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If a system of equations depends on parameters, then in the space of parameters one 
singles out the discriminant surface, which corresponds to bifurcations of the manifold of 
solutions of the system. Among the parameters there may be distinguished ones. For example, 
when one of the parameters is time and one studies reconstructions which occur in the sys- 
tem in the course of time. In such a situation it is necessary to be able to reduce a func- 
tion of time on the space of parameters to normal form by diffeomorphisms which preserve the 
discriminant. At the infinitesimal level this requires knowledge of the algebra of vector 
fields on the discriminant [5, 7]. 

The basic result of the present paper is a description of generators of the algbera of 
holomorphic vector fields tangent to the discriminant of a complete intersection with an iso- 
-lated singularity Earlier, Looijenga proved that this algebra is a free module over the 
ring of holomorphic functions on the ambient space [13]. Unfortunately, this theorem is 
nonconstructive and consequently inapplicable for example, to the problem of classification 
of functions or mappings defined on the space containing the discriminant. 

The proof of the theorem on basic fields on the discriminant is based on a number of 
properties of a one-parameter deformation of a complete intersection (Sees. 1 and 2). Such 
a deformation defines a Projection to a line of a complete intersection Y of dimension one 
greater than the dimension of the deformed manifold. We recall that by projection to a line 

is meant a diagram Y Q C~+~C~ where the first arrow is an imbedding and the second is a 
nondegenerate linear projection [3]. The restriction of p to Y (height function) can have 
critical points (a singular point of the submanifold is considered critical for p). In Sec. 
I, where we give all the necessary definitions, we introduce the multiplicity ~ of a critical 
point of a height function as the maximal number of Morse points at which it splits under a 
small deformation of the complete intersection Y. 

It turns out that the number ~ is closely connected with the codimension • of the orbit 
of the projection with respect to an equivalence which we call R+-equivalence, since it is a 
natural generalization of the corresponding concept for functions on smooth manifolds [2, 
Vol. I].~ Projections of two submanifolds are considered R+-equivalent if the submanifolds 
are carried into one another by a biholomorphism of the ambient space which commutes with 
the projections and induces a translation on the base of p. 

In Sec. 2 we show that just as for functions on smooth manifolds, for a height function 
~ = • + 1 (Theorem 2.1). This fact is basic for the constructions of Sec. 3, where we con- 
sider vector fields tangent to the discriminant of complete intersections and projections. 
The discriminant of a projection is the discriminant of the complete intersection Y N P-l(0) 
multiplied by a complex linear space (the definition is given in point 1.4). 

The basic vector fields on the diseriminant of a projection are given by decompositions 
of products of the height function by the velocity of an R+-versal deformation into veloci- 
ties of deformation with coefficients which depend only on the parameters of.the deformation 
(Theorem 3.1). 

The basic vector fields on the discriminant of a complete intersection can be found in 
the following way (Theorem 3.2). We single one out from the parameters of a versal deforma- 
tion of a complete intersection, 10. Let the axis 010 have finite intersection index ~ with 
the discriminant. The restriction of the versal deformation to the 0~0 axis defines a pro- 
jection to a line, while ~ is exactly the multiplicity of the critical point of the function 
~0 (the height function in the present case). We write generators of the module of vector 
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fields which preserve the discriminant in factorizations as products of powers of the param- 
eter ~0 by the velocity of the versal deformation into velocities of deformation with coef- 
ficients which are polynomials of bounded degree in ~0. The relation ~ = • + i guarantees 
us that the fields found in this way really generate the whole module of vector fields tan- 
gent to the discriminant. 

In See. 4 we consider the bifurcation diagram E of a projection to a line. This object 
can be considered the bifurcation diagram of a complete intersection, because one gets it 
from the discriminant of a complete intersection (possibly multiplied, by a complex lin- 
ear space) in the same way as the bifurcation diagram of a smooth function from the discrimi- 
nant of the smooth function - as the ramification manifold of a stable projection of the 
discriminant along a line. We show that the algebra of vector fields preserving E is a free 
module over the ring of holomorphic functions on the ambient space, i.e., like the discrimi- 
nant, the bifurcation diagram of a projection is a free divisor in the sense of Saito [14] 
(Theorem 4.1). Generators of this module can be constructed by expansions analogous to the 
expansions of Terao-Bruce [14; 8] for fields on the bifurcation diagram of a function. 

The author thanks V. I. Arnol'd for interest in the work and also A~ G. Aleksandrov for 
helpful discussions. 

i. R+-Equivalence of Projections 

i. Suppose given on C n+1 a nondegenerate linear projection p: Cn+~--+C. 

Definition. By a projection of a submanifold Y C~ C ~+~- to a line is meant a diagram Y ~ 

C - + I ~ C  [3 ] .  

We fix a coordinate function u on the base of p. Its restriction to Y will be called 
the height function. 

• 

Definition. Projection s of submanifolds ]£i, Y2 C C n+1 are R+-equivalent if there exists 
a biholomorphism of the ambient space carrying YI into Y2, which preserves the projection p, 
and on the base of p induces a translation u ÷ u + const. 

