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Abstract. We show that Lagrangian and Legendre varieties associated with matrix singularities
and singularities of composite functions are stable in the sense of a natural modification of Givental’s
notion of stability of Lagrangian projections.
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The study of singular Lagrangian and Legendre varieties was initiated by Arnold some twenty-
five years ago, when he was investigating singularities in the variational problem of bypassing an
obstacle [1]. The first examples of such varieties, open swallowtails, were related to the discrim-
inants of noncrystallographic Coxeter groups [4, 8]. Incorporating these examples into a general
context, Givental [4] introduced the notion of stability of Lagrangian and Legendre varieties under
perturbations of the symplectic structure and the Lagrangian projection (or, respectively, the con-
tact structure and the Legendre projection) alone, with the diffeomorphic type of the variety being
preserved.

Later, it was shown [7] that this notion of stability has an explicit geometric description in
terms of generating families, versal deformations of function singularities, and inducing maps.

The interest in the theory of singular Lagrangian and Legendre varieties has been growing
recently owing to possible applications to Frobenius structures, D-modules, and other areas.

In the present paper, we extend the results of [7] to a natural modification of Givental’s no-
tion of stability and show that the stability condition holds for a wide class of Lagrangian and
Legendre varieties associated with matrix singularities (see [2, 3, 6]) and singularities of composite
functions [5].

1. 0-Stability

In this section, we recall some standard notions and modify them for later use.
1.1. The Lagrangian setting. A singular Lagrangian (sub)variety L of a symplectic space

M2n is an n-dimensional analytic subset of M that is Lagrangian in the ordinary sense at all its
regular points. A Lagrangian projection π is a projection π : M → Bn defining a fibration whose
fibers are Lagrangian.

The fibers of every Lagrangian fibration possess a well-defined affine structure. Indeed, local
coordinates on the base lift to regular functions on the total space, which are pairwise in involution.
Hence their Hamiltonian vector fields commute, do not vanish, and are tangent to the fibers.

The restriction π|L of a Lagrangian projection π to a Lagrangian subvariety L ⊂ M is called
a Lagrangian map.

Two Lagrangian maps of Lagrangian subvarieties L′ and L′′ are said to be equivalent if there
exists a symplectomorphism of the ambient symplectic spaces that maps L′ onto L′′ and the
fibers of one Lagrangian projection onto the fibers of the other. In particular, L′ and L′′ are
symplectomorphic.

The germ of a Lagrangian map π|L of a variety L at a point m is said to be stable if the germ
of every Lagrangian map π̃|L close to π|L at any point m̃ close to m is equivalent to the germ of

∗The second author’s research was partially supported by RFBR grant 02-01-00099 and Universities of Russia
grant 04-01-016.



250

π|L at some point close to m. Note that only the fibration π is allowed to vary in this definition,
while the subvariety L is fixed.

According to Givental [4], this notion of stability is equivalent to the following notion of versality
of the map germ π|L .

Let OL be the algebra of regular functions on L, and let mB,m be the maximal ideal in the
algebra OB,m of function germs on the base B at the point π(m). We define the local algebra of
the germ of π|L at m as

Qm = OL/((π|L)∗(mB,m))OL.

The algebra Qm is the algebra of restrictions of functions on L to the intersection of L with the
fiber Fπ(m) = π−1(π(m)).

We denote the subspace of affine functions on the fiber Fπ(m) (with respect to the corresponding
affine structure) by Am and the restriction homomorphism that takes each function on the fiber
to its restriction to L ∩ Fπ(m) by r : Am → Qm .

The germ of π|L at m ∈ L is said to be versal if r is surjective and miniversal if r is an
isomorphism.

Let p, q be local Darboux coordinates on M about m: p(m) = p0 , q(m) = 0, and π(p, q) = q.
The Weierstrass preparation theorem implies that the versality of π|L at m is equivalent to the
representability of every analytic function germ ϕ on M at m = (p0, 0) in the form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj + a0(q), (1)

where the aj , j � 0, are analytic function germs on the base B and the function germ ψ vanishes
on L.

Remark. The decomposition means that every function germ on M at m is the sum of a
function vanishing on L and a function affine on each fiber. Therefore, each Hamiltonian vector
field near m is the sum of a Hamiltonian vector field tangent to L and a Hamiltonian vector field
preserving the fibration π. Hence the homotopy method implies that each symplectomorphism
germ of M at m close to the identity is the composition of a symplectomorphism preserving L
and a symplectomorphism preserving the standard projection π. Since each perturbation of the
germ of π in the class of Lagrangian projections is the composition of π with an appropriate
symplectomorphism, we see that versality implies stability. See [4] for detailed proofs.

