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Abstract: We lower the Kauffman bracket for links in a solid torus (see [16]) 
to generic plane fronts. It turns out that the bracket can be entirely defined in 
terms of  a front itself without using the Legendrian lifting. We show that all the 
coefficients o f  the lowered bracket are in fact Vassilev type invariants o f  Arnold 's  
J+- theory  [3, 4]. We calculate their weight systems. As a corollary we obtain that 
the first coefficient is essentially the quantum deformation of  the Bennequin invariant 
introduced recently by M. Polyak [19]. 

There exists a straightforward way to get an invariant o f  an immersed cooriented 
hypersurface C in a smooth manifold N. We lift C to the manifold M of  cooriented 
contact elements o f  N. This gives us an embedded submanifold Lc. Now we take 
the value o f  a known invariant o f  embeddings on Lc ~-~ M as the invariant o f  our 
initial immersion C ~-~ N. 

The manifold M of  cooriented contact elements is the spherisation o f  the cotan- 
gent bundle of  N: M = ST*N. It has a natural contact structure. Our lifting Lc 
is a Legendrian submanifold with respect to this structure. The hypersurface C is 
called the front of  Lc. The above procedure defines an invariant not only on im- 
mersed C q-~ N but also on submanifolds with some "admissible" singularities which 
may appear as singularities o f  fronts o f  smooth Legendrian submanifolds generically 
embedded into M. 

The simplest situation is N = R E. The "admissible" singularities in this case are 
cusps. Thus we can induce an invariant on collections o f  closed oriented and coori- 
ented plane curves which may have only double points and cusps as singularities. 
The manifold M o f  contact elements o f  the plane is the solid torus M = R 2 x S 1. 
So the lifted submanifolds are Legendrian links in it. This general approach was 
used in [12] to define an invariant o f  an immersed plane curve. There a Kontsevich 
type integral [11] was taken as a known invariant o f  knots in a solid torus. In a 
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similar way, a polynomial invariant of  knots in a solid toms defined in [1] was 
lowered to plane curves in [2]. 

In this paper we take the Kauffman bracket for links in a solid toms (see [16]) 
as a known invariant to be induced on plane fronts. It turns out that it can be 
entirely defined in terms of front C itself without using the Legendrian lifting. The 
Kauffman bracket is a polynomial in two variables A and h, Laurent in A and 
ordinary in h. We show that, after the substitution A = e t and Taylor expansion in 
a power series in t, the coefficient at t" is an invariant of  Arnold's J+-theory [3, 4] 
of  order at most n in the Vassiliev sense. These coefficients are polynomials in h. 
We calculate the corresponding symbols (weight systems). As a corollary we obtain 
that the first coefficient is essentialy the quantum deformation of the Bennequin 
invariant introduced recently by M. Polyak [19]. In the last section we lower other 
polynomial invariants of  links to plane fronts and formulate a series of  conjectures 
about them. 

For an application of the same general idea to induce order 1 invariants in a 
higher-dimensional situation see [13]. 

1. Definitions and Known Results 

In this section we recall some basic facts about our curves, corresponding Legendrian 
links and their invariants. See [3, 4] for more details. 

1.1. Legendrian links and their fronts. A contact element at a point of  a plane is 
a line in the tangent plane. Its coorientation is a choice of  one of  two half-planes 
into which it divides the tangent plane. The manifold M = ST*R 2 of all cooriented 
contact elements of  the plane is diffeomorphic to the solid torus R 2 • S 1, since 
the coorienting normal vector is defined by its angle ~o. Manifold M has a natural 
contact structure defined as zeros of  the form (cos ~o)dx + (sin ~o)dy, where (x ,y )  
are coordinates on R 2. A Legendrian link L in M is an embedding of a number 
of oriented circles into M tangent to the contact planes at each of its points. A 
Legendrian link has a natural framing by transversals to the contact planes. The 
canonical projection of L to R 2 gives a collection of  plane curves. We call it the 
front of L. It has an orientation (coming from L) and a coorientation (the coordinate 
q~ forgotten by the projection defines not only the line tangent to the front, but the 
side of this line as well). A generic front may have only transverse double points 
and cusps as singularities. We call such a front a normal front. Since a front is 
cooriented the number of  cusps on each component of  a normal front is even. 

Any cooriented plane curve C lifts to a Legendrian curve Lc E M by taking the 
cooriented tangent direction as a contact element at each point of  C. The lifting of 
a collection of curves with normal front singularities is a link (Fig. 1). 

1.2. Index, Maslov index and perestroikas. To each component Cj of a normal 
front C = UCj we assign two integers, index 1 ind(Cj) and Maslov index #(Cj). 
ind(Cj) is the number of  full rotations made by the coorienting vector as it moves 
along Cj. p(Cj) is the difference between the numbers of  positive and negative 
cusps of  Cj. A cusp is called positive if the 1-form which coorients the curve at the 

l Other names are windin 9 number, rotation number, Whitney index. 
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Fig. 1. Legendrian lifting 
Left picture: A normal front C with two components; (x,y) are coordinates on R2; C lies in the 
halfplane x > 0. 
Right picture: Framed Legendrian link L C is drawn as a diagram of the projection to the punctured 
plane with polar coordinates (x, q~); the y-axis is perpendicular to the plane and directed from the 
reader. 

Fig. 2. Negative and positive cusps 

cusp point is positive on the neighbouring orienting vectors and negative otherwise 
(Fig. 2). 

