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Introduction

Associated to each unstable map-germ fo : cn, 0 ~ CP, 0, where (n, p) are in
Mather’s range of "nice dimensions", there is a "stabilisation"; that is, a locally
stable mapping f : U ~ CP, where U is some contractible neighbourhood of 0 in
C". When n  p, the image Y of f plays the same rôle in the theory of
singularities of mappings, as does the Milnor fibre in the theory of isolated
complete intersection singularities. Our aim in this paper is to describe the
topology of Y, and, in the case where fo is quasihomogeneous, to make a start in
the study of its canonical mixed Hodge structure. Our main results concern
germs of corank 1, since in this case the spectral sequence used to calculate the
vanishing cohomology degenerates at Ei, making explicit calculation very easy.
The key to our description of the topology of the image Y is provided by the

multiple point spaces Dk(f) (the k-th multiple point space Dk(f) is in this context
the closure, in Uk, of the set of k-tuples of pairwise distinct points having the
same image under f (see Section 2 below)). When fo is a finitely determined
corank 1 map-germ, each germ Dk(f0),0, for 2  k  p/(p - n), is an isolated
complete intersection singularity ([19]). Replacing fo by its stable perturbation
f, we smooth each space Dk(f0); Dk(f) is thus a Milnor fibre of Dk(f0), and is
therefore a Stein manifold with the homotopy type of a wedge of spheres ([9]).
Moreover, the natural projections Dk(f) ~ Dk-1(f) all turn out to be

stable mappings (see Section 2).
Section 1 makes precise the notion of a stable perturbation of a map-germ.
In Section 2, we construct an alternating semi-simplicial resolution Alt 7L Do of

the constant sheaf Zy, which relates the topology of Y to that of the multiple
point spaces of f. When the original map-germ fo has corank 1, that is, when
dim Ker dfo(o) = 1, Dk(f) has the homotopy of a wedge of spheres, and in
consequence the spectral sequence for the hypercohomology of the correspond-
ing rational complex Alt CD. degenerates at El and we obtain a rather succinct
relation between the rational cohomology of Y and the Sk-alternating part of the
rational cohomology of the Dk (Theorem 2.6). This is most interesting when
p = n + 1. In this case, by a theorem of Lê, Y itself has the homotopy of a wedge
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of spheres in dimension n ([24]); it turns out that the filtration on Hn(y; Q)
coming from the spectral sequence, has successive quotients isomorphic to the
Sk-alternating part of Hn-k+ l(Dk; Q).
By an extension of this method, we also calculate the rational cohomology of

the image multiple point schemes Mk - Y; it turns out that when p = n + 1,
they have rational cohomology only in the middle dimension (Theorem 2.8).

In Section 3 we use the results of Section 2 to reprove and extend some

numerical formulae due to W. L. Marar, relating the ranks of homology groups
of Y to those of the Dx and their intersections with the multi-diagonals.

In Section 4 we concentrate on the case where fo is quasihomogeneous,
adapting results of Greuel and Hamm on the dimension of spaces of forms, to
the alternating case, and prove numerical formulae which express the Betti
numbers of Y, in terms of the quasihomogeneous type of fo. In the process we
obtain a description of the space of alternating holomorphic forms on a space
with the action of a finite group generated by reflections.

In Section 5, we continue the study of quasihomogeneous corank 1 map-

germs, with the aim of calculating the invariants of Deligne’s mixed Hodge
structure on the image of a stabilisation. In this case the stabilisation may be
taken to have domain en, and its image Y and multiple point schemes D kcan be
embedded in appropriate weighted projective spaces. We define mixed Hodge
sheaves on Y by means of alternating mixed Hodge sheaves on the Dx, using the
resolution of Cy from Section 2, and then use an alternating version of Hamm’s
calculation of the Hodge numbers of quasihomogeneous isolated complete
intersection singularities, to obtain formulae for the Hodge numbers of Y, in
terms of the quasihomogeneous type of f.
Both authors are grateful to SERC for funding a Visiting Research Fellowship

which enabled the first author to spend in Warwick the period during which this
paper was written. We are also grateful to Tom Cooper for pointing out an error
in an earlier version of the paper.

1. Good representatives

Let fo: C", 0 - CP, 0 (n  p) be a finitely s/-determined map-germ of discrete
stable type (i.e., in a versal unfolding of fo there only appear a finite number of
right-left equivalence classes of stable germs; this is guaranteed, for example, by
the hypothesis that fo be of corank 1). We are interested in studying a particular
class of stable mappings associated with fo, the so called stable perturbations,
which we define as follows, following [17, 18]: let F: Cn x Cd, 0 ~ CP x C’, 0 be an
unfolding of fo, with F(x, t) = (ft(x), t). Choose a proper representative
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F: r1lt ~ 11/ x E, where ’W and 11/ and Y are open neighbourhoods of 0 in C", CP
and Cd respectively, such that

(i) F -1 (0) = 0
(ii) F: r1lt ~ 11/ x !!l’ is a finite map (i.e. proper with finite fibres).

Now let I,,, ,,(F) {(y, t)E1I/ x el the germ of f at f-1t(y) n 0J4 is not A-stable},
where 0J4 = {x~Cn|(x,t)~u}. As F is finite, I rel (F) is an analytic subset of
W x E. Since fo is finitely determined, 0 e C" is an isolated point of the fibre over
0~Cd of the projection 03C0:Irel(F) -+ Cd (this is in fact equivalent to finite

determinacy, see e.g. [30]); thus by shrinking 0/1, 11/ and Y, we may suppose that
03C0: Irel(F) ~ 11/ is finite. Choose e &#x3E; 0 such that F(u) n CP x {0} is stratified

transverse (with respect to some Whitney stratification of F(u)) to the sphere S£I
of centre 0 and radius E’, for every e’ with 0  s’  e (i.e. such that B03B5(0) is a
Milnor ball for fo(Uo)). Then by the properness of n, there exists a neighbour-
hood 1fô of 0 in 11/, such that

(i) Irel(F) n (CP x 1fô) is contained in int(BE(0)) x 1fô.
(ii) The stable type stratification of F(u)BIrel(F) is transverse to S,, x 1fô. (Note

that off Irel(F), the stable type stratification of F(r1lt) is the minimal

Whitney stratification).
Now restrict F to U = F-1(B03B5(0) x 1fô). We call the new map F:U ~ B03B5(0) x 1fô
a good representative of F. Let 03C0(Irel(F)), and suppose that it is a proper
subset of W0; this is guaranteed if (n, p) are nice dimensions, cf. [20], or if fo is of
corank 1. As a consequence of Thom’s Second Isotopy Lemma, the family of
mappings

is locally topologically trivial. Details of the proof are given in [16,17]. In
particular, setting Ut = {x~Cn|(x,t)~U}, then up to CO-d-equivalence, the
map ft:Ut~B03B5(0) is independent of the choice of t~W0BB (for Wo)é3 is

connected). We will call such a map a stable perturbation of fo. In fact, up to C’-
A-equivalence, there is a unique stable perturbation of f0; for any stable
perturbation is bianalytically equivalent to one contained in a versal unfolding,
and the stable perturbations of fo contained in any two versal unfoldings are
easily shown to be C0-A-equivalent.

