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Almost all applications of singularity theory are related to wave fronts and caustics:
they can be visualized and recognized in many physical models.

Suppose, for example, that a disturbance (such as a shock wave, light, an
epidemic or a flame) is propagating in a medium from a given submanifold (called
the initial wave front). To determine where the disturbance will be at time t,
according to the Huygens principle, we must lay a segment of length t along every
normal to the initial front. The resulting variety is called an equidistant or a wave
front.

Along with wave fronts, ray systems may also be used to describe propagation
of disturbances. For example, we can consider the family of all normals to the initial
front. This family has the envelope, which is called caustic – “burning” in Greek
– since the light concentrates at it. A caustic is clearly visible on the inner surface
of a cup put in the sunshine. A rainbow in the sky is the caustic of a system of
rays which have passed through drops of water with the total internal reflection.

Generic caustics in three-dimensional space have only standard singularities.
Besides regular surfaces, cuspidal edges and their generic (transversal) intersec-
tions, these are: the swallowtail, the ‘pyramid’ (or ‘elliptic umbilic’) and the ‘purse’
(or ‘hyperbolic umbilic’). They are a part of R.Thom’s famous list of simple catas-
trophes. It is not so difficult to see that the singularities of a propagating wave
front slide along the caustic and trace it out.

The study of singularities of wave fronts and caustics was the starting point
of the theory of Lagrangian and Legendrian mappings developed by V.I.Arnold
and his school some thirty years ago. Since then the significance of Lagrangian and
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Legendrian submanifolds of symplectic and respectively contact spaces has been
recognized throughout all mathematics, from algebraic geometry to differential
equations, optimization problems and physics.

Symplectic space is essentially the phase space (space of positions and mo-
menta) of classical mechanics, inheriting a rich set of important properties.

It turns out that caustics and wave fronts are the critical value loci of special
non-generic mappings either between manifolds of the same dimension or between
n- and (n + 1)-dimensional manifolds. The general definitions of such mappings
were introduced by V.I. Arnold in terms of projections of Lagrangian and Leg-
endrian submanifolds embedded into symplectic and contact spaces. These con-
structions describe many special classes of mappings, such as Gauss, gradient and
others.

A Lagrangian or Legendrian mapping is determined by a single family of
functions. This crucial feature makes the theory transparent and constructive.

In particular, stable wave fronts and caustics are discriminants and bifurca-
tion diagrams of function singularities. That is why their generic low-dimensional
singularities are governed by the famous Weyl groups.

Recently new areas in theory of integrable systems and mathematical physics
(for example, Frobenius structures, D-modules etc.) opened up new fields for ap-
plications of theory of Lagrangian and Legendrian singularities.

In these lecture notes, we do not touch the fascinating results in symplectic
and contact topology, a young branch of mathematics which answers questions on
global behavior of Lagrangian and Legendrian submanifolds. An interested reader
may be addressed to the book [4] and paper [5] forming a good introduction to that
area. Our lectures were designed as an introduction to the original local theory.
We hope that they will inspire the reader to do more extensive reading. Items
[1, 3, 2] on our bibliography list may be rather useful for this.

1. Symplectic and contact geometry

1.1. Symplectic geometry

A symplectic form ω on a manifold M is a closed 2-form, non-degenerate as a
skew-symmetric bilinear form on the tangent space at each point. So dω = 0 and
ωn is a volume form, dimM = 2n.
Manifold M equipped with a symplectic form is called symplectic. It is necessarily
even-dimensional.
If the form is exact, ω = dλ, the manifold M is called exact symplectic.

Examples

1. Let K = M = R2n = {q1, . . . , qn, p1, . . . , pn} be a vector space, and

λ = pdq =
n∑

i=1

pidqi , ω = dλ = dp ∧ dq .
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In these co-ordinates the form ω is constant. The corresponding bilinear form on
the tangent space at a point is given by the matrix

J =
(

0 −In

In 0

)
.

Notice: for any non-degenerate skew-symmetric bilinear form on a linear space,
there exists a basis (called Darboux basis) in which the form has this matrix.
2. M = T ∗N . Take for λ the Liouville form defined in an invariant (co-ordinate-
free) way as

λ(α) = π(α)
(
ρ∗(α)

)
,

where
α ∈ T (T ∗N) , π : T (T ∗N)→ T ∗N and ρ : T ∗N → N .

This is an exact symplectic manifold. If q1, . . . , qn are local co-ordinates on the
base N , the dual co-ordinates p1, . . . , pn are the coefficients of the decomposition
of a covector into a linear combination of the differentials dqi:

λ =
n∑

i=1

pidqi .

3. On a Kähler manifold M, the imaginary part of its Hermitian structure ω(α, β) =
Im(α, β) is a skew-symmetric 2-form which is closed.
4. Product of two symplectic manifolds. Given two symplectic manifolds (Mi, ωi),
i = 1, 2, their product M1×M2 equipped with the 2-form (π1)∗ω1−(π2)∗ω2, where
the πi are the projections to the corresponding factors, is a symplectic manifold.