Taking the graph of a function on C n as Y (u is the value of the function), we see that 
the equivalence introduced is a natural generalization of the concept of R+-equivalence of 
smooth functions [2, Vol. i]. The previously considered equivalence of projections [3], 
under which an arbitrary biholomorphism was induced on the base of the projection, corresponds 
to RL-equivalence of functions. 

2. As projected submanifolds we consider complete intersections of positive dimension: 
Y = f-l(0), where f: (C ~+I, 0)-~ (Cm, 0), m ~-codim Y < n. For brevity we shall speak about a 
projection of a complete intersection f-~(0) to a line as a projection f. 

We shall use the following notation: 

@~ z,z is the space of germs at the point z ~ Z of holomorphic maps from Z to Cm; 

Oz,  ~ = O~z, ~ 

mz,~ is the maximal ideal in Oz,~; 

(x, u) = ( z l  . . . . .  x , ,  u) ~ C-+1. 
m 

For / ~Ocn+1,0 we set 

2~ = I *  (too, ' o) 0c~+i, 0 + 0c"+I, 0 <a//ax~ . . . . .  a / / a~> .  

T~ = T¢ ~- C O/IOu is the tangent space to the germ of the R+-equivalence class of the 
projection f. 

We introduce QI m + = ©c~+1, 0 its" 

D e f i n i t i o n .  By t h e  R + - c o d i m e n s i o n  o f  t h e  p r o j e c t i o n  f i s  m e a n t  t h e  n u m b e r  • = dimcQ¢. 

O b v i o u s l y  

Proposition I.i. If ~ < ~ then the complete intersections {/(x, u) = O} ~C n+~ and {/(x, O) -- 

O} ~ ~ have isolated singularities. 

Projection of the manifold f(x, u) = 0 to a line is a one-parameter deformation of the 
complete intersection f(x, O) = O. R+-equivalence of projections corresponds to a more rigid 
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equivalence of deformations than usual: change of the parameter of deformation is prohibited. 

We shall not consider the R+-classification of projections to a line. We only note that 
the list of simple singularities is the same as in [3]. 

• 

3. We consider a k-parameter deformation of the projection f:(En+1+~,0)-+(C TM, 0), %~C ~ 
being the parameter of deformation, f I~=0 = f. 

Definition. A deformation F is called infinitesimally R+-versal, if its initial speeds 

Ofl~il~=0, ~ = I, ..., k, generate the linear space Qf. 

In the obvious way one also defines an R+-versal deformation of a projection. By an ob- 

vious theorem the concepts of R+-versality and infinitesimal R+-versality of deformations are 
equivalent. The dimension of the space of parameters of an R+-miniversal deformation is m. 

A k-parameter R+-versal deformation of a projection f is also: 

a) a k-parameter versal deformation of the complete intersection f(x, u) = 0; 

b) a (k + l)-parameter versal deformation of the complete intersection f(x, 0) = 0 (u 
being an additional parameter). 

We shall call the space C i+~, (u, h)~C1+~,an extension of the space of parameters. 

4. Definition [4]. By the discriminant A of the pro~ection f is meant the discriminant 
of the complete intersection f(x, 0') = 0, which lies in the extended space of parameters of 
an R+-versal deformation F. 

Thus, A~C i+~ is the set of Critical values of the projection (x, u, ~) ÷ (U, X), re- 
stricted for F = 0. 

5. Let ~ be a representative of the germ of an R+-versal deformation F~© TM cn+~+~,0 of t he  
projection f. Let us assume that on the set ~0 = ~-~(0) [a representative of f-~(0)] the 
height function u has a unique critical point (x, u) = (0, 0). Here a singular point of a 
complete intersection is considered critical for the height function. 

Definition. For almost all sufficiently small values of the deformation parameter X the 
function u has the same number of critical values on the complete intersection F~ = {~ [~=cons~= 
0}. We call this number the multiplicity of the critical point (x, u) = (0, 0) of the height 
function on the germ f = 0 and we shall denote the multiplicity by ~. 

Example. If f = x = + u 2, then ~ = 2. 

To critical values of the height function on the manifold ~ there ~orrespond in ~+~ the 
u-coordinates of the points of intersection of the line X = const with b (a representative of 
b). Hence ~ is the index of intersection of the line X = 0 and b in ~+~,which coincides with 
the index of intersection in ~+~ of the plane X = 0 and the set C of critical points of the 
projection (x, u, ~) + (u, X) restricted to F = 0 [13, Sec. 4]. If lco~O~,o is the ideal 

generated by the coordinate functions of the map f and all m-minors of the matrix (Sf/Sx) 
then by [13, Sec. 4] we get 

Proposition 1.2. ~ = dimc©c~+Lo/lco. 
COROLLARY 1.3. The discriminant A is defined by the Weierstrass polynomial of degree 

~ in the variable u: 

A = { ~  + ~_~ (~) ~ + . . . +  ~0  (~) = 0 ) ,  ~i ~_ Od, 0. 

The c o r o l l a r y  f o l l o w s  from the  p r o p r i e t y  of  t he  map A-+C~, (u,%)~+%. 

6. Finally, we recall the definition of another object considered below. Let ~ be from 
point 5. 

Definition [3]. By the bifurcation diagram E c~iC ~ of the projection f is meant the 
germ at zero of the set ~ of those values of the parameter I for which the height function 
has, on ~, less than ~ critical values. 