If -4 is not a proper analytic subset of the base of a versal unfolding F of fo, as
may occur if (n, p) lie outside the range of nice dimensions, then by replacing
lrel(F) in the previous construction by the set of points where jkft fails to be
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multitransverse to the canonical stratification of the jet bundle, one can show
that, again up to C’-,W-equivalence, f° has a well defined topologically stable
perturbation. In the nice dimensions, the notions of stability and topological
stability coincide.
Suppose that f,: U, -+ B03B5(0) ~ CP is a stable or topologically stable per-

turbation of fo as described above. Then the image Y of ft is a Stein space, as are
all of the multiple point spaces Mk(ft) in the image. For each is the intersection
of an analytic subspace of an open set in CP, with the closed ball B03B5(0), and, since
the distance squared function on Euclidean space is strictly plurisubharmonic,
the affirmation is a consequence of e.g. Corollary 10 of Chapter IX of [8]. By
results of H. Hamm, [10], it follows that Y and the Mk have the homotopy type
of CW complexes of half of their real dimension, and in particular have no
cohomology above the middle dimension.
When p = n + 1, it is possible to show that Y, is in fact homotopy equivalent

to a wedge of spheres of dimension n (see e.g. [24]); however, when p  n + 2, it
turns out that no such simple description of Y is possible: as we shall see in the
next section, Y, may have cohomology in dimensions p - (p - n - 1)k - 1 for
all integers k for which p - (p - n)k  0.

2. Multiple point spaces and alternating semi-simplicial resolutions

In this section we use alternating semisimplical resolutions to compute the
rational cohomology of the image of a finite mapping, with special emphasis on
the case of a stable perturbation of a map-germ C", 0 ~ CP, 0, (n  p). The reader
may find it helpful to refer to the example on page 52 while reading it.

First we define a collection of spaces associated with any continuous mapping
f : X - Y of topological spaces:

Dk(f) (or Dk where there is no danger of confusion), is the k-fold multiple point
space of f :

There are continuous mappings 03B5i,k: D k--+ Dk -1, defined by

The spaces Dk, together with the maps 03B5i,k, constitute a semisimplicial object in
the category of topological spaces. Observe that f induces well defined maps
Dk ~ Y, which we call 03B5k, with 03B5k o Bi,k+ 1 = Bk+ 1 (thus (D ~ Y) is a semisimplicial
object over Y). However, we will make no use of this notion, although our
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calculation of the cohomology of the image is a modification of well known
techniques of semisimplicial resolution.
We now suppose that f is a finite, proper map (and we will continue to do so

throughout this section).

The alternating complex

Consider the complex of sheaves

where bk: 03B5k*ZDk ~ 03B5k+1*ZDk+1 1 is equal to 03A3k+1j=1 (-1)k+j(03B5j,k+1)* (here D1 is

just X).
In general the complex Z.D. is not exact: exactness fails at points of Y lying

under points where some Dk meets one of the diagonals. If, for example,
y = f(x), f-1(y) = {x} and (x, x) E D2, but (x, x, x)~D3, then each of Z,, 03B51*(ZX)
and 03B52*(ZD2) has stalk at y isomorphic to Z, while all of the other sheaves in the
complex have stalk at y equal to 0. It follows by counting the rank of the stalks
that exactness is not possible at y. Note that precisely this configuration arises
(at y = 0) if we take f to be the stable map C2 ~ C3 defined by
f(x1, X2) = (xi, x2, x1x2), whose image Y has a pinch point singularity at 0.

In order to obtain exactness, we restrict to the alternating subcomplex, which
we now define. There is a natural continuous action of the symmetric group Sk
on 03B5k*(ZDk)), defined as follows: Sk acts on Dk by permuting the factors; as ek is Sk-
invariant, for any open set U ~ Y, (03B5k)-1(U) is mapped to itself by the

permutation action. Thus, Sk acts on 0393((03B5k)-1(U), ZDk) by the permutation
representation coming from the permutation action on the set of connected
components of (03B5k)-1(U), and hence acts (continuously) also on 03B5k*(ZDk). We
denote the action of 03C3 ~ Sk by 6*. We let Alt(03B5k*(ZDk)) be the subsheaf of 03B5k*(ZDk)
on which Sk acts by the alternating representation, i.e.

and we denote the complex {Alt 03B5k*(ZDk), 03B4} by Alt ZD.
We remark that this construction is alluded to by Deligne in [0, pp. 31-32],

but is not described in detail.

2.1. PROPOSITION. The complex Alt ZD. is exact.
Proof. Let y~Y be a point with exactly m + 1 preimages, xo,..., Xm. We

prove exactness of the stalk complex Alt lLv.,y by showing that it is isomorphic
to the simplicial cochain complex {C.(0394m,Z),d.}, where Om is an m-simplex. It
will be helpful in what follows to write X = D1, and f = e’.
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Recall that since f, and hence 03B5k, is finite,

Let 0i1,...,ikm, and if (xi1,...,xik)~Dk, let ~(xi1,...,xik) be the member of

~x~(03B5k)-1(y)ZDk,x which is 1 at (xi1,...,xik) and 0 elsewhere. Denote by
Alt ~(xi1,..., Xik) the element

03A3 sign(03C3)~(xi03C3(1),...,xi03C3(h));

if ij = il for any j ~ l, then Alt ~(xi1,...,xik) = 0. Hence, Alt 03B5k*(ZDk)y has as free basis
the elements 

Now let A’ = (vo,..., v.) be the standard m-simplex, and for

0  il ...  ik  m, let (vi1,..., vik) be the (k - 1 )-face with vertices vi1,...,vik,
oriented in some standard way. Let 03BE(vi1,...,vik) be the simplicial (k - l)-cochain on
the simplicial complex generated by 0394m, which takes the value 1 on (vil, ... , vik),
and 0 on the other (k - l)-faces of 0394m. Then for any

is equal to sign(6).
It follows that the map of complexes {~k}: Alt ZD.,y~{C.-1(0394m, Z), d.-1}

determined by

is well-defined, and bijective. One checks easily that ~k+1° bk = dk ° ~k; thus, the
two chain complexes are isomorphic, and since {C.(0394m, Z),d.} is exact, so is

{Alt ZD.y, 03B4.}. 1--l

Exactly the same proof shows that the complex Alt 0,., obtained by replacing Z
by Q in the previous construction, is also exact. We will make use of this

complex rather than the integer complex, because while, as we shall shortly see,
H*(Y, Alt 03B5k*(QDk)) is equal to the alternating part HÃltk(DB 0) of H*(Dk, Q), the
relation is not so simple over Z.
Now let O-+ODk-+ Ii be an injective resolution of the constant sheaf Onk;

pushing it down to Y we obtain an injective resolution of 03B5k*(QDk). Since Sk acts
on 03B5k*(QDk), we can choose Ii so that Sk acts on 03B5k*(I.k) too, by taking Ik to be the
canonical resolution of Godement ([3] IL4.3). Then we have



51

2.2. LEMMA. Under these circumstances, the complex Altk03B5k*I.k is an injective
resolution of Altk03B5k*(QDk).

Proof. Define an indempotent operator Altk on each Ik, by

Each of the differentials in the complex 03B5k*I.k commutes with the action of Sk,
and thus with the operator Altk . As this operator is indempotent, it is an easy
exercise to show that Altk03B5k*Ijk is injective, and moreover to deduce, from the
exactness of 03B5k*I.k, that the complex Altk03B5k*I.k is exact. D

Now by lifting the differentials 03B4k:03B5k*(QDk)~03B5k+1*(QDk+1) to sheaf

homomorphisms

we obtain a double complex {Altk03B5k*(Iik), 03B4ik, d’ 1. By a standard argument, the
total complex K’, with

is exact, and is thus an injective resolution of Qy. Therefore the complex r( Y, K.)
obtained by taking global sections, computes the cohomology of Y Now

since the differential of the complex r(Dk, Ik) commutes with the idempotent
operator Alt, which is defined on this complex in the obvious way, we have

2.3. PROPOSITION. The spectral sequence associated to the filtration

has Ei°q term equal to HqAltp+1(Dp+1, Q)) (where HqAltp+1(Dp+1, 0» is the alternating
part of Hq(Dp+1; Q)).

