
From Theorem 3.2 there follows that for y > 0 the function u0(x ) m 0 yields a strict local minimum of the functional f. If y < 

0, then the function u0(x ) = 0 is not a point of minimum of this functional. If y = 0, then the minimum analysis can be carried 
out with the aid of Theorem 3.2. 

The authors are grateful to S. B. Kuksin and M. A~ Shubin for discussions regarding this paper. 
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M O N O D R O M Y  OF THE IMAGE OF THE MAPPING C 2 - ,  C 3 

V. V. Goryunov UDC 517.3 

We consider the germ of the mapping Cn,0 --, Cn+l,0 of finite left-right (J¢-) codimension. Assume that a representative 

fis defned on a sufficiently small ball D C C n with center at 0. Let fx0: D --, C n+t be a mapping sufficiently close to fwith only 

,,4, -stable multisingularities (a Whitnification of 0- Mond [6] proved that the image of fx0 in C n+l is homotopically equivalent 

to the bouquet of a finite number of n-dimensional spheres. We denote this finite number by or. It was also proved that for n = 

2, a is no less than the d -codimension of the initial germ, and for a quasihomogenous mapping it is equal to it (the correspon- 

ding claim for a mapping of the line into the plane is almost trivial, but it is easy to see that if the pair (n,n+l) lies outside the 

range of "nice" dimensions [2], i.e., n > 6, the claim is actually false). Thus, the image V of a stable perturbation of the germ of 

the mapping C e --, C 3 is analogous to the Milnor fiber of a function with an isolated critical point. In this paper we will extend 

this analogy, and define vanishing cycles on V (a manifold with noniso!ated singularities) and the index of intersection with a 

vanishing cycle; we will also describe the monodromy of a stable image. 

L Vanishing Cycles. We consdier an ~g -versal deformation f2, 2 E (A,0), of the mapping f: C2,0 ~ C3,0. For a general 

value of the deformation parameter, the image of fx has only stable singularities: the transversal intersection of two or three 

smooth sheets, and a Whitney hood. The base of the deformation A contains the ~/-branching diagram ~, the hypersurface of 

values of A for which the corresponding term of f~ of a versal family has unstable multisingularities. In the general case -- X has 

5 components, which correspond to the following degeneracies of an image of J¢ -codimension 1: 

Moscow Aviation Institute. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 25, No. 3, pp. 12-18, July- 
September, 1991. Original article submitted April 9, 1990. 
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Fig. 5 

Fig. 6 

I. Confluence of two Whitney hoods. 

II. Contact between two sheets of  the image. 

III. Passage of  a foreign sheet through a hood. 

IV. Contact between the lines of  the transversal intersection of  two sheets of the image with a third sheet. 

V. Passage of  a sheet through a point of the transversal intersection of three other sheets. 

For specially selected real forms of  the degeneracies we have listed, Fig. 1 shows the local form of the corresponding real 

surfaces of Im fA for given values of;t close to the the branching value. The complement (in R 3) of each of the illustrated surfaces 

has a unique connected component, whose closure is compact. The boundary of the closure of this component is homeomorphic 

to a two-dimensional sphere, determines a nontrivial element in H 2 (Im f2; Z) and contracts to a point as ;t approaches a branch 

point. We call this boundary a vanishing cycle on Im ix, ;t ~ X. 

We will now define a distinguished family of vanishing loops on a stable image. To do so, we consider a line I = C 1 in 

general position that passes through 0. We shift it from zero in the usual way. The line l '  thus obtained transversally intersects 

the diagram X in a finite number v of  points (v is the index of  the intersection of  I and X). We now fix a nonbranching point 

;t0 on l ' ,  and on l '  we consider a system of v nonintersecting and non-selfintersecting paths 7i that start at ;t0 and proceed to 

points of the set l f3 X. We enumerate these paths in the clockwise order that they leave the point ;t 0. As motion proceeds along 

each of  these paths on a stable image, V = Im f.to --- VS2 contracts along a vanishing cycle %. We say that the set of cycles el, 

.... e v is distinguished. 

THEOREM 1. A distinguished set of cycles generates the group H2(V;Z ). 