For ~.~ the height function is a Morse function on ~. The diagram Z consists of 
three components in general: 

Z d corresponds to the degenerate critical points of the height function on the smooth 
manifold Yl; 
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2 m corresponds to the coincidence of critical values of the height function on smooth 

Yl (Maxwell stratum); 

E s corresponds to nonsmooth sets ~l. 

Under the projection (u,. l) + ~ these components are the images, respectively, of three 
subsets of the discriminant: cuspidal edge, set of self-intersections, closure of the set of 
critical points of the restriction of the projection to a stratum of higher dimension. 

E is the branching manifold of the covering A - - ~ C  ~, ( ~ , ~ ) ~ + ~ -  

2. Multiplicity of a Singular Point of the Height Function and 

Codimension of the Pro~ection 

THEOREM 2.1. ~ = • + 1 for 0 < ~ < ~. 

The theorem follows from several assertions proved below. 

i. LEMMA 2.2. If 0 < ~ < ~ then O//Ou~P_Tf. 

Proof. Let this not be so. Then there exists a germ at zero of a vector field u = 0u + 

u10x~-... + U~#x n on C n+~, such that vf = Bf, where B is a germ of an m × m-matrix. The field 

v is tangent to the manifold f = 0 and can be dropped with respect to the projection p: Cn+~-~ 
C. It follows easily from this that v is also tangent to the set C O of critical points of 
the height function on f = 0 (C O is the manifold of zeros of the ideal Ic0 of point 1.5). 
Since D > 0 one has C0~{0 } . Consequently, C o also contains the germ of the phase curve 
F ~ {0} of the field v, passing through 0. Hence, dim C o > 0. But this is impossible be- 

cause dimc Ocn+~,o/ICo = ~ . < o o .  

2. LEMMA 2.3. Let / (/i ./ .~) (x[... r ~ . . . .  XnU )M, where M is a constant (n + i) x m-ma- 
trix, r > I. For generic choice of M, ~ ~- i. 

Proof. We consider a small deformation /:f=(q~(x,)... qn (xn) qn+l(U))M, where qz ..... qn+~ 
are polynomials of degree r, whose derivatives have no multiple roots. 

The critical points of the height function on ~ = 0 are defined for generic choice of 
the matrix M by the equations 

• , q~(x~).....q% (x%) =0,  1 <  q < . . . <  i ~ < n .  
Straightforward combinatorics give the number of these points: 

C~--I 
~ = ~ (r-- I)~-~-~¥~. 

To estimate the codimension • we consider complete intersections f = 0 and /I~=0 = 0. 
Let ~' and ~" be their Tyurina numbers. Considering the corresponding quotient spaces and 
using the (quasi)homogeneity of f (due to which Tf~u~/Ou ), we get: ~-i<~' +z~ (in fact 
it follows from what follows that for n > m here the equality holds, as for functions on a 
manifold with boundary [i]). For a quasihomogeneous completeintersection of positive dimen- 
sion, the Tyurina number coincides with the Milnor number [i0]. One can calculate the latter 

for f = 0, for example, as ~ (--I)~+~%, where ~s is the number of critical points of the func- 
~I 

tion ~m-st+~ on the set ~ =... = ~m-s = 0 [2, Vol. 2]. Us is the number of common zeros of 

all (m - s + l)-minors of the matrix (~ (~,...,~m-~+~)/# (x, ~)) on f~ ..... ~m-s : 0. Combina- 
torics gives 

C ~-~ (r -- l)n+~-(~-~)rm-~. ~ts = n + l  

C o n s e q u e n t l y ,  f o r  n > m 

• -~ ~ < ~ (-- i) ~+' C.'~q(r --  ])"+'-(=-')r ~-" -i- ~ (-- ~/+'C$-'( , ' --  ]).-(=-%m-,. 
S~l t ~ l  

It is easy to see that the number obtained from the summation coincides with the number 
~ calculated previously. 

For n = m, considering that /~ = 2[ ,~-~, ~ ~ oons~, ~ ~ i,...,m, we see by the direct 

calculation that ~ + 1 = m(r - l)r TM = U. 

. f~"' 3 We choose a representative 9 of the R+-miniversal deformation ~ ~=+~+~.~ of an 

arbitrary projection f. Let the map ~ be defined on the product X × U × A of neighborhoods 
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of zero in the spaces C ~, C , and C ~ . On these neighborhoods we impose the following condi- 
tions : 

a) the height function has, on F 0 = f-1 (0), a unique critical point (x, u) = (0, 0); 

b) for any ~ ~ A all critical points of the height function on ~---- {P l~=cons~ = 0} lie 

in the product X' X U', ~' X ~' ~ X ~ ~. 

We denote by W the image 0f P. 0 ~ ~ C  m- 

L ~  2.4. ~<r+~. 

Proof. Let Oz be the sheaf of holomorphic functions on Z. We consider on 9 = 0 the 
coherent sheaf of ~A-modules 

~ = o~_,~o~l~_,~><a~la~ . . . . .  a~ la~>.  