Proof. The EP," term of the spectral sequence is equal to

Hq(Altp+1(0393(Dp+1, 7,), d.p+ 1). As j ust described, this is equal to HqAltp+1(Dp+1, Q)).
~

2.4. REMARK. (ii) The above construction breaks down if Z is replaced by Q;
the idempotence of the operator Altk is an essential ingredient in the proof of 2.2,
and over Z it is not possible to construct such an idempotent operator, since one



52

cannot divide by k !. Indeed 2.3 is false if we replace Q by Z. This is shown by the
following example. Let X be the closed northern hemisphere of S2, and
f : X ~ Y = Rp2 the restriction to X of the usual quotient mapping. This map
has double points but no triple points. Projection onto the first factor induces a
homeomorphism of D2(f) onto the equator of S2, where the involution is the
antipodal map. Since this map is orientation-preserving, H*1,2(D 2(f); Z) = 0; but
RP2 is not an integer-homology disc.

(ii) The injective resolutions Ik above can be replaced by any fine resolution
(to whose push-forward to Y the Sk-action on 03B5k*(QDk) lifts), if the aim is simply
that of calculating H*(Y). Thus, in particular, if all of the Dk are smooth Stein
spaces then one may calculate H*(Y; C) by using the resolutions 0 ~ CDk ~ Onk,
where Onk is the (exact) complex of sheaves of germs of holomorphic differential
forms (c.f. [6], §4).

An exercise

To end this paragraph we give a simple example. Among the five codimension
1 singularities of maps from surfaces to 3-space we find the "birth of two triple
points" - the multi-germ consisting of three immersions which are pairwise
transverse, but in which the curve of intersection of each pair of immersed sheets
is (first order) tangent to the third. Over R there are two inequivalent stable
perturbations of this configuration, shown in Fig. l(a) and (b). Figure 1(a) does
indeed have two triple points, which are imaginary in 1(b). In each case X
consists of the disjoint union of three 2-cells, X1, X 2 and X3, and so X x X has
nine connected components. As f is an immersion, D2(f) has no component in
any Xi x Xi, but for each i ~ j, D2(f)~(Xi Xj) is a line. The Z2 action on
D2(f) interchanges D2(f) n (Xi x Xj) and D2(f) n (Xj x Xi), and it follows that
H0Alt2(D2; Q) has rank 3. In 1(a), D3 consists of two faithful S3 orbits, each of

Fig. 1.
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which contributes one dimension to H0Alt3(D3; Q). We urge the reader to

compute the spectral sequence of 2.3 for each of them. The outcome should be
clear from the drawings, and the computation is particularly easy since the D’
have cohomology only in dimension 0.

Stable perturbations of corank 1 map-germs and simplicial stable mappings

We can now use 2.2 to compute explicitly the rational cohomology of the image
Y, of a stable perturbation of a map-germ fo: C", 0 ~ Cm, 0 (n  m) of corank 1.
Let ft: U, -+ Cm be such a perturbation, with image Y,, and let the spaces Dk be
constructed as above (with X = U). In [19], the space Dk (constructed for the
map ft) was denoted k(ft). Here we abandon the tilde. We recall the principal
result of [19]:

2.5. THEOREM. ([19], 2.14). (i) The map-germ f : cn, x ~ cm, y is stable if and
only if for all k with 2  k, the germ of Dk(f) at (x,x,...,x)~(Cn)k is smooth of
dimension m - (m - n)k, or empty;

(ii) f is finitely determined (for A-equivalence) if and only if for all k with
2  k  m/(m - n), Dk(f) is a complete intersection of dimension m - (m - n)k,
with (at most) isolated singularity at (x, x,..., x) E (Cn)k. ~

Note that [19] defines multiple point schemes Dk(f) for corank 1 map-germs f,
by means of explicit equations, rather than the multiple point spaces defined
here. In fact for finitely determined corank 1 germs C", 0 ~ Cm, 0, the two
definitions coincide provided k  m/(m - n) (in other words, for those k such
that dim Dk(f) &#x3E; 0). This is because for such germs genuine k-tuple points are
dense in the scheme Dk(f) (essentially by 2.5-see [19], page 563). When
k = m/(m - n), the scheme Dk(f) may contain k-tuples (x1,..., xk) where not all
the xi are distinct, which are clearly not in the space Dk(f) defined here.
However, the Sk orbit of such a point does not support any alternating 0-th
cohomology; so we conclude that one may use the scheme-theoretic Dk(f)
defined in [19], in place of the space Dk(f) defined here, and obtain the same
spectral sequence converging to the cohomology of the image Y, from E 1
onwards.

If F: U - V x T - Cm x Cd is a good representative of a stable parametrised
unfolding of fo, then the spaces Dk(F), which by 2.5(i) are all smooth, fibre over T,
with fibre over t E T equal to Dk(ft). If t lies in the complement of the bifurcation
set fJ6, by 2.5(i) Dk(ft) is smooth, and is in fact a Milnor fibre for the isolated
complete intersection singularity Dk(f0), 0. It follows, by results of Hamm [9]
(see also [15], Chapter 5) that for each k, Dk(ft) has the homotopy type of a
wedge of spheres of middle dimension, so that its reduced cohomology is

concentrated in this dimension. Hence,
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2.6. THEOREM. In these circumstances, the spectral sequence described above
collapses at the E1 1 term, and thus we have

(i) if m = n + 1, then Hn(Y,, Q) is isomorphic to

and Hp(Yt, Q) = 0 for 1  p  n and for p &#x3E; n.

(ii) if m - n  2, then for each integer k with 2  k  m/(m - n),

and Hp(Yt, Q) vanishes for all other positive values of p.
Proof We have Ei,q = HqAltp+1(Dp+1, Q)), and so the first differential runs

from HÃ1t p+l (DP+ 1, Q)) to HqAltp+2(Dp+2, Q)). For each value of q, there is at most
one value of p for which HqAltp+1(Dp+ 1, Q)) is non-vanishing; this follows from the
fact that for each p, there is at most one value of q = q(p) &#x3E; 0 such that

Hq(Dp+1, Q) ~ 0, and the sequence q( p) is strictly decreasing, while for q = 0, it
holds because if dim(Dp+1(ft)) &#x3E; 0, then Dp+1 is connected and so

H0Altp+1(Dp+1, 0» = 0, and there is at most one value of p for which

dim(Dp+ 1) = 0. It follows that the spectral sequence collapses at the E1 term, as
claimed. Since the spectral sequence converges to the cohomology of Y, (i) and
(ii) follows. D

Note that the spectral sequence in the example on page 52 does not collapse at
El, even if we replace R by C; however, this does not contradict 2.6, since in the
example we are dealing with a stable perturbation of a multi-germ.

2.7. REMARK. (i) The hypothesis that fo be of corank 1 is not necessary in

order to guarantee that the spaces Dp(ft) be smooth. The only requirement here
is that all of the singularities of the stable perturbation f should be of corank 1.
This is also guaranteed if n  2(m - n + 2).

(ii) The conclusion of 2.6 continues to hold for stable perturbations of map-
germs C’, 0 - C3, 0 of corank 2. In this case, since D2(ft) is a smooth, non-
compact complex curve, it has cohomology only in dimensions 0 and 1, and so
the spectral sequence collapses at the El term as in the proof of 2.6.

