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Abstract—The paper completes the study of symmetries of parabolic function singularities
with relation to complex crystallographic groups that was started by the first co-author and his
collaborator. We classify smoothable automorphisms of P8 singularities which split the kernel of
the intersection form on the second homology. For such automorphisms, the monodromy groups
acting on the duals to the eigenspaces with degenerate intersection form are then identified as
some of complex affine reflection groups tabled by V.L. Popov.

DOI: 10.1134/S0081543809040075

Singularity theory has been maintaining close relations with reflection groups since its early days,
starting with the famous works of Arnold and Brieskorn [1, 8]. The first to emerge, as simple function
singularities, were the Weyl groups Ak, Dk and Ek. They were followed by the Bk, Ck and F4 as
simple boundary singularities or, equivalently, functions invariant under the involution [2, 22]. Since
then appearance of Weyl groups in a singularity problem became a kind of criterion of naturalness
of the problem [3–5].

The next to receive a singularity realisation was the list of all Coxeter groups, in the classification
of stable Lagrangian maps [9]. Some of the Shephard–Todd groups appeared in [10, 11, 13] in the
context of simple functions equivariant with respect to a cyclic group action. And finally, the first
examples of complex crystallographic groups came out in [14, 12] in connection with the symmetries
of parabolic functions J10 and X9. The affine reflection groups appeared there as monodromy groups,
which is similar to the first realisations of other classes of reflection groups. This time it was the
equivariant monodromy corresponding to the symmetry eigenspaces Hχ in the vanishing second
homology on which the intersection form σ has corank 1.

This paper completes the study of cyclically equivariant parabolic functions started in [14, 12]
and considers the P8 singularities. The approach we are developing here is considerably shorter,
with less calculations and more self-contained. This is allowed by a preliminary observation that
the modulus parameter may take on only exceptional values if corank(σ|Hχ) = 1: the j-invariant of
the underlying elliptic curves must be either 0 or 1728 (see Subsection 2.2).

The structure of the paper is as follows.
Section 1 describes the crystallographic groups which will be involved.
Section 2 gives a classification of smoothable cyclic symmetries of P8 singularities possessing

eigenspaces Hχ with the property as already mentioned.
In Section 3, we obtain distinguished sets of generators in such eigenspaces and calculate

the intersection numbers of the elements in the sets. This allows us to describe the Picard–
Lefschetz operators generating, as complex reflections, the equivariant monodromy action on
the Hχ.
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Fig. 1. Linear parts of the crystallographic groups. Each vertex represents a unit root. The order of
the corresponding reflection is written inside the vertex (order 2 omitted). An edge a → b is equipped
with the hermitian product 〈a, b〉 (no orientation is needed when the product is real). There are no
edges between orthogonal roots.

Finally, in Section 4, we pass to the vanishing cohomology. In its subspaces dual to the Hχ, we
consider hyperplanes formed by all the cocycles taking the same non-zero value on a fixed generator
of the kernel of the hermitian intersection form σ|Hχ . We show that the equivariant monodromy
group acting on each of these hyperplanes is a complex crystallographic group.

1. THE CRYSTALLOGRAPHIC GROUPS

We recall the description of the complex affine reflection groups which will be relevant to our
singularity constructions. In the notations of [20], the groups are

[K3(3)], [K3(4)], [K3(6)], [G(3, 1, 2)]2 , [K5], [K8], [K25].

The linear parts of these groups are Shephard–Todd groups L shown in Fig. 1, in the related notation
of [21]. There and in what follows ω = exp(2πi/3). The rank of L is the number of vertices in
its diagram. Each of the groups involved is a semi-direct product of its linear part and translation
lattice. The lattice of [G(3, 1, 2)]2 is spanned over Z by the G(3, 1, 2)-orbit of any order 2 root, while
for any other group it is spanned by the L-orbit of any root. For example, our list contains all three
one-dimensional groups, the [K3(m)], each generated by an order m rotation in C and the lattice
Z[1, i] if m = 4 or Z[1, ω] if m = 3, 6.

2. THE SYMMETRIES

2.1. Cubic curves. Our first step in the study of linear automorphisms of the surfaces

x3 + y3 + z3 + 3αxyz = 0, α3 �= −1,

in C
3 is consideration of the projective version of the question. This is a description of automor-

phisms of projective curves Cα given by the same equations in CP2. The question is classical, but,
for the sake of the exposition, we indicate a possible elementary approach.