A diffeomorphism ϕ : M1 → M2 which sends the symplectic structure ω2 on M2

to the symplectic structure ω1 on M1,

ϕ∗ω2 = ω1 ,

is called a symplectomorphism between (M1, ω1) and (M2, ω2). When the (Mi, ωi)
are the same, a symplectomorphism preserves the symplectic structure. In partic-
ular, it preserves the volume form ωn.

Symplectic group

For K = (R2n, dp ∧ dq) of our first example, the group Sp(2n) of linear symplec-
tomorphisms is isomorphic to the group of matrices S such that

S−1 = −JStJ .

Here t is for transpose. The characteristic polynomial of such an S is reciprocal: if
α is an eigenvalue, then α−1 also is. The Jordan structures for α and α−1 are the
same.
Introduce an auxiliary scalar product (·, ·) on K, with the matrix I2n in our Dar-
boux basis. Then

ω(a, b) = (a, J̃b) ,
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where J̃ is the operator on K with the matrix J . Setting q = Re z and p = Im z
makes K a complex Hermitian space, with the multiplication by i =

√
−1 being

the application of J̃ . The Hermitian structure is

(a, b) + iω(a, b) .

From this,

Gl(n,C)
⋂

O(2n) = Gl(n,C)
⋂

Sp(2n) = O(2n)
⋂

Sp(2n) = U(n) .

Remark. The image of the unit sphere S2n−1
1 : q2 +p2 = 1 under a linear symplec-

tomorphism can belong to a cylinder q2
1 + p2

1 ≤ r only if r ≥ 1.
The non-linear analog of this result is rather non-trivial: S2n−1

1 ∈ T ∗Rn (in
the standard Euclidean structure) cannot be symplectically embedded into the
cylinder {q2

1 + p2
1 < 1}×T ∗Rn−1. This is Gromov’s theorem on symplectic camel.

Thus, for n > 1, symplectomorphisms form a thin subset in the set of diffeo-
morphisms preserving the volume ωn.

The dimension k of a linear subspace Lk ⊂ K and the rank r of the restriction of
the bilinear form ω on it are the complete set of Sp(2n)-invariants of L.

Define the skew-orthogonal complement L∠ of L as

L∠ = {v ∈ K|ω(v, u) = 0 ∀u ∈ L} .

So dimL∠ = 2n− k. The kernel subspace of the restriction of ω to L is L
⋂
L∠.

Its dimension is k − r.

A subspace is called isotropic if L ⊂ L∠ (hence dimL ≤ n).
Any line is isotropic.

A subspace is called co-isotropic if L∠ ⊂ L (hence dimL ≥ n).
Any hyperplane H is co-isotropic. The line H∠ is called the characteristic direction
on H .

A subspace is called Lagrangian if L∠ = L (hence dimL = n).

Lemma. Each Lagrangian subspace L ⊂ K has a regular projection to at least
one of the 2n co-ordinate Lagrangian planes (pI , qJ), along the complementary
Lagrangian plane (pJ , qI). Here I

⋃
J = {1, . . . , n} and I

⋂
J = ∅.

Proof. Let Lq be the intersection of L with the q-space and dimLq = k. Assume
k > 0, otherwise L projects regularly onto the p-space. The plane Lq has a regular
projection onto some qI -plane (along qJ) with |I| = k. If L does not project
regularly to the pJ -plane (along (q, pI)) then L contains a vector v ∈ (q, pI) with a
non-trivial pI -component. Due to this non-triviality, the intersection of the skew-
orthogonal complement v∠ with the q-space has a (k−1)-dimensional projection to
qI (along qJ) and so does not contain Lq. This contradicts to L being Lagrangian.

�
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A Lagrangian subspace L which projects regularly onto the q-plane is the graph of
a self-adjoint operator S from the q-space to the p-space with its matrix symmetric
in the Darboux basis.
Splitting K = L1

⊕
L2 with the summands Lagrangian is called a polarisation.

Any two polarisations are symplectomorphic.
The Lagrangian Grassmanian GrL(2n) is diffeomorphic to U(n)/O(n). Its funda-
mental group is Z.
The Grassmanian Grk(2n) of isotropic k-spaces is isomorphic to U(n)/(O(k) +
U(n− k)).
Even in a non-linear setting a symplectic structure has no local invariants (unlike
a Riemannian structure) according to the classical

Darboux Theorem. Any two symplectic manifolds of the same dimension are locally
symplectomorphic.

Proof. We use the homotopy method. Let ωt, t ∈ [0, 1], be a family of germs
of symplectic forms on a manifold coinciding at the distinguished point A. We
are looking for a family {gt} of diffeomorphisms such that g∗tωt = ω0 for all t.
Differentiate this by t:

Lvtωt = −γt

where γt = ∂ωt/∂t is a known closed 2-form and Lvt is the Lie derivative along
the vector field to find. Since Lv = ivd + div, we get

divtωt = −γt .