The number #(Cj)  is always even. Reversing of  the orientation o f  Cj changes 
the signs o f  both ind(Cj) and #(Cj). Reversing of  the coorientation o f  Cj changes 
only the sign o f  #(Cj).  

There are four types o f  generic degenerations o f  a normal front. We show them 
in Fig. 3 in perestroikas in generic 1-parameter families. 

triple point perestroika self-tangency perestroika 

cusp crossing perestroika cusp birth-death perestroika 

Fig. 3. Perestroikas 

Theorem [14] (see also [3, 4]). The collection of  pairs (ind(Cj),p(Cj)) is a com- 
plete invariant of  a normal front C = UCj under plane isotopies and the four types 
of  perestroikas of Fig. 3. 
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For each pair of  integers r > 1 and s > 0 let Kr, s be the curve of Fig. 4. 
ind(Kr,~) = r - 1; g(Kr,~) = 2s. 

/~r~s 

I 

2r cusps �9 �9 
Y 

s cusps 

Fig. 4. Canonical curves 2 

The theorem says that each component Cj of a normal front can be transformed 
to one of the curves Kr, s (possibly with changed orientation or coorientation or both) 
by a sequence of the perestroikas and isotopies of  the plane. Figure 5 provides an 
example. 

/ 

/ 
two"cusp births self-tangency 

Fig. 5. Transformation of the circle to/s 

1.3. J+-type invariants. It is convenient to subdivide self-tangency perestroikas into 
the following four types according to the orientations and coorientations. A self- 
tangency is called dangerous if  both the tangent branches are cooriented by the 
same half-plane and safe otherwise. A self-tangency is called direct if  both tangent 
branches are oriented by the same tangent vector and inverse otherwise. 

dangerous direct self-tangency dangerous inverse self-tangency 

safe direct self-tangency safe inverse self-tangency 

Fig. 6. Four types of self-tangencies 

Note that, if  two tangent branches belong to the same component of  a front, the 
property of  the tangency point to be direct or inverse (resp. dangerous or safe) does 
not depend on the orientation (resp. coorientation) of  the component. 

2 Our choice of canonical curves slightly differs from Arnold's one [3]. 



Kauffman Bracket of Plane Curves 87 

It is easy to see that the topological type of a Legendrian link L c  in the solid 
torus M does not change under all the perestroikas except dangerous self-tangencies. 
A dangerous self-tangency perestroika corresponds to an interchanging of  overcross- 
ing and undercrossing in a link diagram like that in Fig. 1. But not all interchangings 
can be done in the class of  Legendrian links, and so in the class of  corresponding 
fronts. 

We will say that two fronts are J+-equ iva len t  if  one can be transformed to 
another without dangerous self-tangencies. Figure 5 shows a J+-equivalence of  the 
circle to 1s Similarly one can show that the circle with the opposite coorientation 
is also J+-equivalent to 322,0. Another example is J+-equivalence of figure-eight 
curves with different choices of  orientation and coorientation (Fig. 7). 

. ,~ j+ ~ ~ J +  

cusp births safe self-ta, ngencies 
"... "'.. 

(> 
= KI ,o 

Fig. 7. J+-equivalence of figure-eight curves 

By a J + - t y p e  invariant  we mean an invariant of  normal fronts which does 
not change under all the perestroikas except dangerous self-tangencies. The first 
example of  such an invariant was an invariant introduced by V.I. Arnold in [3, 4] 
and named J+.  This is an invariant of  a one component front defined by its values 
on the canonical curves: 

J+(Kr,  s) = - s  (for any choice of  the orientation and coorientation) 

and by its behavior under the dangerous self-tangency perestroikas: 

According to Theorem 1.2 this data is sufficient for calculating J +  on any normal 
front. Here is an example. 

...."'"" . .'"'" 

two cusp crossings dangerous self-tangency 

,...." ... ,,'" 

two cusp births two safe s'elf-tangencies 

= J+(K3, o) - -  2 = - - 2 .  

There are several combinatorial formulas for calculating the values of  J +  on 
curves without cusps (see a review in [8]) and Polyak's formula [18] for curves 
with cusps. 
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In the Vassiliev sense J+ is an invariant of order 1. 

S. Chmutov, V. Goryunov 

Remark. Reversing orientations of both the local branches in the two dangerous 
self-tangency perestroikas of Fig. 6, one obtains two more dangerous perestroikas 
which look different from those above. But their behaviour in all our constructions 
is absolutely identical to the behaviour of the corresponding "twins". So we spell 
all the formulas involving dangerous self-tangencies only for the two perestroikas 
of Fig. 6. 

1.4. The Bennequin invariant and its quantization. For a Legendrian knot K in a 
contact R 3 Bennequin [6] defined a self-linking number fl as the linking number of 
K with a small shift of K in a direction everywhere transversal to the contact planes. 
This definition was generalized to a non simply-connected case of Legendrian knots 
in the solid torus ST*R 2, with its standard contact structure, by S. Tabachnikov 
[20]. 

As the usual linking number [17] the Bennequin-Tabachnikov invariant can be 
read from a diagram of a knot and its framing like that in Fig. 1. For example, for 
the bold component of the link of Fig. 1 /~ = 1 (we have two positive crossings 
of the projections of the knot and its framing), for the thin component fl = 3 (we 
have six possitive crossings there). 

Arnold proved [3] that fl = 1 - J + .  So any combinatorial formula for fl gives a 
formula for J+  and vice versa. Several such formulas are in [20] (see also [9]). 