A curve Cα has nine inflection points. There are four triplets of lines in CP2 passing through
these points, each line containing exactly three inflections and each triplet containing all nine
inflections. The lines are zero sets of the linear forms

x, y, z;

x + y + z, x + ωy + ωz, x + ωy + ωz;

x + y + ωz, x + ωy + z, ωx + y + z;

x + y + ωz, x + ωy + z, ωx + y + z.
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AUTOMORPHISMS OF P8 SINGULARITIES 93

Table 1. Automorphisms of projective cubic curves

No. f κx : κy : κz Monomial basis of the local ring of f

1 x3 + y3 + yz2 ω : 1 : −1 1, x, y, z, xy, xz, y2 ∼ z2, xy2 ∼ xz2

2 x3 + y3 + yz2 � x3 + y3 + z3 ω : 1 : 1 1, x, y, z, xy, xz, y2 ∼ z2, xy2 � xyz

3 x2y + y2z + z2x 1 : ω : ω 1, x, y, z, x2 ∼ yz, y2 ∼ xz, z2 ∼ xy, xyz

4 x2z + xy2 + z3 1 : i : −1 1, x, y, z, yz, x2 ∼ z2, xz ∼ y2, x3

5 x3 + y3 + yz2 + 3αxy2, α3 �= −1
4 1 : 1 : −1 1, x, y, z, xy, xz, y2 ∼ z2, xy2 ∼ xz2

6 x3 + y3 + z3 + 3αxyz, α3 �= −1 1 : ω : ω 1, x, y, z, xy, xz, yz, xyz

7 x3 + y3 + z3 + 3αxyz, α3 �= −1 1 : 1 : 1 1, x, y, z, xy, xz, yz, xyz

A projective automorphism of Cα permutes the triplets and reorders the lines within the triplets.
It is sufficient to consider the images of the first triplet only. A routine study of all the possi-
bilities, followed by diagonalising each projective transformation and rewriting the equation of an
appropriate curve in the projective eigencoordinates, gives us

Proposition 2.1. Any projective automorphism of a cubic curve can be reduced, by a choice of
projective coordinates, either to the diagonal projective transformation (x : y : z) 	→ (κxx : κyy : κzz)
of one of the cubics f = 0 from Table 1 or to the inverse of such a transformation.

The contents of the last column of Table 1 will be used in Subsection 2.3.

2.2. Kernel character constraints. We now lift a projective automorphism of a cubic curve
f = 0 to a linear transformation g of C

3. It multiplies f by a non-zero constant and hence acts on
the target C of the function f . We consider deformations of the function-germ f : (C3, 0) → (C, 0) as
usual: choosing a small ball B in C

3 centred at the origin and deforming f within the ball. However,
we restrict our attention to deformations which are g-equivariant with respect to the actions of g
on C

3 and C.
Definition 2.2. If the function-germ f admits g-equivariant deformations with non-singular

zero levels, we say that the symmetry g of f is smoothable.
In this case, the smooth zero level V ⊂ B of a small g-equivariant deformation of f is a Milnor

fibre of f , and g acts on V and on its second homology. Assuming from now on the order r of g
finite, we obtain the splitting into a direct sum of character subspaces

H2(V, C) =
⊕

χr=1

H2,χ , (1)

so that g acts on each summand as the multiplication by the relevant rth root χ of unity.
We extend the intersection form σ from the lattice H2(V, Z) to the hermitian form σh on

H2(V, C). The symmetric intersection form of a parabolic function singularity in three variables is
negative semi-definite, with a two-dimensional kernel.

Definition 2.3. We say that a smoothable symmetry g splits the kernel of σh if this kernel is
shared by two different character subspaces H2,χ. If the restriction of σh to a H2,χ is degenerate,
we call χ a kernel character.

The aim of our construction, a complex crystallographic group, will be acting on a hyperplane Γ
in the cohomology subspace H2

χ = {γ ∈ H2(V, C) : g∗(γ) = χγ} where χ is a kernel character
(cf. [14, 12]). For this, our symmetry g should split the kernel of σh, and the hyperplane Γ is
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defined as the set of all elements of H2
χ taking the same non-zero value on a fixed generator of the

line Ker(σh) ∩ H2,χ.
Our next step is to show that there is no kernel splitting in any of the modular cases of Propo-

sition 2.1.
Assume g is a lifting of one of the projective automorphisms from Table 1. Take a monomial

basis ϕ0 = 1, ϕ1, . . . , ϕ7 of the local ring of f , with ϕ7 of degree 3. Consider the sub-unfolding of
the R-miniversal unfolding of f in which the modulus parameter does not participate:

F : C
3 × C

6 → C × C
6, (x, y, z, λ1, . . . , λ6) 	→

(
f + λ1ϕ1 + . . . + λ6ϕ6, λ1, . . . , λ6

)
.

This map is defined globally. Its smooth fibres are Milnor fibres of f . The action of g naturally
extends to the source and target of the map, making F g-equivariant. We will denote the target
of F by U , and points there will be u = (u0, . . . , u6).

We simultaneously compactify all fibres Vu, u ∈ U , of F adding to each of them a copy Cu =
Vu \ Vu of the same projective curve f = 0. Each Vu ⊂ CP3 is smooth near Cu.

For non-critical values of u, take the intersection homomorphism σ : H2(Vu; Z) → H2(Vu; Z).
The Leray map sends H1(Cu; Z) isomorphically onto the two-dimensional kernel of σ [17].

Consider the 2-form w = dx∧dy∧dz∧dλ1∧ . . .∧dλ6/du0∧ . . .∧du6 on the fibres Vu. According
to [17], its residue β along Cu is a non-zero holomorphic 1-form which does not depend on u.

