BIFURCATION DIAGRAMS OF SOME SIMPLE AND QUASTHOMOGENEOUS SINGULARITIES

V. V. Goryunov UDC 513.836+517.919

We recall the construction defining the bifurcation diagram of a function [1].

We consider the space of smooth functions. The group of diffeomorphisms acts on it
(change of independent variables). The orbits of this action are infinite-dimensional sub-
manifolds, but if the critical points of the function are not very complicated (namely, are of
of finite multiplicity, i.e., are obtained by the confluence of a finite number of Morse crit-
ical points), then its orbit has finite codimension. Imn other words, through such a functiom
as through a point of a function space, one can draw a finite-dimensional transversal to the
orbit. The partition of the function space into orbits induces a partition of the trans-
versal into submanifolds (with singularities). The union % of the submanifolds whose dimen-
sion is less than the dimension of the transversal (they correspond to functions with non-
Morsean critical points or coincident critical values), is called the bifurcation diagram of
the function.

One can give an analogous definition for germs of holomorphic functions. 1In this case
the transversal is the germ of a py~dimensional complex space (called the base of the versal
deformation), where p is the multiplicity of the critical point (that is, the number of merged
Morse points).

Let us assume that the germ of a holomorphic function is simple, has no continuous in-
variants with respect to the group of substitutions of arguments. We consider the space cH\
%, the complement of the bifurcation diagram of such a function in the base of the versal
deformation. About 10 years ago Lyashko and Looijenga proved that all the homotopy groups
except the fundamental group of this space are trivial ([1, 91).

This theorem was later extended to simple functions on a manifold with boundary [6], and
also to simple projections onto a line [4]. In the present paper, using the technique of [6,
9], we show that the analogous assertion is valid in two more cases, for functions with simple
linear singularities and for simple projections of a hypersurface with boundary onto a line
(all the definitions needed are contained, respectively, in Secs. 1 and 2).

We shall dwell briefly on the objects considered in the paper.

It is known that in the classification of critical points of functions there arise in a
natural way infinite series of singularities (A, D, T, etc., c¢f. [1]). Arnol'd indicated in
[1] that the classification of the series themselves reflects the classification of singular-
ities with nonisolated critical points (for example, the series of functions Ay, k 2 0, having

the form x§+l + x5 + ...+ x% in suitable coordinates, corresponds to thevfunction Ayt x5 +.. 4
X, with singularity on the line x2 =...= % = 0). In his recent paper [7], Siersma singled

out the simplest among the nonisolated singularities, the so-called linear ones, with smooth
one—~dimensional critical set. Siersma also gave the classification of simple linear singular-
ities, which is cited in Paragraph 1 of Sec. 1. We shall show that the start of the classi-
fication of linear singularities of functions onto the plane coincides with the classification
of critical points of functions on a manifold with boundary. But the bifurcation diagrams
which arise naturally in our case differ from the bifurcation diagrams of boundary singular-
ities considered in [6]. Namely, for the complements of these new diagrams we shall also
prove in Sec. 1 a theorem on the triviality of the higher homotopy groups.

In Sec. 2 we consider projections of a hypersurface with boundary ontoc a line, i.e.,
of hypersurfaces in C® on which there is singled out a submanifold of codimension 1. Projec-—
tions of such manifolds are a natural generalization of projections of hypersurfaces [4] and
functions with a critical point on a manifold with boundary [2]. Hence it is not surprising
that the start of the classification of projections of hypersurfaces with boundary which we
give coincides in part with the classification of projections of hypersurfaces (without bound-
ary), and in part with the classification of functions on a manifold with boundary. Here the
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new bifurcation diagrams of simple singularities do not differ from the previous ones, the
complements of which, as we already noted, are Eilenberg-MaclLane spaces. But for those sin-
gularities which occur in our classification first, it turns out to be possible to prove the
theorem that the germ of the complement of the blfurcation diagram is a space k(mw, 1).