M. Polyak [19] invented the following state sum formula for the Bennequin- 
Tabachnikov invariant ft. To each crossing p of a one component normal front C we 
attach the sign a (p )  -- + l ,  if  the pairs (orienting vector, coorienting vector) for the 
two intersecting branches give the same orientation of the plane, and g ( p ) = - 1  
otherwise. According to this sign we split C at p respecting the orientation and 
coorientation (Fig. 8). 

Fig. 8. Splittings of a front C at a crossing saving the orientation and coorientation 

In fact this is a unique natural splitting which gives two component curves with 
two branches near d belonging to different components. Denote by Cp (resp. C +) 
the component that contains the left (resp. right) branch assuming both branches 
oriented downwards (see Fig. 8). 

Theorem [19]. Let C be a one component normal front. Denote by S the state 
s u m  

S -- y~(ind(Cp +) - ind(Cp ) - a(p) )  
p 

over the set o f  all double points o f  C. Then 

fi(Lc) = S - (ind(C) - 1)n + + (ind(C) + 1)n- + ind2(C), 
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where n + (resp. n - )  is hal f  the number o f  cusps o f  C whose neighbourhoods 9ire 
a positive (resp. negative) contribution to the index o f  C. 

This formula admits a quantum deformation [19]. Let q be a formal quantum 
parameter and 

qn _ q - _ _  ~ 
[n]q - q _ q - I  C Z[q,q  -1] 

the corresponding quantum integer. 

Theorem [19]. Let  Sq = ~ [ ( i n d ( C  +)  - i nd (Cp)  - cr(p)]q be a quantum state sum. 
Then 

flq(Lc) = Sq - [ind(C) - 1]qn + § [ind(C) + 1]qn- + [ind(C)] u ind(C) 

is a J+-type invariant o f  a one component normal f ront  C such that f l l (Lc)  = 
~(Lc). 

Remark.  The definition o f  flq is easily seen to be independent from orientation and 
coorientation o f  a normal front. 

Taking our canonical curves Kr, s with the orientations as in Fig. 4 we get n + = 
(2r + s)/2,  n -  = s/2 and i n d ( C ) =  r -  1. So 

flq(LK,,s ) = -- r § ~ [r -- 2]q § ~[r]q § (F -- 1 ) [ r  - -  1]q . 

Let us describe the behavior o f  the quantum Bennequin invariant under dangerous 
self-tangencies. First of  all we define an index ia o f  a self-tangency point  d which 
appears during such a perestroika o f  a normal front. To do this we split the self- 
tangency point respecting the orientation and coorientation as shown in Fig. 9. 

Fig. 9. Splittings of dangerous self-tangencies saving the orientation and coorientation 

We obtain two curves. Let i t and i" be their indices. We set ia = ]i ~ - i"l. The 
jumps of  ~q under dangerous self-tangencies o f  the index ia are: 

These formulas show that/~q is an invariant o f  order 1 in the Vassiliev sense. 

2. Kauffman Bracket 

In this section we define the Kauffman bracket and prove its uniqueness. The bracket 
does not depend on the orientations o f  curves o f  a collection. 

For a framed link in a solid torus the Kauffman bracket was defined in [16]. Its 
values belong to Z[A+I,h] .  Using the Legendrian lifting we can define (C) = (Lc). 
This is a J+- type  invariant o f  a normal front C. We call it the Kauffman bracket 
of  C. 
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2.1. Main result 

Theorem 1. There exists a unique J+-type invariant (C) E Z[A+l,h] of  a normal 
front C satisfying the following properties: 

2) ( (2~)  = --A3; 

3) ( Q )  = -- A3h; 

4) (C1.C:)  = -(A2+ A-b(Cl).(G), forC, c~4=~.  

Here C1 �9 C2 is a collection of  two fronts C1 and C2 which lie in different half- 
planes with respect to a certain line in R 2. 

Remarks. 1. After the Legendrian lifting (see Fig. 1) the fragments of links corre- 
sponding to the fronts of property 1 ) have the following diagrams in the (x, q0-plane: 

l) 
So property 1) is just the usual skein relation for the Kauffman bracket. All other 
properties also correspond to the usual properties of the Kauffman bracket in the 
solid torus (see [16]). So the existence of such a bracket of normal fronts follows 
directly from [ 16]. 

2. For calculation of the Kauffman bracket we will use the fact that the curve K1,0 
can be moved through other curves of a front. For example 

two cusp crossings 

So, if one of the components of our front is the K1,0 with nothing inside, we can 
transfer it far away from everything else and apply property 4) of Theorem 1: 

( @ ) ~. -- A6h(A2-~- A 2) ~ -- (A4--[- AS)h. 

3. One more useful fact is that two circles with opposite coorientations are J+-  
equivalent (see Sect. 1.3 and Fig. 5). So their brackets are equal. 

Proposition 1. For any J+-type invariant satisfying properties 1) -4 )  of  Theorem 
1 the following equalities hold: 
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Proof of Proposition 1. 

: A - 2 ( ~ ) - - A - 3 ( ~ ) - - A - 3 ( ~ ) b A - 4 (  ~) ) 
A A 

----A-I(A-I() ( ) - - A - 2 ( ~ ) )  

q-(--A-3(~)q-A-4(--A3)(--A 2 -- A-2) (~) )  

-~A-I(~)--b(--A-3--bA+A-3)(~). 

This implies the first equality of  the proposition. The second one follows from it 
and property 1) of  Theorem 1. 