The action of the automorphism g on a g-symmetric fibre Vu extends to Vu. The residue map
Res: H2(Vu; C) → H1(Cu; C) is g-equivariant: if g∗ multiplies a 2-form by χ, then it multiplies the
residue of the form by χ too. Therefore, if g splits Ker(σh) on Vu, then its action on H1(Cu; C)
must also have two distinct conjugate eigenvalues, with β and β as eigenvectors. Hence the curve
Cu = {f = 0} must be either C/Z[1, i] or C/Z[1, ω]. Respectively, the kernel characters are either
±i or (ω, ω) or (−ω,−ω).

Thus we have
Proposition 2.4. A smoothable automorphism g splits the kernel of the intersection form

if and only if the section w = dx ∧ dy ∧ dz/df of the vanishing cohomology fibration of f is a
g∗-eigenvector with the eigenvalue from the set {±i,±ω,±ω}. The eigenvalue and its conjugate are
the kernel characters.

If g∗(w) = χw, then for the hyperplane Γ mentioned above one can take Res−1(Res(w)) ∩ H2
χ.

Since the degree of f is 3, the eigenvalue of g∗ on w = dx ∧ dy ∧ dz/df depends only on the
projectivisation of g.

Corollary 2.5. All smoothable liftings of the first four automorphisms from Proposition 2.1
split Ker(σh). On the other hand, none of the liftings of the last three cases does the same.

Remark. The argument can be easily modified to the symmetries of X9 and J10 function
singularities, thus explaining the absence of the moduli in the classification tables in [14, 12].

2.3. Smoothable symmetries. Assume we have two actions of a finite cyclic group, on
(Ck, 0) and on (C, 0). Consider two function-germs f1, f2 : (Ck, 0) → (C, 0) equivariant with respect
to these actions: fi ◦ ρ = ρ ◦ fi where ρ is a generator of the group. We say that the two functions
are Rρ-equivalent if one can be transformed into the other by a ρ-equivariant diffeomorphism-germ
of (Ck, 0).

We apply this notion in the context of our cubic function f , its diagonal symmetry g and
the induced action of g on C. With a minor abuse of the language, we will still be calling the
corresponding equivalence the Rg-equivalence. For example, an Rg-miniversal unfolding of f is the
restriction F of the unfolding F of the previous subsection to F−1(U), where U ⊂ U is the set of fixed
points of the natural action of g on U . Equivalently, in this case, for an Rg-miniversal deformation
of f one can take f + arbitrary linear combinations of the elements ψ1, . . . , ψτ of a monomial basis
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Table 2. Smoothable symmetries of P8 singularities splitting Ker(σ)

f g : x, y, z 	→ |g| Versal monomials Kernel χ Affine group Notation

x3 + y3 + yz2 ωx, y,−z 6 1, y, y2 −ω,−ω [K5] C
(3,3)
3

x, ωy,−ωz 6 1, x −ω,−ω [K3(6)] (P8|Z6)′

ωx, ωy,−ωz 6 1, xy −ω,−ω [K3(6)] (P8|Z6)′′

−x,−ωy, ωz 6 x −ω,−ω – (P8/Z6)′

iωx, iy,−iz 12 z −ω,−ω – P8/Z12

ωx, y, z 3 1, y, y2, z ω, ω [K25] D
(3)
4

x, ωy, ωz 3 1, x ω, ω [K3(6)] (P8|Z3)′

ωx, ωy, ωz 3 1, xy, xz ω, ω [G(3, 1, 2)]2 P8|Z3

x3 + y3 + z3 −x,−ωy,−ωz 6 x ω, ω – (P8/Z6)′′

−ωx,−y,−z 6 y, z ω, ω [K3(3)] P8/Z6

x2y + y2z + z2x ε9x, ωε9y, ωε9z 9 1 ω, ω – P8|Z9

x2z + xy2 + z3 −x,−iy, z 4 1, z, z2 ±i [K8] C
(2,4)
3

−ωx, −iωy, ωz 12 1 ±i – P8|Z12

ix, −y, −iz 4 x, yz ±i [K3(4)] P8/Z4

ε8x, ε8y,−ε8z 8 y ±i – P8/Z8

of the local ring of f that are multiplied by g by the same factor as f . The number τ appearing
here will be called the Rg-codimension of f .

Proposition 2.6. Assume a symmetry g is smoothable. Then g multiplies f by the same
factor as it multiplies one of the monomials 1, x, y, or z.

Indeed, the conclusion is equivalent to generic fibres of an Rg-miniversal unfolding not being
singular at 0 ∈ C

3.
With the help of Corollary 2.5 and the last proposition, we obtain after straightforward calcu-

lations which we prefer to omit
Theorem 2.7. The complete list of smoothable symmetries of P8 function singularities on C

3

which split the kernel of the intersection form is given in Table 2. Our classification is up to a
choice of generators of the same cyclic group.