Its support is the set ~ of critical points of the restriction to ~ = 0 .of the projec- 

tion (x, u, ~) + (u, ~). In fact, if (~, e) ~ F~, but (z, e,~) ~C, then the stalk of the sheaf 

in the n~erator coincides with the stalk of the sheaf in the denominator. Now if (z, ~, %)~ C, 

then as minim~ ~(~.~,~)~OA.~ [the minimum is achieved if (z, e)~ F~- is a Morse critical 
point of the height function]. 

The map ~: C ~ A, (~, e, %) ~ ~, is proper of multiplicity ~. Hence the direct image ~ ~ 
is a coherent sheaf of ~ -modules. We show that in some neighborhood of the point ~ ~ C~ 
the sheaf ~ is generated by • + 1 elements. 

In fact, it follows from the versality of F that #//#u, Of/~%~ ~,...,@f/O%~ ~ generate 
the linear space 

~ ~' ~ 
~x~,(0,0)/{/ (m~,o) ~x~,(0.0) + ~x~:,(0,0)<a/la~ . . . . .  o / l ax~>} .  

~y t h e  p r e p a r a t i o n  t heo rem t h i s  means t h a t  0Y/~u, 8 B / 0 ~ l , . . . ,  ~Y/O~ B e n e r a t e  t h e  s t a l k  
~i~,0,0) as an ~ , 0  -module .  %t ~olLo~s  f rom t h e  c o h e r e n c e  t h a t  a ,  (8~/au), a .  (0~/~1) . . . . .  
n ,  (0~/8~) a r e  B e n e r a t o r s  o~ t h e  shea~ n , ~  o v e r  a n e i g h b o r h o o d  o~ z e r o  ~n A' ~ A ~ C% 

Th~s,  ~om ~ - ~  A' t h e  rank  o~ t h e  module (u,~)~ ~s n o t  ~ r e a t e r  t h a n  ~ + 1. L e n a  2 .4  
now ~ o l l o u s  f rom t h e  ~ a c t  t h a t  ~or a g e n e r i c  ~aLue ~ t h e  h e £ g h t  ~unc t£on  has~ on ~X, o n l y  
Morse c r L t £ c a l  pm~nts ,  t h e r e  ave  ~ o~ them, and e a c h  o f  them makes a contmLbutLon o f  1 t o  
t h e  r a n k  o~ (u ,~)~ .  

4. ~roo~ o~ Theorem 2 . 1 .  We c o n t £ n u e  t h e  s t u d y  o f  t h e  r e p r e s e n t a t i v e  ~ o~ a m~n~versaL 
d e f o r m a t i o n  o~ an a r b i t r a r y  p r o j e c t i o n .  Fo~ some s u f f i c i e n t l y  s m a l l  ~aLue X, l e t  t h e  heLBht 
~unc t~on  have ,  on t h e  m a n ~ o L d  ~ l  , c r i t i c a l  p o i n t s  o f  m u l t i p l i c i t y  ~1, • • -, ~ .  3~nce ~ Ls 
t h e  L n t e r s e c t ~ o n  index  of  t h e  l i n e  X = 0 w~th t h e  dLscrLm~nant  Ln t h e  e x t e n d e d  p a r a m e t e r  
s p a c e  E ~+~, one has  ;~ = ~ 1  ~ • • , ~ ~ l .  

I t  ~oLlows ~rom t h e  c o h e r e n c e  ~ t h e  shea~ n . ~  and t h e  p r e p a r a t i o n  t heo rem t h a t  ~om 
t h e  codLmens~ons o~ t h e  c o r r e s p o n d L n ~  p r o j e c t i o n s  (~ ~ l) + . . . + (~ ~ i) < m ~ {. 

Usln~ L e n a  2 . 5 ,  we ha~e ~ ~ ~ + . . . ~ ~ z <  (~1 ~ i )  ~ . . .  ~ (~l ~ i ) < ~  + l, w h ~ e  ~ < ~ i  
~ i ,  t = i , . . . , l .  

TakLn~ as t h e  deformed  p r o j e c t i o n  ~, t h e  s i n B u l a r i t y  o f  L e n a  2 . 3 ,  we ~ e t :  ~ = • + 1. 
Consequen tLy ,  ~L = ~L + 1 ~o~ aLL L. 

S i n c e  any p r o j e c t i o n  can be o b t a i n e d  by a smaLL d e f o r m a t i o n  o~ t h e  p r o j e c t i o n  o~ L e n a  
2 .3  (~om s u i t a b l e  r ) ,  t h i s  ~ n ~ s h e s  t h e  p roo#  o~ t h e  t h e o r e m .  

5. COROL~Y 2 . 5 .  Le t  ~ be a r e p r e s e n t a t i v e  o f  a mLn£~ersa l  d e f o r m a t i o n  o~ an a r b i -  
t r a r y  p r o j e c t i o n  f ,  and t h e  ~aLue L ' ~  C ~ o~ t h e  d e f o r m a t i o n  p a r a m e t e r  be s u f f i c i e n t l y  s m a l l .  
Then 8~/Ou I~z ' ,  8~/8L~ I ~ = z ' , . . . ,  ~ / 8 ~  [~=~, ~s a bas~s  ~or  t h e  (~ + 1 ) - d i m e n s i o n a l  L i n e a r  s p a c e  
(a.~)~,/~¢,, ~, (~,~)~,. 