We now proceed to a special case of the theory. Namely, let M = T ∗B be the cotangent
bundle of a manifold Bn . Let T0 be the zero section of T ∗B , and let Sym0(M) be the subgroup of
symplectomorphisms of M preserving T0 .

Two Lagrangian maps of Lagrangian subvarieties of the cotangent bundle are said to be 0-
equivalent if they are equivalent via a symplectomorphism in Sym0(M).

Replacing equivalence by 0-equivalence in the definition of stability, we obtain the notion of
0-stability of Lagrangian map germs.

The zero section T0 determines a linear structure on the fibers of the cotangent bundle. Re-
placing the space Am of affine functions on Fm by the invariantly defined subspace A 0

m of linear
functions, we obtain the definition of 0-versality, which is equivalent to the representability of each
function germ ϕ on M at m such that ϕ|T0 = 0 in the form

ϕ(p, q) = ψ(p, q) +
n∑

j=1

aj(q)pj , (2)

where the germs aj and ψ are the same as in (1) and we assume that the Darboux coordinates p
vanish on T0 .

Just as before, 0-versality implies 0-stability.
The multiplicity µ of a 0-miniversal germ of a Lagrangian map, that is, the rank of its local

algebra treated as a linear space, is equal to n. It is at most n if the germ is 0-versal.
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In what follows, we consider only the complex case. Note that the results of this section can
also readily be transferred to the real case.

Lemma 1. The projection π : T ∗
C

n → C
n, (p, q) �→ q, of a Lagrangian germ L at the origin

is 0-stable if and only if the germs of the products pipj , i, j = 1, . . . , n, admit the decompositions

pipj = ψij(p, q) +
n∑

k=1

ckij(q)pk, (3)

where the function germs ψij and ckij are holomorphic and the ψij vanish on L.
Proof. The “only if” part is obvious. To prove the “if” part, we note that the ideal I generated

by all quadratic polynomials Pij(p) = pipj −
∑
ckij(0)pk , i, j = 1, . . . , n, in the space of all holo-

morphic function germs on the fiber F0 is of finite codimension. Modulo I , each function germ on
F0 is an affine function in p. After the projection into the local algebra Q0 , that is, after further
reduction modulo functions vanishing on L (more precisely, on L∩F0), such a function is still affine
in p. Hence the 0-versality condition holds.

An analog of this lemma involving stability (rather than 0-stability) can be found in [4].
We define the suspension of a Lagrangian fibration π : M → B as the direct product

π̂ = (π, π0) : M̂ =M × T ∗
C → B × C

of π by the canonical projection π0 : T ∗
C → C.

The suspension of a Lagrangian variety L ⊂M2n is the (n+1)-dimensional Lagrangian variety
L̂ ⊂ M × T ∗

C defined as the product of L by the line � = {pn+1 = const �= 0} in the space T ∗
C

equipped with the standard Darboux coordinates pn+1 , qn+1 .
The propositions below readily follow from the definitions.
Proposition 2. A map germ π|L at m ∈ M is (mini)versal if and only if its suspension π̂|

L̂

is 0-(mini)versal at some point (and hence at all points) of the line m× � in M̂ .
Example. The germ of the standard projection π of the Lagrangian submanifold L ⊂ T ∗

C
n =

{p, q} determined by a generating family f = f(x, q) with parameters q ∈ C
n and variables x ∈ C

k

by the formula
L = {(p, q) | ∃x : ∂f/∂x = 0, p = ∂f/∂q}

is stable if and only if the family germ f( · , · ) is an R+-versal deformation of the function germ
f( · , 0). The projection is 0-stable if and only if f( · , · ) is an R -versal deformation of f( · , 0).

Proposition 3. Consider a Lagrangian subvariety germ L in M̂ = T ∗
C

n × T ∗
C at a point

outside the zero section. Suppose that the germ π̂|L is 0-versal and L belongs to a regular hyper-
surface in M̂ transversal to the ∂pn+1 -direction. Then π̂|L is 0-equivalent to the suspension of the
versal map germ π|L′ of a Lagrangian subvariety L′ ⊂M = T ∗

C
n.

1.2. The Legendre setting. A singular n-dimensional subvariety of a contact space is said
to be Legendre if it is Legendre in the ordinary sense at all its regular points. We use the projec-
tivized cotangent bundle PT ∗

C
n+1 and the space J1(Cn,C) = {p, q, z} of 1-jets of functions on C

n

equipped with the contact form α = dz− p dq as standard (and equivalent) local models of contact
(2n + 1)-dimensional spaces. The definitions of Legendre maps, stability, etc. are similar to those
in the Lagrangian case (see also [4]).