In Table 2, the versal monomials are the monomials participating in Rg-miniversal deformations
(these are selected from the last column of Table 1 as those multiplied by g∗ by the same factor
as f), the affine groups are those which will come out later as monodromy groups acting on the
hyperplanes in the character subspaces in the cohomology, and εk = exp(2πi/k).

Remark. During the proof of the theorem, one obtains a few non-smoothable symmetries
allowing linear terms in deformations. They are listed in Table 3. It is possible to relate complex
crystallographic groups to its two singularities with two-parameter miniversal deformations, but
this will be done in another paper.

Of course, one may consider a bit more general problem of finding all possible smoothable
symmetry groups G of parabolic singularities, which are not necessarily cyclic. In this situation the
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Table 3. Non-smoothable symmetries allowing linear terms

f g : x, y, z 	→ |g| Versal monomials

x3 + y3 + yz2 −ωx,−y, z 6 y

x2y + y2z + z2x ωx, ωy, z 3 x, xz

−ωx,−ωy,−z 6 x

x2z + xy2 + z3 x, iy,−z 4 z, xz

−ix, y, iz 4 x

second homology splits into irreducible representations of G, and we may be still looking for cases
when the kernel of the intersection form is shared by two of them. For P8, for example, this means
that G should contain one of the symmetries g of Table 3, and hence the affine reflection group
related to G will be a lower rank subgroup of the one we are relating to g. This does not leave too
much dimensional room for further interesting crystallographic groups.

3. DYNKIN DIAGRAMS

The equivariant monodromy of a g-equivariant function singularity f , that is, the one within
an Rg-miniversal deformation of f , preserves the direct sum decomposition (1). Its action on
an individual summand H2,χ is generated by the Picard–Lefschetz operators he corresponding to
vanishing χ-cycles e:

he(c) = c − (1 − λe)〈c, e〉e/〈e, e〉.

Here λe �= 1 is the eigenvalue of he: he = λee.
In this section we obtain all the necessary information describing the monodromy on the kernel

character subspaces of the singularities of Table 2. We choose distinguished sets of generators of
the subspaces H2,χ (cf. [7, 15, 3, 4]), calculate the intersection numbers of the elements of the sets,
and find the eigenvalues λe. The data will be collected into Dynkin diagrams of the singularities.

Proposition 3.1. If χ is a kernel character of a symmetric singularity from Table 2, then the
rank of H2

χ (equivalently, the rank of H2,χ) coincides with the Rg-codimension τ of the singularity.

Proof. If f is g-invariant, then a basis of one of the two H2
χ is formed, in the notations of

Subsection 2.2, by the sections ϕiw, where the ϕi are all g-invariant monomials within {ϕ0, . . . , ϕ7}.
Their number is exactly τ . (Cf. [19, 23].)

If f is g-equivariant rather than invariant, the claim can be verified by a direct case-by-case
computation of the eigenvalues of g∗ on the sections ϕ0w, . . . , ϕ7w. The observation needs case-free
understanding. �

Thus, if τ = 1, then the subspaces H2,χ in the case of kernel χ are one-dimensional, hence
contained in Ker(σh), and therefore the monodromy we are interested in is trivial. So, from now on
we are considering only the cases of at least two-parameter Rg-miniversal deformations.

We will also forget about the (P8|Z3)′ singularity. Indeed, its symmetry g is the inverse of the
square of the (P8|Z6)′ symmetry, and the two equivariant miniversal deformations coincide. Hence
the character subspaces with degenerate intersection form are the same (only the actual character
assignments differ: χ3 = χ−2

6 ) and the monodromy is the same.

For each remaining symmetry, we will choose a distinguished set of generators for H2,χ in the
way it has been done in [10, 11, 13]. Namely, let u∗ be a point in the complement C

τ \ Δ to the
discriminant in the base of the Rg-miniversal deformation of our function. Set Vu∗/g to be the
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quotient of the fibre Vu∗ under the cyclic g-action and (Vu∗/g)′ its part corresponding to irregular
orbits. Denote by π the factorisation map Vu∗ → Vu∗/g. The homology group H2(Vu∗/g, (Vu∗/g)′; Z)
is spanned by a distinguished set of relative vanishing cycles (such a set is defined in the traditional
singularity theory manner). Denote them c1, . . . , ck. The inverse image π−1(cj) is the cyclic orbit
of one of its components, let it be c̃j. For a character χ, the chain

ej =
order(g)−1∑

i=0

χ−igi(c̃j)

is an element of H2,χ. The vanishing χ-cycles e1, . . . , ek span H2,χ = H2,χ(Vu∗ , C), not necessarily
as a basis. They are defined up to multiplication by powers of χ and the sign change.

