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Abstract

The front invariants under consideration are those whose increments in generic
homotopies are determined entirely by diffeomorphism types of local bifurcations of
the fronts. Such invariants are dual to trivial codimension 1 cycles supported on the
discriminant in the space of corresponding Legendrian maps. We describe the spaces of
the discriminantal cycles (possibly non-trivial) for framed fronts in an arbitrary oriented
3-manifold, both for the integer and mod2 coefficients. For the majority of these cycles
we find homotopy-independent interpretations which guarantee the triviality required.
In particular, we show that all integer local invariants of Legendrian maps without
corank 2 points are essentially exhausted by the numbers of points of isolated singularity
types of the fronts.

Vassiliev’s now classical paper on finite-order invariants of knots [10] was an implementa-
tion of Poincaré’s general idea to study properties of generic objects via their degenerations,
and thus opened up a new range of problems for singularity theory. Among the first natural
questions in this area was a classification of order 1 invariants of planar wave fronts carried
out by Arnold in [5], and refined by Aicardi in [1]. A few years later followed Chernov’s
classification of similar invariants of fronts on arbitrary surfaces [9].

This paper is on a classification of order 1 invariants of wave fronts in the next dimension,
3. We are assuming the fronts in a 3-manifold N co-oriented, that is, corresponding to
Legendrian surfaces in the space ST ∗N of co-oriented contact elements ofN.We should notice
that we opt for the word ‘framed’ in this context to avoid confusion with co-orientations of
discriminantal strata in the space L = L(M,N) of all Legendrian immersions of a surface
M to ST ∗N.

The invariants of generic wave fronts we are looking for are order 1 local, that is, those
whose increments in generic homotopies of Legendrian maps are completely determined by
diffeomorphism types of the fronts’ local bifurcations. We call such invariants just local

since no higher-order invariants will be considered. We make no difference in the exposition
between local invariants of Legendrian maps M → ST ∗N → N and of framed fronts in
N parametrised by M : bifurcations of the Legendrian maps are considered in terms of
bifurcations of their fronts.

Up to a choice of an additive constant (individual for each connected component of L),
any numerical local invariant I is defined by its derivative I ′ =

∑
xiXi, where the Xi are

discriminantal strata of codimension 1 in L, and the xi are the increments of I across them.
This linear combination is a trivial codimension 1 cycle in L. Therefore, construction of such
linear combinations (without an a priori knowledge of the invariants) splits into two parts:
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a) establishing conditions on linear combinations of the codimension 1 strata to be cycles
(we call them discriminantal cycles), and

b) checking the triviality of the discriminantal cycles.

The first part is a singularity theory task and does not depend on the choice of M and N
(except for their orientability) and of a particular connected component of L(M,N). The
second part is straightforward if we are able to give an integral (that is, homotopy-free)
interpretation of a relevant invariant. However, in more complicated situations knowledge
of the fundamental group of a particular connected component of L(M,N) may be required
to show that the intersection index of any non-trivial loop in this component with the
discriminantal cycle vanishes.

The present paper deals with the singularity-theoretical part a) and integral cases of part
b) for the fronts, and leaves the topological side of part b) for further investigations. In our
current set-up, we do not assume M oriented (this case will be considered in a forthcoming
paper). None of our results depends on a component choice in L(M,N), and, therefore,
we always refer to the space L or L(M,N) as a whole, without mentioning its particular
components. All invariants are considered up to a choice of additive constants on these
components.

Our first main result, Theorem 1.3, states that for framed fronts in any oriented 3-
manifold the space of integer discriminantal cycles has rank 6. This space contains a rank
5 subspace which is spanned essentially by the derivatives of the invariants counting the
numbers of points of fronts of various stable isolated singularity types. These are triple
points of a front, two types of swallowtails, and two types of intersections of cuspidal edges
with smooth sheets. A sixth basic discriminantal cycle corresponds to an algebraic count of
corank 2 points of Legendrian mapsM → N in generic homotopies. The question of triviality
of this cycle is left open. A natural Corollary 1.5 of Theorem 1.3 is a complete classification of
integer local invariants of Legendrian maps without corank 2 points: prohibiting homotopies
involving corank 2 singularities, we are left exactly with the rank 5 invariant space responsible
for the numbers of points of the five isolated singularity types mentioned above.

Our second main result, Theorem 1.6, concerns the Z2 setting of the same problem. It
turns out that this time the space of discriminantal cycles has rank 8: in addition to mod2
reductions of the integer cycles, we have cycles counting the parities of direct and opposite
self-tangencies of fronts in generic homotopies.

The structure of the paper is as follows.
Section 1 reminds the generalities about Legendrian maps, describes stable singularities

of framed fronts under consideration, and states our main results. Section 2 lists discrimi-
nantal strata of codimension 1 in L(M,N). Section 3 concentrates on intersection number
interpretations of counting corank 2 and opposite self-tangency events in generic homotopies
of fronts. Section 4 proves our main theorems via analysis of generic 2-parameter families
of fronts. Finally, in Section 5 we consider a simplified case of non-framed fronts is oriented
3-manifolds and demonstrate the effect of this simplification on the spaces of dicriminantal
cycles and local invariants.
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1 Framed fronts in 3-manifolds

1.1 General definitions

We start with recalling a series of standard definitions which may be found, for example, in
[3] or [4].

A contact structure on a (2n−1)-dimensional manifold is a non-denerate field of tangent
hyperplanes (called contact hyperplanes). Locally, this is a field of zeros of a differential
1-form α (called a contact form), and the non-degeneracy condition is that α∧(dα)n−1 must
be a local volume form on the manifold. A manifold equipped with a contact structure is
called a contact manifold.

A Legendrian submanifold of a (2n − 1)-dimensional contact manifold is its (n − 1)-
dimensional submanifold integral for the contact structure.