Choose a 1-form αt vanishing at A and such that dαt = −γt. Due to the non-
degeneracy of ωt, the equation ivtωt = ω(·, vt) = αt has a unique solution vt

vanishing at A.qed

Weinstein’s Theorem. A submanifold of a symplectic manifold is defined, up to a
symplectomorphism of its neighborhood, by the restriction of the symplectic form
to the tangent vectors to the ambient manifold at the points of the submanifold.

In a similar local setting, the inner geometry of a submanifold defines its
outer geometry:

Givental’s Theorem. A germ of a submanifold in a symplectic manifold is defined,
up to a symplectomorphism, by the restriction of the symplectic structure to the
tangent bundle of the submanifold.

Proof of Givental’s Theorem. It is sufficient to prove that if the restrictions of two
symplectic forms, ω0 and ω1, to the tangent bundle of a submanifold G ⊂ M at
point A coincide, then there exits a local diffeomorphism of M fixing G point-wise
and sending one form to the other. We may assume that the forms coincide on
TAM .

We again use the homotopy method, aiming to find a family of diffeomor-
phism-germs gt, t ∈ [0, 1], such that

gt|G = idG , g0 = idM , g∗t (ωt) = ω0 (∗) where ωt = ω0 + (ω1 − ω0)t .
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Differentiating (∗) by t, we again get

Lvt(ωt) = d(ivtωt) = ω0 − ω1

where vt is the vector field of the flow gt. Using the “relative Poincaré lemma”, it
is possible to find a 1-form α so that dα = ω0−ω1 and α vanishes on G. Then the
required vector field vt exists since ωt is non-degenerate. �

The Darboux theorem is a particular case of Givental’s theorem: take a point
as a submanifold.
If at each point x of a submanifold L of a symplectic manifold M the subspace
TxL is Lagrangian in the symplectic space TxM , then L is called Lagrangian.

Examples

1. In T ∗N , the following are Lagrangian submanifolds: the zero section of the
bundle, fibres of the bundle, graph of the differential of a function on N .
2. The graph of a symplectomorphism is a Lagrangian submanifold of the prod-
uct space (it has regular projections onto the factors). An arbitrary Lagrangian
submanifold of the product space defines a so-called Lagrangian relation.
3. Weinstein’s theorem implies that a tubular neighborhood of a Lagrangian sub-
manifold L in any symplectic space is symplectomorphic to a tubular neighborhood
of the zero section in T ∗N .

A fibration with Lagrangian fibres is called Lagrangian.
Locally all Lagrangian fibrations are symplectomorphic (the proof is similar

to that of the Darboux theorem).
A cotangent bundle is a Lagrangian fibration.

Let ψ : L → T ∗N be a Lagrangian embedding and ρ : T ∗N → N the fibration.
The product ρ ◦ ψ : L→ N is called a Lagrangian mapping. It critical values

ΣL = {q ∈ N |∃p : (p, q) ∈ L, rank d(ρ ◦ ψ) < n}
form the caustic of the Lagrangian mapping. The equivalence of Lagrangian map-
pings is that up to fibre-preserving symplectomorphisms of the ambient symplectic
space. Caustics of equivalent Lagrangian mappings are diffeomorphic.

Hamiltonian vector fields

Given a real function h : M → R on a symplectic manifold, define a Hamiltonian
vector field vh on M by the formula

ω(·, vh) = dh .

This field is tangent to the level hypersurfaces Hc = h−1(c):

∀a ∈ Hc dh(TaHc) = 0 =⇒ TaHc = v∠
h , but vh ∈ v∠

h .

The directions of vh on the level hypersurfaces Hc of h are the characteristic
directions of the tangent spaces of the hypersurfaces.
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Associating vh to h, we obtain a Lie algebra structure on the space of functions:

[vh, vf ] = v{h,f} where {h, f} = vh(f) ,

the latter being the Poisson bracket of the Hamiltonians h and f .

A Hamiltonian flow (even if h depends on time) consists of symplectomor-
phisms. Locally (or in R2n), any time-dependent family of symplectomorphisms
that starts from the identity is a phase flow of a time-dependent Hamiltonian.
However, for example, on a torus R2/Z2 (the quotient of the plane by an integer
lattice) the family of constant velocity displacements are symplectomorphisms but
they cannot be Hamiltonian since a Hamiltonian function on a torus must have
critical points.

Given a time-dependent Hamiltonian h̃ = h̃(t, p, q), consider the extended space
M × T ∗R with auxiliary co-ordinates (s, t) and the form pdq − sdt. An auxiliary
(extended) Hamiltonian ĥ = −s + h̃ determines a flow in the extended space
generated by the vector field

ṗ = −∂ĥ

∂q
q̇ = −∂ĥ

∂p

ṫ = −∂ĥ

∂s
= 1 ṡ =

∂ĥ

∂t
.