Examples. (a) The function xn + y2 + z2 invariant under the transformation g : (x, y, z) 	→
(εnx, y, z) was denoted A

(n)
1 in [10]. The factorisation by the group action gives the boundary

singularity A1 : w + y2 + z2, w = xn, whose relative vanishing homology is spanned by one semi-
cycle {w + y2 + z2 = 1: w, y, z ∈ R, w ≥ 0}. The corresponding vanishing χ-cycle, χn = 1, χ �= 1,
is formed by n hemi-spheres with appropriate coefficients and has self-intersection −n [10], which
is consistent with the standard Morse vanishing cycle having self-intersection −2. The Picard–
Lefschetz operator h is the classical monodromy of the ordinary An−1 singularity. Its eigenvalue on
H2,χ is λ = χ, since the quasi-homogeneous isotopy in the family xn + y2 + z2 = eit, t ∈ [0, 2π],
finishes with the transformation (x, y, z) 	→ (εnx,−y,−z) whose action on the homology coincides
with that of g.

(b) The A2-version of the previous singularity is A
(n)
2 : xn + y3 + z2, with the same symmetry.

For it, each of the H2,χ is spanned by two similarly defined χ-cycles which may be chosen so that
their intersection number is n/(1−χ). The two Picard–Lefschetz operators hj satisfy the standard
braiding relation aba = bab. Diagrammatically, the A

(n)
2 singularity is represented by fusing the

rectangular 2×(n−1) Dynkin diagram to the A2 diagram which may be equipped with the markings
indicating the orders of the vertices and the intersection numbers. Cf. the P8 → D

(3)
4 part of Fig. 3.

(c) The singularity Am/Zm is the function xm+1 + yz with the equivariant symmetry g :
(x, y, z) 	→ (εmx, εmy, z). As shown in [11], its χ-cycle has self-intersection −m, χ being any
mth root of unity. The quasi-homogeneous argument applied to the Rg-miniversal deformation
xm+1 + yz + αx demonstrates that the Picard–Lefschetz operator on H2,χ is the multiplication by χ.

Theorem 3.2. For the symmetric P8 singularities and their kernel characters χ, there exist
distinguished sets of vanishing χ-cycles described by Dynkin diagrams of Fig. 2.

Proof. We proceed on the case-by-case basis. We are considering only kernel characters of the
P8 singularities.

D
(3)
4 . Factorisation by the action of Z3 provides the boundary D4 singularity. Hence, according

to the above examples, a Dynkin diagram of D
(3)
4 can be obtained by the modification of the standard

D4 diagram: the roots should have squares −3 instead of −2, the Picard–Lefschetz operators hj

become of order 3, and the intersection numbers 1 of pairs of cycles change to 3/(1 − χ). Since
χ = ω, ω, the latter may be reduced to 1 − ω (for both values of χ) using the ambiguities in the
choice of the χ-cycles. The diagram may be obtained by the fusion of the cylindrical P8 diagram as
shown in Fig. 3.

C
(3,3)
3 . We extend the previous Z3-symmetry by Z2 acting by the sign change on z. This embeds

the character subspaces H2,−ω and H2,−ω of the symmetric singularity C
(3,3)
3 into H2,ω and H2,ω

of D
(3)
4 as subspaces anti-invariant under the involution. This is absolutely similar to the relation
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C
(3,3)
3

P8/Z6

(P8|Z6)′ (P8|Z6)′′

P8|Z3

P8/Z4

D
(3)
4

B
(2,4)
3

3

3

3 3

3

3 3

3

3

3

3
3 3 3

4

4 4

6
66 6

−3

−3

−3−3

−3

−3−3−3−3

−4

−4

−4−4−4−4

−6

−6−6−6−6

−6−6−6

−8

−6ω−6ω

−6ω
1 − ω

1 − ω1 − ω

1 − ω 2(1 − ω)

3ω

2(1 − i) 2(1 − i)
4(1 − i)

4(1 − i)

Fig. 2. Dynkin diagrams of the symmetric P8 singularities. The numbers inside vertices are the
orders of the Picard–Lefschetz operators (order 2 omitted). The number next to a vertex is the
self-intersection of the χ-cycle. As earlier, edges are marked with the intersection numbers of the
cycles. In the diagrams of all invariant singularities, the multiplicity of an edge indicates the length
of the pair-wise braiding relation inherited from the fundamental group of the complement to the
discriminant: aba = bab for a simple edge, (ab)2 = (ba)2 for a double, and (ab)3 = (ba)3 for a triple.

C
(3,3)
3

(P8|Z6)′P8

D
(3)
4

3

3 3

3

3 3 3

6

6

fold

Fig. 3. Obtaining some of the diagrams by fusion and folding.

between the Z2-symmetric singularity C3 and the absolute D4 singularity (cf. [2–4]). Hence the
C

(3,3)
3 diagram of Fig. 2 is provided by the folding of the D

(3)
4 shown in Fig. 3.

(P8|Z6)′. The discriminant in this case is a semi-cubic cusp, which gives the relation aba = bab
between the two Picard–Lefschetz operators. A generic point of the discriminant corresponds to the
D4|Z6 singularity considered in [11], where the self-intersection number of its vanishing χ-cycle was
shown to be −3 for χ = −ω,−ω. Since we are considering the kernel characters, the intersection
form on the H2,χ must be degenerate, which implies that the absolute value of the intersection
number of the two χ-cycles is 3. Since this number is in Z[1, ω], we can make it 3 using the χ-cycle
choice ambiguities once again.

