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Abstract. We classify finite order symmetries g of the 14 exceptional
unimodal function singularities f in 3 variables, which satisfy a so-called
splitting condition. This means that the rank 2 positive subspace in the
vanishing homology of f should not be contained in one eigenspace of g⋆.
We also obtain a description of the hyperbolic complex reflection groups
appearing as equivariant monodromy groups acting on the hyperbolic
eigensubspaces arising.
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One of the most famous classical results in singularity theory is the Arnold and
Brieskorn discovery of the close relationship between simple function singularities
and Weyl groups Aµ, Dµ, Eµ [1], [6]. A few years after it, Arnold extended the
relationship to simple singularities with the Z2 reflection symmetry andWeyl groups
Bµ, Cµ, F4 [2] (see also Slodowy’s book [23]).

Consideration of Zm symmetries of simple functions led in [9], [10], [13], [24]
to the appearance of Shephard–Todd groups within function singularities. The
emphasis there was on realisations of the complex reflection groups as equivariant
monodromy groups acting on the appropriate character subspaces in the homology
of invariant Milnor fibres, and on the diffeomorphisms between the discriminants
of the reflection groups and of the Zm-equivariant functions.

A further series of papers [14], [11], [12], on cyclic symmetries of the parabolic
functions, brought in similar singularity realisations of certain complex crystallo-
graphic groups [21].

In this paper, we are naturally expanding the programme to cyclic symmetries
of the 14 exceptional unimodal function singularities on one hand, and complex
hyperbolic reflection groups on the other. The basic idea is as follows. In the 3-
variable case, the intersection form on the vanishing homology of an exceptional
unimodal function f is non-degenerate and has positive signature 2. Assume g is an
automorphism of C3 of finite order m, and our function is g-invariant. Then g acts
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on the second homology of the Milnor fibre f−1(ε) and decomposes it into a direct
sum of the character subspaces Hχ, χ

m = 1, on which g acts as multiplication by χ.
Assume the rank 2 positive subspace of the intersection form splits between two
character summands. Then the monodromy within a g-invariant versal deformation
of f acts as a complex hyperbolic reflection group on each of them. Developing
further the technique introduced in papers on cyclically symmetric functions [9],
[10], [13], we construct vanishing bases in the hyperbolic summands and obtain the
generating reflections as the corresponding Picard–Lefschetz operators.

The main result of the paper is a complete classification of the invariant sym-
metries of the 14 singularities, which split the positive subspace in the vanishing
homology, and the description—via constructing the corresponding Dynkin dia-
grams—of the complex hyperbolic groups arising. All the rank 2 reflection groups
obtained projectivise to the triangle groups of the Poincaré disk. The task of iden-
tification of higher dimensional groups is left for a future paper, along with the
consideration of the equivariant symmetry setting. It should be noted that it is the
first time when complex hyperbolic reflection groups are appearing in a singular-
ity theory context. The approach introduced may be useful for constructing new
complex hyperbolic lattices (cf. [7], [19]).

The paper is organised as follows. Section 1 introduces the notion of singulari-
ties with symmetry, recalls the definitions and constructions given in [9], [10], [13].
Section 2 contains classification of splitting invariant symmetries of the 14 singular-
ities. In Section 3.3 we construct Dynkin diagrams of the hyperbolic monodromy
groups associated with the symmetric functions. Projectivisations of the rank 2
monodromy groups are considered in Section 4. More details of the constructions
may be found in [15].

1. Singularities with Symmetry

1.1. Symmetries and deformations. Our main objects of study will be pairs
(f, g) consisting of a holomorphic function germ f : (Cn+1, 0) → (C, 0) with an
isolated singularity, and a finite order automorphism g of (Cn+1, 0) under which
f is invariant: f ◦ g = f . The automorphism g will be called a symmetry of the
function.

Assume the coordinates x0, . . . , xn in (Cn+1, 0) are chosen so that g is a diagonal
linear transformation. Consider a deformation

f +

k
∑

i=1

λiϕi (1)

of the function f , where the λi are parameters, and {ϕ1, . . . , ϕk} is the set of all
g-invariant elements of a monomial basis of the local ring Qf of f . In the standard
sense, deformation (1) is a g-miniversal deformation of f (see, for example [28]).

All through the paper, we use notation εm for e2πi/m, and reserve ω for ε3.

Example 1.1. Let f be a quasihomogeneous function of degree N with respect
to the positive integer weights w0, . . . , wn of the coordinates xj on C

n+1. Assume
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gcd(w0, . . . , wn) = 1, and consider the transformation

C : xj 7→ ε
wj

N xj , j = 0, . . . , n,

of Cn+1. This corresponds to the values of f making one full anti-clockwise rotation
in C about the origin. The transformation C is an order N symmetry of f . Take
for an invariant symmetry g of f a power of C that has order m: g = Cp, gm = id.
Then the ϕi in (1) are exactly those elements of a monomial basis of Qf whose
degrees are divisible by m (cf. [24], [25]).

We shall use the notation Λ for the base of a g-miniversal deformation of a
function f .

Definition 1.2. The discriminant Σ ⊂ Λ of f is the set of all values λ ∈ Λ of the
parameters for which the members of its g-versal family have critical value 0.

Since a non-zero constant function is g-invariant, the discriminant is a hypersur-
face in Λ.

In what follows we will be working with representatives of germs of functions
and sets we have introduced, but we will be still denoting them by the same letters.

1.2. Symmetric Milnor fibre and its equivariant monodromy. We define a
Milnor fibre of a g-invariant function f following the usual approach (see [5], [3], [9]),
as the intersection of a sufficiently small ball in Cn+1 centred at the origin with the
zero level of a generic member of an appropriate representative of a g-versal family
F of f .