(iii) 2.6 is valid also in a slightly wider context; for example, where the domain
of fo is an isolated complete intersection singularity and the domain Ut of f is a
smoothing. In this case, provided the multiple point schemes D’(f,) still have
cohomology concentrated in the middle dimension, the only change to the
calculation is the addition of one further summand in the cohomology of Y,
coming from the cohomology of U,. This arises in the study of projections of
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complete intersection singularities to smooth complex spaces (cf [4]), and also,
in the context that principally concerns us, if we are interested in the images of
the maps 03B5i,k:Dk(ft)~Dk-1(ft). For here, the domain of 03B5i,k is the smoothing
Dk(ft) of the isolated complete intersection singularity Dk( fo). Now

Dj(03B5i,k) ~ Dk+j-1(ft); for (taking i = k to simplify notation) an ordered j-tuple
of points in Dk(ft) having the same image under 03B5k,k must be of the form

and we define an isomorphism Dj(03B5i,k) ~ Dk+j-1(ft) by sending this point to
(x1,...,Xk-1,xk, xk+1,...,xk+j-1). This is the "method of iteration" used by
Kleiman in [12]. Incidentally, this shows (by 2.5(i)) that the maps 03B5i,k are

themselves locally stable, so that the family of spaces Dk(ft) and mappings 03B5i,k
form a simplicial stable mapping. It also explains the observation in [25] (in
the case of generic maps of 3-folds into P4) that the source double point space
03B5i,2(D2(f)) has the same singularities as the image of a stable map from 2-space
to 3-space. In a similar vein, the source triple point set D31(f) (for a stable map
f from n-space to p-space) has the singularities of the image double point set
of a stable mapping from p - 2(p - n)-space to n-space.

(iv) It is known that when m = n + 1, Y actually has the homotopy type of a

wedge of spheres of dimension n. This follows from a theorem of Lê [12,13] ; see
[24]. Thus Hn(Yt, Z) is a free abelian group, as are the groups Hm-(m-n)kAltk(Dk, Z).
However, as we have seen in 2.4(i), 2.3 does not hold over Z, and in order to
relate the integer cohomology of the Dk to that of Y, some more work is required
(see [5]).

Rational cohomology of the image multiple point sets

We now use the same technique to compute the cohomology of the spaces
Mp(ft) = EP(DP) 9 Y, which can also be described as the locus of zeros of the
( p - l)’st Fitting ideal sheaf of ft*(OU). To lighten the notation, we abandon the
subscript t on Y, f etc.

Let Dp be the (reduced) image of DP in Di under any one of the Cartesian
projections. We calculate the cohomology of Mp by means of the following exact
complex of sheaves on Mp :

(here we have omitted the symbols dl etc.). Exactness is a consequence of 2.1, for
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denoting by fp the restriction of f to DP, we have Dj(fp) = De for j  p and

Dj(fp) = Dj for j  p.
2.8. THEOREM. Suppose that f: U - Y is a stable. perturbation of a finitely
determined corank 1 map-germ en, 0 ~ en + 1, 0. Then all of the spaces Mk, for
2  k  n + 1, have rational cohomology only in dimension n - k + 1.

Proof. This is proved by induction on k. The possibility of carrying out an
induction is based on the principle of iteration: namely, that

The induction hypothesis is in fact slightly stronger than the theorem itself. It is

Hyp(p - 1): Let g: U ~ V be a proper, stable map of affine Stein manifolds,
with dim( U) = dim(V) - 1 = n, and suppose that g has only corank 1

singularities; suppose, moreover that U, and all of the spaces Dk(g), have
reduced rational cohomology only in dimension n - k + 1, and that all of the
spaces Mp(g) are Stein spaces. Then for 1  q  p - 1, Mq(g) has reduced
rational cohomology only in dimension n - q + 1.

Note that Theorem 2.6 (together with 2.7(iii)) establishes that Hyp(l) holds.
The induction step is proved as follows. By 2.4, the cohomology of Mp(g) is

computed by a spectral sequence with Er,s1 = HsAltr+1(Dr+1(gp), Q)) (where gp is
the restriction of g to Dp1(g)). Now

and

By Hyp(p - 1), D’(gp) has cohomology only in dimension n - p + 1 for

1  j  p, and in dimension n - j + 1 for p  j. It follows that
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In particular, Ej,k1 = 0 for all j, k with j + k  n - p + 1; since the spectral
sequence converges to H*(Mp(g), Q), it follows that Hk(Mp(g), Q) = 0 for

k  n - p + 1. As Mp(g) is a Stein space of dimension n - p + 1 it has

cohomology only in dimension less than or equal to n - p + 1. Thus, we have
proved Hyp(p). D

The filtration on the cohomology of the image

We give now an alternative description of the filtration on the cohomology of
the image Y obtained from the spectral sequence with which we calculated the
cohomology of the double complex in 2.6. The previous description of

Hk(Mp(f), Q), in the case p = 2, sheds light on this filtration, as follows. It is
clear from Fig. 1 (in which the first index is the vertical one) that in the spectral
sequence with which we calculated Hn-l(M2; Q), we have

as M2( f ) is a Stein space of dimension n - 1 and thus Hn(M2(f), Q) = 0, it

follows that Exn-’ = 0, and so

is onto.

Similarly, d2: E0,n-12 = Ker d1 ~ E2,n-22 = Hn-2Alt3(D3(f), Q) is onto; in fact the
succession of differentials dl, each defined on the kernel of its predecessor, has di
mapping onto Ei,n-ii=Hn-iAlti+1(Di+1(f), Q), because Ei,n-ii+1=Ei,n-i~=0. The
successive kernels E0,n-1r form a decreasing filtration on E0,n-11 = Hn-1(D21, Q),
with Hn-1(M2, Q) = E0,n-1~ = E0,n-1n+1 as the smallest term. Now there is an exact
sequence

(coming from the short exact sequence (3) below).
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The descending filtration {E0,n-1r}1rn+1 on H" -1 (D i ; Q) gives a descending
filtration {Fr}1rn+1 on Hn(Yt; Q), with Fr=E0,n-1r/Hn-1(M2; Q); adding
F0 = Hn(Yt; Q), we obtain a descending filtration {Fr}0rn+1 1 with

Fr/Fr+1 ~ Hn-rAltr+1 (Dr+1; Q) (here D 1 = Ut). This filtration coincides with the one
coming from the spectral sequence with which we calculated Hn(Y; Q).

Wheels turning at different speeds

As above, let f : U ~ Y be a stabilisation of a map-germ of corank 1 from en, 0 to
Cm, 0; write U = X, Dk(f) = Dk. Comparison of the exact complexes

and

shows that there is a short exact sequence

Now to calculate the cohomology of D i by the method of the beginning of this
section, one makes use of the exact complex

Here Ék: Dk ~ X is induced by the Cartesian projection Xk ~ X which forgets all
but the first component, and Sk-1 acts on Dk by permuting the last k - 1
components.

Exactness of this complex is a consequence of 2.1, taking D2 and D’ as X and
Y; for by the principle of iteration, Dk-1(k: Dk , X) = Dk(f: X - Y), the Sk-1
action on Dk being the one just described.

If we shorten the complex (1) by replacing the first three terms by
0 ~ f*(QX)/QY ~, and call the resulting complex (1’), we find that there is a
morphism of complexes 03B8: f*(4) ~ (1’) extending the morphism
f*(QD21)~f*(QX)/QY, defined as follows: for y E M2, we have
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Now Altk-1k*(QDk)x is generated as Q-vector space by elements

Altk-1~(x,x2,...,xk), where

Define 03B8k,y:f*(Altk-1k*(QDk))y by sending Altk-1~(x,x2,...,xk) to
Altk ~(x,x2,...,xk). Observe that this definition does not depend on the choice of
order of x2,...,xk, since any permutation induces the same sign change in

Altk-1~(x,x2,...,xk) and in Altk~(x,x2,...,xk). It follows that the 03B8k,y fit together to give
a morphism of sheaves, Ok.

It is straightforward to check that the 03B8k commute with the differentials in the
complexes f*(4) and (l’).
The morphism of cohomology groups HA1tk-l (Dk, Q) - HÂltk(Dk, Q) induced

by Bk is formally the same as 03B8k itself; it is thus in fact equal to Altk (defined here
without k ! in the denominator).