The restrictions of this flow to the t = const sections are essentially the flow
mappings of h̃.
The integral of the extended form over a closed chain in M ×{to} is preserved by
the ĥ-Hamiltonian flow. Hypersurfaces −s + h̃ = const are invariant. When h̃ is
autonomous, the form pdq is also a relative integral invariant.

A (transversal) intersection of a Lagrangian submanifold L ⊂ M with a Hamil-
tonian level set Hc = h−1(c) is an isotropic submanifold Lc. All Hamiltonian
trajectories emanating from Lc form a Lagrangian submanifold expH(Lc) ⊂ M .
The space ΞHc of the Hamiltonian trajectories on Hc inherits, at least locally, an
induced symplectic structure. The image of the projection of expH(Lc) to ΞHc is a
Lagrangian submanifold there. This is a particular case of a symplectic reduction
which will be discussed later.

Example. The set of all oriented straight lines in Rn
q is T ∗Sn−1 as a space of

characteristics of the Hamiltonian h = p2 on its level p2 = 1 in K = R2n.

1.2. Contact geometry

An odd-dimensional manifold M2n+1 equipped with a maximally non-integrable
distribution of hyperplanes (contact elements) in the tangent spaces of its points
is called a contact manifold.

The maximal non-integrability means that if locally the distribution is deter-
mined by zeros of a 1-form α on M then α∧(dα)n �= 0 (cf. the Frobenius condition
α ∧ dα = 0 of complete integrability).
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Examples

1. A projectivised cotangent bundle PT ∗Nn+1 with the projectivisation of the
Liouville form α = pdq. This is also called the space of contact elements on N .
The spherisation of PT ∗Nn+1 is a 2-fold covering of PT ∗Nn+1 and its points are
co-oriented contact elements.
2. The space J1N of 1-jets of functions on Nn. (Two functions have the same m-jet
at a point x if their Taylor polynomials of degree k at x coincide). The space of
all 1-jets at all points of N has local co-ordinates q ∈ N , p = df(q) which are the
partial derivatives of a function at q, and z = f(q). The contact form is pdq − dz.

Contactomorphisms are diffeomorphisms preserving the distribution of contact
elements.

Contact Darboux theorem. All equidimensional contact manifolds are locally con-
tactomorphic.

An analog of Givental’s theorem also holds.

Symplectisation

Let M̃2n+2 be the space of all linear forms vanishing on contact elements of M .
The space M̃2n+2 is a “line” bundle over M (fibres do not contain the zero forms).
Let

π̃ : M̃ →M

be the projection. On M̃ , the symplectic structure (which is homogeneous of degree
1 with respect to fibres) is the differential of the canonical 1-form α̃ on M̃ defined as

α̃(ξ) = p(π̃∗ξ) , ξ ∈ TpM̃ .

A contactomorphism F of M lifts to a symplectomorphism of M̃ :

F̃ (p) := (F ∗
F (x))

−1p .

This commutes with the multiplication by constants in the fibres and preserves α̃.
The symplectisation of contact vector fields (= infinitesimal contactomorphisms)
yields Hamiltonian vector fields with homogeneous (of degree 1) Hamiltonian func-
tions h(rx) = rh(x).
Assume the contact structure on M is defined by zeros of a fixed 1-form β. Then
M has a natural embedding x �→ βx into M̃ .
Using the local model J1Rn, β = pdq−dz, of a contact space we get the following
formulas for components of the contact vector field with a homogeneous Hamilton-
ian function K(x) = h(βx) (notice that K = β(X) where X is the corresponding
contact vector field):

ż = pKp −K, ṗ = −Kq − pKz, q̇ = Kp,

where the subscripts mean the partial derivations.
Various homogeneous analogs of symplectic properties hold in contact geometry
(the analogy is similar to that between affine and projective geometries).
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In particular, a hypersurface (transversal to the contact distribution) in a
contact space inherits a field of characteristics.

Contactisation

To an exact symplectic space M2n associate M̂ = R×M with an extra co-ordinate
z and take the 1-form α = λ− dz. This gives a contact space.
Here the vector field χ = − ∂

∂z satisfies iχα = 1 and iχdα = 0. Such a field is
called a Reeb vector field. Its direction is uniquely defined by a contact structure.
It is transversal to the contact distribution. Locally, projection along χ produces
a symplectic manifold.

A Legendrian submanifold L̂ of M2n+1 is an n-dimensional integral submanifold
of the contact distribution. This dimension is maximal possible for integral sub-
manifolds.

Examples

1. To a Lagrangian L ⊂ T ∗M associate L̂ ⊂ J1M :

L̂ = {(z, p, q) | z =
∫

pdq, (p, q) ∈ L} .