Finally, in Sec. 3 we study the bifurcation diagrams of zeros of quasihomogeneous pro-
jections of complete intersections onto a line (here a complete intersection can have a
boundary). It turns out that the analog of Zakalyukin's theorem about the stability of a
vector field, transverse to the bifurcation diagram of zeros of a quasihomogeneous function
with respect to the group of diffeomorphisms preserving the diagram [5] is also true for
them. From this there follows as a corollary, Zakalyukin's theorem itself and its version
for functions-on a manifold with boundary. :

“ The author expresses profound thanks to Arnol d for posing the problem and for his
constant interest in the work. .

1. Simple Linear Singularities

1. In [7], Siersma introduced the concept of a function with linear singularity as a
function whose critical set is a line. He got a list of simple germs of functions with iso-
lated linear singularities. Each term of this list is obtained as the limit in a certain in-
finite series of iscolated points singularities (cf. [1]). Up to stable equivalence [the
function f(x, y1,...,yn) is stably equivalent with the function (%, yi,...,yp) + y§+l]
Siersma's list is given in Table 1.

_Here @& ¥y oy Yn) &0t o = codim f  (cf. Paragraph 2), BBy is the generalized braid
group of the series B [3]. The meaning of the last column is explained below.

In this section we define the bifurcation diagram £ C €% of a function with an iso-
lated linear singularity and we prove the theorem about the homotopy type of the space CY\
L for simple singularities.

THEOREM 1. The germ at zero of the complementary space to the bifurcation diagram of
a simple function with an isolated linear singularity is a space k(w, 1), where 7 is a sub-
group of finite index (indicated in the last columm of Table 1) in the group BBj.

2. We recall the-definitionrof a function with isolated linear singularity. Let f:
(c?*', 0) > (€, 0) be the germ of a holomorphic function with smooth one-dimensional critical
set L. We introduce in C®*! coordinates (z,y) =C! X €', such that L = {y = 0}.

Definition. f has an isolated linear singularity if for any x = O the germ at the point
(x, 0) of the restriction of f to the plane x = const is equivalent with the germ of the

function y? +,.. + y;.

We denote by &y the space of germs at O of holomorphic functions on €™, (y) &y
is the ideal generated by the elements yi,...,yp. If £{(0) = 0 and f has L as critical set,
then | e ()%

Let ¥ be the (pseudo)group of germs of diffeomorphisms of the space C2*!, preserving
the line y = 0. The tangent space to the $-orbit of the function £ at the point f in (y)?
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is T = & yfx + ) >, where f, = ofloz, <f,> ::<@,....,fm) . We set codimf = dimg (y)?/Tf.
3. We consider the question of the connection of the classifications of boundary and

isolated linear singularities.

It is easy to see that the quasihomogeneous singularities of functions h on €2 with
boundary c! =L (cf. {2]) and of quasihomogeneous isolated linear singularities of f for n =
1 are in one-to-one correspondence: :

bz, y) ~ 1z, y) = y*h (2, y).

Here codim,  Gh = codim,s Gf.

For simple singularities the indicated correspondence is this:

1 ~ Aocy An ~ qu Au ~ Ju«l—l,cxv
Bp, ~ Tu,u+-2.-:- Cu ~ Zu—-‘z,m» F4 ~ Wl, co*

The coincidence considered of the classifications of quasihomogeneous functions extends
to boundary singularities €™ and functions on C™*!, whose critical set is a hyperplane and
whose restriction to almost any transversal to it is a Morse function.

Further, we consider a function on a manifold with boundary with isolated critical point
0 and critical value 0, stably equivalent with a function of two variables:

W, uy, ..., uy) =h(U, w) +~us ...+,
(v, uy, oo u) ECH, po= 0 — in the boundary

The function v2?h' has critical set the hyperplane v = 0. Contracting this hyperplane
to a line by the map x = u1, Y1 = V, Y2 = VU2,...,¥p = Vup, we get a function vih(x, y1) +
yl + ...t yn with isolated linear singularity on y = 0, stably equivalent with a function of
two variables.