Let Kk = Ker(03B8k), and denote the (exact) complex

by Ker(O). We now have a short exact sequence of exact complexes

Now by taking injective resolutions of each of the sheaves Ki, and forming a
double complex in the usual way, we obtain as total complex an injective
resolution of QM2; by taking global sections, we may thus calculate the

cohomology of M2. In fact the spectral sequence coming from the first filtration
of the double complex collapses at El, just as in 2.6; for from the short exact
sequence

we obtain a long exact sequence in which the map HpAltk-1(Dk, Q) ~ HpAltk(Dk, Q)
is simply the epimorphism Altk; since Hp(Dk, Q)) vanishes except when p = 0
and m - (m - n)k, it follows that Hp(Kk) also vanishes except when

p = m - (m - n)k, and the long exact sequence collapses to the short exact
sequence
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We conclude

2.9. PROPOSITION. (i) When m = n + 1, the spectral sequence just described
induces a filtration on Hn-l(M 2, Q) with successive quotients naturally isomorphic
to

so that

when p = m - k(m - n - 1) - 2, and is equal to 0 for other positive values of p.
Il

2.10. REMARK. The proofs given here show that we have the short exact
sequence of complexes (5) over Z as well as over Q.

3. Marar’s formulae

In [16], Washington Luiz Marar obtains formulae for the Euler characteristic of
the image V of a good representative of a stable perturbation of a finitely
determined corank 1 map-germ Cn, 0~Cm, 0, in terms of the Milnor numbers of
the (singularities at 0 of the) associated multiple points schemes Dk(f), 0 and
their intersections Dk(f, P), 0 with the various multi-diagonals. Here, using the
results of the previous section, we reprove and strengthen these formulae, by
showing how the ranks of the cohomology groups Altk(Hm-(m-n)k(DB Q)) may
be expressed in terms of the Milnor numbers 03BC(Dk(f, p), 0).

Let G be a finite group, and let e be the ring of all Q linear representations of
G. Denote elements of R by [V]. Recall that for a topological space X on which
G acts, one has the equivariant Euler characteristic XG(X) as an element of R:

where G acts on Hq(X, Q) in the natural way (see [29]). If X has the structure of
a cell complex which is respected by the G-action, then for g~G, xG(X)(g) is
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equal to the topological Euler characteristic of the fixed point set Xg of g ([29]).
Let G act on Cm and let X c Cm be a G-invariant Milnor fibre of the germ at 0

of a G-invariant isolated complete intersection singularity Xo of codimension c.
Then

where [Q] is the trivial 1-dimensional representational representation of G and
H = Hm-c(X, Q). Let g E G and suppose that Xg 0 is an isolated complete
intersection singularity, which is also of codimension c in (Cm)g; if Xg is smooth,
then it is a Milnor fibre of Xg, and setting dg = dim(Cm)g, and letting 03BCg be the
Milnor number of Xg, we have

and so

Now consider a map-germ f : C", 0 ~ Cn+p, 0 of corank 1, and let ft: Ut ~ V be a
good representative of a stable perturbation of f. Let X’ = Dk(f), 0, and let
X = D’(f,); then indeed X is a Milnor fibre of Xo. By a suitable choice of
coordinates on C" and Cn+p, Xo and X may be embedded in Cn-1+k, in such a
way that the natural action of the group G = Sk on X0 and X is induced by
permutation of the last k coordinates ([19]). Let H = Hm-k(m-n)(Dk(f), Q). In
order to calculate the dimension of Altk(H), we proceed as follows: Altk(H) is the
maximal subspace of H on which Sk acts via its sign representation. As the
character of the 1-dimensional sign representation is exactly the sign (1,
dimoAltk(H), which is j ust the multiplicity of this representation in H, is given by
the inner product of characters:

Now in order to calculate the right hand side, suppose that

1  k1  k2  ···  kr, and that in the cycle decomposition of g there are ai
cycles of length ki, (so that 03A303B1iki = k). Then 03C3(g) = (-1)03A303B1i(ki-1) = (-1)k-03A303B1i.
We calculate [H](g) by using 2.1; for Xg is the intersection of X = Dk(ft) with the
multi-diagonal in (Cn-1+k)g consisting of all points (x1,...,xn-1, y1,...,yk)
where Yi = yj if i and j appear in the same cycle in g. Thus X 9 is isomorphic to the
multiple point scheme Dk(f, pg) where pg is the partition (k1,..., k1, k2,..., k2, ... ,
kr,..., kr) (ki appearing ai times) of k. Now Dk(f, pg) is a Milnor fibre of the
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isolated complete intersection singularity Dk(f0,pg), 0, (see [19]), whose codi-
mension in (Cn-1+k)g is equal to that of Dk(f0) in Cn-1+k, and thus, as

we have

Therefore

Now combinatorial arguments show that for each fixed partition Y as above,
there are k!j(TIi (Xi! k03B1ii) elements in Sk with pg = Y, and hence

where the sum is taken over all partitions

(where ki appears oci times), in which 1  ki  k2 ...  kr.
By using 2.6 one obtains formulae for the rank of the cohomology groups of

the image of ft, which imply Marar’s formulae. The only difference is that Marar

incorporates an expression for 03BC(Dk(f0)/Sk) into his formulae.

4. Quasihomogeneous mappings

The main aim of this section is to obtain expressions for the Betti numbers of the
image of a stable perturbation f of a quasihomogeneous corank 1 map-germ
fo : C", 0 - CP, 0, in terms of the weights and degrees. We shall do this by using
the results of Section 2, and so as the first step we calculate the rank of the

alternating part of the cohomology of the multiple point spaces Dk(ft).
Let us first recall from [6] some information about isolated complete

intersection singularities (ICIS). Let ç = (~1,..., ~s): Cm, 0 ~ es, 0 be an analy-
tic germ, such that ~-1(0) is an ICIS. Let 03A9 = {03A9p, d}0p be the complex of
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germs of holomorphic differential forms on Cm, 0, and consider the complex of
relative forms on Cm, 0:

Let J1 be the Milnor number of (qJ - 1(0), 0).
4.1. PROPOSITION [6]. 03A9m-s~/d03A9m-s-1~ is a free qJ -1((9c5,0) module ofrank J1 if
m &#x3E; s and of rank 03BC + 1 if m = s. 0

In the next proposition, we do not assume that qJ -1(0) is an ICIS, but we do
assume that it is a complete intersection.

4.2. PROPOSITION [6]. Denote by 03A3(~) the set of critical points of (P, and by (P’
the map-germ (~1,..., qJs-1). Provided p  m - dim 03A3(~), the sequence

is exact. r-i

As a consequence of 4.2, we have

4.3. PROPOSITION [6]. If p  m - dim 03A3(~), the following sequence is exact:

As a consequence, if ~-1(0) is an ICIS, then the relative de Rham complex of
holomorphic forms calculates the cohomology of the Milnor fibre.
Now let us consider the alternated versions of 4.1-4.3. For any linear space V

equipped with a linear Sk-action, we denote by Valt the maximal subspace on
which Sk acts via its sign representation: Valt = {v~V|03C3(v) = signer for all

03C3~Sk}.
Choose some coordinate system on (Cm, 0) and let Sk act on Cm by permuting

the last k coordinates (we assume m  k). Suppose that every coordinate
function qJi of the map-germ 9: (Cm, 0) ~ (Cs, 0) (where m  s) is Sk-invariant.
Then ~-1(OCs,0) is a subring of the ring of Sk-invariant functions on (Cm, 0). The
space of relative alternating forms 03A9p,alt/03A3 d~i Açlp - 1, ait, which is equal to
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(03A9p/03A3 dqJi A 03A9p-1)alt, and which we denote by 03A9p,alt~, is a module over the ring of
Sk-invariant functions, and thus over ~-1(OCs,0). Suppose that ~-1(0) is an ICIS.
The Milnor fibre {~ = 03B5} is Sk-invariant, and so we get an Sk action on its
cohomology. Let j.laIt be the rank of the Sk-alternating part of its middle
dimensional cohomology.