Here the integral is taken along a path on L joining a distinguished point on L

with the point (p, q). Such an L̂ is Legendrian.
2. The set of all covectors annihilating tangent spaces to a given submanifold (or
variety) W0 ⊂ N form a Legendrian submanifold (variety) in PT ∗N .

3. If the intersection I of a Legendrian submanifold L̂ with a hypersurface Γ in a
contact space is transversal, then I is transversal to the characteristic vector field
on Γ. The set of characteristics emanating from I form a Legendrian submanifold.

A Legendrian fibration of a contact space is a fibration with Legendrian fibres.
For example, PT ∗N → N and J1N → J0N are Legendrian. Any two Legendrian
fibrations of the same dimension are locally contactomorphic.

The projection of an embedded Legendrian submanifold L̂ to the base of a Legen-
drian fibration is called a Legendrian mapping. Its image is called the wave front
of L̂.

Examples

1. Embed a Legendrian submanifold L̂ into J1N . Its projection to J0N , wave front
W (L̂), is a graph of a multivalued action function

∫
pdq + c (again we integrate

along paths on the Lagrangian submanifold L = π1(L̂), where π1 : J1N → T ∗N
is the projection dropping the z co-ordinate). If q ∈ N is not in the caustic ΣL of
L, then over q the wave front W (L̂) is a collection of smooth sheets.

If at two distinct points (p′, q), (p′′, q) ∈ L with a non-caustical value q,
the values z of the action function are equal, then at (z, q) the wave front is a
transversal intersection of graphs of two regular functions on N .
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The images under the projection (z, q) �→ q of the singular and transversal
self-intersection loci of W (L̂) are respectively the caustic ΣL and so-called Maxwell
(conflict) set.

2. To a function f = f(q), q ∈ Rn, associate its Legendrian lifting L̂ = j1(f) (also
called the 1-jet extension of f) to J1Rn. Project L̂ along the fibres parallel to the
q-space of another Legendrian fibration

π∧
1 (z, p, q) �→ (z − pq, p)

of the same contact structure pdq − dz = −qdp − d(z − pq). The image π∧
1 (L̂)

is called the Legendre transform of the function f . It has singularities if f is not
convex.

This is an affine version of the projective duality (which is also related to Leg-
endrian mappings). The space PT ∗Pn (Pn is the projective space) is isomorphic
to the projectivised cotangent bundle PT ∗Pn∧ of the dual space Pn∧. Elements
of both are pairs consisting of a point and a hyperplane, containing the point.
The natural contact structures coincide. The set of all hyperplanes in Pn tangent
to a submanifold S ⊂ Pn is the front of the dual projection of the Legendrian
lifting of S.

Wave front propagation

Fix a submanifold W0 ⊂ N . It defines the (homogeneous) Lagrangian submanifold
L0 ⊂ T ∗N formed by all covectors annihilating tangent spaces to W0.

Consider now a Hamiltonian function h : T ∗N → R. Let I be the intersec-
tion of L0 with a fixed level hypersurface H = h−1(c). Consider the Lagrangian
submanifold L = expH(I) ⊂ H which consists of all the characteristics emanating
from I. It is invariant under the flow of H .

The intersections of the Legendrian lifting L̂ of L into J1N (z =
∫
pdq) with

co-ordinate hypersurfaces z = const project to Legendrian submanifolds (varieties)
L̂z ⊂ PT ∗N . In fact, the form pdq vanishes on each tangent vector to L̂z. In
general, the dimension of L̂z is n− 1.

The wave front of L̂ in J0N is called the big wave front. It is swept out by
the family of fronts Wz of the L̂z shifted to the corresponding levels of the z-co-
ordinate. Notice that, up to a constant, the value of z at a point over a point (p, q)
is equal to z =

∫
p∂h

∂pdt along a segment of the Hamiltonian trajectory going from
the initial I to (p, q).

When h is homogeneous of degree k with respect to p in each fibre, then zt = kct.
Let It ⊂ L be the image of I under the flow transformation gt for time t. The
projectivised It are Legendrian in PT ∗N . The family of their fronts in N is {Wkct}.
So the Wt are momentary wave fronts propagating from the initial W0. Their
singular loci sweep out the caustic ΣL.

The case of a time-depending Hamiltonian h = h(t, p, q) reduces to the above by
considering the extended phase space J1(N ×R), α = pdq − rdt− dz. The image
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of the initial Legendrian subvariety L̂0 ⊂ J1(N × {0}) under gt is a Legendrian
Lt ⊂ J1(N × {t}).
When z can be written locally as a regular function in q, t it satisfies the Hamilton-
Jacobi equation −∂z

∂t + h(t, ∂z
∂q , q) = 0.