Finally, the Picard–Lefschetz operator hD4|Z6
has order 6 as the classical monodromy operator of

the absolute D4 singularity. Its non-trivial eigenvalue on H2,χ is λ = χ since the quasi-homogeneous
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3A1
3A1

A2
A2

Fig. 4. Two real versions of the P8|Z3 discriminant, for x3 + y3 + yz2 and x3 + y3 − yz2.

isotopy x2 + y3 + yz2 = eit, t ∈ [0, 2π], finishes with the transformation (x, y, z) 	→ (−x, ωy, ωz),
which coincides with g−1 on the local homology.

Thus we have arrived at the (P8|Z6)′ diagram of Fig. 2. Due to the generating reflections coming
from the classical monodromy of the D4 singularities, it is natural to consider it as obtained by the
fusion of Fig. 3.

(P8|Z6)′′. The discriminant of the versal family x3 + y3 + yz2 + βxy + α consists of two strata:

A5 = {α = 0} and 3A1 = {27α + β3 = 0}.

The cubic tangency of the strata gives the braiding relation between the generators. Of course, the
self-intersection of the 3A1 vanishing χ-cycle is −6 and the order of the reflection h3A1 is 2. As
for the A5 χ-cycle, it is possible to homotope it to the standard A

(6)
1 vanishing χ-cycle, with the

self-intersection −6 according to Example (a). Now the argument similar to that for the previous
singularity gives the intersection number 6 of the two cycles. Quasi-homogeneous considerations of
the A5 local vanishing form xy + z6 = ε shows that the non-trivial eigenvalue of its monodromy
operator on H2,χ is χ since its local action coincides with g−1. Hence the operator hA5 is of order 6.

P8|Z3. The discriminants of two real versions x3 + y3 ± yz2 + α + βxy + γxz of a versal family
are the unions of the A2 stratum α = 0 and 3A1 stratum (54α + β3 ± 9βγ2)2 = (β2 ∓ 3γ2)3. They
are shown in Fig. 4. The two strata are simply tangent to each other along their meeting lines.

As in the previous case, it is possible to homotope the A2 vanishing χ-cycle to the standard
A

(3)
1 vanishing χ-cycle, with the self-intersection −3. An operator hA2 has the eigenvalue χ. The

self-intersection of a 3A1 χ-cycle is −6, and its monodromy reflection is an involution.
Assume the base point u∗ is chosen inside the front lips region of the left diagram of Fig. 4.

A generic line through it is vertical. Take on it a path system from u∗: two paths going straight to
the 3A1 points and the third nearly straight to the A2 point, bypassing the upper 3A1 point on its
way (the side is not important). Then the vanishing χ-cycles may be chosen so that

〈e3A1,lower, e3A1,upper〉 = 3 and 〈eA2 , e3A1,upper〉 = 3.

Indeed, the absolute values of these intersection numbers must be 3 following the braiding relations
between the two pairs of the Picard–Lefschetz operators coming from the singularities of the dis-
criminants. Moreover, both numbers are in Z[1, ω] and the χ-cycles may be multiplied by −1 and
powers of ω.

Now we see that the last intersection number, 〈eA2 , e3A1,lower〉, is either 3ω or 3ω. This is
guaranteed by the degeneracy of the intersection form on H2,χ and the number being in Z[1, ω].
However, both options turn out to be equivalent up to a braid transformation.

C
(2,4)
3 . The discriminant coincides with the standard C3 discriminant. Its smooth stratum

is 2A1 and the cuspidal is A3. The latter is nearly A
(4)
1 of Example (a), but with the order 4
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symmetry changing the sign of one of the squared variables; hence the self-intersection of a vanishing
χ-cycle eA3 is −4, while its operator hA3 has eigenvalue −χ = χ. Additionally, 〈e2A1 , e2A1〉 is also −4
and h2A1 is an involution.

A distinguished set of vanishing χ-cycles consists of e2A1,1, e2A1,2, e2A1 . The singularities of
the discriminant guarantee that the set may be chosen so that the braiding relations between the
Picard–Lefschetz operators are exactly those encoded in the diagram of Fig. 2. These imply

〈e2A1,1, e2A1〉 = 0 and |〈e2A1,1, e2A1,2〉| = |〈e2A1,2, e2A1〉| = 2
√

2.

Since the intersection numbers are in Z[1, i], we can make 〈e2A1,1, e2A1,2〉 = 〈e2A1,2, e2A1〉 = 2(1− i)
by possible multiplication of the cycles by powers of i.

Remark. We prefer calling this singularity C rather than B since it has only one vanishing
cycle coming from more than one critical point on one level (cf. [2]).

P8/Z6. The discriminant of the versal family x3 + y3 + z3 + αy + βz consists of three lines
corresponding to the three divisors αy + βz of the cubic form y3 + z3. Each of the lines is a 2A(3)

1

stratum: each A
(3)
1 singularity is off the origin and has symmetry g2 : (x, y, z) 	→ (ωx, y, z). Hence

all vanishing χ-cycles have self-intersection −6. Any Picard–Lefschetz operator has eigenvalue
λ = χ2 = χ.