5. We c o n s i d e r  r e p r e s e n t a t i v e s  ~ and ~ o~ t h e  d£scr~mLnant  and b ~ u r c a t £ o n  d~aBram o f  
t h e  p r o j e c t i o n  ~, and a l s o  t h e  co~er£nB ~ + A, (u ,  X) + ~, where A ~ C • ~ s  a s u f f i c i e n t l y  
smaLL neLBhborhood o~ z e r o .  

COROLLARY 2 . 6 .  The t a n B e n t  p l a n e s  t o  t h e  man£~old ~ a t  p o i n t s  ly£nB o~er  a n o n b ~ u r c a -  
t~on  v a l u e  ~' ~ A, a r e  ~n ~eneraL pos£LLon (#orm a c o o r d L n a t e  c r o s s  a ~ t e r  paraLLeL t r a n s p o r t  
t o  one p o i n t ) .  

~ _ _  
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An analogous assertion has long been known for singularities of functions on smooth 
manifol~s [12]. 

Proof. Let (x', u') be a Morse critical point of the height function on the manifold 
~,. The tangent space to ~ at (u', ~') is the image of the tangent space to C ~ C~+I+~ under 
projection along the x-direction. ~ = 0 is a part of the equations which define C. Hence the 
vector ~ = (~0, ~ ..... ~) lies in T(~.,~,)~ only for 

T 

~oOF/Ou [¢~,. ,~,, ~.,> + ~ ~017/8~ I(~', w, ~') --- 0 rood (Or/Ox~ i(x', u', ~') . . . .  o~/Ox,~ I~',~',.~). '~ 
i =  l "~ 

C o n s e q u e n t l y ,  t h e  v e c t o r  ~ i s  t a n g e n t  t o  ~ a t  a l l  ~ = ~ + 1 p o i n t s  c o r r e s p o n d i n g  t o  
c r i t i c a l  v a l u e s  o f  t h e  h e i g h t  f u n c t i o n  on 1Yx,, ~ ' ~  ~, o n l y  i f ,  i n  t h e  s t a l k  (~.~)~, 

~00g/0u + ~, ~0~I0~ ~ l iu, , .  (~,~)x,. 
{=1 

But by C o r o l l a r y  2 . 5 ,  t h i s  i s  o n l y  p o s s i b l e  f o r  ~o = ~  . . . . .  ~.~ = O. 

3. Vector Fields Tangent to the Discriminant 

w~ 
i. Let F ~ ~)cn+1+~,0 be an R+-miniversal deformation of the projection f. By virtue of 

the R+-versality there exist decompositions 
~ ~ 

u O F / 8 ~  ~-.~, vuOf/O)~ ~ + ~, h~jOF/OxsmodF* (mcm,0)©c~+l+~,0, ~ = 0  . . . . .  ~. 
~0 8=I 

Here vij(%) and hsj(X , u, %) are germs of holomorphic functions; %0 = u but % ---- (%1 ..... %~)- 

2. Let 6ij be the Kronecker symbol. 

THEOREM 3. i. The algebra 9~A of germs at 0 ~ £~+~ of holomorphic vector fields tangent 

to the discriminant A of the projection f, is generated by the fields u] = ~ (u~7- ~]~)~k~ , 
j = 0,...,~ as a free Oc~+~ ,~-module. i=o 

n 

Proof. a) We lift the field vj on ~+~+~ to a germ of a field v~. = v1 ~- ~ hsiO~s. It 
S=I 

! 

follows from the decompositions of point 1 that vj is tangent to the manifold F = 0. Hence, 
vj is tangent to A. 

b) The fields v 0 ..... v~ are independent over the ring d)c1+~,0, because 

~o A ~ A • • • A ~ = d e t  (vu - -  6~su) ~,~ A o~, A • • • A ~,~, 

where 6 = det (vij - 6iju) is not identically zero on C I+~ (the functions vij do not depend 
on u). 

c) 6 = 0 is the equation on the discriminant. 

In fact, since the ~ + 1 vector fields v0,...,v~ are tangent to the ~-dimensional mani- 
fold ~ one has {~ ---- 0} ~ A and 6 is divisible by the equation of A. But 6 is a Weierstrass 
polynomial of degree ~ = • + 1 in the variable u. By Corollary 1.3, precisely this poly- 
nomial defines the discriminant. 

d) We show that any field v, tangent to A, belongs to the module (~c1+~,~<uo ..... u~>. 

Analogously to point c, 

~o A • • • A ~-1 A ~ A ~÷~ A • • • A ~ = I ~ o ~  A ~ ,  A • • • A ~ ,  

where ~j(u, ~) is a holomorphic function. 

Then v = ~0v0 ~- , • • ~- ~v~. In fact, v- (~0v~ ~-... -~ ~v~)= 0 outside h (since at any point 
outside A the vector fields v 0 .... ,v< form a frame), and hence, by continuity this is also 
true everywhere in ~]i+~. 

3. Acting by analogy with points 1 and 2, we give generators of the algebra of vector 
fields which preserve the discriminant of a complete intersection. 