2. Generating families

2.1. Lagrangian case

Consider a co-isotropic submanifold Cn+k ⊂ M2n. The skew-orthogonal comple-
ments T∠

c C, c ∈ C, of tangent spaces to C define an integrable distribution on C.
Indeed, take two regular functions whose common zero level set contains C. At
each point c ∈ C, the vectors of their Hamiltonian fields belong to T∠

c C. So the
corresponding flows commute. Trajectories of all such fields emanating from c ∈ C
form a smooth submanifold Ic integral for the distribution.

By Givental’s theorem, any co-isotropic submanifold is locally symplectomorphic
to a co-ordinate subspace pI = 0, I = {1, . . . , n− k}, in K = R2n. The fibres are
the sets qJ = const.

Proposition. Let Ln and Cn+k be respectively Lagrangian and co-isotropic subman-
ifolds of a symplectic manifold M2n. Assume L meets C transversally at a point a.
Then the intersection X0 = L

⋂
C is transversal to the isotropic fibres Ic near a.

The proof is immediate. If TaX0 contains a vector v ∈ TaIc, then v is skew-
orthogonal to TaL and also to TaC, that is to any vector in TaM . Hence v = 0.

Isotropic fibres define the fibration ξ : C → B over a certain manifold B of dimen-
sion 2k (defined at least locally). We can say that B is the manifold of isotropic
fibres.

It has a well-defined induced symplectic structure ωB. Given any two vectors
u, v tangent to B at a point b take their liftings, that is vectors ũ, ṽ tangent to C
at some point of ξ−1(b) such that their projections to B are u and v. The value
ω(ũ, ṽ) depends only on the vectors u, v. For any other choice of liftings the result
will be the same. This value is taken for the value of the two-form ωB on B.

Thus, the base B gets a symplectic structure which is called a symplectic
reduction of the co-isotropic submanifold C.

Example. Consider a Lagrangian section L of the (trivial) Lagrangian fibration
T ∗(Rk × Rn). The submanifold L is the graph of the differential of a function
f = f(x, q), x ∈ Rk, q ∈ Rn. The dual co-ordinates y, p are given on L by y = ∂f

∂x ,
p = ∂f

∂q . Therefore, the intersection L̃ of L with the co-isotropic subspace y = 0 is
given by the equations ∂f

∂x = 0. The intersection is transversal iff the rank of the
matrix of the derivatives of these equations, with respect to x and q, is k. If so,
the symplectic reduction of L̃ is a Lagrangian submanifold Lr in T ∗Rn (it may
not be a section of T ∗Rn → Rn).
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This example leads to the following definition of a generating function (the
idea is due to Hörmander).

Definition. A generating family of the Lagrangian mapping of a submanifold L ⊂
T ∗N is a function F : E → R defined on a vector bundle E over N such that

L =
{

(p, q) | ∃x :
∂F (x, q)

∂x
= 0, p =

∂F (x, q)
∂q

}
.

Here q ∈ N , and x is in the fibre over q. We also assume that the following Morse
condition is satisfied:

0 is a regular value of the mapping (x, q) �→ ∂F

∂x
.

The latter guarantees L being a smooth manifold.

Remark. The points of the intersection of L with the zero section of T ∗N are in
one-to-one correspondence with the critical points of the function F . In symplectic
topology, when interested in such points, it is desirable to avoid a possibility of
having no critical points at all (as it may happen on a non-compact manifold E).

Therefore, dealing with global generating families defining Lagrangian sub-
manifolds globally, generating families with good behavior at infinity should be
considered.

A generating family F is said to be quadratic at infinity (QI) if it coincides
with a fibre-wise quadratic non-degenerate form Q(x, q) outside a compact.

On the topological properties of such families and on their rôle in symplectic
topology see the papers by C.Viterbo, for example [5].

Existence and uniqueness (up to a certain equivalence relation) of QI gen-
erating families for Lagrangian submanifolds which are Hamiltonian isotopic to
the zero section in T ∗N of a compact N was proved by Viterbo, Laundeback and
Sikorav in the 80s:

Given any two QI generating families for L, there is a unique integer m and
a real � such that Hk(Fb, Fa) = Hk−m(Fb−�, Fa−�) for any pair of a < b. Here Fa

is the inverse image under F of the ray {t ≤ a}.
However, we shall need a local result which is older and easier.

Existence

Any germ L of a Lagrangian submanifold in T ∗Rn has a regular projection to
some (pJ , qI) co-ordinate space. In this case there exists a function f = f(pJ , qI)
(defined up to a constant) such that

L =
{

(p, q) | qJ = − ∂f

∂pJ
, pI =

∂f

∂qI

}
.

Then the family FJ = xqJ +f(x, qI), x ∈ R|J|, is generating for L. If |J | is minimal
possible, then HessxxFJ = HesspJpJ f vanishes at the distinguished point.
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Uniqueness

Two family-germs Fi(x, q), x ∈ Rk, q ∈ Rn, i = 1, 2, at the origin are called
R0-equivalent if there exists a diffeomorphism T : (x, q) �→ (X(x, q), q) (i.e., pre-
serving the fibration Rk ×Rn → Rn) such that F2 = F1 ◦ T .