A fibration p : E2n−1 → Bn of a contact manifold E over a base B is called Legendrian

if all its fibres are Legendrian submanifolds. A composition M
i
→ E

p
→ B where i is an

embedding of a manifold Mn−1 into E as a Legendrian submanifold is what is usually called
a Legendrian map. However, in this paper we will allow i to be a Legendrian immersion.

The image in B of a Legendrian map p ◦ i in called a wave front or just a front.

A contact element of a manifold Nn is a hyperplane in the tangent space to N at a point.
A contact element with one of its sides in the tangent space distinguished is usually called
co-oriented, but we have already mentioned that we will call it framed. The set of all framed
contact elements of N is the spherisation ST ∗N of the cotangent bundle of N.

A point of ST ∗N is a pair (ν, π) consisting of a point ν ∈ N and a framed hyperplane
π ⊂ TνN. In the tangent space to ST ∗N at (ν, π), consider the hyperplane mapped to π
under the projection ρ : ST ∗N → N. The field of all such hyperplanes is the standard
contact structure on ST ∗N, and the projection ρ is a Legendrain fibration. The fronts in
N of (immersed) Legendrian submanifolds of ST ∗N are naturally framed, at least at their
regular points. These are the fronts considered in this paper.

All Legendrian fibrations of the same dimension are locally isomorphic. All through this
paper we will be considering the n = 3 case, and in all our local normal forms, we will be
using the traditional local model for this dimension which is the space J1(R2,R) of 1-jets
of functions on the plane fibred over J0(R2,R) ≃ Ru × R

2
v,w. The contact form here is

α = du − V dv − Wdw, where V,W are coordinates along the fibres of the fibration. The
fronts will be framed by the positive u-direction. For the orientation of the 3-space we take
du ∧ dv ∧ dw.

A germ of a Legendrian surface L ⊂ J1(R2
v,w,Ru) is defined by its generating family of

functions F (x, v, w):

L = {(u, v, w, V,W ) | ∃x : Fx = 0, u = F (x, v, w), V = Fv,W = Fw} .

Sometimes it is convenient to refer to this surface as defined by a generating family u =
F (x, v, w) of hypersurfaces. The minimal dimension of the variable x here is the corank of
the derivative of the projection L → R

2
v,w at the base point. The smoothness of L requires

that the rank of the matrix (Fx)x,v,w of the second derivatives at the base point must be
equal to the dimension of x.
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An equivalence of two Legendrian maps Lj → Ej → Bj, j = 1, 2, is a commutative
diagram

L1 → E1 → B1

↓ ϕ ↓ ↓
L2 → E2 → B2

in which ϕ is a contactomorphism, and the other two vertical arrows are diffeomorphisms.
In terms of local generating families Φ(x, u, v, w) = 0 of hypersurfaces this corresponds to
the contact equivalence of functions Φ preserving the fibration (x, u, v, w) 7→ (u, v, w) (see
[3]).

1.2 Stratification of a generic non-oriented framed front

in an oriented 3-manifold

The invariants we are going to construct will be expressed in terms of the geometry of the
natural stratification of fronts. We shall now remind this stratification. The strata notation
follows that of isolated function singularities whose versal deformations serve as generating
families for the fronts (see, for example, [3] or [4]).

A regular point of a generic front F corresponds to an A1 singularity of a function in a
generating family. Hence the set of all such points will be denoted A1.

Irregular points of F are:

A2
1, transversal intersections of two smooth sheets;

A3
1, same for three sheets;

A2, cuspidal edges;

A2A
±

1 , transversal intersections of edges with regular sheets;

A±

3 , swallowtail points.

The signs in the notations of the last two pairs of singularities distinguish between different
framing choices as shown in Figure 1.

Figure 1: Types of stable isolated singularities of framed fronts: A2A
±

1 and A±

3 .

Local generating families of hypersurfaces for the one-component singularities are:

A1 : u = x2 , A2 : u = x3 + vx , A±

3 : ±u = x4 + vx2 + wx .
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1.3 Local invariants

In what follows M will always be a non-oriented compact surface, and N an oriented 3-
manifold, both without boundaries. Denote by L = L(M,N) the space of all Legendrian
maps M # ST ∗N → N , where the first arrow is a Legendrian immersion and the second
the canonical projection. Maps whose fronts have more complicated singularities than those
described above form the discriminantal hypersuface Ξ in L. For example, if M # ST ∗N is
not an embedding, then the corresponding Legendrian map is in Ξ.

Consider connected components of L\Ξ. A numerical invariant is a way to assign numbers
to each of them. Along a generic path in L, the values of an invariant change at the moments
of discriminant crossings.

Definition 1.1 We say that an invariant is local of order 1 (or just local , for short) if every
increment of the invariant is completely determined by the diffeomorphism type of the local
bifurcation of the front at the crossing.

Considering invariants whose value set is different from Z2, we must have the discriminant
locally co-oriented.

A local invariant I defines its derivative I ′ =
∑

i xiXi, where the Xi ⊂ Ξ are the strata
of codimension 1 in L we are able to distinguish for the needs of Definition 1.1, and the xi

are the local increments of I along generic paths in L crossing the Xi in the co-orienting
direction. On the other hand, I is defined by I ′ on each connected component Lj of L up
to a choice of ‘a constant of integration’, that is, up to an arbitrary choice of the value of I
at a non-discriminantal base point in Lj.

Since the total increment of I along any loop in Lj vanishes, the derivative
∑

i xiXi must
be a trivial codimension 1 cycle in Lj. The vanishing of the total increment on contractible
loops (that is, the derivative being a cycle, maybe non-trivial) is equivalent to its vanishing
on small loops in L around codimension 2 strata of the discriminant. Finding the relevant
cyclicity constraints on the increments xj is the problem on which we concentrate in this
paper. As it was said in the preface, cycles of the form

∑
i xiXi will be called discriminantal .