Let the map G: (E n+1+~, 0)-+ (C m, 0) give a miniversal deformation of the complete inter- 
section go = 0, ~----(%0,.--, ~) be the deformation parameters, x~C n . The discriminant of 
go: A ~ ~*+~ lies in the parameter space. 
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Let the deformation parameters be chosen so that the 010 axis has finite intersection 
index ~ with A. We denote by g the restriction of G to ~ =...= lk = 0. By Theorem 2.1 we 

have 

• "* * O'~ + ~'9C'~+1 o <@/OXl'  . Og/Ox,,>}. ~-~- dlmc©~n+L~/{g (m~m.o) Cn÷l,O , • • , 

Since G is a miniversal deformation of the complete intersection go = 0 one can take 
a basis of the ~-dimensional space considered in the form of the restrictions to l~ =...= 
kk = 0 of the elements 

OG/O~o . . . .  , ~°-tOG/O~o, OG/O~ . . . . .  ),~£-~OG/O~ . . . .  , OG/O~ . . . .  , ~ - ' ~ G / O ~ ,  

where ~o + ~i + • • • + ~ = ~. 

This follows from the preparation theorem. 

Now by the preparation theorem there exist decompositions 

• ~ n 

=_ E + * . .  
• h,~OG/Ox, m o d  G (racm,o) OC~+I+]~, O' ] ----- O, • , k ,  
~=0 S=l 

where hsj(X, X) are germs of holomorphic functions, vij(~) are polynomials in the variable )'0 
of degree s t r i c t l y  less than ~i" 

THEORE~ 3.2. The algebra 9fa of germs at 0 ~ C ~+~ of holomorphic vector f ie lds  tangent 
k 

to the discriminant A of the complete intersection go = 0, is generated by fields vj  = ~ (ui~ -- 
{=0 

6~i) ~, ] : 0 ..... ~, as a free ©O+~,~ -module. 

The proof completely repeats the proof of Theorem 3.1 (one uses the fact that 6----det × 

(u~]- ~uk0 "~) has degree ~ in ~0 and consequently 6 = 0 is the equation of the discriminant). 

Remark. For m = 1 and g = go + ~0, Theorem 3.2 is Zakalyukin's theorem on vector fields 
which preserve fronts [5]. 

4. Example. On (:~ we consider a multiple point of g o ( x ) = ( X ~ l - ~ X q ~ , x ~ x ~ ) = O ,  p > ~ q > ~ 2 .  
This is a complete intersection Ip,q from Giusti's list [ii]. A miniversal deformation is: 

~G (x, ~,,) = (.T1 p + ~,p_lX~1-1 -~- . . . ~- ~lXl -~- ~,o '~ 35'~ ~- ~.p+q_2X~ -1 -2c . . . .  -]- 2%px2, XlX2 -J[- ~,p+q-1). 

This same map (with X0 replaced by u) defines an R+-miniversal deformation of the pro- 
jection C~,= [3] of a curve from C 3 to a line. Hence ~ = p + q and all ~j = i, One can get 
a basis for 9/a by Theorem 3.1 as well as by Theorem 3.2. For the initial singularities of 
the series we have 

p = q - = 2  

vo = (2~,o, ~'1, ~'~, 2~,3); 
~ = ( - - 6 ~ , ~ ,  4~ o - - ~ ,  - - 8 ~ ,  ~ ) ;  
v2 = (__6~%a, __8~3  ' 4 ~  0 - -  ~2 2' ~2~3);  

,V 3 = (4~ 3 - -  2 ~ i ~ ,  - - 3 ~ ,  - - 3 ~ ,  ~0); 
p = 3 ,  q = 2  

z0 = (6X0, 4X~, 2 ~ ,  3 ~ ,  5~) ;  
v~ = ( - - t 2 ~ ,  9~ 0 - -  ~x~2, 6 ~  - -  2X~, --tSX~, ~ ) ;  
,v~ (--3X~X~X~ + 90~,  6 ~ ~ = - -  ~ + 2~x~ ~ 3 6 ~ ,  27X0 - -  tSExX~ + 4X~, 

--6~fXa, 6 ~ x ~ -  2X~4); 

v~ = ( - - 6 ~ ,  ~8~2X~, - - 1 0 ~ ,  4X0 - -  ~], ~3~) ,  
v~ = ( - - 2 ~ 3  + 4 ~ ,  - - 3 ~ 3  + 5 ~ ,  ~ 4 ~ ,  ~3X~, X0)- 

The d e f o r m a g ~ o n  o f  ghe  s i n g u l a r $ ~ y  Yp,q  we h a v e  d e s c r i b e d  i s  q u a s S h o m o g e n e o u s .  C o n s i d e r -  
i n g  ~he w e i g h t s  and  l ~ n e a r  p a r t s  o f  t h e  b a s ~ s  v e c g o r  fSeXds  $~ i s  e a s y  go p r o v e  ghe  f o l ~ o w ~ n g  
a s s e r t i o n s  abou~ n o r m a l  f o r m s  w ~ h  r e s p e c ~  [ o  ~he g r o u p  o f  b i h o l o m o r p h Y s m s  o f  ghe  s p a c e  Cp+q, 
w h i c h  p r e s e r v e  t h e  d Y s c r ~ m i n a n g  o f  ~ p , q  ( o f .  [ 6 ,  5 ,  7 ] ) .  