Let us fix a generic point ⋆ ∈ Λ\Σ. The Milnor fibre V⋆ is homotopic to a wedge
of µ n-spheres [18], where µ is the Milnor number of f . A symmetry g sends V⋆
into itself. Therefore, its nth homology, of total rank µ, is a direct sum of character
subspaces

Hn(V⋆, C) =
⊕

χm=1

Hχ, (2)

where m is the order of the automorphism g, and g acts as multiplication by χ on
Hχ.

There is a standard way to define elements of the Hχ analogous to the ordinary
Morse vanishing cycles. Namely, letW be the quotient of the fibre V⋆ by the action
of the group Zm generated by g, and W ′ ⊂ W its subset of irregular orbits. Since
all functions Fλ in the family F are g-invariant, a path in Λ \Σ from the point ⋆ to
a generic point of the discriminant defines—at least in all our cases—a vanishing
cycle σ ∈ Hn(W, W

′;Z), that is, a relative cycle which contracts to a point on
the approach to the discriminant (cf. [2], [9], [10], [13]). The inverse image of this
relative cycle in V⋆ consists of m cells σ0 . . . , σm−1, with the orientation inherited
from σ, and ordered in the cyclic way:

g(σi) = σ(i+1)modm.
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For appropriate values of χ, and in all the cases which will follow, the linear com-
bination

σχ =

m−1
∑

i=0

χiσi

is a cycle, and thus provides an element of Hχ. We call σχ a vanishing χ-cycle.
The monodromy representation of the fundamental group π1(Λ \ Σ, ⋆) on the

space Hn(V⋆, C) is a direct sum of the representations on the individual summands
Hχ. We denote the corresponding monodromy groups Mχ.

Depending on the parity of n, the intersection form on Hn(V⋆, Z) naturally
extends to Hn(V⋆, C) in either an Hermitian or skew-Hermitian way. Assume that
a vanishing χ-cycle σχ has a non-zero self-intersection number 〈σχ, σχ〉. Then
according to [5], [27], [9] the related Picard–Lefschetz operator in Mχ is

hχ : c 7→ c+ (e− 1)
〈c, σχ〉

〈σχ, σχ〉
σχ,

where e is the eigenvalue of the operator on σχ. This is a (skew-)Hermitian reflection
on Hχ.

To obtain a generating set of an Mχ, we proceed in the traditional manner. For
this, we start with a generic line L ⊂ Λ passing through the base point ⋆. Let
c1, . . . , cr be the points at which L meets Σ. We choose a distinguished system

of paths on L, that is, paths γ1, . . . , γr in L, starting at ⋆ and leading to the ci,
which have no self- and mutual intersections except for the point ⋆ itself. The
Picard–Lefschetz operators hi,χ on the Hχ corresponding to the paths of the sys-
tem generate the Mχ. Thus knowledge of the eigenvalues of the hi,χ and of the
intersection numbers of the χ-cycles vanishing at c1, . . . , cr yields a description of
the monodromy group Mχ.

2. Exceptional Unimodal Functions

2.1. The list of singularities. Now assume that f is one of the 14 exceptional
unimodal singularities (see, for example, [4], [3]) and n = 2. Table 1 gives a
normal form of the quasihomogeneous member of each of the 14 one-parameter
families, along with the weights of the coordinates. The weights are chosen so that
gcd(wx, wy, wz) = 1. For such choice, the degree N of each of the 14 quasihomo-
geneous singularities coincides with the order of its classical monodromy, which is
usually called the Coxeter number of the singularity. Therefore, we will refer to N
as the Coxeter number of the function. Respectively, the transformation

C : (x, y, z) 7→ (εwx

N x, ε
wy

N y, εwz

N z)

from Example 1.1 will be called the Coxeter transformation of the function.
Table 1 also gives one of possible choices of a monomial basis of the local ring of

each of the singularities, and the weights of its elements.
The subscript in the notation of a singularity is its Milnor number µ. Pairs of

functions with the same Coxeter number are dual in the sense of Arnold. Any
function with µ = 12 is self-dual.
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Table 1. Exceptional unimodal singularities