A distinguished set of χ-cycles consists of three elements. Since the rank of the intersection form
on H2,χ is 1, the absolute value of the intersection number of any pair is 6. Since the number itself is
in Z[1, ω], we can use the ambiguities in the choice of the cycles and make 〈e1, e2〉 = 〈e2, e3〉 = −6ω.
The rank condition implies that 〈e3, e1〉 is also −6ω.

Remark. It is possible to show that the relation between the cycles may be assumed to be
e1 + e2 + e3 = 0.

P8/Z4. The discriminant of the versal family x2z + xy2 + z3 + αx + βyz has three strata:

A4 : α = 0, 2A2 : β = 0, 4A1 : 4α + β2 = 0.

The A4 degeneration reduces to the A4/Z4 singularity of Example (c). Hence the self-intersection
of eA4 is −4. By the quasi-homogeneity, we see that the operator hA4 coincides locally with g and
thus has eigenvalue χ on H2,χ. Similarly, each of the two A2 degenerations is the g2-symmetric
singularity A2/Z2. Therefore, the self-intersection of e2A2 is also −4, while h2A2 is an involution. It
is clear that a χ-cycle vanishing at 4A1 has self-intersection −8, and h4A1 is also an involution.

A distinguished set of vanishing χ-cycles contains one cycle of each of the three kinds. Since the
rank of the H2,χ is 2, the 3 × 3 intersection matrix must have rank 1. Due to this, after possible
multiplication of the cycles by powers of i, we can assume that

〈e4A1 , eA4〉 = 〈e4A1 , e2A2〉 = 4(1 + i).

This forces 〈eA4 , e2A2〉 = −4.
Remark. The relation between the cycles may be assumed to be either eA4 + e4A1 + ie2A2 = 0

or ieA4 + e4A1 + e2A2 = 0. �

4. AFFINE MONODROMY

We start by recalling how a corank 1 semi-definite hermitian form q̃ on Ṽ = C
n+1 defines an

affine reflection group on a hyperplane in the dual space [6, 14, 12].
First of all, choose a basis e′0, e1, . . . , en in Ṽ so that e′0 is in the kernel K of the form. We

denote the span of the ej>0 by V and write v for the V -component of ṽ ∈ Ṽ : ṽ = v0e
′
0 + v. Set Q

to be the matrix of the restriction q = q̃ |V : Q = (q̃(ei, ej))i,j>0.
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In the dual space Ṽ ∗ � K∗ ⊕ V , we use coordinates α0, α1, . . . , αn so that a linear functional α̃
on Ṽ is written as

α̃(ṽ ) = v0α0 + vTQα = v0α0 + q(v, α).

Consider a reflection on Ṽ with a root ũ /∈ K and the eigenvalue λ:

A : ṽ 	→ ṽ − (1 − λ)
q̃(ṽ, ũ)ũ
q̃(ũ, ũ)

.

Then its dual A∗ sends each hyperplane α0 = const in Ṽ ∗ into itself, and on such a hyperplane it
acts as

α 	→ α − (1 − λ)
α0u0 + q(α, u)

q(u, u)
u,

where q is the hermitian form on V conjugate to q, with the matrix Q = QT in the chosen coordi-
nates. For α0 �= 0, this is an affine reflection on the hyperplane Γ = {α0 = const} � V , with the
root u, mirror ã(ũ) = α0u0 + q(α, u) = 0 and eigenvalue λ. For u0 = 0, the transformation is linear.

We are now ready to prove our main result.
Theorem 4.1. Assume a symmetry of a function singularity P8 on C

3 splits the kernel of the
intersection form σh and χ is a kernel character. Assume the cohomology character subspace H2

χ

is at least of rank 2. Let Γ ⊂ H2
χ be the hyperplane formed by all 2-cocycles taking a fixed non-zero

value on a fixed generator of the line H2,χ ∩ Ker(σh). Then the equivariant monodromy acts on Γ
as a complex crystallographic group. The correspondence between the symmetric singularities and
affine groups is given by Table 2.

Proof. Number the vanishing χ-cycles of each diagram in Fig. 2 from left to right (the num-
bering of the last two vertices in D

(3)
4 is not important). Omit the leftmost cycle e0. In equivariant

cases omit also e2. It is easy to notice that the remaining cycles may be multiplied by appropriate
factors so that the encoded hermitian form becomes the negative of the relevant form of Fig. 1 while
the orders of the related vertices coincide. Therefore, taking the remaining vanishing cycles as the
basic vectors ej>0 in Ṽ = H2,χ in the introduction to this section, we see that their Picard–Lefschetz
operators hj generate the required Shephard–Todd group L on Γ ⊂ H2

χ = Ṽ ∗.
The next task is to obtain the translation lattices of the crystallographic groups. The kernel of

any intersection form in Fig. 2 is spanned by the e′0 = e0 +a, where a is a linear combination of the
ej>0. For example, in all τ = 2 cases, a is a non-zero multiple of e1 (for equivariant singularities
this is due to the two remarks by the end of the previous section).