4.4. PROPOSITION. 03A9m-s, alt~/d03A9m-s-1, alt~ is a free ~-1(OCs,0)-module of rank
03BCalt.

Proof Since 03A9m-s, alt~/d03A9m-s-1, alt~=(03A9m-s~/d03A9m-s-1~)alt, it is a direct sum-

mand of the free ~-1(OCs,0)-module 0;-s/dO;-S-1 (for every representation of
Sk is completely reducible). It follows that it is free. Moreover, if y is a regular
value of ~,

and so its alternating part is just Hm-s(~-1(y); c)alt. This proves that the rank of
03A9m-s, alt~/d03A9m-s-1, alt~ is j1alt. D

Now consider the alternating parts of the sequences in Propositions 4.2 and 4.3.
Notice that for Sk-invariant 9, the differentials in these sequences commute with
the Sk-action. Thus, we get

4.5. PROPOSITION. Let p  m - dim(03A3(~)). Then the sequence

is exact.

As a consequence,

4.6. PROPOSITION. If qJ -1(0) is an ICIS, there is an exact sequence

Sk-alternating forms

As above, let Sk act on C"’ by permuting the last k coordinates. In order to
describe the spaces 03A9p, alt~ of relative Sk-alternating forms for a germ at 0 e cm of
Sk-invariant mapping ç, we start with a description of the absolute Sk-
alternating forms in the case m = k.
We will consider the problem in a more general setting - for a finite group G of
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linear automorphisms of Ck, generated by reflections (recall that a reflection is a
linear automorphism which leaves fixed all the points of a hyperplane; one can
treat the real case as well). In this subsection we will denote by 03A9p, alt the space of
germs at 0 of holomorphic p-forms W such that g*03C9 = det(g)03C9 for all g e G; we
will call these forms "G-alternating". What is 03A9p, alt?

It is well known that the ring Osymk of germs at 0 of G-invariant functions is
generated by exactly k independent functions, say h1,..., hk . Let I be the p-tuple
(i1,...,ip), with il  i2  ···  ip, and let J = U 1,..., jk - p) be its complement in
the set {1,...,k}, with j1  j2  ··· jk-p. Consider the (k - p)-gradient vector
~hJ=~hj1 1B Vhj2 ^ ··· 1B ~hjk-p. Let WI be the contraction of the form

dYl 1B dy2 ^···^ dyk along OhJ (where the Yi are linear coordinates on Ck).
Then WI is a G-alternating p-form.

4.7. PROPOSITION. The space 03A9p, alt o f germs at 0~Ck of G-alternating
holomorphic p-forms on Ck is a free Osymk-module, with free basis consisting of all cvl
such that III = p.

Proof (cf. [26]).

STEP 1. Let L be the field of germs at 0 ECk of meromorphic functions. Then
the forms 03C9I are L-linearly independent in 03A9p ~OCk,0 L. For suppose that
03A3|I|=p03B1103C9I=0 is a relation, with 03B1I E L. Evaluating this relation on ~hI for some
fixed I, we get 0 = 03B1I03C9I(~hI) = ± 03B1I0394, where

as A is not identically zero, aI = 0.

STEP 2. We show that any alternating p-form belongs to 03A3|I| = p Osymk03C9I. As the
number of different WI’ with III = p, is Cpk, they generate 03A9p ~OCm,0 L, linearly
over L. So for any holomorphic p-form m, we can write W = 03A3|I| = p03B2I03C9I, for
some fi, c- L. Now if 03C9 is G-alternating, then alternation of this expression over G
gives

where the 03B3I ~ L are G-invariant. Again by evaluating such an expression on VhI
for a fixed I, we get a holomorphic function e, = 03B3I0394. This is a G-alternating
function, and so by the lemma from [26], e, = 0394~I for some ~I E Osym. Thus, we
are done. D

Now let us consider the bigrading on the space 03A9, aIt by the weight of the form,
(with weight yi = weight dyi = 1) and by the degree of the form. Let

P(03A9., alt, t, 03C4) = 03A3cl,mtl03C4m be the corresponding Poincaré series (i.e. Cl,m is the
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dimension of the C-vector space of m-forms of weight 1. Let d1,...,dk be the
weights of the basic invariants h1,..., hk (which of course can be chosen to be
homogeneous). We have

4.8. COROLLARY.

Proof. This is immediate from the previous discussion. The numerator

provides the Poincaré polynomial for the set of generators OJI, and the

denominator provides the Poincaré series for Osymk. 0

Since the Poincaré series for the space of forms of fixed degree p, is the coefficient
of ip in this series, we have

4.9. COROLLARY.

EXAMPLE. When Sk acts on Ck by permutations of the coordinates, then di = i
for i = 1,..., k, and we get

We shall use these expressions in what follows. Note that there is another

expression for the latter series:

4.10. PROPOSITION. When G = Sk acts by permuting the coordinates on Ck,

Proof (independent of 4.7). Consider a p-form

It is easily seen that if co is an Sk-alternating form, the holomorphic function A
must be symmetric with regard to permutations of y1,..., y,, and alternating
with respect to permutations of yp+1,..., Yk - So
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where V.d.m.(yp+ 1, ... , Yk) is the Vandermonde determinant. On the other

hand, any such A uniquely determines an Sk-alternating p-form m. As the
Poincaré series of Osymy1,...,yp is 03A0pi=1(1 - ti)-1, and deg(V.d.m.(yp+ 1,..., yk)) =

l(k - p)(k - p - 1), the statement is proved. D

Sk-alternating forms on a symmetric quasihomogeneous ICIS

Let x1,..., Xn, y1,..., Yk be coordinates in (Cn+k, 0) and let the group Sk act by
permutation of the y coordinates. Let w0, w1,..., wn; d1,...,ds be positive
integers. Let ~: (Cn+k, 0) - (CS, 0), with n + k  s, be an Sk invariant mapping,
quasihomogeneous of type (w 1, ... , w", wo,..., wo; d 1, ... , ds).

Suppose that qJ - 1(0) is an ICIS, and let

be the top cohomology of the complex of relative Sk-alternating holomorphic
forms on ~-1(0). It inherits a grading, with wt(xi) = wt(dxi) = wi,
wt( yi ) = wt(dyi) = wo. Let P(Halt; t) be the Poincaré series of HaIt with respect to
this grading.

4.11. THEOREM.

We give the proof below.

By Proposition 4.4, dim(Halt ) = /lait. So we have

4.12. COROLLARY. 03BCalt = P(Halt; 1).
Proof of 4.11 1. Consider the space of Sk-alternating forms on

Cn+k:03A9.,alt = 03A9.,altk ~C03A9n. It has a natural bigrading, by the quasihomog-
eneous weight 1 and by the degree p of the form. Let P(03A9., alt; t, 03C4) = 03A3 cl,ptl03C4p be
the corresponding Poincaré series. Then P(03A9.,alt) = P(03A9.,altk)· P(03A9n) and by
Corollary 4.8 we get

2. By induction we obtain from Proposition 4.5 that
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3. By Proposition 4.6,

4. By Proposition 4.4, the space 03A9n+k-s, alt~/d03A9n+k-s-1, alt~ is a free ~-1(OCs,0)-
module. The generators of this module are C-linear generators of the space HaIt.