By the same method, from the boundary singularity Dy, u 2 3: v + uus + ug_l one makes
a singularity Q- ,os and from Cy: vup + uf + uju’ one makes the singularity S; ,o- We note
that the codimensions of the singularities which correspond to one another c01nc1de.

4. Definition. By a k-parametric deformation of the function f& (¥)? is meant the
germ of a holomorphic map from (CK, 0) to ((y)z, f).

One can introduce in a natural way the concept of versal deformation of a function f
with isolated linear singularity (in this case codimf < «, c¢f. [7]). One can show that

4

Fz,y, N)=f(x, 1) Z el ), reCo,

is a miniversal deformation, where o == codim f, e;, ..., 6, & (y)* are representatives of a C-
basis of the space (y)?/Ts.

Let F be a representative of F. For a generic value of the parameter A the function
FA = F|)=const has on L only singularities A, and Dy (the critical value zero corresponds
to them), and outside L only A; (while the corresponding critical values of F} are distinct
and different from zero). For almost all sufficiently small A the number of critical wvalues
of the function FA is the same. Let this number be a@. We shall show below that at least
forn=1, a =0 + 1.

Definition. The germ at zero I of the set < (C C€° of those values of the parameter
X, for which the function F* has less than a critical values, is called the bifurcation dia-
gram of the function f with isolated linear singularity.

'S

The diagram I consists of four components, X= ['X;:5, corresponds to the appearance in
1

FA of a singularity A, outside L; I to a singularity J, yo0 OO L; I3 corresponds to the criti-
cal value O of the function FA outside L; 24 to the c01nc1dence of critical values FA outside
L.

Examples.

a) Jyo F=y*(y +2*+1) Z={0}
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B) Jy o F=yP(y+0% + gz + 4. I, = 0y =0}, 5, = {213 8 =0), T, = 7, I, = 8] —
47 =0} . (Fig. 1. :
) Tu,s,0 F =1yt (:v-+y —,—ky*kz) 2= {32k, = 9Al}, B, = {}, ~0} Ty o= {4k, = A3}, 3,
{hy =0}. (Fig. 2). - ~ ,
. d) Too3's F“Iyxyz‘{‘yl'f‘yz“f';‘q%'}‘hzy’f 2y =0, Zz“'—;{}”l?‘i:o}' 2y =, 24*{7"3'“&}
(Fig. 3). ‘ ‘ '

‘ Remark. Let f be a quasihomogeneous function of two variables with isolated linear
singularity or & @y, S1,%, and h be its dual function in the sense of Paragraph 3 on a’
manifold with boundary. It is easy to see that the correspondence indicated in Paragraph 3
extends to miniversal guasihomogeneous deformations of f and h. Here the spaces of param-
eters are mapped isomorphically and it turns out that 2, |} 23 1is the bifurcation diagram

of zeros of the boundary singularity h. : :
If & Tu,q.r, then 0 = q + t — 4 and €\ (2 U }:3) (€172 \ Weoa) X (€72 N\ W,op) , where
Wy € is the bifurcation diagram of zeros of the boundary singularity By .

5. Using the lists of contlgultles of pclnt and boundary singularities {f{, 2], one can
show that one has

_ " Proposition 1. All contiguities of simple isolatedrlinear singularities with-one another
are obtained by composition of a flnlte number of contxguxtles 1nd1cated in the diagram (the
index « is omitted).
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Proposition Z. All contiguities of simple linear singularities to point singularities
are obtained by composition of contiguities of linear singularities to one another, of simple
p01nt singularities to one another, and contiguities listed below:

Ay < X, where X is any of the simple linear singularities except T ,, ¢ =»r >3, ©
is the codimension of X;

Wl cc“"DQ""‘SI s D “*Qu—l,

6. Let an isolated linear 51ngular1ty of £ split into r singular p01nts of type Dy oOn
= {y = 0} and s singular points. of type Ay outside L.

Conjecture (Siersma [7}).

s = dim¢ )*/{&x, ofc + @) TOY Lo, s=0
r + s =dimc (y)/é~,y s fy>

Proposition 3. The conjecture is true for n = 1.