P r o p o s i t i o n  3 . 3 .  The germ a t  0 ~ Cv+q o f  a h o X o m o r p h i c  f u n c g ~ o n  ~n g e n e r a l  p o s i [ i o n  f o r  
q = 2 r e d u c e s  go n o r m a l  f o r m  Xp_~ and  f o r  q > 2 h a s  modu l~ .  

P r o p o s i t i o n  3 . 6 .  The ge rm a t  0 ~ C p+q o f  a h y p e r s u r f a c e  ~n g e n e v a 1  p o s ~ g $ o n  f o r  q = 2 
r e d u c e s  t o  no rma1  f o r m  kp_x = 0 f o r  q = 3 < p ~o n o r m a l  f o r m  ~p_~ +~v+~ = 0, and  f o r  ~he r e -  
m a n n i n g  vaXues  o f  p and  q h a s  m o d u l i .  
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5. We formulate an assertion which gives more convenient formulas for generators of 
the module ~ in the case of a quasihomogeneous complete intersection. 

This time let G(x, ~) be a quasihomogeneous (k + l)-parameter miniversal deformation of 
quasihomogeneous complete intersection go = 0 of positive dimension, w i be the weight of the 
parameter h i. The Euler field e = Wo~oO~o + . . .  ~ w ~ %  preserves the discriminant. Let 

~(~) be the matrix of multiplication by a function ~ (x) and the ©c".0-module 

O ~  +~+1, 0 /{G$ (mcm, o ) 0c%÷~+11 o + 0(. N÷~+I, o <OV/Oxi . . . . .  OG/OxN> } 

i n  t h e  g e n e r a t o r s  OG/d~z, i = 0 , . . . ,  k: 

~OG/O~ =-- ~ ¢~OG/O~. 
i=O 

~ exists due to the versality of G, but is defined up to addition to its columns, of 
columns composed of the components of any fields from ~. 

Identifying a vector field on C "+I with the column of height k + 1 of its components, 
it is easy to see that ~e~. 

Let I be the ideal in ©c~,o, generated by the coordinate functions of the map go and all 

m-minors of its Jacobian matrix. It follows from the quasihomogeneity of go and the condition 

n > m that the linear space ©¢~,0/f is (k + l)-dimensional [i0]. Let ~0,-.., ~ be representa- 

tives of a basis of this space, and ¢0,...,~k be the corresponding matrices of multiplica- 
tion. 

THEOREM. The fields ~oe,...,~ke are free generators of the Gc~+L0-module ~a of vector 
fields tangent to the discriminant of an isolated singularity of the complete intersection 
go = 0 of positive dimension. 

The proof of this fact is given in the author's paper in Vol. 33 of the series "Current 
Problems of Mathematics" (Itogi Nauki i Tekhniki VINITI AN SSSR). 

4. Vector Fields Tangent to the Bifurcation Diagram of a Projection 

i. We continue to consider an R+-miniversal deformation F of the projection f. Since F 
is versal, there exist decompositions 

~ ~ 

u~OF/Ou .-- Y, woOF/O~ ~ ~- ~ h~OF/Ox~ m o d f *  (n~cm,0) Oc~+l+~,0, ] ~  1 . . . . .  ~. 
i =0  s : l  

Here wij(~) and hsj(X, u, ~) are germs of holomorphic functions, ~0 = 0 but ~ = (~i,...,~)- 

THEOREM 4.1. The algebra ~!~ of germs at 0~ ~ of vector fields tangent to the bifurca- 
T 

tion diagram ~ of the projection f, is generated by the fields w1 ---- ~ w~iO~; ] = i, . .., z, as a 
free ~c~, 0 -module. ~=~ 

The theorem follows from the three lemmas proved below. 

2. LEMMA 4.2. The field wj is tangent to 7.. n 
,~ 

Proof. We lift wj to a germ of a vector field on E n+~+~ w~ = w~ -~ (w~ -- u~)O~ ~- ~=~' h~O~ s. 

,! 

It follows from the decompositions of point 1 that wj is tangent to the manifold F = 0. Con- 
se.quently, the image of this field under projection-in the x-direction on ~+~, the field 
w~----w7-~ (w~7- u~)Ou, is tangent to the discrSminant of the projection f. Consequently, the 
field wj itself, obtained by projection of wj on E~ in the u-direction, is tangent to the 
branching manifold of the covering A-~ E~ , i.e., to the set ~. 

3. LEMMA 4.3. The algebra 9~m is generated by the fields w~ ..... w~ as an ©c%0-module. 

Proof. By a theorem of Lyashko [6], any germ of a vector field w, tangent to ~ lifts 
from ~ to {]~+~, to a germ of a field w', preserving the discriminant ~ 

w' = w - - ~ ,  ~ =  ~ ( u , ~ ) .  

