¢(x).

Thus
O(x,z) = Z P (x).
B0
To prove the theorem for i > v, it remains to show that

¢/f’+1 )_Z(ﬂ"'l 3v+ﬁ)!x

e (2v -+ B+ 1!

This is equivalent to the requirement that the function ¢F11(x) is analytic at the origin
and satisfies the differential equation

(2x8x + B+ 1)(2x0x + B)xOrw
= x(3xax +8 +3)(3X8x + B +2)(3x8x +f+ 1)‘/’: W(O} =1.

Again, the fact that this is exactly the case follows from the cubic equation on ¢.

i < v, Lete = v — g > 0 be the number of free poles of . To each of the free
poles we attach a complex-conjugate-symmetric pair of whiskers going to infinity and
intersecting neither y nor the other pairs added. We get a curve y* of some rational
M-function (x¥*& + .. ) /(xV7% +...).

The mapping y — y' is obviously one-to-one. Indeed, the inverse mapping is
constructed as follows. Each curve y” has exactly 2 — 1 free nodes. Order these nodes:
X| > x2 > --- > x2c_1. Now omit the whiskers starting at all x,qq and declare all xp4q
to be poles. We obtain

LemmMa 7. My_g v = Myggves-
This is exactly the statement of the Theorem for u < v.

REMARK. It is not too difficult to see that the function w(x) = (ON/8y)(x,1)
above is the generating function -~ My ps1 X%,

i = v. The assertion of the Theorem for this case follows from

LEMMA 8. My y = 2”’11;_]‘\1.
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Proor. The function
r(x) = (x¥ + Lx"7 /(Y xR
is a rational M -function if and only if 4; # 4, and the function
(r(x) = /0 = dws) = (" /G + )

is a rational M -function. According to the two possible signs of (i) —Ays1), we oblain
By y = 201y 1y,

Thus the Theorem is proved.

The decreasing order of critical points of a function on the real line induces an
ordering of the critical values. Suppose u# # v. Each equivalence class of y imposes
a certain system of x + v — 2 inequalities on the ordered set of the x + v — 1 critical
values of a rational AZ-function r from the corresponding connected component R,.
The same inequalities define a simplicial cone R, in Euclidean space R4 =2 =
{z1 + -+ zyrv—1 = 0} ¢ R#*~1 equipped with the set of diagonals z; = z;
(mirrors of the reflection group A, y-2). Asin [2, 3, 16], we have

(1) Ry is homeomorphic to Ry X R?, in particular R, is contractible;

{2) the number of chambers in the cone R,, coincides with the number of connected
components of the set of very nice (= with all critical values different) rational
functions contained in R,, and each of these components is contractible too.

For u = v, we must replace x4 + v by 2v — 1 everywhere and B2 for R? in (1).

OPEN COMBINATORIAL QUESTION. Calculate the number of chambers in R

Related problems. For recent progress in problems closely related to the topic
of the present paper, see [4, 5, 7-15, 18]. For example, [10] establishes a direct
correspondence between very nice morsifications of A, function singularities and
lemniscate configurations of complex polynomials. The existence of such a relation
has been suggested by the observation that in both situations the sequence of numbers
of distinct objects was one and the same, namely, the Euler-tangent sequence [1, 11]

1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521,... .

Probably a similar correspendence exists for rational functions as well.

In the quantum settings, two sequences starting like the Euler-tangent one were
recently discovered. According to Kirillov [17], the number of conjugacy classes in the
group of nondegenerate upper-triangular 7 x n-matrices over Z, is

1, 2, 5, 16, 61, 275, 1430, 8506, 57205,....
Zograf’s calculations [19] of volumes of moduli spaces of punctured spheres produced
I, 5, 61, 1379, 49946, ... .

It would be very exciting to find, as suggested by Arnold, a direct relation between
these quantum objects and, say, classes of very nice morsifications of function-germs.
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Appendix. Very nice morsifications of E,, singularities

In the introduction to the main part of this note, we mentioned two invariants
of a real function singularity: the number of connected components of the set of M-
morsifications and of very nice morsifications. For simple singularities of the series
A and D, these invariants have been calculated in [1-5]. Here we present a different
approach, universal for at least all the simple functions, and carry out the calculations
for the remaining simple germs Eq, E;, and Es.

I. M-components, Consider any real simple function-germ X, w, X = A, D E,
on a plane, with Milnor mumber 4. The base of its truncated miniversal deformation 4]
contains an open set of M-morsifications of X, (functions with y real critical points).
According to [7], each connected component of this set (shortly, Af ~COMPORERt) COT-
tains sabirifications of X, functions with all saddle points on the same level.

A sabirification f defines an R-diagram of X,. This is an analog of a Dynkin
diagram with extra information about the indices of the critical points of f. Each
critical point of f corresponds to a vertex of the R-diagram marked by a plus (max-
imum of £} or by a minus (minimum) or considered neutral (saddle). The minima
and maxima are taken on in the regions of the plane bounded by a saddle level curve.
We join a plus-vertex and a minus-vertex by an edge if the corresponding regions are
separated by an interval of the saddle level. We join a plus-vertex or a minus-vertex
with a neutral vertex if the closure of the region contains the saddle point.