Proof. TLet F: (C*™ x €5, 0)— (C,0), A<= (€% be a versal deformation of the function £.
For n = 1, f(x, y) = yv*h{x, y) and F(x, y, A) = y2H(x, y, A), where H & &; y,» b= Hbh=
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s is the intersection index of the plane *» = 0 with the germ of the surface M €™ X
€9, which is the closure of the germ of the set {Fx = 0, Fy 0, y # 0}; r is the intersection
index of X = 0 and the germ of M' = {y = 0, H = 0}.

M={H,=0,2H — yH, = 0},
MM ={yH,=0, 2H + yH, = 0}.

Whence
s = dimg &y, y, a/&x, y 0 Hy 2H + yH,, 1.) =
= dimg &, y/&x,y <hxr 20 + yhy> = dime (1) &,y Y P 290 + yhyy = dimg (§)*/8x,y s Yy = 0
o8 = dlm(} ((gx, Y, A/gx, v, M \/yH”c’ 2H _:' yHi/- A’> = dlmc (y)‘/gx.y <y2h’m 2.1/]1 - y2hy> = ‘]imc (y)gx,y <f¢\" f!/>

Direct calculation shows that Siersma's conjecture is also valid for simple linear sin-
gularities.

7. Proof of Theorem 1, It is evident from Table 1 that any simple linear singularity
has quasihomogeneous normal form f, having the following property. If ej,...,eg is a mono-
mial basis of the space (y)?/Tf, then the weights of all arguments of the corresponding mini-

(1
versal deformation F(r,y, A)=7F(z,y)-+ > Mei(r.y) are positive.
1

The quasihomogeneous map F and diagram I (T C° are defined globally. We shall show
that €\ X 1is a space k(m, 1).

1f A& S, then by Paragraph 5 the function FA = F|)=const has exactly o critical points
of type A; and at them it assumes distinct and nonzero values z;,...,2g. We construct a
polynomial of degree ¢ with leading coefficient 1 and roots z3,...,%2g. We get a quasihomo-

fd

geneous map ¢: € \ ¥ — (€5 \ E, where (C9\ E 1is the space of polynomials of the form z0 +

!

227 4 ... Loy, @ & €9, without multiple and zero roots. €%\ E is the classifying space of
the generalized braid group of the series B: C°\ Z = k (BB, 1) [3].
We shall show that ¢ is a covering.

¢ extends continuously to strata of the highest dimension of the diagram Z, and hence
also to a quasihomogeneous map &: (€9, 0) > (¢%, 0).

LEMMA. ©~1(0) = {0}.
Proof. a) f&E Tv . g7 =3,

Let H(v, u, %) be the quasihomogeneous miniversal deformation corresponding to F of the
boundary singularity h, dual to f (ef. Paragraph 3 and the remark of Paragraph 4). ¢~1(0)
belongs to the bifurcation diagram of zeros of h. It is easy to see that if 0 is the unique
critical value of the function FA, then 0 is also the unique critical value of HA as a func-
tion on a manifold with boundary. Since h is simple and the Dynkin diagram of a simple func-
tion on a manifold with boundary is connected, H* has a unique critical point of multiplicity
codimh = codimf = o, while at it H* = 0. The miniversality and quasihomogeneity of H now
imply that A = 0.

b) fEch,q,ﬁ Q>r>3-

F(z, g, y=zyrys 4+ y] + 2yl oo F gty + ¥s F Rgnly e hgureiy =2y + (g1, M2+ B (e M B

For A&ZX the critical points of FA outside L are

{2=0,y, =0, By, +2p* =0} {z = 0. y, = 0, (@) 'y, + 2a* =0}.
On the first of these subsets FA = Bky%, on the second FA = axyﬁ. Hence A e= @1 (0)
if and only if BMy3 = 0 everywhere on (B*y3) = 0, and ary; =0 on (ay?) = 0. But the poly-
nomial p(t), which vanishes at all zeros of its derivative, has the form 4 ({ — )", 4,a = C.
Consequently, Py =y and aMy? =9, i.e., ¢71(0) = {0}.
The lemma is proved.