One of the ways to establish the triviality of a cycle I ′ =
∑

i xiXi is to find an integral

(that is, path-independent) interpretation of its antiderivative I in terms of the geometry of
individual fronts.

Examples 1.2 It is clear that the number of isolated singularities of F of a particular type
is a local invariant. We distinguish five such invariants:

It, the number of triple points A3
1;

Is± , the numbers of positive and negative swallowtails;

Ic± , the numbers of A2A
±

1 points.

Another obvious local invariant for fronts in R
3 or S3 is

Iℓ, the self-linking number of the oriented framed link defined by the cuspidal edge of F
(as shown in Figure 2).

In Section 3.1 we will introduce yet another candidate for local invariants, IΣ2 , counting
an algebraic number of corank 2 points of Legendrian maps in homotopies. We do not have
its integral interpretation: we only know its derivative which may happen to be a non-trivial
cycle in L.

5



Figure 2: Constructing an oriented framed link from the cuspidal edge.

1.4 Classification of the discriminantal cycles and invariants

All statements in this section refer to any compact surface M and oriented 3-manifold N.

The first main result of this paper is

Theorem 1.3 The space of integer discriminantal cycles in L(M,N) has rank 6. Its basis

is formed by the derivatives of the invariants

It , (Is+ ± Is−)/2 , (Ic+ + Ic−)/2 , IΣ2 , (2Is+ + Ic+ − Ic− − 6IΣ2)/4 .

This implies

Corollary 1.4 The space of integer local invariants of framed fronts in N parametrised by

M has rank either 6 or 5.

The exact value of the rank here depends on I ′Σ2 being or not being a trivial cycle.

Let L1 ⊂ L(M,N) be the set of all Legendrian maps without corank 2 points. Dis-
criminantal cycles in L1 do not contain any summands of I ′Σ2 . Our proof of Theorem 1.3
yields

Corollary 1.5 The space of integer discriminantal cycles in L1(M,N) has rank 5. Its basis

is formed by the derivatives of the invariants

It , (Is+ ± Is−)/2 , (Ic+ + Ic−)/2 , (2Is+ + Ic+ − Ic−)/4 .

Respectively, these five invariants form a basis of the space of all integer local invariants on

L1(M,N).

One of the simplest events in generic one-parameter families of fronts is tangency of two
smooth sheets. For framed fronts, we have two types of such self-tangencies: direct when
the framings of the sheets at the touching point coincide, and opposite when they do not.
We denote by I ′dir and I ′opp the derivatives of the Z2-valued functions counting the parities
of the events in homotopies.

In the Z2 case we have

Theorem 1.6 The space of mod2 discriminantal cycles in L(M,N) has rank 8. Its basis is

formed by I ′dir, I
′

opp and the reduced basic derivatives of Theorem 1.3.

Prohibition of corank 2 points in homotopies cuts here the rank down to 7 and excludes
I ′Σ2 .

Depending on how many of the linear combinations of the mod2 discriminantal cycles
I ′dir, I

′

opp and I ′Σ2 turn out to be trivial, we have

Corollary 1.7 The space of Z2-valued local invariants of framed fronts in N parametrised

by M has rank at least 5 and at most 8.

Both theorems are proved in section 4.4, with the preparations occupying section 2 and
the rest of section 4.
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2 Codimension 1 bifurcations

To prove our main results, we first of all need a description of all codimension 1 discrimi-
nantal strata in L(M,N). Therefore we will now list all generic 1-parameter families of our
Legendrian maps, in terms of the local bifurcations of their fronts. We co-orient the strata
in L wherever we can do this by local means. As long as only corank 1 singularities are
concerned, the fronts in 3-manifolds do not differ locally from the critical value sets of maps
between 3-manifolds. Therefore, in that part, our list is not too far from the relevant part
of the list from [7] but has a crucial difference in the strata decorations.

2.1 Multi-germs

We start with the bifurcations involving more than one local component of a front.
Following the notations introduced for singularities of a generic front, the notations of the

bifurcations below are self-explanatory, with T used for the tangency of the participating
strata of a front. Letters e and h distinguish between elliptic and hyperbolic versions of
similar bifurcations. Letter r stays for the number of faces of the bounded region appearing
after the bifurcation, which are framed outward the region. If there is no such bounded
region, we make a special comment on the meaning of r. The figures illustrate only one
particular value of r from the range, or one particular choice of the sign. We use the
orientation of the cuspidal edges as defined in Figure 2. We co-orient a discriminantal
stratum in L by the direction of the shown sequence of the events in the bifurcation. In
some cases we show only the ‘positive resolutions’ of the fronts and indicate by arrows how
one of the local components has been moved during the bifurcations.

So, we have (see Figure 3):

A4,r
1 , r = 2, 3, 4, intersection of four smooth sheets. The pre-bifurcation tetrahedral region

has 4−r faces framed outwards. Therefore, the r = 2 stratum A4,2
1 is not co-orientable

in L.

TA3,r
1 , r = 0, 1, 2, 3, three smooth sheets are pairwise transversal to each other, but the line

of intersection of any two of them is tangent to the third sheet at the moment of
bifurcation.

TA2,e,r
1 , r = 0, 1, 2, elliptic tangency of two smooth sheets.

TA2,h,r
1 , r = 0, 1, same, but hyperbolic. We write r = 1 if the sheets are framed to the same

side, and r = 0 if the framings are opposite. For r = 1, the stratum is not co-orientable
in L.

The strata TA2,e,r
1 and TA2,h,r

1 are exactly those responsible for the direct (r = 1) and
opposite (r = 0, 2) self-tangencies mentioned in section 1.4.