type and normal form wx wy wz N versal monomials and their weights

E12 14 6 21 42
1 y y2 x y3 xy y4 xy2 y5 xy3 xy4 xy5

x3 + y7 + z2 0 6 12 14 18 20 24 26 30 32 38 44

Z11 8 6 15 30
1 y x y2 xy x2 y3 xy2 y4 xy3 xy4

x3y + y5 + z2 0 6 8 12 14 16 18 20 24 26 32

E13 10 4 15 30
1 y y2 x y3 xy y4 xy2 y5 xy3 y6 y7 y8

x3 + xy5 + z2 0 4 8 10 12 14 16 18 20 22 24 28 32

Q10 9 8 6 24
1 z y x z2 yz xy z3 yz2 yz3

x2z + y3 + z4 0 6 8 9 12 14 17 18 20 26

E14 8 3 12 24
1 y y2 x y3 xy y4 xy2 y5 xy3 y6 xy4 xy5 xy6

x3 + y8 + z2 0 3 6 8 9 11 12 14 15 17 18 20 23 26

Z12 6 4 11 22
1 y x y2 xy x2 y3 xy2 y4 x3 y5 y6

x3y + xy4 + z2 0 4 6 8 10 12 12 14 16 18 20 24

W12 5 4 10 20
1 y x y2 xy x2 y3 xy2 x2y xy3 x2y2 x2y3

x4 + y5 + z2 0 4 5 8 9 10 12 13 14 17 18 22

Q11 7 6 4 18
1 z y x z2 yz z3 xy yz2 z4 z5

x2z + y3 + yz3 0 4 6 7 8 10 12 13 14 16 20

Z13 5 3 9 18
1 y x y2 xy y3 x2 xy2 y4 xy3 y5 xy4 xy5

x3y + y6 + z2 0 3 5 6 8 9 10 11 12 14 15 17 20

S11 5 4 6 16
1 y x z y2 xy yz z2 xy2 y2z y3z

x2z + yz2 + y4 0 4 5 6 8 9 10 12 13 14 18

W13 4 3 8 16
1 y x y2 xy x2 y3 xy2 x2y y4 x2y2 y5 y6

x4 + xy4 + z2 0 3 4 6 7 8 9 10 11 12 14 15 18

Q12 6 5 3 15
1 z y x z2 yz z3 xy yz2 z4 yz3 yz4

x2z + y3 + z5 0 3 5 6 6 8 9 11 11 12 14 17

S12 4 3 5 13
1 y x z y2 xy yz y3 xy2 y2z y4 y5

x2z + yz2 + xy3 0 3 4 5 6 7 8 9 10 11 12 15

U12

4 4 3 12

1 z x y z2 xz yz xy xz2 yz2 xyz xyz2

x3 + y3 + z4 0 3 4 4 6 7 7 8 10 10 11 14

U12 1 z x y z2 xz yz y2 xz2 yz2 y2z y2z2

x2y + y3 + z4 0 3 4 4 6 7 7 8 10 10 11 14
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An arbitrary member of a unimodal family is obtained by addition to the table
normal form of a multiple of its Hessian, that is, of a multiple of the versal monomial
of top weight.

Assume we have two coordinate spaces, Cp
u1,...,up

and Cq
v1,...,vq , with coordinates

of positive integer weights a1, . . . , ap and b1, . . . , bq. Then the space of map-germs
from (Cp, 0) to (Cq, 0) has a natural grading: a monomial summand uα1

1 . . . u
αp

p in
the jth coordinate function is assigned grading α1a1+ · · ·+αpap−bj . For example,
a quasihomogeneous automorphism g of Cp has all its monomial terms of grading 0.
The determinant Jac(g) of the Jacobi matrix of such automorphism is a non-zero
constant, which is easily seen if the coordinates are ordered by the increase of their
weights.

In what follows, we are restricting our attention to quasihomogeneous symmetries
of exceptional unimodal singularities.

2.2. Classification of splitting symmetries. For each of the 14 singularities,
the Hermitian intersection form on H2(V⋆, C) is non-degenerate of positive signa-
ture 2. Our aim set in the introduction is to obtain equivariant monodromy groups
Mχ which are hyperbolic reflection groups, that is, the restriction of the intersection
form to the summand Hχ is non-degenerate and of positive signature 1. Hence the
rank 2 positive subspace H+ ⊂ H2(V⋆, C) must split between two character sub-
spaces. We refer to a symmetry satisfying this condition as a splitting symmetry,
and to the two characters as the hyperbolic characters. We will use this terminology
even in the extreme situation, when the two Hχ are one-dimensional.

Lemma 2.1. Assume symmetry g is quasihomogeneous. Then g is splitting if

and only if Jac(g) /∈ R. In this case, the hyperbolic characters are Jac(g) and its

conjugate.

Proof. According to [26], the rank 2 subspace in the cohomology H2(V⋆, C) dual
to H+ is spanned by the forms α = dx∧dy∧dz/dF⋆ and Hess(f)α. The two forms
are eigenvectors of the automorphism g⋆ of H2(V⋆, C), with the eigenvalues Jac(g)
and its conjugate. �

Corollary 2.2. Non-quasihomogeneous exceptional unimodal functions have no

splitting symmetries.

Indeed, a symmetry of such a function preserves the modular term Hess(f).
Hence both α and Hess(f)α are in the same character subspace in the cohomology.

Lemma 2.3. Assume a symmetry g of a quasihomogeneous exceptional unimodal

function is a power of its Coxeter transformation: g = Cp. Then Jac(g) = ε−p
N .

Since Jac(C) = ε
wx+wy+wz

N , this follows from the relation wx+wy +wz = N −1,
which holds for all such singularities.

Our classificational result on normal forms of splitting symmetries, is

Theorem 2.4. Any invariant splitting symmetry g of a quasihomogenous excep-

tional unimodal singularity f falls into one of the following categories.
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a) The symmetry g of order m > 2 is a power of the Coxeter transformation

C of function f .
b) Each of the corank 2 singularities E14, Z13, W13, W12 admits symmetries

g of order m > 2 which are powers of the Coxeter transformation composed

with the involution ιz(x, y, z) = (x, y, −z).
c) Remaining symmetries are listed in Table 2.

Table 2 lists the symmetries up to a choice of a different generator of the same

cyclic group.

Table 2. Special symmetries of Q12 and U12

f g : x, y, z 7→ g |g| g-codim

Q12 : x
2z + y3 + z5 ε910x, ωy, ε5z ιxC 30 1

ιx : (x, y, z) 7→ ε710x, y, ε
3
5z ιxC

3 10 2
7→ (−x, y, z) −x, ω2y, z ιxC

5 6 5

U12 : x
3 + y3 + z4 ω2x, y, iz σC 12 2

σ : (x, y, z) 7→ x, ωy, −z σC2 6 4
7→ (ωx, ω2y, z) ωx, ω2y, −iz σC3 12 2

ω2x, y, z σC4 3 6

U12 : x
2y + y3 + z4 ε56x, ωy, iz ιxC 12 1

ιx : (x, y, z) 7→ ε6x, ω
2y, −z ιxC

2 6 2
7→ (−x, y, z) −x, y, −iz ιxC

3 4 4
ε56x, ωy, z ιxC

4 6 3

ιx

ιx

σ

Figure 1. Symmetries of the Dynkin diagrams of Q12 (left) and
U12 (right).