2.2. Useful lemmas. In lemmas below we prove some relations for the Kauffman 
bracket which follow from properties 1)-4) .  We will use these relations in Sect. 
2.3 to prove the uniqueness of  the Kauffman bracket. 

The relations hold for both possible coorientations of  the fragment involved. 
Therefore we do not indicate its coorientation. The coorientation of the extra circular 
component also does not matter due to Remark 3 above. 

L e m m a  1. (-y-.~-)=A(O-~)--A2('A-~). 

,roor162 ( ~ )  : ( ~ )  : A l(__O )_  A - ~ ( ~ ) .  

safe self-tangency and cusp death 

~ommo~. ( ~ )  : ( ~ ) - -  (-A~ / - -  

Proof of Lemma 2. 

cusp crossing 

..~ (A - 1 -  A 2(A5 q- A ) ) (  

cusp death and properties 4),2) 

, 

) = ( - . ~ / ( - - ) .  

The proof of  the second equality is similar. 
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'.omm,,,. (-".-"-"--~)= A-' ( 0  ."._,'.. ) _ A'(__ ). 
Proof of Lemma 3. 

(-~_,~ } -  ( ) . - ,~ } =,,-, { o ~ }_ a-~{-m--~ ). 
safe w and cusp death 

The last term is equal to A-2(-A3)  2 ( - - )  = A 4 ( - - )  by Lemma 2. 

Lomm, 4. ( ~ } = ( A ~ - - A 3 ) { ~ } - - A ~ {  O--O--}. 

Proof of Lemma 4. 

{---~ } = Ai--~.~ } -I- A-I{ ~ _ ~  .,-- } 

= , , { ~ } +  A - ' { ~ }  
cusp birth and safe self-tangency 

=,,~( o )+(,,_, ,,3)<~). 
Lemma 1 

2.3. Proof of Theorem 1. To prove the uniqueness of the bracket it is enough 
to show that properties 1 ) - 4 )  are sufficient for calculation of the bracket on any 
normal front. We prove this giving an algorithm for such calculation. 

First of all we eliminate all double points of the front using the skein relation 
1 ). We obtain a linear combination of brackets of fronts without double points. Each 
of these fronts is just a union of "ovals" which can have cusps and be nested. Us- 
ing Lemma 2 we cancel pairs of neighbouring cusps with opposite directions. Then 
using Lemma 1 we invert the directions of pairs of cusps from inside to outside of 
their "oval". 

After that we reduce the number of cusps on each "oval" to zero or two (Lemma 
3). Now consider the deepest "ovals" of the nests. We transfer all those which are 
K1,0-curves far away (see Remark 2) reducing our computation to the computation of 
the bracket of the remaining part. We have left only circles on the deepest level. We 
decrease their depth by Lemma 4. This brings us to the beginning of this paragraph 
with the depth of the nests reduced by 1. Theorem 1 is proved. 

Corollary, The Kauffman bracket does not distinguish between two fronts which 
differ by the simultaneous change of coorientations of  all the components. 

Corollary follows directly from the proof of Theorem 1. 

Example. The Kauffman bracket of canonical curves. 

(Kr,~) = (-A3)~(Kr,0) by Lemma 2; 

(K1,0) = - A  3 by property 2); (K2,0) = -A3h by property 3).  
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For r > 2, (Kr,o) can be computed recurrently: 

2r cusps 

Lemma 3 2(r-1) cusps 

= (A 4 a t- 1)h (Kr_l,o)-- A 4(K r 2,0). 

properties 4) and 3) 

Setting A = 1 we get (Kr, O)[A:I = - T r - l ( h ) ,  where the T,(h) are the classical 
Ychebyshev polynomials in h: T , ( c o s x ) =  cos(nx). So the negative of  (Kr,0) can 
be considered as a deformation of the Tchebyshev polynomial with the parameter 
A. The number of  the polynomial is the absolute value of the index of the canonical 
curve. 

3. Taylor Coefficients 

In this section we prove an analog of the Birman-Lin theorem [7] for the Kauffman 
bracket of  a normal front and calculate the symbols of  Taylor coefficients of  the 
bracket as functions on marked chord diagrams. 

3.1. Finite order J+-type invariants. The extension of a knot invariant to degenerate 
knots with double points is basic for the Vassiliev theory. In a similar way any J+ -  
type invariant f recursively extends to fronts with a finite number of  dangerous 
self-tangencies: 

These rules are due to the natural coorientation of  the strata of  dangerous self- 
tangencies from [3]. When lifted to ST*R 2 both rules are in fact the definition of  
an extended invariant of  the original Vassiliev theory. 

Following the above rules we get the extension of the Kauffman bracket of  plane 
fronts. One should note that, though the Kauffman bracket of  a normal front does 
not depend on orientations of  its components, the extended bracket does depend on 
these orientations if a degenerate front has more than one component. 

Definitions. A J+-type &variant f has order n in Vassiliev sense i f  n is the max- 
imal number of  dangerous self-tangencies of  a front on which the extension of  f 
does not vanish. The symbol of such f is the restriction of  f to the set of fronts 
with precisely n dangerous self-tangencies. 

Gromov's  theorem (Sect. 1.2) means that indices and Maslov indices of  the 
components are the only invariants of  order zero. 
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The difference of two invariants of  order n with the same symbol is an invariant 
of  order less than n. 

Theorem 2. Set  A = e t in the Kauffman bracket o f  a plane f ront  C and expand 
the result in a power series in t. Then the coefficient at t n in the series (C)IA=e' 
is a J+-type invariant o f  order at most  n in Vassiliev sense. 