A2A
2,±,±
1 , cuspidal edge meets the intersection of two smooth sheets. The two signs are the signs

of the two A2A1 points after the bifurcation, in the order in which the points lie locally
on the cuspidal edge if we follow the edge orientation.

A2,e,±
2 , two edges meet face-to-face. During the bifurcation the crossing sign of the two local

oriented edges changes. The sign in the notation of the stratum is the crossing sign
after the bifurcation.
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A2,h
2 , one of the edges is overtaking the other. The crossing sign of the two edges after the

bifurcation is positive.

A±

3 A
±

1 , a smooth sheet passes through a swallowtail. The meaning of the A1 sign is clear from
the Figure.

TA2A
e,±
1 , cuspidal edge becomes tangent to a smooth sheet so that the two local components of

F do not intersect before the bifurcation. The two cases differ by the framing of the
smooth sheet.

TA2A
h,±
1 , the hyperbolic version of the previous.

2.2 Uni-germs

Our normal forms for generic 1-parameter uni-germ transformations follow [2, 12], and their
illustrations in Figure 4 correspond to [4].

The sign of the real parameter λ in the local normal forms for the generating families of
hypersurfaces co-orients the strata in L. Following what was said about the local normal
forms in Section 1.2, the tangent plane to the λ = 0 front at the origin is u = 0 framed by
the positive u-direction.

Ae,±
3 : ±u = x4 + (v2 − λ)x2 + wx, birth of cuspidal lips, with the swallowtails of the sign in

the notation.

Ah,±
3 : ±u = x4 + (λ− v2)x2 + wx, a beaks bifurcation on the edge.

A±

4 : ±u = x5 − λx3 + vx2 +wx, here the sign is the local crossing number of the edge after
the bifurcation. It coincides with the sign of the two appearing A2A1 points.

D±

4 : u = ±x2y + y3 − λy2 + wy + vx, the swallowtails after the bifurcations are positive.
This co-orientation of the D±

4 strata coincides with that by the increase of the negative
signature of the A3 singular points in the generating families.

Altogether, we have identified 35 codimension 1 strata in L, two of which – A4,2
1 and

TA2,h,1
1 – are not co-orientable.

2.3 Counting isolated singularities of fronts

It will be convenient for us to use sums of the strata differing only in certain indices in their
notations. In such cases we will omit the corresponding signs or letter and assume that the
summation is done across the whole range of the omitted symbols, for example:

A4 = A+
4 + A−

4 , TA2A1 = TA2A
e,+
1 + TA2A

e,−
1 + TA2A

h,+
1 + TA2A

h,−
1 .

To avoid confusion to which such abbreviations may lead in some cases, we will also use the
notations similar to

A
e/h,+
3 = Ae,+

3 + Ah,+
3 and A

e/h,±
3 = A

e/h,+
3 + A

e/h,−
3 .

Within these settings, inspection of Figures 3 and 4 immediately implies
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TA1
3,1

TA1
2,e,2 TA1

2,h,0

1A4,3

2A2,h A3
+

1A−

1Ae,+TA2 1Ah,+TA2

2A2,e,+

1A2,−,+A2

Figure 3: Codimension 1 multi-germs.
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writhe = +1

A4
+

A3
e,+

A3
h,−

4D+

4D−

Figure 4: Codimension 1 uni-germs.
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Lemma 2.1 The derivatives of the numbers of points of isolated singularity types of generic

fronts and of the edge self-linking number are

Is/2 = (Is+ + Is−)/2 : A
e/h,±
3 + A4 ,

Îs/2 = (Is+ − Is−)/2 : A
e/h,+
3 − A

e/h,−
3 +D+

4 + 3D−

4 ,

Ic/2 = (Ic+ + Ic−)/2 : 2A2,e
2 + A3A1 + TA2A1 + A4 ,

Îc/2 = (Ic+ − Ic−)/2 : 2A2,e,+
2 − 2A2,e,−

2 + 2A2,h
2 + A+

4 − A−

4 ,
It : 2TA3

1 + 2A2A
2
1 + A3A1 ,

Iℓ : 2A2,e,+
2 − 2A2,e,−

2 + 2A2,h
2 + A+

4 − A−

4 .

In particular, we see that in R
3 or S3, up to an additive constant, Iℓ = (Ic+ − Ic−)/2 .

3 The two invariants

We give here details of possible local invariants appearing in Theorems of section 1.4.

3.1 Corank 2 points in homotopies

Within the lists of sections 2.1 and 2.2, the λ = 0 members of the D±

4 families are the only
Legendrian maps having rank 0 at the origin. We will now express an algebraic number of
such events in generic homotopies of fronts as an intersection number. The construction will
imply that

I ′Σ2 = D+
4 +D−

4

for the possible local invariant IΣ2 mentioned in sections 1.3 and 1.4.
Every contact hyperplane of a contact structure is a symplectic linear space, with the

symplectic form dα if α is the contact form. Moreover, the tangent space to a Legendrian
submanifold at a point is a Legendrian subspace in the contact hyperplane. This provides a
fibration

φ : E → ST ∗N3 ,

with a fibre Λ2, the Lagrangian grassmannian of non-oriented Lagrangian planes of symplec-
tic R

4.
A family of Legendrian immersions it : M # ST ∗N, t ∈ [0, 1], lifts to a family of

embeddings ĩt : M → E , m 7→ Tit(m)it(M), it = φ ◦ ĩt. Consider:

• a 3-film Z ⊂ E , the union of the images of the embeddings ĩt, t ∈ [0.1],

• the section V ⊂ E of vertical Lagrangian planes, that is, the field of the kernels of the
derivative of the projection ρ : ST ∗N → N.

In general position, Z and V meet at isolated non-boundary points of Z, and φ projects
these points exactly to the points of the Legendrian surfaces it(M) at which their individual
projections ρ to the base N have rank 0.