The symplectization and contactization functors relate Lagrangian and Legendre germs as fol-
lows.

A. The projection ρ : (p, q, z) �→ (p, q) maps a Legendre variety Λ ⊂ J1(Cn,C) onto the La-
grangian variety ρ(Λ) ⊂ T ∗

C
n .

B. Locally, a Lagrangian fibration and its zero section uniquely determine the Liouville form
α = p dq, which is a primitive of the symplectic form ω = dα. Given a Lagrangian germ L ⊂ T ∗

C
n

at a point m, by L0,m we denote the set of points s ∈ L such that the integral of α along some
path γ on L joining m and s is zero.
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For simplicity, we assume that the integral is independent of the local path γ , that is, the
cohomology class of α on L is zero. (See [4] for examples in which this cohomology class is nonzero.)

If L0,m does not meet the zero section of T ∗
C

n , then its projectivization is a Legendre (or
isotropic) variety in PT ∗

C
n . The projection W0(L,m) = π(L0,m) ⊂ C

n is called the 0-wave front
of L.

C. For a Lagrangian germ L ⊂ T ∗
C

n at a point m, the set ΛL,m ⊂ J1(Cn,C) of points (p, q, z)
such that s = (p, q) ∈ L and the integral of α along a path joining m and s in L is equal to z is a
Legendre variety in J1(Cn,C).

A symplectomorphism germ θ ∈ Sym0(T ∗
C

n) preserving π preserves α. Hence if θ(L′) = L′′ ,
then θ(L′

0,m) = L′′
0,θ(m) . In Darboux coordinates, θ has the form

θ : (p, q) �→ (P, θ̌(q)),

where θ̌ is the underlying diffeomorphism of the base and P = (θ̌−1)∗p is the value at p of the
linear operator on the fibers dual to the inverse of the derivative of θ. In particular, θ̌(W0(L′,m)) =
W0(L′′, θ(m)).

These definitions imply the following assertion.

Proposition 4. Consider a Legendre germ Λ ⊂ J1(Cn,C). Suppose that the variety ρ̂(Λ) does
not meet the zero section and its standard Lagrangian projection is 0-stable. Then the projection of
Λ into J0(Cn,C) is Legendre stable.

Conversely, if the projection of Λ into J0(Cn,C) is Legendre stable and Λ is quasihomogeneous
with positive weights of the variables, then ρ̂(Λ) is 0-stable.

2. Stability of Induced Maps

2.1. The critical value theorem. The images of singular points of a Lagrangian variety L
under the Lagrangian map π|L and the images of critical points of π|L on the regular part of L
form the caustic ΣL of the Lagrangian map.

The caustic of a Lagrangian germ L at a point m of finite multiplicity µ is a proper analytic
subset of positive codimension in the base B .

For a point q /∈ ΣL close to the base point π(m), the inverse image π−1(q) ∩ L consists of µ
distinct points mi close to m. We can assume that locally π is the standard fibration T ∗B → B .
This allows us to introduce the Maxwell set ML ⊂ B as the closure of the set of points q /∈ ΣL such
that the µ values of z on ΛL,m ∩ (π ◦ ρ)−1(q) are not all distinct. If µ is finite, then the Maxwell
set is a germ of a proper analytic subset of the base. The union of the caustic and the Maxwell set
is called the bifurcation diagram Bif(π, L) of the Lagrangian projection.

Consider the Lagrangian projection π : T ∗
C

n → C
n of a Lagrangian variety germ L. Let

g : C
k → C

n be a smooth map germ. If the choice of the base points of the germs is consistent,
we define the induced Lagrangian map g∗(π|L) as the projection of the subvariety g∗(L) ⊂ T ∗

C
k

into C
k .

Theorem 5. Suppose that the projection germs π|L at m, a point m /∈ T0, and g∗(π|L) at a
point l such that ρ(π(l)) = π(m) are 0-miniversal and 0-stable, respectively. Then the critical value
set Ξg of g is contained in the union W0(L,m) ∪ Bif(π, L).