Thus,

Our quasihomogeneous mapping qJ is equivariant with respect to the following
U( 1 )-action:

in the source Cn+k, and 03BB·(z1,...,zs) = (03BBd1Z1,..., 03BBdsZs) in the target CS.
Consider the non-critical level {~ = el. Let d be the greatest common factor of

all of the di such that ei ~ 0. Consider the loop G. exp(2nip/d), p E [0, 1], in Cs. It
induces an endomorphism haIt of the Sk-alternating cohomology of the Milnor
fibre {~ = el. This endomorphism haIt is called the alternating quasihomogeneous
monodromy. Let D~Z[C*] be the divisor of the characteristic polynomial of haIt.
Then we have

4.13. COROLLARY. D = P(Halt; (exp(2nijd)). ~

Indeed, quasihomogeneous forms which represent a C-basis of HaIt also give a
basis for the alternating cohomology of the Milnor fibre, and hall simply
multiplies each such form of weight 1 by exp(2nil/d).

The cohomology of the image of a quasihomogeneous mapping

We now apply the results of this section and Section 2 to calculate the Betti
numbers of the image of a stable perturbation of a quasihomogeneous corank 1
map-germ f0:Cn+1, 0~Cn+r, 0, where r &#x3E; 1 (for notational reasons, it is

convenient to consider mappings with domain C" + 1 rather than cn).
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We can choose coordinates (x 1, ... , xn, y) in the source and coordinates in the

target, so that fo takes the form

Then the multiple point scheme Dk(f0) embeds into C" x et, where it is defined
by the equations

where V.d.m.(y) is the Vandermonde determinant det[y03B1-1i]1i, 03B1k, and

V.d.m.l(y, f0,j) is the determinant obtained from V.d.m.(y) by replacing yli by
f0,j(x, yi ) for 1  i  k (see [19], §2). Each point (x, y1,..., Yk) satisfying these
equations corresponds to a k-tuple (x, y1),..., (x, yk) of points of Cn+1 having the
same image under fo. Each Fl,j is invariant with respect to the Sk-action on Cn+k
in which the last k coordinates are permuted. We shall denote by Fk the mapping
Cn+k ~ C(k-1)r with components Fl,j, 1 jr, 1 lk - 1. Then if f is a stable
perturbation of fo, Dk(f) is a Milnor fibre of the ICIS (Fk 1 (0),0) ([19]).
Now suppose in addition that fo is quasihomogeneous, with respect to

weights wi for the variables xi, and wo for y, with weight (f0,j) = dj. Then weight
(Fl,j) = dj - lwo, and so by Theorem 4.11 the Poincaré series of the top
alternating cohomology of the multiple point space Dk(f) is given by the
polynomial

The decomposition of the cohomology of the image of a stable perturbation into
the direct sum of the alternating cohomology of the multiple point spaces Dk,
given by Theorem 2.6, then leads to

4.14. THEOREM. If r = 2, then the n + 1 - st Betti number 03B2n+1(Yt) of the
image Yt of a stable perturbation of fo is equal to 03A3n+2k=2 Rk(1).



70

If r &#x3E; 2, then if 2  k  (n + r)/(r - 1), we have 03B2n+k-(k-1)(r-1)(Yt) = Rk(1).
In both cases, the remaining Betti numbers 03B2i, for i &#x3E; 0, vanish. D

4.15. REMARK. Corollary 4.13 determines the eigenvalues of the quasi-
homogeneous monodromy of the image of a stable perturbation of fo.

4.16. EXAMPLES. We list only the non-zero Betti numbers:

Note that 03B21 here is just the number of points of self-intersection of the image.

5. Hodge numbers of the image of a stable perturbation of a
quasihomogeneous map-germ
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be as in Section 4 a quasihomogeneous map-germ of corank 1 and of finite sI-
codimension, with r  2. It is easy to see from the characterisation of stability in
terms of multiple point schemes given as Theorem 2.5 above, and from the
construction of a versal deformation of fo that fo has a stable perturbation in
"negative weight"; that is, it is possible to find a stable f such that for each
j, fj - .Îo,; = 03A3s mj,s with each monomial mj,s of weight dj,s less than the weight dj
Of fo,j. 
Now the mapping f : cn+ 1 ~ Cn+r is the affine part of the mapping

of weighted projective spaces given by f (x, y, z) = (x, fi , ... , fr, z) where

The multiple point spaces Dk(f) are compact algebraic varieties which can be
embedded in P(w1,..., wn, wo,..., w0, 1) (where wo appears k times). If

/oo = f|z=0, then Dk(f~) embeds in P(w1,..., w., wo,..., wo), which is just the
subspace {z = 0} of P(w1,..., wn, w0,..., w0, 1). Now Dk(f~) is the weighted
projectivisation of Dk( fo), which is smooth outside the origin; thus Dk(f~) is
quasismooth, and its only singularities are cyclic quotient singularities. The
affine part {z ~ 01 of Dk(f) is just Dk(f), and hence is smooth; since moreover
Dk(f) n {z = 01 = Dk(f~) is itself quasismooth, the affine cone over Dk(f) is thus
smooth outside 0, and hence Dk(f) is quasismooth also. Since both Dk(f) and
Dk(f~) are compact algebraic varieties, they have a canonical mixed Hodge
structure ([0], [1], [28]). In fact the structures are pure, for both Dk(f) and
Dk(f 00) are projective and are V-manifolds, (cf. [28], Chapter 1, §5); that is, they
are locally the quotient of a smooth space by the action of an finite group of
holomorphic automorphisms.

In this section we use the results of Sections 2 and 4 to express the Hodge
numbers of the mixed Hodge structure on the cohomology of the image of f, in
terms of the cohomology of the multiple point spaces of f and f 00.

Complete intersections

As in Section 4, let ~: Cm, 0 -&#x3E; CS, 0, with m &#x3E; s, be quasihomogeneous of type
(w1,..., wm; d1,...,ds), and suppose that qJ -1(0) is an ICIS. Then the same

equations ç = 0 define an (m - s - l)-dimensional quasismooth complete
intersection X in the (m - l)-dimensional weighted projective space
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P = P(wi, ... , wj (see [28], [2]). X has a pure Hodge structure ([28]). Let Fp be
the Hodge filtration on H*(X, C).
We now recall from [28] the description (due to R. O. Buchweitz) of the

primitive parts Pp’q of the spaces GrpFHp+q(X; C), which are non-trivial for
p+q &#x3E; 0 only if p+q = m-s- 1:

Let S be the graded ring S = C[z1,...,zm], with wt(zi ) = wi, and consider its
graded quotient R = S/(~1,...,~s). We shall use the following graded R-
modules :

(OR, the graded module corresponding to the sheaf of holomorphic forms of
top degree m - s - 1 on X; it is a free R-module of rank 1, with generator 03C90 of
weight E wi - Y- dj (in fact 03C90 is given by contraction of the form

dzi ^ ··· ^ dzm/d~1 ^ ··· ^ dqJs with the Euler vector field e = E wiziôlôzi on
C’); 

X, corresponding to the normal bundle of X in P; it is a free R-module of
rank s, with generators uj of weight -dj;

0, corresponding to the restriction of the tangent bundle of P to X; it is a free
R-module of rank m, with generators of weight - wi;

S03B1 N, the a-th symmetric power of X;

^03B203B8, the fl-th exterior power of 0;

M", 0 = S03B1N~R^03B203B8~R03C9R, which is a free R-module on generators

uc11 ... uss (x) Vil 1B ... A Vip @ wo, where cj  0 and L cj = a, and

0  i1  ···  i03B2  m.
We shall also consider the mappings d~: 03B8 ~ X (differentiation of ç along a

vector field) given by

and

These mappings induce mappings

Consider the following diagram, for a fixed value of q:
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Construct a complex A(q)* by taking the direct sums of the weight zero parts of
the modules (i.e. global sections of the corresponding sheaves) on the same
dashed line in the diagram:

The differential in this complex is a certain combination of dç and e A (neither of
these mappings change the weight).
Then Pm-s-1-q,q is the only non-trivial cohomology of the complex A(q )’ (see

[28]). Its dimension hm-s-1-q,q may be calculated as follows:

5.1. PROPOSITION ([11]).
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(here the limits for i and j are the obvious ones; we shall omit them in what

follows).
Proof. We have

Let us evaluate this sum.