In Table 2, g-codim is the dimension of the base of a g-miniversal deformation.
According to Example 1.1, monomials to use in a g-miniversal deformation in

case a) may be taken to be exactly those from Table 1 of weights divisible by
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the order m of the symmetry g. A similar choice in case b) coincides with that
for the corresponding power of the Coxeter transformation. All these monomials
along with possible choices in case c) are listed later, in Table 3. For the corank
2 functions not mentioned in part b), the symmetry ιz : (x, y, z) 7→ (x, y, −z) is
CN/2.

Theorem 2.4, in particular, states that, for any quasihomogeneous exceptional
unimodal singularity f , we can make a quasihomogeneous coordinate change which
diagonalises a splitting symmetry. In the case of U12, there are two possible normal
forms. This is similar to the two normal forms of the D4 singularity.

The sign change in part b) of the Theorem is the −id map on the vanishing
homology. It does not affect the actual summands in the decomposition (2). It
only affects the indexation, changing the signs of all characters.

The transformations ιx and σ in Table 2 correspond to the order 2 and 3 sym-
metries of the Dynkin diagrams of the underlying singularities D6 and D4. The
relevant symmetries of the Q12 and U12 Dynkin diagrams are shown in Figure 1
(the diagrams are constructed as those for the direct sums D6 ⊕ A2 and D4 ⊕ A3

of singularities, using the Gabrielov method [8]). Both ιx and σ have real determi-
nants, hence are able to split the subspace H+ only in combination with a power of
the Coxeter transformation which splits H+ itself, that is, has order greater than 2.

Proof of the Theorem is rather straightforward and we shall only mention its steps.
It starts with a diagonalisation of a symmetry, which is a routine exercise on trans-
formations of quasihomogeneous functions. After that we are reduced to consid-
eration of diagonal symmetries g : (x, y, z) 7→ (ax, by, cz) of a trinomial function
∑

j=1,2,3 x
tj1ytj2ztj3 , that is, to solutions of the system of monomial equations

atj1btj2ctj3 = 1, j = 1, 2, 3. For the normal forms from Table 1, the number
det(tjk) of such solutions is N in case a) of the Theorem, and 2N in case b). For
the normal forms from Table 2, this number is either 2N or 3N . For each function,
N solutions are powers of the Coxeter transformation. The rest are products of
such powers with respectively ιz, ιx, σ, σ

2. Finally, we use Lemmas 2.1 and 2.3 to
ensure that the order of an involved power of the Coxeter element must be greater
than 2.

3. Description of the Hyperbolic Monodromy Groups

In this section we put together all the information sufficient to describe the action
of the equivariant monodromy on the hyperbolic character subspaces singled out in
the previous section. The information will be encoded into Dynkin diagrams.

3.1. Skeletons of Dynkin diagrams. First of all, each such diagram will con-
tain a presentation of the corresponding generalised braid group, that is, of the
fundamental group of Λ\Σ. For this, we are using the standard method going back
to Zariski. We take a generic plane P in Λ, a generic line L in P , a generic base
point ⋆ in L, choose a distinguished system of paths in L from ⋆ to points of L∩Σ
and take the set of simple loops in L corresponding to the paths as generators of
π1(Λ \Σ, ⋆). These generators correspond to vertices of the diagram. The vertices
are ordered following the counterclockwise order in which paths of the distinguished
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system leave the base point. However, all our diagrams will be trees, for which the
order may be done arbitrary and hence omitted (see [17]).

Relations between the generators are read from the pair (P, P ∩ Σ): merger of
two points – we never have more than two – of L ∩ Σ at a singular point of P ∩ Σ
provides a braiding relation on the two generators, a and b, of the local monodromy
group: aba . . . = bab . . . with k factors either side if the singularity of P ∩ Σ is
λ21 = λk2 , in some local coordinates λ1, λ2 on P . The only possibilities we are
meeting for the discriminants in our settings, are k = 2, 3, 4, 6. Respectively, the
two vertices of the diagram representing the two generators will be joined by either
no edge (the generators commute), or a simple, or a double or a triple edge.

The diagram obtained at this stage will be called the skeleton of the Dynkin
diagram of the singularity with symmetry.

It turns out that, in all but two of our cases, the discriminant of a symmetric
singularity coincides with the discriminant of one of the Weyl groups, hence for the
skeleton of our Dynkin diagram we are able to take the standard Dynkin diagram
of the group. The empirical rule to get the right skeleton is that the ratio of
the weights of the parameters in a quasihomogeneous versal deformation should
coincide with the ratio of the degrees of basic invariants of the related Weyl group.
The two exceptional cases will be considered in section 3.4.

Each vertex of the diagram will be decorated outside with the singularity type
of the relevant g-orbit of critical points, and with the self-intersection number of
the corresponding vanishing χ-cycle.

Each edge will be decorated with the intersection number of the two vanishing
cycles. Since all our diagrams are trees, it will not matter in which order we are
intersecting the cycles. In the edge decoration we have certain freedom: due to
the ambiguities in constructing vanishing χ-cycles, the intersection numbers are
well-defined only up to multiplication by ±1 and by powers of χ.

No edge between two vertices is equivalent to the intersection number of the
cycles being zero.

3.2. The eigenvalue of a Picard–Lefschetz operator. The last data included
in our Dynkin diagrams will be the orders of the Picard–Lefschetz operators, which
we will write inside the vertices. In fact each order r will be telling us the only
non-trivial eigenvalue of the operator: on the χ = Jac(g) hyperbolic subspace the
eigenvalue is εr.

Since the character Jac(g) has a special role, we will use a special notation η for
it.