Note that a point of the source space is said to be critical if the derivative of the map at the
point is not surjective. In particular, all points of the source are critical if its dimension is less than
that of the target; in this case, the theorem implies that g maps C

k into W0(L,m) ∪ Bif(π, L).
The stability analog of Theorem 5 was proved in [7].
Proof. Take a point q0 ∈ C

n \ ΣL close to the base point. Its π|L-inverse image consists of n
distinct points m1, . . . ,mn ∈ Fq0 different from the origin. The multigerm of π|L at the finite set
{m1, . . . ,mn} is 0-versal. (The decomposition (2) holds for multigerms.) Equivalently, the mi are
linearly independent in the fiber Fq0 : the restriction of an arbitrary function on the fiber to this
set coincides with the restriction of a linear function.



253

Now let λ0 ∈ g−1(q0). Let I ⊂ Tq0C
n be the image of the derivative g∗ : Tλ0C

k → Tq0C
n .

The dual map g∗ : Fn
q0

→ F k
λ0
between the fibers of the cotangent bundles is the composition of

the projection pr onto the quotient of Fq0 by the subspace I
∨ of covectors annihilating I and an

embedding. Suppose that the dimension r of I∨ is positive, that is, λ0 is a critical point of g. Since
g∗(π|L) is 0-stable, it follows that the pr-images of the linearly independent points m1, . . . ,mn ∈ Fq0

form a linearly independent set in the (n− r)-dimensional space Fq0/I
∨ . (The images are counted

without multiplicities.) Hence the set {m0 = 0,m1, . . . ,mn} of vertices of an n-simplex σ ⊂ Fq0 is
taken to the set {m′

0 = 0,m
′
1, . . . ,m

′
n−r} of vertices of an (n− r)-simplex in Fq0/I

∨ . In particular,
the rank r subspace I∨ is spanned by all differences mi −mj such that pr(mi) = pr(mj), that is,
by the vectors in all faces of σ contracted by pr to points. (The sum of dimensions of such faces is
equal to r.)

Near each of the points mi , i = 1, . . . , n, the Lagrangian variety L is locally the graph of the
differential of a function z = ψi(q), ψ(q0) = 0. The linearly independent points mi ∈ Fq0 are the
differentials of the ψi at q0 .

For each pair i �= j , by ∆ij ⊂ Tq0C
n we denote the hyperplane tangent to the hypersurface

ψi(q)− ψj(q) = 0.
For each �, let ∆� ⊂ Tq0C

n be the hyperplane tangent to the hypersurface ψ�(q) = 0. The
hyperplanes ∆� and ∆ij are dual to the direction lines of 1-dimensional faces of the simplex
σ ⊂ Fq0 .

The 0-stability of the multigerm g∗(π|L) at the points of Fλ0 is equivalent to the condition
that the subspace I is the intersection of all subspaces ∆� such that pr(m�) = 0 and all subspaces
∆ij such that pr(mi) = pr(mj) �= 0. Hence I is the intersection of subspaces in Tq0C

n dual to
certain faces of the simplex σ. Since I is contained in the tangent cone at q0 of the critical value
set Ξg , it follows that the regular strata of Ξg near q0 coincide with the integrable manifolds
of the distributions defined, by analogy with I , in the spaces TqC

n by some sets of faces of the
corresponding n-simplices in the fibers Fq .

It follows from [7, Subsec. 7.1. and 7.2] that such integrable manifolds of maximum dimension
containing π(m) in their closures are the regular strata of the caustic, the Maxwell set, and, as is
easily seen, the wave front W0(L,m). Hence Ξg ⊂W0(L,m) ∪ Bif(π, L).

Theorem 6. If g is a proper map germ between spaces of the same dimension, then the 0-sta-
bility of g∗(π|L) is equivalent to g being a ramified covering with ramification locus contained in
W0(L,m) ∪ Bif(π, L).

Proof. In this case, the regular strata of Ξg are (n−1)-dimensional. By Theorem 5, 0-stability
implies the desired property of the ramification locus. To prove the converse, it suffices to notice
that the induced map g∗(π|L) is 0-miniversal outside the ramification locus.

Moreover, it is versal at regular points of the ramification set, as is easily seen from the action of
the dual map g∗ on the corresponding simplex in the fiber. Hence each holomorphic function germ
ϕ(p, q) admits a decomposition (2) with coefficients aj(q) uniquely determined on the complement
of an analytic subset of codimension at least 2. By Hartogs’ theorem, the decomposition exists in
a full neighborhood of the base point.

Remark. Suppose that a Lagrangian variety germ L at m ∈ T ∗
C

n is the suspension of a
Lagrangian germ L′ at a point not contained in the zero section of T ∗

C
n−1 . The base C

n of the
suspended Lagrangian fibration contains the distinguished coordinate function qn corresponding to
the second factor in the decomposition L � L′×C. The caustic and the Maxwell set for L are also
isomorphic to the products of the caustic and the Maxwell set for L′ by a line (the qn-axis). On
the other hand, the hyperplane tangent to the wave front W0(L,m) at m is given by the equation
dqn = 0.