Proof. The line l '  induces the mapping F'  : C a - +  C ~, (z ,  ~) ~ (Jx (z) ,  ~), L ~ l' from a versal deformation. This 

mapping is stable. Let W = VS 3 be its image. Now, consider the segments of  the exact homological sequence 

O-~H~ (w) ~ ~ra (w, v)-+ H2 (11)--0. 

The central term is a free group of rank v generated by the classes of frames of  vanishing cycles e i C V that contract in 

W along the paths Yi (as in [5]). As a result, the cycles e i generate H2(V ). 

The mapping F '  we have used is a perturbation of the mapping F induced by a versal deformation by a line l passing 

through 0 E A. 

COROLLARY. v = or(f) + or(F). 
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We should note that analogs of Theorem 1 and its corollary hold for C 1 -,  C 2 and C 3 --, C 4. 

2. Local Variational Operators. We now consider any path r(t), t E [0,1] in A \ Z that begins at 2 o. The covering 

homotopy defines the mapping V = I m  ~(0) -" Im fro) (which can be assumed to be a diffeomorphism), If the path is a loop, 

we obtain an automorphism V. 

Definition. The monodromy group of  the germ f: C2,0 -~ C3,0 is the image of the natural homomorphism Jrl(A \ Z¢10) -* 

Aut H,(V;Z). 

As usual [2; 3, Ch. 4], to describe the mondromy group we first consider automorphisms of the homologies of stable 

images induced by circuits about small loops around various components of the branching diagram Z. 

Thus, let 2,  be a regular point of  the diagram Y, and let J,  be a point at which the image Im f~0 has a single unstable 

singularity. It is not difficult to see that it is possible to choose a sufficiently small ball B C C a with center at J, and a very small 

neighborhood U C A of  the point 2,  so that the fiber space over U with fiber Im f~ \ (Ira f2 tq B) is trivial. As a result, a circuit 

along a loop co in U about Z defines a diffeomorphism of a stable image Im f~, that is the identity outside the set Y = Im f~, 

tq B (2' is the beginning and end of ~o). Thus, this circuit adds its variation Vara~A , an element of H,(Y),  to an element A of 

H,(Y,0Y). Since H,CY) is homologically nontrivial only in two dimensions, Vara, A = 0 if dim A ;~ 2. 

For our five elementary degeneracies of  codimension 1 we will write out the groups H2(Y, OY ) - H  closcw indicating - -  2 t, ~), 
their generating A, which we will need later on. 

I. Z z @ Z. A 1 (order 2) is a selfintersection. A 2 is obtained as follows: here the f2,-preimage of  a seffintersection in C 2 

in homeomorphic to a cylinder; let a be the generator of this cyclinder, which the mapping f~, cuts in half; we have a in C 2 

contract as a closed two dimensional film; the fz,-image of  this film also generates the term Z. 

IL Z. A 1 is constructed from two closed films that contract in each of the generating sheets of  the one-dimensional closed 

homology of a selfintersection (the selfintersections are homeomorphic to a cylinder). 

III. Z 2 ~ Z. A 1 is a seffintersection. A 2 is a real trihedral angle that is "vertical" relative to the trihedral angle of the 

vanishing cycle. 

IV and V. Z 2 and 2 4. The generators are analogous to the generator A 2 of infinite order in the preceding case. 

Since H2(Y ) = Z in every case, the variational operator carries any element of  finite order into zero. To describe the 

action of  Varto on the free terms we choose the orientation of generators. 

First, we recall the definition of certain sets associated with multiple selfintersections of a stable image V = Im f~o [7, 

8]. 
The space C 2 contains a curve V 2 that is the preimage of  the selfintersection V. V 2 has transversal selfintersections --  

the preimages of triple points. We can normalize V 2 by using a curve V2 C C 2 × C 2 that is the closure of the set of  pairs (xl,x2) , 

x 1 ~ x 2, such that f~o(Xl) = fgo(X2). V2 contains the preimage V 3 of  the points of  selfintersection of  the curve V 2 for the 
projection z :  (zi, :r~) ~- zt. 

Example. In Fig. 2 these sets are shown for the Whitnification of the singularity 1t3: z, y ~ x, V 8, z// + ys. 