Consider the cohomological direct sum

H2(V⋆, C) =
⊕

χm=1

Hχ, (3)

where the substitution g⋆ is multiplication by χ on Hχ. Each summand Hχ here
is dual to the summand Hχ in (2).

We have α = dx ∧ dy ∧ dz/dF⋆ ∈ Hη. The forms {ϕiα}, where the {ϕi} is the
g-invariant part of a monomial basis of the local ring Qf of f , form a basis of Hη.
Therefore the g-codimension of the function f coincides with the dimension of Hη.
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Since the ring Qf is Gorenstein, the g-codimension of f also coincides with the
dimension of Hη.

We observe that the subspace Hη is the only summand in (3) that contains a
holomorphic nowhere-vanishing 2-form, α. This helps us to find the eigenvalues of
the basic operators acting on Hη.

Proposition 3.1. Consider the Picard–Lefschetz operator hη on Hη corresponding

to a g-orbit of critical points with a quasihomogeneous normal form ψ(x′, y′, z′).
Choose the weights w′

1, w
′

2, w
′

3 of the variables so that the weight of the function ψ
is 1. Then the only eigenvalue of hη distinct from 1 is exp(2πi(w′

1 + w′

2 + w′

3)).

Proof. The restriction of the family F to a line germ transversal to Σ may be
brought near any of the critical points to a local normal form ψ(x′, y′, z′) + ǫ.
Locally, the cohomological operator h⋆ =

⊕

hχ is induced by a loop in Cǫ going once
around the origin in the positive direction. Its eigenvectors are the 2-forms ωj =
αj(x

′, y′, z′) dx′∧dy′∧dz′/dψ, where the αj form a monomial basis of the local ring
of function ψ. The transformation h⋆ is the substitution x′ := exp(2πiw′

1) x
′ etc.

Hence its eigenvalue on ωj is exp(2πiweight(ωj)), where weight(ωj) = weight(αj)+
w′

1 + w′

2 + w′

3.
The only eigenform ωj that vanishes nowhere in a neighbourhood of our ele-

mentary critical point is the one in which αj is a non-zero constant, that is, has
weight 0. �

Corollary 3.2. Assume a Picard–Lefschetz operator hη on Hη corresponds to a

g-orbit of simple critical points of type X = Ak, Dk, Ek. Then the only non-trivial

eigenvalue of the operator hη is εN ′ , where N ′ is the Coxeter number of the Weyl

group X.

This is so since for simple function singularities w′

1 + w′

2 + w′

3 = 1 + 1/N ′.

We recall the Coxeter numbers of the Weyl groups which we will need:

group Ak Dk E6 E7

Coxeter number k + 1 2(k − 1) 12 18

This means that the inner marking of the vertices by the order of the operators is
excessive. However, we prefer to keep it.

3.3. The diagrams of the hyperbolic groups

Theorem 3.3. For each exceptional unimodal function singularity with a splitting

symmetry, there exists a distinguished basis of the hyperbolic subspace Hη in the

vanishing homology, for which the Dynkin diagram is the one listed in the last

column of Table 3 on page 11.

On the Hη, the monodromy representation is conjugate.
In Table 3, the symmetries g are given up to a choice of a different generator of the

same cyclic group. The table also singles out g-invariant subsets of the monomial
bases of the local rings from Table 1. These are monomials which may be used to
construct a g-miniversal deformation of the singularity. For completeness, we have
included g-codimension 1 singularities into the table.
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Table 3: Dynkin diagrams for invariant unimodal singularities with
splitting symmetries g

f g |g| versal monomials diagram

E12 C, C2 42, 21 1 —

x3 + y7 + z2 C3, C6 14, 7 1, x A
(7)
2 ⋆

C7, C14 6, 3 1, y, y2, y3, y4, y5 A
(3)
6 ⋆

Z11 C, C2 30, 15 1 —

x3y + y5 + z2 C3, C6 10, 5 1, xy2 G
(10,2)
2

C5, C10 6, 3 1, y, y2, y3, y4 C
(2,3)
5 ⋆

E13 C, C2 30, 15 1 —

x3 + xy5 + z2 C3, C6 10, 5 1, x, y5 C
(2,5)
3 ⋆

C5, C10 6, 3 1, y3, y6, xy2 E13|Z6

Q10 C 24 1 —

x2z + y3 + z4 C2 12 1, z2 B
(12,3)
2

C3 8 1, y A
(8)
2

C4 6 1, z, z2, z3 C
(3,3)
4 ⋆

C6 4 1, y, z2, yz2 F
(4,2)
4

C8 3 1, z, x, z2, z3 D
(3)
5 ⋆

E14 C 24 1 —

x3 + y8 + z2 C2 12 1, y4 B
(12,3)
2

C3 8 1, x A
(8)
2 ⋆

C4 6 1, y2, y4, y6 B
(3,3)
4 ⋆

C6 4 1, x, y4, xy4 F
(4,2)
4

C8 3 1, y, y2, y3, y4, y5, y6 A
(3)
7 ⋆

Z12

x3y + xy4 + z2
C 22 1 —

W12 C 20 1 —

x4 + y5 + z2 C2 10 1, x2 B
(5,5)
2 ⋆

C4 5 1, x, x2 A
(5)
3 ⋆

C5 4 1, y, y2, y3 A
(4)
4 ⋆

Q11 C, C2 18, 9 1 —

x2z + y3 + yz3 C3, C6 6 1, y, z3 C
(2,6)
3

Z13 C 18 1 —

x3y + y6 + z2 C2 9 1, y3 B
(18,3)
2

C3 6 1, y2, y4 B
(6,3)
3

C6 3 1, y, y2, y3, y4, y5 C
(2,3)
6 ⋆
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Table 3: Dynkin diagrams for invariant unimodal singularities with
splitting symmetries g (continued)