The  f u n c t i o n  X i s  d e f i n e d  a t  l e a s t  up  t o  t h e  e q u a t i o n  o f  t h e  d i s c r i m i n a n t .  By C o r o l l a r y  
1 . 3 ,  × c a n  be  a s s u m e d  t o  b e  a p o l y n o m i a l  i n  t h e  v a r i a b l e  u ,  o f  d e g r e e  no  h i g h e r  t h a n  ~ : X =  
T 

Y., x~ (~) ~ .  
~'=9 
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We show that w ~ x ~ v l .  
j = l  

~I+~ For this, we consider on ~ , the germ of a vector field 

~]~--W'-- ~ XiW/. 
~=1 

T h i s  f i e l d  i s  i n d e p e n d e n t  o f  u .  I n  f a c t ,  f o r  i t s  h - c o m p o n e n t  t h i s  i s  o b v i o u s ,  and t h e  
c o e f f i c i e n t  o f  8 u i s  e q u a l  t o  

~ T 

-- Z -- ~ ~ (~Vo~ -- u ~) = -- ~ o -  . ~  ~Wo~. 
~I ~ = I  

On the other hand N is tangent to h. Hence, if we pass to representatives of the terms, 
then for X ~ Z the vector ~(X) is tangent to the discriminant at all ~ = < + I points of 
the set % fi{X = const}. It follows from this, by Corollary 2.6, that ~(X) = 0. Since ~ is 
a hypersurface in C ~, one has that ~ is identically zero. 

4. LEMMA 4.4. Among the fields w~ ..... w~ there are no relations. 

Proof. Let us assume that a relation exists: 

T 

~ z~(~) %----0.. 
~:I . 

We lift it to a relation on C ~+~ among fields from ~a: 

~(~) w/-- ~ (u, ~) 0~ =0. 
~=i 

for 

• 
The fields w~,..., w~ are tangent to A. Hence the field X8 u is also tangent to A. But 

% ~  the direction of the vector 8u is transverse to the manifold ~. Hence for %~ 

vanishes at any point of ~ {% = ~onst}. Consequently, X ~ 0 on A. 

Now we consider, on the discriminant, the u-component of the relation among the fields 

Y, x~ (~) (Zo~ (~) - ~) .  
j=l 

This polynomial of degree no higher than • in the variable u, vanishes identically on 
A. Hence, by Corollary 2.6, XI =-.. = X~ = 0. 

This finishes the proof of Lemma 4.4, and with it, that of Theorem 4.1 also. 

Remark. For m = i and f(x, u) = f0(x) = u the assertion of Theorem 4.1 coincides with 
the assertion of a theorem of Bruce [8] on vector fields, tangent to the bifurcation diagram 
of the function f0. 

5. For practical calculations it is convenient to express the generators of the module 
~x in terms of the generators of the module ~. We show how to do this (cf. [14]). 

Let .~: (x, u, %) ~ %, hi: (u, %) ~ %, %0 = u, % = (~I .... , %~) Let V = (v~)~, ~=0 be the matrix of 
the decompositions of point 3.1, i.e., the matrix of multiplication by u in the Oct, 0 - 
module 

m ~ ~ ~ • ~,  (O~+I+Lo/{F (recto,o) Oc~+1+~,o ÷ Oc~+1+~,o <OF/Ox~ . . . .  OF/Ox~>}) : 
T 

aOF/O~ ~ ~ v~OF/O~. 
i=O 

N v ~ $ n g  a v e c t o r  f i e S d  as  ~he c o ! ~ n  o f  i ~ s  c o m p o n e n t s ,  we ge~ f rom Theorem 6 . 1  

COROL~RY 6 . 5 .  G e n e r a t o r s  o f  t h e  module  ~ a r e  g i v e n  by ~he f o r m u l a s  

w1 = ~ ,  [V~-~vol ,  ] = l . . . . .  x ,  
T 

where  v ~ =  ~ v~oO~ i =  v o + uO=. 
i=O 

6. ~e c o n s i d e r  ~he p r o j e c t i o n  C2.~ (x~ + x~ + u, x~x~). 
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Using the algorithm of Corollary 4.5 and the vector fields of point 3.4 (p = q = 2, 
~0 = u) we get basis fields which preserve E: m0 = (~I,%2, 2~3) is the Euler field; 

~1 ( ~ + 3 2 ~ 3 ,  ~ = ~ + 32ElXa, - - ~ a  - -  ~ ) ;  

w2 = (t~ --  36£~k~3 ~- 288k,k] - -  4 k ~ ,  i~ - -  36k,k~ka -~ 288k~k~- 4~k~, 64~] - -  176k~k~ --  ~k~ --  ~ ) .  

The e q u a t i o n  o f  t h e  b i f u r c a t i o n  d i ag ram o f  C : , :  ( c f .  [ 9 ] ) :  

det (w~) = (4096k] + 768k lk~  ~- 27~ka - -  6~,~k3: ~ + 27~ks ~ ) ( s  a k~, - -  t~)ka = 0.  

The f i r s t ,  s e c o n d ,  and t h i r d  f a c t o r s  c o r r e s p o n d ,  r e s p e c t i v e l y ,  t o  t h e  components  ~d, Zm, and 
2 s o f  p o i n t  1 . 5 .  

P r o p o s i t i o n  4 . 5 .  The germ a t  0 ~ _ E  a in  g e n e r a l  p o s i t i o n  can be r e d u c e d  t o  t h e  normal  
form k,. ~- k~-~ak~ -~ ~ ~ 0, a, ~ =  c o n s t  by a b i h o l o m o r p h i s m  o f  t h e  s p a c e  E a, which  p r e s e r v e s  
t h e  b i f u r c a t i o n  d i ag ram o f  t h e  p r o j e c t i o n  C2,~.  
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