Our aim is to define an intersection number 〈V ,Z〉 in E , that is, to assign signs to
points of V ∩ Z. Consider one of these points, z0 = ĩt0(m0), and the local trivialization
J1(R2

v,w,Ru) × Λ2 of E near it, with φ(z0) = it0(m0) being the origin in the first factor for
which we will be using the coordinate description given in section 1.1. Projection onto the
second factor gives us a map germ π : (Z, z0) → Λ2, and reduces the task to assigning a sign
to π. We will call π(z0) the vertical point of Λ2.
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Lemma 3.1 Assume the map germ π ◦ ĩt0 : (M,m0) → (Λ2, π(z0)) is an embedding. Then

the germ of its image surface possesses a canonical co-orientation in Λ2.

The 3-manifold Λ2 is non-orientable [11], and Z is not oriented since M is not. However,
M×{t0} is co-oriented in M× [0, 1] by the positive t-direction, and, according to the lemma,
the family of the maps π◦ ĩt will allow us to compare the two co-orientations, and thus obtain
the sign we are looking for.

Proof of the lemma. The Lagrangian grassmanian Λ2 under consideration is that of the
Lagrangian planes in R

4
v,w,V,W with the symplectic form dα = dv∧dV +dw∧dW. The vertical

plane is v = w = 0. Any Lagrangian plane transversal to the vw-coordinate plane is a graph
of a linear map with a symmetric matrix

(
v
w

)
= −

(
a b
b c

)(
V
W

)
.

The entries a, b, c are local coordinates on Λ2 near the vertical point which is the origin in
the chart. If dV ∧dW is an orientation of the vertical plane then we shall take da∧db∧dc for
a local orientation on Λ2. Swapping V and W swaps a and c to keep the matrix symmetric,
and therefore reversal of the orientation of the vertical plane reverses the local orientation
of Λ2. On the other hand, an orientation of the vertical plane induces – via the immersion
map it0 – an orientation on M near m0. The latter induces in its own turn – via the
embedding germ π ◦ ĩt0 – an orientation on the surface (π ◦ ĩt0)(M) ⊂ Λ2 near the vertical
point (π ◦ ĩt0)(m0) = π(z0).

We locally co-orient the image surface germ so that its co-orientation followed by its local
orientation coming from dV ∧dW on the vertical plane gives the local orientation da∧db∧dc
on Λ2. �

Example 3.2 We rewrite the D±

4 generating families of hypersurfaces given at the end of
section 2.2 as u = F (x, y, λ) + vx + wy. In the local coordinates of Section 1.1, each of the
two families of Legendrian maps is (x, y, λ) 7→ (u, v, w, V,W ) 7→ (u, v, w), where

v = −Fx, w = −Fy and V = (F + vx+ wy)v = x, W = (F + vx+ wy)w = y .

The Lagrangian planes tangent to the surfaces are
(

v
w

)
= −

(
Fxx Fxy

Fxy Fyy

)(
V
W

)
= −

(
±2y ±2x
±2x 6y − 2λ

)(
V
W

)
.

According to Lemma 3.1, taking the orientation dV ∧dW on the vertical plane v = w = 0
(that is, the local orientation dx∧dy on M) we should take the orientation da∧db∧dc ≃
dx∧dy∧dλ on Λ2. Thus, the co-orientation of M ×{0} in M ×Rλ by the positive λ-direction
is being sent to the canonical co-orientation of the germ (π ◦ ĩ0)(M) in Λ2. Therefore, in our
D±

4 bifurcations, the local intersection numbers 〈V ,Z〉 are 1.

The intersection number 〈V ,Z〉 , calculated as the sum of the individual ±1 contributions
across all points of V ∩Z, is an invariant of oriented paths in the space L(M,N) connecting
maps ρ ◦ i0 and ρ ◦ i1. In section 4.4 we will show that the sum D+

4 + D−

4 is a cycle in L.
Therefore, the number 〈V ,Z〉 is preserved in homotopies of paths with fixed ends. Existence
of a well-defined local invariant IΣ2 on L for which

IΣ2(ρ ◦ i1) = IΣ2(ρ ◦ i0) + 〈V ,Z〉 , with I ′Σ2 = D+
4 +D−

4 ,

is equivalent to vanishing of 〈V ,Z〉 on all non-contractible loops in L.
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3.2 Opposite self-tangencies

We turn to the possible mod2 local invariant Iopp of section 1.4.
Opposite self-tangencies of fronts occur exactly at three types of the TA2

1 strata: TAe,0
1 ,

TAe,2
1 and TAh,0

1 . In our proof of Theorem 1.6 in section 4.4, we will show that the sum TA2,opp
1

of these strata is a mod2 discriminantal cycle. We now give an example of a situation when
this cycle is trivial.

Let j be the involution of the space ST ∗N of framed contact elements of a manifold N
which changes the framing of each element to the opposite. An embedded Legendrian surface
i(M) ⊂ ST ∗N has its antipodal surface (j ◦ i)(M).

Assume M is orientable and N = R
3. Take a direction in R

3 and shift (j ◦ i)(M) along
all vectors of this direction producing a semi-infinite cylinder C ⊂ ST ∗

R
3 parametrised by

M × [0,∞) and having the boundary (j ◦ i)(M). Choosing orientations on ST ∗
R

3 and M ,
and taking the orientation on C so that ∂C = −(j ◦ i)(M), we obtain the integer intersection
number ℓopp(i(M)) = 〈C, (j ◦ i)(M)〉 . It does not depend on the choice of a direction in R

3

and on orientation of M.
In generic homotopies of Legendrian surfaces, the value ℓopp(i(M)) changes only at op-

posite self-tangencies of fronts – such moments correspond to intersections of a Legendrian
surface with its antipodal surface. The increments are easily shown to be ±2 (see for exam-
ple [6]). Therefore, the derivative of the mod2 local invariant Iopp(ρ ◦ i) := ℓopp(i(M))/2 is
TA2,opp

1 .