f g |g| versal monomials diagram

S11 C 16 1 —

x2z + yz2 + y4 C2 8 1, y2 B
(8,4)
2

C4 4 1, y, y2, z2 C
(2,4)
4

W13 C 16 1 —

x4 + xy4 + z2 C2 8 1, x2 B
(8,4)
2

C4 4 1, x, x2, y4 C
(2,4)
4 ⋆

Q12 C, ιxC 15, 30 1 —

x2z + y3 + z5 C3, ιxC
3 5, 10 1, y A

(10)
2

ιxC
5 6 1, z, z2, z3, z4 C

(3,3)
5 ⋆

C5 3 1, z, x, z2, z3, z4 D
(3)
6 ⋆

S12

x2z + yz2 + xy3
C 13 1 —

U12 C 12 1 —

x3 + y3 + z4 σC 12 1, y A
(12)
2

C2 6 1, z2 B
(6,6)
2

σC2 6 1, y, z2, yz2 F
(3,3)
4 ⋆

C3 4 1, x, y, xy D
(4)
4 ⋆

σC3 12 1, xy G
(4,4)
2 ⋆

C4 3 1, z, z2 A
(6)
3

σC4 3 1, z, y, z2, yz, yz2 E
(3)
6 ⋆

U12 C, ιxC 12 1 —

x2y + y3 + z4 C2, ιxC
2 6 1, z2 B

(6,6)
2

ιxC
3 4 1, y, y2, xz2 U12|Z4

C3 4 1, x, y, y2 D
(4)
4 ⋆

C4, ιxC
4 6 1, z, z2 A

(6)
3

We have two kinds of diagrams in Table 3: standard (marked with ⋆) and non-
standard. The latter ones are collected in Figure 3 on page 15: first of all we list
2-vertex diagrams in the order they appear in the Table, then similarly 3-vertex
and finally 4-vertex diagrams. The inequality sign on an edge there is open towards
the longer root, that is, towards the vanishing η-cycle corresponding to a longer
orbit of critical points. In the notation of the diagrams of types B, F, G, the first
upper index is the order of the Picard–Lefschetz operators corresponding to short
roots, and the second upper index denotes the same for long roots. In the notation
of the C type diagrams, the convention is opposite.
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A ⋆ in the last column of the Table indicates that the Dynkin diagram may be

derived from Figure 2 in the following standard way. The Dynkin diagrams A
(m)
k ,

D
(m)
k , E

(m)
k have the usual ADE skeletons, while the labelling of their vertices and

edges are exactly as those of the A
(m)
2 diagram. The Dynkin diagrams B

(m,m)
k ,

C
(m,m)
k , F

(m,m)
4 , G

(m,m)
2 are foldings of the diagrams in the previous sentence in

the usual manner, remembering to double (or triple) intersection numbers where

two (or three) vertices or edges merge. The Dynkin diagram C
(2,m)
k is constructed

from C
(2,m)
3 by extending to the right with subdiagrams of type A

(m)
2 .

Am−1 Am−1m

εm−1

m m

−m −m

mA1 Am−1 Am−1

2 m m

m
m

εm−1

−2m −m −m

A
(m)
2 C

(2,m)
3

Figure 2. Standard Dynkin diagrams.

Example 3.4. a) Consider the D6 ⊕ A2 diagram from Figure 1. Its fusion along
the A2 direction (that is, replacement of each vertical A2 subdiagram by a vertex—

see [9] for details) yields the D
(3)
6 diagram. Its further folding by the involution ιx

delivers C
(3,3)
5 .

On the other hand, the D6 fusion of the D6 ⊕ A2 diagram gives us the A
(10)
2

diagram from Figure 3. Its roots are of different length than in the case of the

standard A
(10)
2 with the A9 vertices (which comes as a result of the A9 fusion of the

A9⊕A2 diagram, that is, arises from the order 10 symmetry (x, y, z) 7→ (ε10x, y, z)
of the function x10 + y3 + z2). However, the rank 2 reflection groups defined by

both standard and non-standard A
(10)
2 diagrams of course coincide.

b) Similarly, the A3 fusion of the diagram D4⊕A3 from Figure 1 gives us D
(4,4)
4 .

The ιx-folding of the latter is C
(4,4)
3 , while its triple folding by the symmetry σ

provides G
(4,4)
2 .

The D4 fusion of D4⊕A3 gives us the non-standard A
(6)
3 diagram from Figure 3,

which defines the same reflection group as the standard diagram which one obtains
by the A5 fusion of the A5 ⊕A3 Dynkin diagram of x6 + y4 + z2.

Proof of Theorem 3.3 is based on case-by-case calculations, and we give only its
outline here. The details may be found in [15].

The proof starts with calculation of the discriminants of g-miniversal families.
Only two of the discriminants are not of Weyl groups, and the details of all calcu-
lations in these two cases are in the next section.

The standard cases (marked ⋆ in the table) are dealt with immediately—as it is
shown in Example 3.4—via fusion along the direct Am−1 summands in the relevant
diagrams of the functions f , and, if needed, further double or triple folding.
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In the non-standard cases rank 3 or 4 cases, the diagrams are constructed by
using the adjacencies to the simpler singularities with similar cyclic symmetries
whose diagrams have been obtained in [9], [10], [14], [11], [12].

In the non-standard rank 2 cases, the self-intersection numbers of the vanishing
A and D χ-cycles are already known from the paper series just mentioned. For
the E6 η-cycle, such number is retrievable from [20]. For the order 9 symmetric E7

η-cycle, we need some routine calculations based on consideration of the order 3
symmetry of E7 (see [9]).