Consider the R-module

It has three gradings: by the weight r and the degrees a and 03B2. The Poincaré
series for its free R-generators is

(so that the Poincaré series for M is the product of A(t, u, v) with the Poincaré
series for R). Here the coefficient of tru03B1v03B2 is the number of generators of M(Z,p
of weight r. Also dim(M03B1,03B2)0 is the coefficient of tOu(ZvP in the Poincaré

series P(M; t, u, v) = A(t, u, v). P(R; t), where P(R; t) = II (1 - tdj)/03A0 (1 - twi).
Consequently, 03A303B1+03B2=03B3(-1)03B2dim(M03B1,03B2)0 is the coefficient of t’u" in

B(t, u) = P(M; t, u, - u). In order to obtain the sum of such expressions for
0  j  q, we have to take the coefficient of t°uq in the series

C(t, u) = B(t, u)/(1 - u). In the statement of the proposition we simply point out
that one can obtain the same number from the series C(t, - u), by means of
residues. D

The symmetric case

Now let ~: cn+k, 0 --+ Cs, 0 with n + k &#x3E; s, be quasihomogeneous of type
(wl, ... , w", wo,..., wo ; dl,..., ds) (where wo appears k times), and such that each
of its coordinate functions ~j is invariant under the Sk action on cn+k in which
the last k coordinate are permuted. We want to express the rank of the Sk-
alternating part of the primitive cohomology of the quasismooth complete
intersection {~ = 01 in the corresponding weighted projective space, in terms of
the weights wi and dj.
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5.2. PROPOSITION.

Proof. Let us take the alternating part of the complex A(q)’ of the previous
section. Under our assumptions, the mappings d~ and e A are Sk-equivariant.
Hence, we need to take the Sk-alternating parts of the modules

(where the direct sum is taken over all cj  0 such that 03A3 cj = d). As ul, ... , u, are

Sk-invariant and a), is Sk-alternating, taking the Sk-alternating part of M03B1,03B2 is thé
same as taking the Sk-invariant part (A° O)sym of AP 0. Following [26], we

have(A 03B8)sym = n’ (03B8sym), and Osym is R’ym-freely generated by the gradients of the
n + k basic Sk-invariant functions. Thus, for the bigrading of (n’ 0)’Ym by the
weight and the degree of the form, we get

where D(t, v) is the Poincaré series of the exterior algebra on the basic

equivariant vector fields,

Now Rsym is a quotient of the ring of Sk-invariant polynomials on Cn+k by the
ideal generated by ~1,..., ~s. So,

The proposition is now proved by repeating the arguments from the proof of
proposition 5.1. D

5.3. REMARK. The multiplicities of the eigenvalues of the quasihomogeneous
monodromy on the alternating cohomology can be expressed in the same way as
in the non-symmetric case (cf. [11]).
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Hodge numbers of the stable image

In order to obtain the canonical mixed Hodge structure (MHS) on the image of
a lower stable perturbation f of a quasihomogeneous corank 1 mapping
fo : Cn+1 ~ cn+" we begin with consideration of its k-point space Dk = Dk(f)
which is also a lower stable perturbation of the quasihomogeneous ICIS Dk( fo).
Now Dk - Dk(l) (see the beginning of this section) is a compactification of the
smooth complete intersection Dk. Set Dk~ = Dk(f~) = jjkBDk. Then (Dk, Dk~) is a
pair of V-manifolds, i.e. it is locally a quotient of an action of a finite subgroup of
GL(n; C) on the pair (C03C1k, C03C1k-1), where p, = dim Dk (here CPk-l is mapped into
itself by every element of the subgroup). For this fact see [2, subsection 3.1]. As
Dk is a J7..manifold, its singular set E has codimension  2. Let j : jjk B1: -+ Dk be
the inclusion map. Following [27] we define

As in [28, §10], this is a resolution of CDk and, thus,

In order to obtain the canonical mixed Hodge structure (MHS) on this

cohomology we define the Hodge and weight filtrations on the logarithmic
sheaves as follows:

We have Grws.Dk(log Dk~) ~ 0 only for s = 0, 1 [27, page 532], and in fact
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As in [28, Theorem 10.3] one can see that W is already defined over Q and W
and F define a mixed Hodge structure on H*(Dk).

We find

(here p = pk). The non-primitive parts of H* (Dk; C) and H*(Dk~; C) which come
from the cohomology of the weighted projective spaces are cancelled by the W
spectral sequence, which degenerates at E2.
Now we go to the stable image Y of f.
For each k = 0, 1,..., consider the sheaf complex

The mappings ei,k +1: Dk + 1 ~ Dk, i = 1,..., k + 1, induce operators

For each k, the complex Kk,. is a resolution of Altk+1 03B5k+1*(CDk+1). The complex
{Altk+103B5k+1*(CDk+1), 03B4k}k is a resolution of Cy, by Section 2. Thus, the double
complex K’’’ also résolves Cy. Let K ’ be the associated total complex:
Km = ~p+q=m Kp,q. Its hypercohomology is the cohomology of 1’:

Following Steenbrink [28, §13] define filtrations

In the same way as for Dk, these filtrations give rise to Hodge and weight
filtrations on H*(Y).
For our situation we get:

Thus, with Y the image of the mapping f : Cn+1 ~ Cn+2 we obtain, on Hn+1(Y),
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(here we use the whole cohomology, not only the primitive part, as alternation
kills the non-primitive forms).
Adding the Hodge filtration we get

hp,q = hp,q; alt(Dn+2-(p+q)(f)) + hp,q;alt(Dn+3-(p+q)(f)).

For a mapping Cn+1~Cn+r, with r &#x3E; 2, all of the groups except
Hn+k-(r-1)(k-1)(Y; C), for 2  k  (n + r)/(r - 1), are trivial by Proposition 2.6,
and the MHS on each of these exceptional groups coinsides with the MHS on
Hn+k-r(k-1); alt(Dk(f); C).
We now calculate the numbers llP’q in the case of a map fo : Cn+1 ~ C.+r

(x1,..., Xn, Y) ~ (x1,..., Xn, f0,1, (X, y),..., JO,r(X, y)), where each f0,j is quasi-
homogeneous of type (w1,..., Wn, wo; dj), in terms of the weights. The com-
pactification Dk - Dk(f) of the k-point space D k= Dk(f) is a quasismooth
complete intersection in (n + k)-dimensional weighted projective space

P(wi , ... , wn, wo,..., wo, 1). Now Dk~ = Dk(f~) = DkBDk lies in the hyperplane on
which the weight 1 coordinate vanishes; Dk and Dk~ are defined by equations of
weights dj - lw0, j = 1,..., r, l = 1, ... , k - 1, invariant under the permutations
of the weight wo coordinates (see Section 4). Let us denote by Pk the dimension
n + k - r(k - 1) of Dk(f) and introduce the series

The preceding discussion, together with Proposition 5.2, now yields

5.4. PROPOSITION. The non-zero Hodge numbers of the unique non-trivial
alternating cohomology of Dk(f) are given by the following formulae:

On the right in these formulae are the numbers h03C1k-q,q; alt[0] and h03C1k-q,q-1; alt[0] for (the
primitive parts of) H03C1k(Dk(f)) and H03C1k-1(Dk(f~)) respectively. D

5.5. EXAMPLES. The following table shows the Hodge numbers hp,q for the
stable images of the simple singularities of mappings C2~C3 and of the first



79

non-simple one [22] (all of them are quasihomogeneous of corank 1):

Note that h0,0 is always the number of triple points of the stable image.
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