4 Bifurcations in 2-parameter families of fronts

Our proof of Theorems 1.3 and 1.6 is based on the study of bifurcations in generic 2-parameter
families of fronts carried out in the first three subsections of this section. The bifurcation
diagram of each family gives a linear equation on the increments of our local invarinats
across the codimension 1 strata: the equation states that the total increment along a small
generic loop in L around the codimension 2 stratum must vanish. The whole system of these
equations guarantees that the corresponding linear combination of codimension 1 strata is a
discriminantal cycle in L.

We denote the increment across a particular stratum as the stratum itself, but in small
characters. Increments which may be non-zero only in the mod2 case will be kept in square
brackets, as well as non-co-orientable strata in formulas (but not in figures).

4.1 Gluing codimension 1 strata together

We start with all 35 strata. Our initial goal is to reduce the number of unknown increments.

4.1.1 Extra A1 component

We begin with the easiest kind of codimension 2 bifurcations when an extra generic A1 sheet
of a front passes through a point of a codimension 1 bifurcation S. For cases 1–4 of the table
below, the planar discriminants are of the shape shown in Figure 5, left. Such a discriminant
gives the equation u = v for the increments. The discriminant for case 5 is in the same figure
in its right.
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The equations obtained at this stage allow us to consider in what follows sums of the
strata differing only in some indices in their notation as introduced in Section 2.3. The
notation of the increments across such bigger strata will follow the notational pattern for
the elementary strata. If one of the summands in a big stratum is non-co-orientable, then
the increment of any integer invariant across the big stratum is zero, and the big stratum is
treated as non-co-orientable.

S equation big stratum

1. TA3,r
1 r = 2, 3 [a4,21 ] = a4,31 = a4,41 [A4

1]

2. TA2,e,r
1 r = 0, 1, 2 ta3,r+1

1 = ta3,r1 TA3
1

3. TA2A
e,σ
1 σ = ± a2a

2,+,σ
1 = a2a

2,−σ,+
1

a2a
2,−,σ
1 = a2a

2,−σ,−
1 A2A

2
1

4. Ae,σ
3 σ = ± aσ3a

+
1 = aσ3a

−

1

5. A+
4 a+3 a

+
1 = a−3 a

−

1 A3A1

S S

U V

A+
4 A+

4

A2
1A2 A2

1A2

A−
3 A−

1A+
1A+

3

Figure 5: Discriminants of the front families obtained from interaction of a generic smooth
sheet with a codimension 1 bifurcation.

4.1.2 Cubic bifurcations

According to Section 2.2, a generating family of hypersurfaces for the codimension one Ae,+
3

front singularity may be taken in the local normal form u = x4 + v2x2 + wx. Writing v3

instead of v2, we obtain a codimension 2 uni-germ singularity, with a versal deformation
u = x4 + (v3 + λ1v + λ2)x

2 + wx (see [8, 12]). Its discriminant is a semi-cubical parabola
4λ3

1 + 27λ2
2 = 0, and yields coincidence of the increments across its half-branches. Similarly

replacing quadratic configurations by cubic in some other codimension 1 bifurcations S, we
obtain a list like in the previous subsection:

S equations big stratum

6. Ae,σ
3 , σ = ± ae,σ3 = ah,σ3 A

e/h,σ
3 = Ae,σ

3 + Ah,σ
3

7. TA2A
e,σ
1 , σ = ± ta2a

e,σ
1 = ta2a

h,−σ
1

8. TA2,e,r
1 , TA2,h,r

1 ta2,e,21 = −ta2,e,01 = ta2,h,01 TA2,opp
1 = TA2,e,2

1 − TA2,e,0
1 + TA2,h,0

1

ta2,e,11 = [ta2,h,11 ]
[
TA2,dir

1

]
= TA2,e,1

1 +
[
TA2,h,1

1

]

4.2 Particular multi-germ families

So far we have reduced the number of unknown increments down to 17, out of which 2 may
be non-trivial only mod2.
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4.2.1 Non-transversal interaction with a cuspidal edge

We now consider cases of a cuspidal edge of a front F meeting other components of F , but
in a more degenerate manner at the meeting point than it happens in stable one-parameter
bifurcations. Figure 6 illustrates three codimension 2 events of this kind when the plane
tangent to F at its edge point is in a special position with another local component of F :

the plane coincides with the plane tangent to a smooth A1 sheet;

the plane contains the tangent direction of the line of intersection of two A1 sheets;

the plane contains the tangent direction of another cuspidal edge.

TA1
2,h,0

TA1
2,e,2

A1
e,+TA2

A1
h,+TA2

TA1
3

TA1
3

A1A2
2

A1A2
2

A2
2,e,−

A2
2,h

T A1A2

T A1A2

Figure 6: Codimension 2 degenerations due to special positions with respect to the tangent
plane at an edge point.

Respectively, we obtain new equations for the increments (the second equations in cases
9 and 11 arise when the framing of one of the components in Figure 6 is changed to the
opposite):

9. 2ta2,opp1 = ta2a
e,+
1 − ta2a

h,+
1

0 = ta2a
e,−
1 − ta2a

h,−
1

10. 2ta31 = 2a2a
2
1

11. 2ta2a1 = a2,e,−2 + a2,h2

= a2,e,+2 − a2,h2

Equations 7 and 9(2) allow us to introduce a big stratum TA2A1 (which we are using
already in 11). After this, 9(1) implies that the increment ta2,opp1 may be non-zero in the
mod2 case only.