On any vanishing cycle e the dimension of an intersection with a multiple selfintersection of the image V drops by 1 w h e n  

the multiplicity of  the selfintersection rises by 1. We will consider the closure of the f~0-preimage of  the set e tq reg V in C 2. The 

boundary 62e of this closure is a one-dimensional cycle in V 2. The closure of the sr-preimage of 62e f) reg V 2 has the boundary 

63e C V 3 (which may be empty). 

Assume that the cycle e vanishes on the values of  2 = 2, considered above. Let Y2 and Y3 be the analogs of the sets 

V 2 and V 3 for Y = Im fz, N B. Consider some basic cycle of infinite order A E H2d°scY ). It has boundary 62A E HlCl°s(Y2) and 

63A ~ HoCY3). Here 63A = 0 if and only if 63e = O. The indices of  intersection of  closed and compact cycles on Y are as follows: 

{ (~2A, 6ae), if 63e ----- 0, 
(A, e) = (SaA, ¢Sze), if ¢Sze :#= 0. 

The indices on the right respectively refer to Y2 and Y3. 

THEOREM 2. Consider a complex line transverse to the branching diagram Z at a regular point 2,. Let ¢o be a small 

loop on this line that circles 2 ,  once in the positive direction. Then the variations Var~oA of the basis elements of infinite order 

in H2CY,0Y ) such that (A,e) > 0 are: 

I. 2e. 

II. e. 

III. 2e. 
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I V .  e° 

V. 0. 

Cases II, IV, and V were examined in [4] (see also 13, §4.1]). Formulas for I and III  follow easily from consideration of 

the effect of Var~ on HlcI°~(Y2) and H0(Y3) (cf., for example, [2, para. 2.1.1.2]). 

3. Index of Intersection with a Vanishing Loop. The description we have given for local variational operators assumes 

that to describe the monodromy group for the germ of C 2 - ,  C 3 we must introduce the index of intersection with a vanishing cycle 

into the homology of a stable image. For this we refer to the situation used to define a distinguished set of  vanishing cycles in 

Para. 1: Let ), be one of the distinguished paths on a line I'  in general position that leads from a distinguished point )l 0 E l' 
to one of the branching points 2. E l '  N 57, and let e be a loop that vanishes along ?. Let ~l' be a point near the end of  ~,, V '  = 

Im fz'. The group H2(V'  ) is generated by cycles that have one-dimensional intersections with selfintersecting lines of  V'.  Using 

the natural homomorphism H2(V'  ) -* H2Cl°s(V'), we set, for a compact cycle c on V',  

(6zC, 6ze), if 6ae = O, 
(c, e) = (63c,,63e), if 63e =#: 0. 

The indices on the right refer to V 2' and V3'. 

The movement  of cycles from the manifold V to the manifold V'  along the path ? determines the index of intersection 

with e on H2(V ). 

The indices of  intersection for vanishing cycles I-V are 0, 0, 6, 12, and 24, respectively. 

If e and e '  are two vanishing cycles on V, then 

6~e = 63e' = 0 ~ (e, e') = - -  (e', e), 
6ze :#: 0 #= 5ae' ~ (e, e') ----- (e', e), 
63e =/= 0 = 6ae' ~ (e', e) = O, 
63e =#: 0 = 6ae' =/=~ (e, e') = O. 

In the first two cases the indices can be immediately calculated for V, without moving the cycles to the "almost branching" 

image. In the third case the index is zero, since the cycle e '  can be removed from the cycle e by an isotopy in the neighborhood 

of e. In the fourth case the index need not vanish, since, in computing it, we used only an isotopy in a small neighborhood of e'. 

Thus, the matrix for the intersections of  vanishing cycles (with the cycles ordered in some way that need not be the same 

as in the distinguished set) has the block form 

where the matrix A 1 is skew symmetric and A 2 is symmetric. 

4. Pie~rd--Lefshets Operators.  The group :~I(A \ Y~,I0) is generated by v classes of simple loops e) i on l' \ 57 that 

correspond to a system of distinguished paths Yi. (a simple loop ~o i leaves 20, proceeds along ~'i almost to the end of the path, 

then loops clockwise about the endpoint and returns to 2 0 along ~'i). As a result, the monodromy group is generated by the 

automorphisms of the group H2(v)  that are induced by circuits in simple loops. The automorphisms h~o i are called 

Picard--Lefshets operators. Their description is a consequence of Theorem 2. 