The family Φ(x, y, q) = F (x, q)± y2
1 ± · · · ± y2

m is called a stabilisation of F .

Two family-germs are called stably R0-equivalent if they are R0-equivalent to
appropriate stabilisations of the same family (in a lower number of variables).

Lemma. Up to addition of a constant, any two generating families of the same
germ L of a Lagrangian submanifold are stably R0-equivalent.

Proof. Morse Lemma with parameters implies that any function-germ F (x, q)
(with zero value at the origin which is taken as the distinguished point) is stably
R0-equivalent to F̃ (y, q)± z2 where x = (y, z) and the matrix HessyyF̃|0 vanishes.
Clearly F̃ (y, q) is a generating family for L if we assume that F (x, q) is.

Since the matrix ∂2F̃ /∂y2 vanishes at the origin, the Morse condition for F̃

implies that there exists a subset J of indices such that the minor ∂2F̃ /∂y∂qJ is
not zero at the origin. Hence the mapping

Θ : (y, q) �→ (pJ , q) = (∂F̃ /∂qJ , q)

is a local diffeomorphism. The family G = F̃ ◦ Θ−1, G = G(pJ , q), is also a
generating family for L.

The variety ∂F̃/∂y = 0 in the domain of Θ is mapped to the Lagrangian
submanifold L in the (p, q)-space by setting p = ∂F̃/∂q and forgetting y. Therefore,
the variety X = {∂G/∂pJ = 0} in the (pJ , q)-space is the image of L under its
(regular) projection (p, q) �→ (pJ , q).

Compare now G and the standard generating family FJ defined above (with
pJ in the role of x). We may assume their values at the origin coinciding. Then the
difference G− FJ has vanishing 1-jet along X . Since X is a regular submanifold,
G− FJ is in the square of the ideal I generated by the equations of X , that is by
∂FJ/∂pJ .

The homotopy method applied to the family At = FJ + t(G−FJ ), 0 ≤ t ≤ 1,
shows that G and FJ are R0-equivalent. Indeed, it is clear that the homological
equation

−∂At

∂t
= FJ −G =

∂At

∂pJ
ṗJ

has a smooth solution ṗJ since FJ −G ∈ I2 while the ∂At/∂pJ generate I for any
fixed t. �

2.2. Legendrian case

Definition. A generating family of the Legendrian mapping π|L of a Legendrian
submanifold L ⊂ PT ∗(N) is a function F : E → R defined on a vector bundle E
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over N such that

L =
{

(p, q) | ∃x : F (x, q) = 0 ,
∂F (x, q)

∂x
= 0 , p =

∂F (x, q)
∂q

}
,

where q ∈ N and x is in the fibre over q, provided that the following Morse
condition is satisfied:

0 is a regular value of the mapping (x, q) �→ {F, ∂F
∂x
} .

Definition. Two function family-germs Fi(x, q), i = 1, 2, are called V -equivalent
if there exists a fibre-preserving diffeomorphism Θ : (x, q) �→ (X(x, q), q) and a
function Ψ(x, q) not vanishing at the distinguished point such that F2 ◦Θ = ΨF1.

Two function families are called stably V -equivalent if they are stabilisations of a
pair of V -equivalent functions (may be in a lower number of variables x).

Theorem. Any germ π|L of a Legendrian mapping has a generating family. All
generating families of a fixed germ are stably V -equivalent.

Proof. For an n-dimensional N , we use the local model π0 : J1N ′ → J0N ′, N ′ =
Rn−1, for the Legendrian fibration.

Consider the projection π1 : J1N ′ → T ∗N ′ restricted to L. Its image is
a Lagrangian germ L0 ⊂ T ∗N . If F (x, q) is a generating family for L0, then
F (x, q) − z considered as a family of functions in x with parameters (q, z) ∈
J0N ′ = N is a generating family for L and vice versa. Now the theorem follows
from the Lagrangian result and an obvious property: multiplication of a Legendrian
generating family by a function-germ not vanishing at the distinguished point
gives a generating family. After multiplication by an appropriate function Ψ, a
generating family (satisfying the regularity condition) takes the form F (x, q) − z
where (q, z) are local co-ordinates in N . �
Remarks

A symplectomorphism ϕ preserving the bundle structure of the standard La-
grangian fibration π : T ∗Rn → Rn, (q, p) �→ q has a very simple form

ϕ : (q, p) �→
(
Q(q), DQ−1∗(q)(p + df(q))

)
,

where DQ−1∗(q) is the dual of the derivative of the inverse mapping of the base
of the fibration, Q ◦ π = π ◦ ϕ, and f is a function on the base.
To see this, it is sufficient to write in the co-ordinates the equation ϕ∗λ− λ = df.