Once we know the self-intersection numbers and the eigenvalues of the Picard–
Lefschetz operators, the braiding relation yields in a rank 2 case the absolute value
of the intersection number of the two vanishing η-cycles. The number itself is an
integer linear combination of powers of η, and the ambiguities in choices of the
cycles already mentioned in Section 3.1 allow us to reduce it to the one given in
Figure 3.

3.4. Two exceptional cases

3.4.1. E13|Z6. A monomial invariant miniversal deformation of this singularity may
be taken in the form

x3 + xy5 + z2 + δxy2 + γy6 + βy3 + α.

Here α, β, γ, δ are the deformation parameters, and we can take

g = C5 : (x, y, z) 7→ (ωx, ωy, −z)

for the order 6 symmetry.
The calculations show that the discriminant consists of two irreducible compo-

nents:

D4 : α = 0,

3A1 : 3125α3 − 729β5 − 13500βγ2α2 + 729β4δγ + 729β4γ3

+ 16δ6γ3 − 216δ3β3 − 16d6β + 16δ7γ + 216δ4β2γ + 216δ3β2γ3

+ 4125δ2γα2 − 5625δβα2 − 5832β2γ4α+ 6075β3γα

+ 2700δ2β2α+ 864δ3γ4α+ 888δ4γ2α+ 16200γ3δα2 − 5670β2γ2δα

− 2592δ2βγ3α− 3420δ3βγα+ 11664γ5α2 + 16δ5α = 0.

In particular, the discriminant is different from the irreducible discriminant of the
Shephard–Todd group G29 [22]. This is in spite of the coincidence of the ratio
(6 : 12 : 18 : 30) of the weights of the deformation parameters with the ratio
(4 : 8 : 12 : 20) of the degrees of basic invariants of the group.

A generic section of the discriminant is shown in Figure 4, taken with sufficiently
large γ = δ = const < 0. The figure emphasises the adjacency

E13|Z6 → J10|Z6,

which allows us to use the J10|Z6 Dynkin diagram as a building block for our
hyperbolic case.

For a generic line in the base of our invariant deformation we take the dashed
line in Figure 4. For a distinguished system of paths in this line joining the base
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D6 5A15

10 2

5(
√
5−3)/2 −10

G
(10,2)
2

E6 2A22
√
3(1+i)

12 3

2
√
3−6 −6

B
(12,3)
2 (Q10)

D5 D54(1−ε8)

8 8

4
√
2−8 4

√
2−8

A
(8)
2

E6 4A24(1+ε6)

12 3

2
√
3−6 −12

B
(12,3)
2 (E14)

E7 3A2

18 3

3(ω−ε9)(ω−1)

−9
(

1+
ε
5

9
−ε

7

9

1−ω

)

−9

B
(8,4)
2 (S11)

D5 2A34(1+i)

8 4

4
√
2−8 −8

B
(8,4)
2 (S11)

A7 2A34(1+i)(1+ε8)

8 4

−8 −8

B
(8,4)
2 (W13)

D6 D65

10 10

5(
√
5−3)/2 5(

√
5−3)/2

A
(10)
2

E6 E62
√
3(1+i)

12 12

2
√
3−6 2

√
3−6

A
(12)
2

D4 2D46

6 6

−3 −6

B
(6,6)
2

3A1 D4 D4

2 6 6

3 3

−6 −3 −3

C
(2,6)
3

A5 2A2 2A2

6 3 3

6 2(1−ω)

−6 −6 −6

B
(3,6)
3

D4 D4 D4

6 6 6

3 3

−3 −3 −3

A
(6)
3

3A1 D4 3A1 3A1

2 6 2 2

3 3 3

−6 −3 −6 −6

E13|Z6

A3 A3 2A1 2A1

4 4 2 2

2(1+i) 2
√
2 2

−4 −4 −4 −4

F
(4,2)
4 (Q10)

A3 A3 4A1 4A1

4 4 2 2
2(1+i) 4 4

−4 −4 −8 −8

F
(4,2)
4 (E14)

2A1 A3 A3 A3

2 4 4 4
2(1+i) 2(1+i) 2(1+i)

−4 −4 −4 −4

C
(2,4)
4

2A1 A3 A3 4A1

2 4 4 2

2(1+i) 2(1+i) 4

−4 −4 −4 −8

U12|Z4

Figure 3. The non-standard Dynkin diagrams for the hyperbolic
groups arising in our classification.
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D4

3A1

−α↑

β
→

4

3

2

1

⋆

Figure 4. Inclusion of a generic planar section of the J10|Z6 dis-
criminant (boxed) into that of E13|Z6.

point ⋆ with the discriminantal points, we use arcs in the half-plane Im(−α) > 0.
This orders the discriminantal points as indicated in the Figure. Such choice yields
the Dynkin diagram below.

3A1 D4 3A1 3A1

2 6 2 2

3 3 3

−6 −3 −6 −6

Here the generators are h3, h2, h4, h1 from left to right. The subdiagram on the
three left vertices is that of J10|Z6 (see [14], where the singularity is called J10|Z3

since the symmetry there preserves z). According to Figure 4, the generator h1 com-
mutes with the subgroup generated by h2 and h3, and satisfies h1h4h1 = h4h1h4.
The latter implies that the first vanishing cycle may be chosen so that its intersec-
tion number with the forth is 3.

3.4.2. U12|Z4. This time we take an invariant miniversal deformation in the form

x2y + y3 + z4 + δxz2 + γy2 + βy + α,

and the symmetry is g = ιxC
3 : (x, y, z) 7→ (−x, y, −iz). The ratio (2 : 4 : 8 : 12)

of the weights of the deformation parameters does not repeat the ratio of the degrees
of basic invariants of any Shephard-Todd group.
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The discriminant has three irreducible components:

2A1 : α = 0,

A3 : (27α− 9βγ + 2γ3)2 + 4(3β − γ3)3 = 0,

4A1 : δ6 + 4γδ4 + 16βδ2 + 64α = 0.