From the lemma and the positivity of the weights of the arguments and the coordinate
functions of the map ¢ it follows that ¢ is proper.
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To prove the theorem now it suffices to show that ¢ is a local diffeomorphism.

In the space C! x C! X C" X C° with coordinates (z, X, y, A) we consider the surface N
which is the closure of the set {z = F(x, y, A), Fy = 0, Fy = 0, y # 0}. We set N0 =N
{?. = const}.

Let A& Z. Then N = {Pz}1, while for all i = j, z(pj) = z(pJ) =0, y(pl) z 0. The
map @ is constructed from the numbers z{ = z(pj). It is easy to see that since zi * zj,
the map ¢ is degenerate at the point Ae o\ X if and only if there exist vectors v; =
(0, (dx)i, (dy)j, dr), dr = 0 tangent to N at the points Pis i=1, ,0.

The tangency condition has the form
: —1 F, F, F,
vicKer| 0 F F . Fyu
: \0 ny Fyyr [yh Py
Since F)‘ has a- 51ngu1ar1ty A1 at the p01nt x(pp), y(pl)), one has Fx(Pl) Fy(Pl) = 0

. F
and det( T FW)

: ‘xy yy’

=,eu . Hence the condition of degeneracy of 9 assumes the form
P; . .
~ Fy(pdh =0, z-1 . d?»;EO .
‘This is equlvalent ‘with the degeneracy of the matrlx (F,u (p)), g = (Ej (pl))z j=1 iv.e., the
11near dependence of the functlons Blj...5€5 OR NA. ) '

We shall show that as a matter of fact, {,ej.} is-a C-basis of the o—dimensional function
space O% on NA. : : ; _

a)n=1. f =y?h; F =Ay_2H, h and H are polynomials: N* = {H} =0, 2H* -+ yH) = 0}. ,
© = Clz, yliC [z, y)<HE 2H + yHY>, where C[x, y] is the space of_polynom‘ials in the variables

Since the linear singularity f is isolated, the 1dea1 Ti = &x,y{fx yfy> contains some
power of the maximal ideal My y C &y s multiplied by y2 {7]. Hence the monomials ey,. cay€g
- are a basis not only of the space | (y)z/Tf, but also of the space C[x, yly?/Cix, yl<f, yig>.
Consequently, e1y~? egy =% is a basis of C[x, yl/Clx, yl<hg, 2h + th, and hence also of

the space @O for suff1c1ent1y small (by- qua51homogene1ty also for any }»g % . Since the
function y is invertible on NA, ome has that {ej} is a basis of o™ ’

b) n = 2. We consider f& Qp4,~. The cases fe Tm” » and fESl « are analyzed
analogo’usly. —_— o ,
F =y} + 2y; + gyi + Aohpas
g=2at f hat% ...+ kg
Let A\g # 0. The coordinates of the points pl,...;pd of the set N* are determined by
the conditions . L :
g @y +y:=0, 3y + 2@y + kot =0,
22y, + Aoy =0, y#0-
or 4 (@D +A =0,y = (s — 4g (x) z)/6z Yo = —hgyr/2x.
‘The condition A& 2 | {As = 0} implies for all i = k, x(pj) = x(pg) = 0 = y:i(pji).
Hence the functions x and y; are invertible on NA and
det (¢; (o)) # 0 > det ((eszyi?) (p) = O.
But {ejzy:®} = {z, 2%, . .., 2%, zy,y7"} and on N* zyu;i* = —Ae/2 . Since x(p;) # x(pg) for
i # k, one has det ((e;zy;%) (p1)) 7= 0.
Now let Ay = 0. Then
’ 2 a ]
N’”={g (2)=0,y1=—5¢g(), !/2=0} U {z==0, 3y1 - 2Ao1=0, Agayi-+y:=0}
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For A X the function y, is invertible on NA and

det (¢; (p;)) 7= 0 & det ((e;y7°) (ps)) 5= O,
feuity = {1, z, . . ., 292, ')

Az 0
((ejy]—.:z) (pl))=(1 0 (— A‘0-.-2)1/2 ’ k; r=1,- .o ,0'—2-
10 —(=a, "

\

Here {kk} are the roots of the polynomial g', degg' =0 — 2.