Proo f  o f  Theorem 2. Let C be a front with n + 1 dangerous self-tangency points 
dl . . . . .  dn+l. We consider two splittings of  C (Fig. 10) at a point di and attach to 
each of the splittings a sign e(di)  which indicates either agreement or disagreement 
of  the surgery with the orientations. 

~ i  ~(di)=l ~ ) /  e(di)=-I 'A 'K 
~ i  e(dl)=l ' K ~ i  E(di)=--i ~ '*/  ' A  

disagreement with the orientations agreement with the orientations 

Fig. 10. Signs of splittings of dangerous self-tangencies 

Let C~,...,c,+, be the splitting of C at all the points dl .... , dn+l  with the signs 
e(di)  = ei. The second equality of  Proposition 1 of Sect. 2.1 implies 

(C) = (A - A - l )  n+l ~ c1 �9 ... �9 Cn+l " (Ce,,...,e~ , 
CI ,-.-~ ~ n + l  

where the sum is taken over all 2 n+l possible splittings of  the self-tangency points. 
The substitution A = e t and Taylor expansion provide 

(A - A  -1)n+1 _--(2t)n+l + terms of higher degree . 

Therefore the coefficient at t n in (C)IA=e, is equal to zero. Theorem 2 is proved. 

Remark.  The proof demonstrates a bit more than the theorem claims. Namely, eval- 
uations at A = 1 and A = - 1  of the n th derivative of the Kauffman bracket with 
respect to A turn out to be invariants of  order at most n (cf. [7]). The exponential 
substitution is a sort of  tradition introduced in [7]. 

3.2. Symbols  o f  the coefficients. There are several ways to define a chord diagram 
of a degenerate front. Say, one can follow the approach of [12] marking chords. 
But the way which looks most convenient for the study of the Kauffman bracket is 
as follows. 

Consider an oriented /-component front C with n dangerous self-tangencies. Up 
to an isotopy of the ambient plane we can assume that the coorienting vector at 
each of the self-tangency points is horizontal and directed to the left. Take l disjoint 
circles S~ U . . .  U S] oriented counter-clockwise in a plane. Consider the front C as 
the image of a mapping S~ U . . .  U S] --~ R 2. Connect the two preimages of  a direct 
(resp. inverse) dangerous self-tangency by a solid (resp. dashed) chord. Orient this 
chord from the inverse image of the fight-hand branch of the self-tangency to that 
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of the left-hand one. Mark an arc of  a circle between two neighbouring endpoints 
of  chords by a pair of  integers (i,/t), where i is the contribution of this arc to the 
index of C and ~t is its contribution to the Maslov index of C. 

The obtained chord diagram considered up to orientation-preserving diffeomor- 
phisms of the circles S~ . . . . .  S ] is called the marked chord diayram of the front C 
and denoted by De. Any abstract marked chord diagram is easily seen to be the 
marked chord diagram of an appropriate front. 

Dc (0,-1) (1,0) 

(0,1) ~ / ~  _1_,__1)~ _ _ _c_3 _ ~ - ~  
~ ( 0 , 1 )  

(1,0) 

Fig. 11. A front with three dangerous self-tangencies and its marked chord diagram 

Gromov's  theorem of Sect. 1.2 implies that two fronts Co and C 1 with the 
same marked n-chord diagram are related by a homotopy {Ct}te[o,t] in which any 
front Ct has n dangerous self-tangencies except for a finite number of  instants t 
when Ct gets n + 1 dangerous self-tangencies (cf. [12]). Thus the symbol of  an in- 
variant of order n defines a function on marked chord diagrams with n chords. The 
main result of  this section (Proposition 2) is a description of this function, 
denoted by (Dc>n, for the symbol of  the coefficient (C)n at t n of (C>[A= e  ̀ (cf. 
Sect. 6.3 of  [5]). 

To formulate the statement we redraw Fig. 10 in terms of diagrams. Order chords 
Cl . . . . .  c, of  an abstract marked n-chord diagram D in an arbitrary way. Define two 
signed splittings of  a chord ci as shown in Fig. 12. In each of the cases the chord 
is substituted by two oriented marked arcs. As it will become obvious from what 
follows, these splittings of  ci correspond exactly to the similarly signed splittings of  
the self-tangency point di in Fig. 10 if the chord represents the point in the marked 
diagram of a front. 

<_ ) e(ei)=l ~ <. ~ e(ci)=-i { ~_ (o,1~ 
_~ i  ..... ) .~.c_i ..... ~ 

Fig. 12. Splittings of chords, their signs and markings 

Let D~,,...,~, be a splitting of the diagram D with signs e(c i )=  ei. We denote 
by l(el . . . . .  e~) the number of  components of  D~l,...,c" : Dr = Uj(De,...,e,)j. Each 
component consists of  oriented marked arcs which are either arcs of  circles of  D 
or the results of  splittings of  chords of  D. For a component (De,...,~,)j we define 
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D-__ 
~- .~ . ?~  (~o) 

(o,I)~ 

(i,o) 
i1=0--0=0 i3=1--0=1 
#1=--1--1------2 /z3=O--O=O 
i2=0+0+0+0+1--0+1+0=2 
/z2=l+O+l+l+O--1-- 1+ 1=2 

D__+ 
~ u . . . ~  ,- (L~o) 

( 0 , 1 ~  

(1,o) 
il=O--O:O ia=l-O=l 
#1=-1-1=-2 ~3~0-0=0 
i2=0+0+0+0--1-0+1+0=0 
~2=1+0+1+0-0-0-1+1=2 