The union of the first two components is the B3 (equivalently C3) discriminant
multiplied by the δ-axis.

To construct a generic two dimensional section of the discriminant shown in
Figure 5, we took γ = const < 0, and tilted slightly by setting δ = γ + ǫβ, for
some fixed small ǫ > 0. In the Figure, the A3 component is displayed in bold for
distinction, and the dashed line is a generic line which provides the generators. A
distinguished system of paths in this line consists of four arcs in Im(−α) 6 0 joining
the base point ⋆ with the discriminantal points.

2A1

A3

4A1

⋆

1

2

3
4

−α↑

β→

Figure 5. Generic section of U12|Z4 discriminant.

Let us show that the path choice yields the Dynkin diagram

2A1 A3 A3 4A1

2 4 4 2

2(1 + i) 2(1 + i) 4

−4 −4 −4 −8

in which the generators from left to right are h2, h1, h4, h3. We first notice that
the adjacency

U12 → J10 : x
2y + y3 + (tx+ z2)2, t ∈ C,
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is compatible with the symmetry and hence provides an invariant adjacency

U12|Z4 → J10|Z4.

The latter singularity was studied in [14] under the name C
(4)
3 . Such notation

emphasised that its discriminant is isomorphic to the C3 discriminant, and one
can take for its Dynkin diagram for the characters ±i the above diagram with the
leftmost vertex omitted. Moreover, consistently with that, a generic planar section
of the J10|Z4 discriminant is diffeomorphic to the one boxed in Figure 5 with the
component 2A1 omitted.

Now Figure 5 tells us that the operator h2 commutes with the subgroup generated
by h3 and h4, while (h1h2)

2 = (h2h1)
2. The last relation, the self-intersection of

the second vanishing cycle being −4, and the intersection number of the first two
vanishing cycles being a Gaussian number confirms that the first cycle may be
chosen so that this intersection number is 2(1 + i).

4. Projectivised Rank 2 Groups

Assume coordinates z0, . . . , zk in the space Ck+1 equipped with a hyperbolic
Hermitian form are chosen so that the form is −|z0|

2+ |z1|
2+ · · ·+ |zk|

2. The group
U(k, 1) ⊂ GL(k + 1, C) sends the cone

C = {−|z0|
2 + |z1|

2 + · · ·+ |zk−1|
2 < 0}

into itself. Respectively, in the chart z0 6= 0 of CPk, the projective group PU(k, 1)
acts on the ball

{

|w1|
2 + · · ·+ |wk|

2 < 1
}

⊂ C
k, wj = zj/z0, j = 1, . . . , k.

The ball is the standard model for the complex hyperbolic k-space. In particular,
for k = 1, this is the Poincaré disk H.

For a triple of positive integers r1 6 r2 6 r3 such that 1
r1
+ 1

r2
+ 1

r3
< 1, there is a

triangle ∆ in H with angles π/r1, π/r2, π/r3, which is unique up to isometry. The
hyperbolic reflections in the sides of the triangle generate a group D(r1, r2, r3) of
isometries of H, which has the triangle ∆ as its fundamental domain.

We refer to the index 2 subgroup D+(r1, r2, r3) ⊂ D(r1, r2, r3) consisting of
holomorphic transformations as a triangle group. Its fundamental domain ∆+ is
the union of two adjacent copies of ∆.

Theorem 4.1. The projectivisations PMη of all rank 2 monodromy groups con-

tained in Table 3 are triangle groups D+(r1, r2, r3). Table 4 identifies all such

groups.

The rule for the ri is as follows. The orbit space of the skeleton Weyl group is
a weighted homogeneous C2 isomorphic to the base of a g-miniversal deformation
of the related symmetric singularity. If the Weyl group is A2, the weight ratio is
2 : 3, which gives us two of the ri, the third being the order of a Picard–Lefschetz
operator corresponding to the only components of the discriminant. In the B2

and G2 cases, the weight ratios 1 : 2 and 1 : 3 give us one of the ri, while the
other two are the orders of Picard–Lefschetz operators corresponding to the two
discriminantal components.
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Table 4. Triangle Groups

singularities (f, g) |g| Mη r1, r2, r3

(E12, C
3) 14 A

(7)
2 2, 3, 7

(Z11, C
3) 10 G

(10,2)
2 2, 3, 10

(Q10, C
2), (E14, C

2) 12 B
(12,3)
2 2, 3, 12

(Q10, C
3), (E14, C

3) 8 A
(8)
2 2, 3, 8

(W12, C
2) 10 B

(5,5)
2 2, 5, 5

(Z13, C
2) 9 B

(18,3)
2 2, 3, 18

(S11, C
2), (W13, C

2) 8 B
(8,4)
2 2, 4, 8

(Q12, C
3) 5 A

(10)
2 2, 3, 10

(U12, σC) 12 A
(12)
2 2, 3, 12

(U12, C
2) 6 B

(6,6)
2 2, 6, 6

(U12, σC
3) 12 G

(4,4)
2 3, 4, 4

This suggests a general Looijenga-type (cf. [16])

Conjecture 4.2. Let Λ = C
k+1 be the base of a g-miniversal deformation of an

invariant singularity from Table 3, and Σ ⊂ Λ the discriminant of the singularity.

Let Λ′ be the quotient of the hyperbolic cone C ⊂ Ck+1 by the monodromy group

Mη, and Σ′ ⊂ Λ′ the set of irregular orbits. Then the pairs (Λ, Σ) and (Λ′, Σ′) are
biholomorphic.

This conjecture, in particular, asserts that the complex hyperbolic reflection
groups Mη are discrete.
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