Since for A& X | {Ag-s =0} the roots of g' are distinct and different from zero, for
Ag-p # O the matrix written down is nondegenerate.

Thus, on CoN\ (2 UJ {As = Aoy = 0}) , and hence also everywhere in C°\ X, ¢ is a local
diffeomorphism. .

Thus, we have shown that C°\ 2 =% (x, 1), where 7 is a subgroup of finite index in the
group BBys. The index of 7 is sought as the degree of the quasihomogeneous map ¢. If B;,...,
Bg are the weights of the parameters Ai,...,Ag, Bo is the weight of f, then B¢, 2B¢,...,0B0
are the weights of the coordinate functions of ¢ and

(BBg: ) =o! B3 / [ Bs-

2. Projections of Hypersurfaces with Boundary ento a Line

In this section we consider the problem of classification of projections of hypersur—
faces with boundary onto a line, we list all simple objects of this classification and for
them we prove a theorem on the homotopy type of the complementary space to the bifurcation
diagram, analogous to Theorem ! on linear singularities.

1. Definition. By the boundary of a hypersurface S CC*1, n > 1, is meant a submani-
fold of 3S of codimension 1. ;

By a projection of a hypersurface S with boundary 23S onto a line is meant a diagram

a8 - 8 - L g,

where the first two arrows are imbeddings, I is a projection. An equivalence of two such
projections is a commutative diagram

I
48— S — C*1 . ¢!
) 1
R Lk
n+t I

aSl—>S1—~>C "'Clg

where h and k .are diffeomorphisms and & (S, d8) = (S,. 48,).
One can give analogous definitions for germs.

2. We introduce in €' coordinates (z, u) =C" C', in which the projection I can be
written as H{x, u) = u. It will be assumed that the germs at 0 of the manifelds S and 3S are
complete intersections: S = {f1 = 0}, 35S = {f;, = f, = 0}, where f1 and f, are elements of the
maximal ideal m. ., &.,. The germ at O of the projection (x, u) > u of the hypersurface
f1(x, u) = 0 with boundary fi(x, u) = f2(x, u) = 0 will be called a boundary projection f.

Let &i . be the set of all germs at 0 of holomorphic mappings from CB*! to CM. The
space 1 &}, splits into equivalence classes of boundary projections: projections f =
(f1, f2) and g = (g1, g2) are considered equivalent if and only if there exist a, b, ¢ & &s,
ac & i, , and a germ of a diffeomorphism h: (C™*', 0) » (CP*, 0), h(x, u) = (he(x, u),
k(u)), such that h*g; = af;, h¥%g, = bf; + cf,.

Definition. The germ of a boundary projection is simple if it has no moduli (continuous
invariants) with respect to the equivalence introduced.

We set T;= & u{(fy, 0), (0,7), (0, fs), x> + &fu and we introduce the codimension of the
boundary projection f: v = dim &2 .. T;.
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One can prove by traditional methods of the theory of singularities

Proposition 4. Any germ of a projection of a hypersurface with boundary onto a line,
which is simple, is equivalent the germ at zero of a projection (x, u) > u of a hypersurface
f =0 with boundary f; = f, = 0, where £ = (f;, f,) is one of the maps of Table 2.