All the possible R-diagrams of the simple functions are listed, for example, in [7].
Their number 4 (X} is given by the table:

X,u A,u D;}{ DZ—;{ D?_k+l Es E; Eg

dX,) 1 k-1 k k 2 4 5
For a fixed simple type X}, of a real singularity, the R-diagrams have the same number
of neutral vertices and the difference of the diagrams is equivalent to the difference of
the numbers of the plus- {equivalently, minus-) vertices. Since the numbers of minima,
saddles and maxima are the same for M -morsifications from the same M -component,
for the numbers m (X ) of M-components of X, o We have

ProrosiTion Al. m(X,) 2 d(X,).
Actually, a stronger statement holds:

TueoreM Al. The mapping relating an R-diagram of X, to an M-component of
X, is one-to-one.

CoroLLaRY A2, m(X,) = d{X,,).

ProoF OF THEOREM Al. For X = 4, D, this is presented in [1, 5]. Thus, we
need to study the £ case only. In Figure Al we show all R-diagrams of Ds and E y
singularities {7]. The numbers appearing there were explained above. In what follows
it is convenient to set £5 == Ds;. We also do not distinguish between the ‘+’ and ‘-’
cases.

Levmva A3. Each M-component of E,, contains a connected component of the
stratum Ey_\ in its closure.

Proor. We consider only ¢ = 6. The two other cases are similar,
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FIGURE Al. Normal forms, R-diagrams and the numbers of very
nice components of Ds and E,, singularities

Let us take a sabirification of Es and consider its R-diagram (one of those given in
Figure Al). Note that by omitting the lower right vertex of the diagram, together with
all the edges starting at this vertex, we get a Ds R-diagram. Let us fix the critical value
of our sabirification corresponding to the lower right vertex and continuously deform
all the other critical values, making them equal. According to {7], this deformation of
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the eritical values induces a continuous deformation of the initial sabirification ending
with a function with two critical points, 4, and Ds, on different levels.
Easy direct computations imply

LemMA A4 The stratum Ey, .y in the base of a truncated miniversal deformation of
Ey is homeomorphic to a real line punctured (for E,, itself omitted) at the origin.,

CoroLrary A5, m(E,) < 2m(E,_y).

Now we consider the three cases.

E¢. According to [5], m(Ds) = 2. Thus, by the last Corollary, m(Es) < 4. But
there are two different ways to deform a sabirification of Eg into a function with a
Ds point (take the left vertex in the proof of Lemma A3 instead of the right one).
This means that the closure of each of the M-components of E; must contain both
half-branches of the stratum Ds. Thus m(Es) < 2 = d{Eg).

E7. By Proposition Al and Corollary AS: 4 = d(Ey) < m(E;) < 2m(Eg) = 4.

£s. The E7 stratum in the truncated versal deformation of Eg is a one-parameter
family x* + y° + £xp3, + #£ 0. In addition to the E; point, such a function has a
Morse point on the other critical level. This point is a local minimum for £ > 0 and
local maximum for 7 < 0. By a slightly more precise argument than in the proof of
Lemma A3, it is easy to see that the closures of M -components of Eg corresponding to
the three R-diagrams with both numbers of plus- and minus-vertices positive, contain
both half-branches of the stratum E7. Thus, m(Es) < 2m(E;) =3 =5 = d(Eg).

2. Very nice components. The base of a truncated miniversal deformation con-
tains a Maxwell stratum Ly, ie., a hypersurface corresponding to functions with
coinciding values at at least two real critical points. The Maxwell stratum subdivides
each M -component into a certain number of open regions ecach of which consists of
morsifications with all the u critical values different. Such morsifications are called
very nice. Connected components of the set of very nice morsifications will be called
very nice components.

THEOREM A2. The number of very nice components in an M-component of an E y
Junction singularity is the number given in Figure Al alongside the R-diagram of the
M -component.

Taking the sum over all R-diagrams of a particular germ, we get

COROLLARY A6. The numbers of connected components of the set of very nice mor-
sifications of Eg, Eq, and Es are respectively 82, 768, and 4056,

Proor oF TreoreM A2. Consider an M -component Mp of E u corresponding to
a certain R-diagram 2. Order the vertices of D in an arbitrary way (in what follows
we consider the diagram with this extra ordering). Take a particular sabirification
J € Mp and deform it inside Mp. This induces a deformation of the ordered set of
critical values. By [7], staying in Mp, we can move two critical values independently
relatively to each other unless the corresponding vertices are connected by an edge.
If there is an edge, the inequality between the critical values remains the same as for
the critical values of f. Thus the edges of D give a system of necessary and sufficient

inequalities on the critical values v, ... U, of a very nice morsification from the
M-component My,
The same inequalities define a cone Cp in R#~! = {z; + .- + z, = 0} C R¥

equipped with the set W of all diagonals z; = z;. As in [2)], shifting the critical