4.2.2 Interaction with a swallowtail

Figure 7 shows the events involving swallowtails. In the first case, at the most degenerate
moment, the direction of the self-intersection curve at the swallowtail point is tangent to
the incoming smooth sheet. The two other cases are clear. The bifurcations provide the
following equations:

12. 2a3a1 = 2ta2a1 + ta31
13. [a41] = 0

14. 2a3a1 = a2a
2
1 + a2,e,+2 − a2,h2

= a2a
2
1 + a2,e,−2 + a2,h2

15



s

A3 A1

A3 A1

A1A2
2 sA2

2,h

A2
2,e,s

A3 A1

A3
1T A1TA2

A3 A1

A1TA2

A3 A1A3 A1

A3 A1 A3 A1

A4
1

A1A2
2

A12
2A

Figure 7: Codimension 2 degenerations involving swallowtails.

4.3 Uni-germs of codimension 2

The three 2-parameter deformations represented in Figure 8 are of generating families in-
duced from versal deformations of A5, A4 and D5 function singularities. In the A5 case, the
generating family is the most generic. In the A4 case, it has codimension 1 within all families
induced from A4. Similar D4 degenerations do not occur since they would correspond to a
change of topology of the source surface M.

The local normal form of the A4 family was obtained [8], and the one for the uni-modal
A5 family may be found by very similar methods.

In the bottom row of Figure 8, the λ1 = λ2 = 0 fronts are front singularities of infinite
codimension. Moreover, the 2-parameter deformations chosen are of infinite codimension in
the space of all 2-parameter deformations of these fronts: indeed, the A+

4 and A−

4 strata of
the bifurcation diagrams coincide. However, the only difference of our bifurcation diagrams
with those of generic 2-parameter families of finite-codimensional singularities defined by
generating families with the same principal parts is a split of the two A4 strata.

Figure 8 gives the following equations:

15. a2,h2 = a+4 − a−4
16. 2ta2a1 = a+4 + a−4 − a

e/h,+
3 − a

e/h,−
3

17. d+4 − d−4 = a+4 + a−4 − 2a
e/h,+
3 − 2a3a1 + a2a

2
1

d−4 − d+4 = a+4 + a−4 − 2a
e/h,−
3 − 2a3a1 + a2a

2
1

4.4 Proofs of Theorem 1.3 and 1.6

One can show that any further generic 2-parameter families of fronts (for example, passage of
an extra A1 sheet through a quadruple or D4 bifurcation, or taking other framing options in
Figure 6, left) are not able to provide us with any equations on the increments independent
from those we have already obtained.

We collect equations 9–17 into two tables below, for arbitrary and mod2 coefficients.
Each of the two tables consists of two parts. The left one contains the equations themselves
in the order they have appeared (we are using dots for zero coefficients), while the right
lists the discriminantal cycles as linear combinations of the strata (with the notations as
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λ2

1λ

σ = + σ = −

A+
4

A−
4A1A3

A13A

A2
2,h

D4
− D4

+

A1A3

A3
h,+ A−

4A  ,+
4

A1A2
2

A1A3

A3
e,+

D4
− D4

+

A1A3

A3
h,− A−

4A  ,+
4

A1A2
2

A1A3

A3
e,−

Ah,−
3

A+
4

A−
4

T A12A

T A12AAh,+
3

Figure 8: Discriminants of the families
top left u = x6 + (λ1 ± v + γw)x4 + λ2x

3 + vx2 + wx, γ ∈ R;
top right u = x5 + vx3 + (±v2 + λ1v + λ2)x

2 + wx;
bottom σu = x2y + y4 + λ1y

3 + λ2y
2 + vy + wx, σ = ± .

in Lemma 2.1). The bars in the first table indicate the equations which are integer linear
combinations of the others.

9 10 11 11 12 13 14 14 15 16 17 17 I ′s/2 Î ′s/2 I ′c/2 Î ′c/2 I ′t I ′Σ2 I ′0

[A4
1] . . . . . 1 . . . . . . . . . . . . .

TA2,opp
1 2 . . . . . . . . . . . . . . . . . .[

TA2,dir
1

]
. . . . . . . . . . . . . . . . . . .

TA3
1 . 2 . . 1 . . . . . . . . . . . 2 . .

A2A
2
1 . −2 . . . . 1 1 . . 1 1 . . . . 2 . .

A2,e,+
2 . . . 1 . . 1 . . . . . . . 2 2 . . 1

A2,e,−
2 . . 1 . . . . 1 . . . . . . 2 −2 . . −1

A2,h
2 . . 1 −1 . . −1 1 −1 . . . . . . 2 . . 1

A3A1 . . . . −2 . −2 −2 . . −2 −2 . . 1 . 1 . .
TA2A1 . . −2 −2 2 . . . . −2 . . . . 1 . . . .

A
e/h,+
3 . . . . . . . . . −1 −2 . 1 1 . . . . 1

A
e/h,−
3 . . . . . . . . . −1 . −2 1 −1 . . . . .
A+

4 . . . . . . . . 1 1 1 1 1 . 1 1 . . 1
A−

4 . . . . . . . . −1 1 1 1 1 . 1 −1 . . .
D+

4 . . . . . . . . . . −1 1 . 1 . . . 1 −1
D−

4 . . . . . . . . . . 1 −1 . 3 . . . 1 .

Here I ′0 = (I ′s/2 + Î ′s/2 + Î ′c/2− 3I ′Σ2)/2 = (2I ′s+ + I ′c+ − I ′c− − 6I ′Σ2)/4.
The rank count in the left part of the table shows that the space of integer discriminantal

cycles is 6-dimensional, and the right part of the table tells us that a basis of this integer
space is formed by the 6 cycles excluding Î ′c/2. This proves Theorem 1.3.

Adjusting the above table to the Z2 case, we use equations 11 to make a big stratum
A

2.e/h
2 , then exclude the [A4

1] , TA
3
1 and A2A

2
1 strata (along with the equations 13, 12 and
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14 in which exactly one of them appears now on its own), and drop the duplicate and 0 = 0
equations. This leaves us with 3 independent equations in 11 unknowns.