THEOREM 3. The Picard--Lefshets operators corresponding to vanishing loops e of  the forms I-V are of  the form 

I - -  c ~  t - - ( e ,  e) e; 
I I - - c ~  c - -  t /2 (c ,  e) e; 
III, I V -  c ~ c - 2  (c, e) e/(e, e); 
V - -  id. 

Thus, operators III and IV are mappings into planes orthogonal to the corresponding cycles. Operators  I and II on a 

space in H2(V ) generated by cycles of  types I and II act a s skew-orthogonal mappings into shorter and longer cycles of functions 

on bounded manifolds. 

5. Examples. 10. Recall that the list of  .---,. -simple germs of  mappings C 2 - ,  C 3 contains, as a subset,  the list of  simple 

functions functions on the halfplane: Ak, Bk, Ck, and F 4 (see [3]). By the degree of a germ we mean the maximum number of 

different preimages that a point can have with a relatively small shift of the germ (the shift need not be general). Then, on the 
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whole, the contact classes of the curves on the (x,z) plane with boundary z = 0 have a one-to-one relationship to the M-classes 

of the mappings C 2 --- C 3 of degree 2 and rank 1: the mapping z ,  y ~ x,  y2, yg  (x, //2). corresponds to the curve g(x,z) = 0. 

The Whitnification of  such mappings has no triple points, so here we encounter only cycles of  types I and II. A distinguished set 

of vanishing cycles forms a basis for H2(V ). The form we introduced for intersections on H2(V ) coincides with the form for 

intersections of the function g on the halfplane [1]. Here short cycles of  boundary singularities correspond to cycles of type I, 

and long cycles correspond to cycles of  type II. This correspondence clearly extends to a correspondence of hypersurfaces in the 

manifolds C n with boundary C n-1 and the mappings C n ~ C n+l of degree 2 and rank 1. This leads to the appearance of the Weyl 

groups Ak, Bk, Ck, Dk, Ek, and F 4 a s  well as their skew-symmetric analogs in the theory of mappings C n --) C n+x as monodromy 

groups of the corresponding simple singularities. 

2 °. The ~-s imple  mappings C z --, C 3 that do not reduce to boundary singularities are exhausted by the single infinite 

series H~, k ~ 2: x, y ~- x, V ~, xy - r  y~+i . In  it rk H2(V ) = k, but a distinguished set contains k + 1 members (in Fig. 2, 

which shows the Whitnification of H 2, we can clearly see two vanishing cycles of  type III; a third, of type I, is equal, when the 

orientation is chosen properly, to the difference of the first two). It is possible to choose a distinguished point and a system of 

distinguished paths on a line in general position to the base of a versal deformation for the singularities of H k so that the Dynkin 

diagram takes the form shown in Fig. 3. 

We will state the type of each vanishing cycle that appears here. The skew-symmetric ((33e i = 0) and symmetric (c33e i 

0) parts of the diagram are separated by a dashed line. In the symmetric part the weight of the arcs is one sixth of the index of 

intersection of the corresponding cycles; in the remaining cases the weights and indices are the same. The weight 1 is omitted. 

The classical monodromy operator h (successive circuit of simple loops, beginning with the last) yields 

e I ~-~ e t ,  e2  ~ e 2 - -  e I - -  e a t  e 3  ~ e 3 - -  e t - -  e 4 ,  

e , ~ - - e , ÷ l ,  4 ~ s ~ k ,  

e~+l ~-~ --e~+l + e~ - -  e~-i -~ e~-2 - -  ... ~ e¢ ~ 2el. 

The characteristic polynomial of the operator h is (,t - 1 ) ( 2  k - 1  - 1 ) .  

3 °. Any nonsimple germ of C 2 --, C 3 with degree greater than 2 is associated with the singularity P4: x ,  y ~ x, xy  - -  

ya, x f  + ay  ~ (a :/= 0, 1/2, i t  3/2). The Dynkin diagram of P 4  is shown in Fig. 4. 

The arcs in the skew-symmetric (left) part of the diagram are directed from i-th to j-th vertices so that the indices (ei,ej) 

are the same as the multiplicities of the corresponding arcs. Here 

h : e , ~  --e~ @ 2 e 5 ,  e 2 ~  el + e 4  + 3 e 5 ,  

e 3 ~ - - e  t -~- e s ,  

e4 ~ e~ + e3 + e4 + es, es ~ --e3 + % 

d e t ( X E - - h )  = ( Z - - t ) ( k  s - l ) .  