D_+_ 
_ ~  (3~ 0) 

f ~ - - r r  1) (o,1)d -~  
(o 1 ) ~  

(1,o) 
i1=0-0=0 /~1=-1-1=--2 
i2=0+0-1+0+0+0+1-0+1+0=1 
/~2=1+t-1--0+1+1+1+0-1-1+1=4 

D_++ 

( 0 , 1 ~  

(I,o) 
i1=0--0=0 /t1=-1--1=--2 
i2=0+0-1+0+0+0-- 1--0+I+0=-- 1 
/~2 =1+1-0+1+1+0--0--0--1+1=4 

D+__ 
. " ~  (o,oy" (L~.oo) 

( 0 , 1 ~  

(1,o) 
i1=0-0-1+0-1-0-0-0-0-0=.-2 
/tl = -  1-0+1+1--0-1-1-0-1-0=--2 
i2=1-0=1 #2=0-0=0 

_ •  D+_+ 
,- (3~~ 

(o i ~  

(1,0) 
i1=0-0-1+0+1-0-0-0-0-0=0 
~1=-1--0+1+0+0-0-1-0-1-0=-2 
i2=1-0=1 ~2=0-0=0 

D + + -  
%. (o,oy (1.~o) 

( o , 1 ~  

(1,o) 
i1=0-0-- 1+0--1--0--0-0+1--0-0--0=--1 
pl =--1--0+1+1--0--1-1--1+0-1--1--0=-4 

D+++ 
(1 o) 

(o 1 ' ~  

(1,0) 
i1=0-0-1+0+1-0--0-0+1--0--0-0=1 
/tl=- 1-0+lt0-I-0--0-1-1+0-1-1--0=-4 

Fig. 13. Eight splittings of the marked chord diagram D of Fig. 11. We assume the chords 
enumerated as in Fig. 11. Calculating the indices of a component we are walking along the 
component starting from the point * in the direction of the arc containing �9 

two integers, index ij and Maslov index #j, as follows (see Fig. 13). Let us walk 
along the component (D~,...,~,)j and sum markings (i,#) of the arcs we visit with 
appropriate signs. Walking along an arc oriented in (resp. opposite to) the direction 
of our journey we take its index i and Maslov index # with the sign plus (resp. 
minus). Of course, ij and #j change their signs for the trip in the opposite direction. 
But the statement below does not depend on these signs. 
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Proposit ion 2. The value (D), o f  the n th coefficient o f  the Kauffman bracket on a 
marked chord diagram D is 9iven by the formula 

( D ) n  = - 2  n ~ 2 l(el' ' ' ' 'e")-I " Cl . . . . .  Cn " 
l(Cl,,,.,~n) 

I~ (-1)#J2Tlijl(h) , 
j= l  

where the sum is taken over all 2 ~ possible splittings o f  D, the product is taken 
over all components o f  a splitting, Tn(cOsx) = cos(nx) are the classical Tchebyshev 
polynomials. 

Example. For the marked chord diagram D of  Fig. 11 we have the eight splittings 
shown in Fig. 13. Therefore 

/ 

(D)3 = - -8  ~-4(-  To(h ) )(-  rz(h ) )T~(h ) + 4(-To(h  ) ) ( -To(h ) )T~(h ) 

+2(-ro(h))T~(h)  - 2( -To(h))Tl(h)  + 2( -Tz(h) )r~(h)  

- 2 ( -T o (h ) )T l (h )  - Tl(h) + Tl(h))  

=-8Tl (h ) ( -4To(h ) (T2(h )  - To(h)) - 2 ( T 2 ( h )  - To(h))) 

= 16Tl(h)(T2(h) - To(h))(2To(h) - 1) 

= 16h(2h 2 - 1 - 1 ) ( 2 -  1) = 32h(h 2 - 1), 

since To(h) = 1, Tl(h) = h, Tz(h) = 2h 2 - 1. 

Proof  o f  Proposition 2. Let C be a front with n dangerous self-tangencies. The 
proof  of  Theorem 2 (see Sect. 3.1) provides an explicit formula for the value (C) ,  
of  the n th coefficient of  the Kauffman bracket on this front: 

(C)n = 2 n ~ e~ . . . . .  en �9 (C~,...,e,)0. 
El~...~En 

So for calculation of  (C)n = (Dc)n it is enough to know the zero order coefficients 
(C~,...,~,)0. The lemma below gives an explicit formula for (C~,...,~,)0 in terms of  
absolute values of  indices and Maslov indices of  components of  the front C~,...,~,. 
When the ordering of  the chords in the diagram Dc is induced by an ordering of  
dangerous self-tangencies of  the front C, these absolute values are easily seen to be 
given by the above algorithm of  counting the index information about the splitting 
(Dc)e~,...,~,. Thus Proposition 2 follows from 

L e m m a  5. Let C = UJ=IC j be a normal front  with 1 components. Put ij = ind(Cj)  

and # = E~-I  #(G)" Then 

l 
(C>o = - 2 1 - 1 ( -  1) "/2 H T]ijl(h), 

j--1 

where T,(cosx)  = cos(nx) are the classical Tchebyshev polynomials, 
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Proof of Lemma 5. The second equality of  Proposition 1 of  Sect. 2.1 implies that 
the zero order coefficient of  the Kauffman bracket is invariant under dangerous self- 
tangencies as well. Due to Gromov's  theorem (Sect. 1.2) (C)0 depends only on 
indices and Maslov indices of  components of  C. Therefore it is enough to calculate 
(C)0 on a collection of canonical curves. Property 4) of  Theorem 1 implies 

(C1 ,  C2)0 = - 2 ( C 1 ) 0  �9 (C2)0. 