The above formula shows that fibres of any Lagrangian fibration possess a
well-defined affine structure.

Consequently, a contactomorphism ψ of the standard Legendrian fibration
PT ∗Rn → Rn acts by projective transformations in the fibres:

ψ : (q, p) �→ (Q(q), DQ−1∗(q)p) .

Hence, there is a well-defined projective structure on the fibres of any Legendrian
fibration.
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We also see that Lagrangian equivalences act on generating families as R-equiva-
lences (x, q) �→ (X(x, q), Q(q)) and additions of function in parameters q.
Legendrian equivalences act on Legendrian generating families just as R-equiva-
lences.
We see that the results of this section relate local singularities of caustics and wave
fronts to those of discriminants and bifurcation diagrams of families of functions
depending on parameters. In particular, this explains the famous results of Arnold
and Thom on the classification of stable singularities of low-dimensional wave
fronts by the discriminants of the Weyl groups.

The importance of the constructions introduced above for various applica-
tions is illustrated by the examples of the next section.

2.3. Examples of generating families

1. Consider a Hamiltonian h : T ∗Rn → R which is homogeneous of degree k with
respect to the impulses p: h(τp, q) = τkh(p, q), τ ∈ R.

An initial submanifold W0 ⊂ Rn (initial wave front) defines an exact isotropic
I ⊂ Hc = h−1(c). Assume I is a manifold transversal to vh. Put c = 1.

The exact Lagrangian flow-invariant submanifold L = exph(I) is a cylinder
over I with local co-ordinates α ∈ I and time t from a real segment (on which the
flow is defined).

Assume that in a domain U ⊂ T ∗Rn ×R the restriction to L of the phase
flow gt of vh is given by the mapping (α, t) �→ (Q(α, t), P (α, t)) with ∂P

∂α,t �= 0.
Then the following holds.

Proposition.

a) The family F = P (α, t)(q−Q(α, t)) + kt of functions in α, t with parameters
q ∈ Rn is a generating family of L in the domain U .

b) For any fixed t, the family F̃t = P (α, t)(q−Q(α, t)) is a Legendrian generating
family of the momentary wave front Wt.

The proof is an immediate verification of the Hörmander definition using the fact
that value of the form pdq on each vector tangent to gt(I) vanishes and on the
vector vh it is equal to p∂h

∂p = kh = k.

2. Let ϕ : T ∗Rn → T ∗Rn, (q, p) �→ (Q,P ) be a symplectomorphism close to the
identity. Thus the system of equations q′ = Q(q, p) is solvable for q. Write its
solution as q = q̃(q′, p).

Assume the Lagrangian mapping of a Lagrangian submanifold L has a gen-
erating family F (x, q). Then the following family G of functions in x, q, p with
parameters q′ is a generating family of ϕ(L):

G(x, p, q; q′) = F (x, q̃) + p(q̃ − q) + S(p, q′) .

Here S(q′, p) is the “generating function” in the sense of Hamiltonian mechanics
of the canonical transformation ϕ, that is

dS = PdQ− pdq .
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Notice that, if ϕ coincides with the identity mapping outside a compact, then G
is a quadratic form at infinity with respect to the variables (q, p).

The expression p(q̃ − q) + S(p, q′) from the formula above is the generating
family of the symplectomorphism ϕ.

3. Represent a symplectomorphism ϕ of T ∗Rn into itself homotopic to the identity
as a product of a sequence symplectomorphisms each of which is close to the
identity. Iterating the previous construction, we obtain a generating family of
ϕ(L) as a sum of the initial generating family with the generating families of
each of these transformations. The number of the variables becomes very large,
dim(x)+2mn, where m is the number of the iterations. Namely, consider a partition
of the time interval [0, T ] into m small segments [ti, ti+1], i = 0, . . . ,m − 1. Let
ϕ = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1 where ϕi : (Qi, Pi) �→ (Qi+1, Pi+1) is the flow map on
the interval [ti, ti+1]. Then the generating family is

G(x,Q, P, q) = F (x,Q0) +
m−1∑
i=0

(Pi(U(iQi+1, Pi)−Qi) + Si(Pi, Qi+1)) ,

where:
• Q = Q0, . . . , Qm−1, q = Qm, Qi ∈ Rn, q ∈ Rn,
• Si is a generating function of ϕi,
• Ui(Qi+1, Pi) are the solutions of the system of equations Qi+1 = Qi+1(Qi, P1)

defined by ϕi.

One can show that if ϕ is a flow map for time t = 1 of a Hamiltonian function
which is convex with respect to the impulses then the generating family G is
also convex with respect to the Pi and these variables can be removed by the
stabilisation procedure. This provides a generating family of ϕ(L) depending just
on x,Q, q which are usually taken from a compact domain. Therefore, the function
attains minimal and maximal values on the fibre over point q, this property being
important in applications.
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