6. Remarks. 1 °. Consider the image V of the Whitnification of a mapping C 1 --, C 2. The intersection index of two one- 

dimensional cycles on V that is analogous to that introduced in Para. 3 is taken at points of transversal selfintersection of V. Here 

we must consider only the points at which the cycles under consideration pass from one sheet of the image to another. If, at a 

given point, the change in sheets upon movement along both cycles occurs in the same order, the index is taken equal to two. 

If the orders are opposite, the index is taken equal to -2 .  Such a form on HI(V ) is symmetric. 

With the above noted analogy with functions on bounded manifolds taken into account, we show a short cycle in Fig. 

5 (Cartesian sheet), and a long cycle is illustrated in Fig. 6. The series t --, t 2, t 2k+1 of simple singularities has the Dynkin diagram 

of B k. The Picard--Lefshets operators corresponding to the long and short cycles are mappings in orthogonal planes. The identity 

operator corresponds to the cycle that vanishes into the point of triple selfintersection with square of 6. 

2 °. For mappings C n -- ,  C n+l, n > 2 ,  the situation is hypothetically as follows. In the case of degeneracies of topological 

.A -codimension 1, an n-dimensional sphere must contract to a topologically stable image. It is to be expected that the action 

of Picard--Lefshets operators is described by intersection matrices for vanishing cycles with block-triangular form and alternating 

symmetric and skew-symmetric blocks on the diagonal. 

3 °. Still another possible generalization is description of the monodromy for the discriminant of  the mapping g: Cn,0 --, 

CP,0, n >-_ p. It was announced in [6] that a common small shift in the germ g of finite ofl,-codimension is homotopically 

equivalent to the bouquet of a finite number of (p - 1)-dimensional spheres. Here the analog of the mapping C n --) C n+l is 

provided by the restriction of g to the set of  critical points. 
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S I M P L E  P R O O F  O F  M A C D O N A L D ' S  I D E N T I T I E S  F O R  

T H E  S E R I E S  A 

Z. L. Leibenzon UDC 519.46 

1. Macdonald [1] associated a quite remarkable identity in the ring of formal power series in several variables with each 

root system R. A variety of different interpretations and proofs (see [2-7]) were subsequently associated with these identities. The 

goal of the present article is to provide a simple proof  of the series of Macdonald identities for root systems of type At ,  using 

only combinatorial and elementary algebraic considerations. 

For the system A 1 the Macdonald identity reduces to the classical Gauss--Jacobi identity. It is of the form 

J (y, z) = ~ (1 + yz'~-~)(t + y-~z") (t - -  z~) = Y, y~z'~(~) (1) 
~a~l r~Z 

(here and below we use the notation h(r) = r(r - 1)/2). The author presented a simple combinatorial proof  of (1) in [8]. It 

provides the foundation for the following discussion. 

In order to construct the Macdonald identities we will need the following notation: We set M~ = {a = (a~, . . . ,  

as) ~ Zn 1 a~ ~- . . .  + a~ = I + ... -~ n}. F o r a  H Z and natural n we denote the residue of a modulo n by res n a H Z/nZ. 

For each sequence (vl , . . . ,vn) of residues modulo n we define the number ~(Vl,.. . ,vn) to be equal to 0 or +1 according to the 

following rules: if all of the v i are different, i.e., (vl,...,vn) is a permutation of the sequence (res n 1, res n 2,...,res n n), then e(vl, 

...,vn) is the sign of the permutation; otherwise we set e(vl,...,Vn) = 0. For each a = (al , . . . ,an)  H Z n we set e(a) = ~(res n 

al, . . . ,res n an) and ~o(a) = (a12 + ... +an2 - 12 - ... - n2)/2n. We will write the Macdonald identities in terms of this notation. 

THEOREM 1. For every n _> 2 the identity 

= ~ ~ (a) x~c"~{ -°' • . . . .  ~"-~- .  (2) 

holds in the ring of formal power series in x with coefficients from the ring of Laurent polynomials in xl,...,x n. 
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