So Lemma 5 follows from the calculation of the Kauffman bracket on the canonical 
curves from Sect. 2.4. 

Remark. Proposition 2 shows that the orientations of  chords in a marked chord 
diagram do not matter for the value of  the symbol of  the coefficient. Indeed reori- 
entation of a chord in a diagram D can affect only the Maslov indices /~j in the 
formula of  the proposition. But for any splitting of the diagram the sum of the #j 
modulo 4 is not affected. 

In fact the independence from orientations of  chords is a general property of  the 
symbol of  any J+- type  invariant f :  

The second equality here is due to the fact that we are considering a symbol. The 
3rd and 5th ones are the definition. A similar chain of  equalities is valid for an 
inverse dangerous self-tangency. 

Thus the orientation of chords in our definition of the marked chord diagram of 
a front with dangerous self-tangencies should be omitted. 

The obtained relation is not the only relation on the values of  symbols on our 
marked chord diagrams. There are a lot of  others, some of which are quite obvious. 
A complete diagrammatic description of symbols of  finite order J+-type invari- 
ants of  one component plane fronts has been obtained by J.W. Hill [15]. It turns 
out that one needs to add one more marking, by the Maslov index of the whole 
front, to the marked chord diagrams used in [12] in the case of  a regular plane 
curve. 

3.3. The first coefficient. The proposition below means that the first coefficient 
(C)I of the Kauffman bracket of  a one component normal front C carries the same 
information as the quantum Bennequin invariant flq(Lc) from Sect. 1.4. Setting 
h = (q + q - l ) / 2  brings (C)a to the form whose essential part is flq(Lc). A reason 
for this substitution is that it makes the Tchebyshev polynomials Tn(h) very simple: 

Tn(q+q@) _ q . + ~ - n  = ([n § 1]q - [n]q)/2. Unfortunately the explicit formula relat- 
ing (C)1 and flq(Lc) does not look very elegant. 
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Proposition 3. Let C be a one component normal front o f  index i and Maslov 
index p. Then 

(C)l[h=(q+q t)/2 = (--1)~/2(2(qi+ q- i )J+(C)  q- 2flq(Zc)) -k e( i ,#)  , 

where the quantum constant R(i, It) depends only on the index i and Maslov index 
It of  c: 

R(i, It) ---- (-1)~/2([1i1 + 2]q - - ( 1 i 1  + lIt[ + 3)[1 i1 + 1]q 

- (lie - M2 - -  3)[li[]q + (21i1 + I ~ / +  2)[lie - 1]q -1- [[i1 - 2]q) .  

Proof of  Proposition 3. We have to check two points. Firstly, the values of  
both sides of  the identity on the canonical curves should coincide. Secondly, 
the jumps of both sides should be the same under a dangerous self-tangency 
perestroika. 

The fact that the canonical curves satisfy the identity follows from the direct 
computations. We actually introduced the complicated term R(i, p) as the difference 
between the values of  the left-hand side and the remaining part of  the right-hand 
side on the curve Klil+l,l~l/2 with any orientation and coorientation (both sides of  the 
identity do not change when we either reorient or recoorient a front). The evaluation 
of the "main" part of  the right-hand side on the canonical curves is provided by the 
settings and computations of  Sects. 1.3 and 1.4. The left-hand side of  the identity 
is ~A(C) IA=I. Its evaluation on the canonical curves is based on rather elementary 
calculations (we omit them here) of  similar derivatives of  the deformations of  the 
Tchebyshev polynomials of  Sect. 2.3. 

Now R(i, It) does not change under any perestroika. So the jump of  the right- 
hand side of  the identity under a dangerous self-tangency perestroika at a point d 
of  index id is equal (see Sects. 1.3 and 1.4) to 

( -  1 )~/2(qi q_ q-i  q_ 2(qia q_ q-ia )). 

Let us calculate the jump of the left-hand side. According to Sect. 3.2 we as- 
sociate one of the marked chord diagrams of Fig. 14 to a dangerous self-tangency 
point d of index id. 

(i' ,u') (i ' , , ') 

(r (i",u") 
i=i' +i"; lt----lz' q-#" ; id=li~--i"l i=i' +i"; It=#' q-I~" ; id-----li'-i"l 

tzt,/z" are even. /d,/~" are odd. 

direct self-tangency inverse self-tangency 

Fig. 14. Marked chord diagrams of a self-tangency point d of index i d 

The jump is the value of  the symbol of  (C)1 on the corresponding diagram. 
By Proposition 2 (Sect. 3.2) for calculation of the values we have to consider two 
splittings of each of the diagrams as it is shown in Fig. 15. 
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w 

D (i1'#1) ~ 

D+ (i', ') (i11,#11) ~ 

(i ,~. ) 

D+ (i', ') 
(~,,,#,,) ~ 

(i ,u ) 
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il--_i I i2=i 't 
#1 =#' #2 =#" 

#,t is even. 

il =it +O--i" +O=+id 
#1 =# '  + 1--#" + 1 = # -  2(#" - 1 ) 

i l = i  t i2 =i  n 
#1=#1+1 #2----#"--1 

#,1 is odd. 

il =il +O-i"  +0-----Fi d 
#1 =#' + 0 - # "  +0=#- 2#"  

Fig. 15. Splittings of marked chord diagrams with one chord 

Therefore the j ump s  are as follows. 
For a direct se l f - tangency (#"  is even) :  

t l -  2 = - 2 ( - 2 ( - I  )~"/2Tli, l (h) ( - I  )l / Ti,, (h) + ( - I )~ ' /2- (~ ' " - l )T i , , (h) )  

= 2 ( - I )  ''/2 (2Tli, l(h)Tli,,l(h) + Ti,,(h)) 

= (- I )~, /2(q,  + q-i  + 2(qi. + q- i . ) ) .  