Z2 15 16 17 I ′s/2 Î ′s/2 I ′c/2 Î ′c/2 I ′t I ′Σ2 I ′opp I ′dir I ′0

TA2,opp
1 . . . . . . . . . 1 . .[

TA2,dir
1

]
. . . . . . . . . . 1 .

A
2,e/h
2 1 . . . . . . . . . . 1

A3A1 . . . . . 1 . 1 . . . .
TA2A1 . . . . . 1 . . . . . .

A
e/h,+
3 . 1 . 1 1 . . . . . . 1

A
e/h,−
3 . 1 . 1 1 . . . . . . .
A+

4 1 1 1 1 . 1 1 . . . . 1
A−

4 1 1 1 1 . 1 1 . . . . .
D+

4 . . 1 . 1 . . . 1 . . 1
D−

4 . . 1 . 1 . . . 1 . . .

The space of mod2 invariants has rank 8. There is one relation on the 9 discriminantal
cycles listed in the table: I ′s/2+ Î ′s/2+ Î ′c/2+ I ′Σ2 ≡ 0. Our proof of Theorem 1.6 is finished.

5 Non-framed fronts in oriented 3-manifolds

We now consider a natural simplification of our main problem: the fronts will not be framed.
This corresponds to Legendrian maps M # PT ∗N → N, of immersed Legendrian submani-
folds in the space of non-framed contact elements of N. We denote the set of all such maps
by Lnf = Lnf (M,N).

As a result of the framing omission, the A2A1 and A3 points of generic fronts lose their
signs. Moreover, for our work with the space Lnf we get additional unions into big strata,
and certain strata become non-co-orientable in Lnf :

A2,e
2 = A2,e,+

2 + A2,e,−
2 , A

e/h
3 = A

e/h,+
3 + A

e/h,−
3 .

[TA2
1] = [TA2,opp

1 ] + [TA2,dir
1 ] , [D+

4 ] , [D−

4 ] .

The first table from section 4.4 becomes the one below. Its right part gives a natural
basis of the space of integer discriminantal cycles.
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9 10 11 11 12 13 14 14 15 16 17 17 I ′s/2 I ′c/2 I ′t

[A4
1] . . . . . 1 . . . . . . . . .

[TA2
1] . . . . . . . . . . . . . . .

TA3
1 . 2 . . 1 . . . . . . . . . 2

A2A
2
1 . −2 . . . . 1 1 . . 1 1 . . 2

A2,e
2 . . 1 1 . . 1 1 . . . . . 2 .

A2,h
2 . . 1 −1 . . −1 1 −1 . . . . . .

A3A1 . . . . −2 . −2 −2 . . −2 −2 . 1 1
TA2A1 . . −2 −2 2 . . . . −2 . . . 1 .

A
e/h
3 . . . . . . . . . −2 −2 −2 1 . .
A+

4 . . . . . . . . 1 1 1 1 1 1 .
A−

4 . . . . . . . . −1 1 1 1 1 1 .[
D+

4

]
. . . . . . . . . . 1 1 . . .[

D−

4

]
. . . . . . . . . . 1 1 . . .

Thus we have

Proposition 5.1 For any surface M and oriented 3-manifold N , the space of integer local

invariants of non-framed fronts in N parametrised by M has rank 3. Its basis is formed by

half the numbers of swallowtail and A2A1 points, and the number of triple points of a front.

The Z2 version of the last table is below, with the duplicate and 0 = 0 equations omitted,
and a solution basis on the right. We are using I ′ℓ there since for N = R

3 this discriminantal
cycle integrates to the edge self-linking number Iℓ of section 1.3 reduced mod2. The meaning
of IΣ2 for paths in Lnf here is similar to that for the integer framed case given in section 3.1,
with the projectisation of T ∗N used now instead of its spherisation. The cycle I ′tan counts
the parity of the number of self-tangencies of fronts along generic paths in Lnf .

Z2 11 12 13 14 15 16 17 I ′s/2 I ′c/2 I ′ℓ I ′t I ′Σ2 I ′tan

[A4
1] . . 1 . . . . . . . . . .

[TA2
1] . . . . . . . . . . . . 1

TA3
1 . 1 . . . . . . . . . . .

A2A
2
1 . . . 1 . . 1 . . . . . .

A2,e
2 1 . . 1 . . . . . . . . .

A2,h
2 1 . . 1 1 . . . . . . . .

A3A1 . . . . . . . . 1 . 1 . .
TA2A1 . . . . . . . . 1 . . . .

A
e/h
3 . . . . . . . 1 . . . . .
A+

4 . . . . 1 1 1 1 1 1 . . .
A−

4 . . . . 1 1 1 1 1 1 . . .[
D+

4

]
. . . . . . 1 . . . . 1 .[

D−

4

]
. . . . . . 1 . . . . 1 .

Hence we have obtained
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Proposition 5.2 For any surface M and oriented 3-manifold N , the space of mod2 dis-

criminantal cycles in Lnf (M,N) has rank 6, with a basis given in the above table. The space

of Z2-valued local invariants in this case has at least rank 3 and at most 6.

One can easily see that both propositions stay valid even if the 3-manifold is not oriented.

Remark 5.3 Yet another option to consider is framed fronts in a non-oriented 3-manifold.
Comparing with the tables of section 4.4, this leads to the bigger strata A2,e

2 and A4, and
to the A2,h

2 stratum losing its co-orientation. As a result the rank of the space of integer
discriminantal cycles reduces to 5 and of the mod2 space reduces to 7. This is due to the
disappearance of the integer cycle Î ′c/2 and hence of the cycle I ′0 for both coefficient choices.
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