Assume the order of a root of L which generates the lattice of the required affine group coincides
with the order of an operator hk, k > 0. According to what has been said before the theorem, its
validity for such a singularity will follow from a being a multiple of an element of the L-orbit of ek.
Hence only τ > 2 singularities are still to be checked. And we have for them

C
(3,3)
3 : a = (1 − ω, 1) = A1A

2
2e1,

D
(3)
4 : a = (1 − ω, 1, 1) = A1A

2
3A1e2,

P8|Z3 : a = (ω − ω,−ω) = ωA2A
2
1e2,

C
(2,4)
3 : a = (1 + i, i) = iA2

1e2.

To make the calculations suitable for any of the two kernel characters, the Aj here are either the
Picard–Lefschetz operators or their inverses, but always with the eigenvalues either ω or −1 or i.
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The expressions obtained show that the vectors a are maximal roots of the groups L in the sense
of [16]. �

Remark. The multiplicities of vertices and edges in Fig. 2 provide nearly complete presenta-
tions of all our rank > 1 crystallographic groups as abstract groups. To obtain all defining relations,
one should add

(i) (h1h0h2h0)2 = (h0h2h0h1)2 to the P8|Z3 diagram of [G(3, 1, 2)]2 (cf. [18]), which corresponds
to one of the tangency lines in Fig. 4, right;

(ii) the condition that the classical monodromy (that is, the product of all the generators) of
each singularity has order 3. This is exactly the extra relation from [18].
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(1970).

8. E. Brieskorn, “Singular Elements of Semi-simple Algebraic Groups,” in Actes Congr. Int. Math., Nice, 1970
(Gauthier-Villars, Paris, 1971), Vol. 2, pp. 279–284.

9. A. B. Givental’, “Singular Lagrangian Manifolds and Their Lagrangian Mappings,” in Itogi Nauki Tekh., Ser.:
Sovrem. Probl. Mat., Noveishie Dostizheniya (VINITI, Moscow, 1988), Vol. 33, pp. 55–112 [J. Sov. Math. 52 (4),
3246–3278 (1990)].

10. V. V. Goryunov, “Unitary Reflection Groups Associated with Singularities of Functions with Cyclic Symmetry,”
Usp. Mat. Nauk 54 (5), 3–24 (1999) [Russ. Math. Surv. 54, 873–893 (1999)].

11. V. V. Goryunov, “Unitary Reflection Groups and Automorphisms of Simple Hypersurface Singularities,” in New
Developments in Singularity Theory (Kluwer, Dordrecht, 2001), pp. 305–328.

12. V. V. Goryunov, “Symmetric X9 Singularities and Complex Affine Reflection Groups,” Tr. Mat. Inst.
im. V.A. Steklova, Ross. Akad. Nauk 258, 49–57 (2007) [Proc. Steklov Inst. Math. 258, 44–52 (2007)].

13. V. V. Goryunov and C. E. Baines, “Cyclically Equivariant Function Singularities and Unitary Reflection Groups
G(2m, 2, n), G9, G31,” Algebra Anal. 11 (5), 74–91 (1999) [St. Petersburg Math. J. 11 (5), 761–774 (2000)].

14. V. V. Goryunov and S. H. Man, “The Complex Crystallographic Groups and Symmetries of J10,” in Singularity
Theory and Its Applications (Math. Soc. Japan, Tokyo, 2006), Adv. Stud. Pure Math. 43, pp. 55–72.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 267 2009



AUTOMORPHISMS OF P8 SINGULARITIES 103

15. S. M. Husein-Zade, “The Monodromy Groups of Isolated Singularities of Hypersurfaces,” Usp. Mat. Nauk 32 (2),
23–65 (1977) [Russ. Math. Surv. 32 (2), 23–69 (1977)].

16. M. C. Hughes, “Complex Reflection Groups,” Commun. Algebra 18, 3999–4029 (1990).
17. E. Looijenga, “On the Semi-universal Deformation of a Simple-Elliptic Hypersurface Singularity. Part II: The

Discriminant,” Topology 17, 23–40 (1978).
18. G. Malle, “Presentations for Crystallographic Complex Reflection Groups,” Transform. Groups 1 (3), 259–277

(1996).
19. P. Orlik and L. Solomon, “Singularities. II: Automorphisms of Forms,” Math. Ann. 231, 229–240 (1978).
20. V. L. Popov, Discrete Complex Reflection Groups (Rijksuniv. Utrecht, Utrecht, 1982), 89 pp., Commun. Math.

Inst., Rijksuniv. Utrecht 15.
21. G. C. Shephard and J. A. Todd, “Finite Unitary Reflection Groups,” Can. J. Math. 6, 274–304 (1954).
22. P. Slodowy, Simple Singularities and Simple Algebraic Groups (Springer, Berlin, 1980), Lect. Notes Math. 815.
23. C. T. C. Wall, “A Note on Symmetry of Singularities,” Bull. London Math. Soc. 12, 169–175 (1980).

This article was submitted by the authors in English

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 267 2009



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