For an inverse self - tangency ( f i t  is odd):  

= -2 ( -2 ( - l )O"+ ' ) /2T l i ,  l ( h ) ( - I  )(I "-- 1)/2 Ttt,,i.{h)+(-l)H2-~d'Ti,(h)). 

( , = 2 ( - I  )~,/2 2rl~,l(h)rl~,,l(h) + r~.(h) 

= ( -  I )~,/2(qi + q-i  + 2(qi. + q-i .  )) 

Proposi t ion 3 is proved. 
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4. Other Polynomials 

Similar to the definition of the Kauffman bracket of a plane front, the Legendrian 
lifting lowers other polynomial invariants of  knots in a solid toms to normal fronts. 
Below we rewrite the HOMFLY and Kauffman polynomials of [21] in terms of 
plane curves and formulate a series of corresponding conjectures. The difficulty in 
proving these conjectures is that there is no obvious direction in application of the 
calculation rules, unlike the knot case where such a direction is to pass to an unknot 
by changes of crossings in a knot diagram. 

4.1. H O M F L Y  polynomial. The HOMFLY polynomial of an oriented unframed 
link in a solid torus [21] is an element of Z[x • y+l,z+t,z• The Legendrian 
translation of the definition of  its obvious framed version (which takes values in the 
same polynomial ring and will be denoted by P)  gives the following relations 

.<><) -(X) 
P ( > < ) - - P ( ~ _ ) = Y P ( ~ )  ' 

/).. 
and initial data 

P(C~ " C2) = P ( C  1) ~ P(C 2) , 

x. 
y ' 

P ( ~t--V-V.i.V"r ) = z d  for the curve of winding number i 4= O. 

Relations of the first three lines are valid for the fragments with the reversed orien- 
tations as well; C1 �9 C2 is the disjoint union of the two non-empty fronts on different 
sides of a certain straight line. 

Conjecture 1. There exists a unique J+-type invariant 

P(C) C Z[x  =[-1, y-[-1,z+ 1 ,zdz2,...] 

of an oriented normal front C satisfying the above relations and initial data. 

The way in which one uses relations of the third line in calculations of the 
polynomials in not very complicated cases (for example, for the curves of the tables 
from [3]) allows us to make 

Conjecture 2. For any normal front C the unique &variant P(C) of Conjecture 1 
is a 9enuine polynomial (not a Laurent one) in x. 
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Conjecture 2 would imply a new estimate on the Bennequin number of  a Legen- 
drian knot in the standard contact solid torus. 

4.2. Kauffman polynomial The Kauffman polynomial L of a framed non-oriented 
link in a solid torus [21] is an element of Z[x• . . . .  ]. Lowering of  the 
rules of its calculation to normal non-oriented plane fronts provides the relations 

L ( ~ ) -  L ( > < ) =  y ( L ( ~ ) - - L ( ~ ) )  , 

along with the initial data 

L(~i.~)----z,f~ 
The fronts C1 and C2 here are similar to the ones in the relation for the HOMFLY 
polynomial. 

Conjecture 3. There exists a unique J+-type invariant L(C) E Z[x ~1, y-4-1,Zl,Z2,...] 
of a non-oriented normal front C satisfyin9 the above relations and initial data. 

Once again the numerical experiments dictate 

Conjecture 4. For any normal front C the unique invariant L(C) of  Conjecture 3 
is a 9enuine polynomial (not a Laurent one) in x. 

The latter would imply yet one more new estimate for the Bennequin invariant 
of  a Legendrian knot. 

4.3. The standard R 3. Take a normal plane front with each component of  Whitney 
index zero and with no vertical tangents. We will call such a front non-vertical. 

Consider a non-vertical front as the graph of a multi-valued function on the hori- 
zontal axis. Taking the derivative as the third coordinate lifts it to a Legendrian link 
in R 3 with the standard contact structure of  the space of 1-jets of  functions on a line. 
Any generic Legendrian link in this standard R 3 is the lift of  a non-vertical front. 

Thus we can lower the HOMFLY and Kauffman polynomials of framed knots 
in R 3 to non-vertical fronts assuming them cooriented upwards. In comparison with 
the rules for arbitrary normal fronts, we have to omit the definitions of  the variables 
zi and rotate all the fragments in the relations by 90 degrees clockwise. 

Similar to Conjectures 1, 3 and 4, the sufficiency of the obtained rules to calcu- 
late the polynomials of  a non-vertical front is under question, along with the version 
of the Kauffman polynomial being a true polynomial in x. The corresponding ver- 
sion of Conjecture 2 for the HOMFLY polynomial of a Legendrian knot has been 
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recent ly  p roved  by  D.Fuchs  and S .Tabachn ikov  [10]. A c c o r d i n g  to the result  o f  [10], 
this impl ies  the R3-vers ion  o f  Conjec ture  4 m o d u l o  2. 
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