If, under the assumptions of Theorem 6, the ramification locus Ξg contains an (n− 1)-dimen-
sional component of the caustic or of the Maxwell set, then the direction ∂qn belongs to the image
I of the differential of g at points arbitrary close to m. Hence the composition qn ◦ g is nonsingular
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at the base point. On the other hand, if the ramification locus is contained in (n− 1)-dimensional
component of the wave front W0(L,m), then the composition qn ◦ g is necessarily singular at the
base point. Otherwise, the hyperplanes tangent to Ξg near the base point would not be close to
the hyperplane dqn = 0.

2.2. Composite functions. An interesting class of 0-stable Lagrangian projections is provided
by versal deformations of composite maps [6].

Given a function germ f : (Cn, 0) → (C, 0), consider the group Kf (see [6]) that consists of
diffeomorphism germs Θ of the product space (Cm × C

n, (0, 0)) fibered over the projection onto
the first factor (i.e., having the formΘ: (x, y) �→ (X(x), Y (x, y)), x ∈ C

m , y ∈ C
n , and satisfying

f(Y (x, y)) = f(y) for all (x, y)).
The group Kf naturally acts on the space of map germs ϕ: (Cm, 0) → (Cn, 0) by taking the

graph of each map germ to the graph of another map germ.
Suppose that a map germ ϕ at the origin has a finite Tyurina number τ with respect to the

group Kf . Let Φ(x, λ) = ϕ(x)+
∑
λsϕs(x), λ ∈ C

τ , be a Kf -miniversal deformation of ϕ. Consider
the composition F = f ◦ Φ.

Theorem 7. The Lagrangian projection defined by the generating family germ F (x, λ) is 0-sta-
ble.

Proof. Let t ∈ (C, 0) be an additional parameter. Consider the deformation

Fij = f ◦
(
Φ+ t

∂F

∂λj
ϕi

)
of the composite function f ◦ ϕ. Since Fij |t=0 = F and Φ is Kf -versal, it follows that there exists
a family of Kf -equivalences depending on t and inducing Fij from F :

Fij(x, λ, t) = f ◦
(
ϕ(X(x, λ, t)) +

τ∑
s=1

Λs(λ, t)ϕs(X(x, λ, t))
)
.

Moreover, we can choose the family in such a way that the map (x, λ) �→ (X,Λ) is the identity
map for t = 0.

Differentiating this equation with respect to t at t = 0, we obtain

∂F

∂λi

∂F

∂λj
=

∑ ∂F

∂xr

∂Xr

∂t
+

∑ ∂F

∂λk

∂Λk

∂t
.

Since ∂F/∂λi = pi and ∂F/∂xr = 0 on the Lagrangian variety defined by the generating family F ,
we see that the last relation coincides with the 0-stability criterium of Lemma 1 for this variety.

Suppose that the germ at the origin of the composite function h = f ◦ ϕ has a finite multiplic-
ity µ. The deformation F = f ◦ Φ of h is induced from an R -miniversal deformation H of h by a
map germ g : (Cτ , 0)→ (Cµ, 0) between the deformation bases.

Corollary 8. If τ = µ and the inducing map g is proper, then g is a covering ramified over
the 0-wave front of the 0-stable Lagrangian manifold defined by the generating family H .

Proof. The assertion is trivial if the function germ f is regular (and hence g is a diffeomor-
phism). Thus we can assume that f has a critical point at the origin. In this case, the composition
of g with the projection C

µ → C along the hyperplane tangent to the discriminant of h at the
origin is singular at 0 ∈ C

τ . Now Theorems 7 and 6 and the remark after Theorem 6 imply the
desired assertion.

Remarks. 1. The covering map inducing the determinantal function of a versal matrix defor-
mation of a simple matrix singularity from a versal deformation of the determinantal function of
the unperturbed matrix (see [6]) is a special case of the map in Corollary 8.

2. The space of linear functions on a fiber Fq of the cotangent bundle T ∗B → B is the tangent
space TqB . Thus the functions ckij defined in (3) for a 0-versal Lagrangian map germ determine a
pointwise associative multiplication of vector field germs on the base.



255

3. Under the assumptions of Corollary 8, the Kf -discriminant of ϕ is a free divisor. The proof
will be published elsewhere.
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