Remarks. a) The problem considered here can be posed mot only for hypersurfaces, but
also for complete intersections of arbitrary codimension. One can show that up to stable
equivalent of projections [4] any simple projection of a complete intersection with boundary
onto a line is a projection of a hypersurface with boundary.

b) The whole classification of germs at 0 of projections of hypersurfaces f1 = 0 with
boundary f, = f; = 0 from C®*! onto C*, (x, u) » u, such that £:x(0) = 0, is equlvalent with
the classification of projections of hypersurfaces without boundary from Co to C'. Now the
c13531f1catlon of boundary projections (f;, £2), such that £14x(0) = 0, but sz(O) #z 0 and
£,400) =2 0, is equivalent with the problem of RL-classification of germs of functlons onto an
n—dlmen51ona1 with boundary. :

Definition. The boundary projection f abuts the boundary projection g, g « f, if f lies
in the closure of the equivalence class of g.

Proposition 5. All abutments of simple boundary prOJeCthHS are obtalned by composi~
tions of a finite number of the following:

a) Y,«~2,,Y,Z=A,B,C, D, E, F<;> there is just such an abutment of proj,ectionsr of
hypersurfaces [4], :

b) y"@zu, Y, Z=A,B,C,F (here A ~Au) &Y, «—Z, as functlons on a manifold with
boundary 12} .

C) Pl<——X;‘-,1——>Bk
l -
Xipn k=K, 1>0.

3. The concepts of deformation and versal deformation of a boundary projection can be
introduced in the traditional way. Here it turns out that, for example, the deformation

Fx,u, M)=f(r,u Zhle (x,u), where {e;}C &; . are representatives of a C-basis of the space

x,u/T is a miniversal deformation of the boundary projection f = (fy1, f2) of finite codi-
mension v. :

Let F be a representative of F, F** = F | pjconst - We denote by W, €~ the set of
those values of the parameters (u, A) for which the function F{>A has critical value 0, and

TABLE 2
n Notation f=(f1, £2) ) v
>2 Ao : (T T1) _ 0
>1 A4, B
= (Iny fZ (Ilv resy zn—l’ u))! f? 15 a stmple
p>2 projection (zy, ..., Zp_yo u) >l of a
>2 C‘ F/ ’ hypersurface onto a line, which is of the
e S same name as the boundary projection [4]
>3 D, E,
p—1
>1 B;, w>2 (x‘ll—{—z:—i— —i—xi—{-u, zy)
Cpr 8>3 (mr@at-ahtait .. adtu, 1)
>2
Fy (@aitadt .. fadtu, 2
1 Xpr. b I>2 (zFu, al) k12
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Fig. 4

by W the analogous set for the mappings FUsA | For example, for n = 1, W2 = {(u, A)]ﬁu’x
assumes the value 0}.

Definition. The germ at 0 = C*¥, W of the set W =W, |J W, is called the bifurcation
diagram of zeros of the boundary projection f.

For almost all sufficiently small values of the parameter X the set W (O {h = const}
consists of the same number of points. We denote by X (- €¥ the set of those A, for which
this number is smaller.

Definition. The germ at 0 &= (¥, £ of the set ¥ is called the bifurcation diagram of the
boundary projection f.

Example. fe X, . F= (22 4u, 22+ Mz +A). W= {u=0}U {(hs — 0)* + ud{ =0}, = = M}y x
(A, — 1/40}) = 0} (cf. Fig. 4).

We note that for boundary projectioms Ay, By, Cy, Dy, Ey, Fu the bifurcation diagrams
(of zeros) we have introduced coincide with the bifurcation diagrams (of zeros) of mononomial
projections of hypersurfaces [4], and for singularities BY, Cﬁ, F,, with the bifurcation dia-
grams (of zeros) of functions f,|y=, on the manifold C" with boundary x; = 0 (these are, re-

spectively, functioms B, C,, Fu, cf. [2]).

4. THEOREM 2. For a simple boundary projection the germ at zero of the space CV\ I
is a space k(w, 1), where # is a subgroup of finite index in the braid group on (v + 1)
strings.

Proof. From what was said at the end of the preceding paragraph and [4, 6] the validity
of the assertion of the theorem follows for all singularities except the series Xk, .

We shall show that the theorem is also true for fe&X,,;. In this case v =k + 1 — 2,
and as miniversal deformation ome can take

F=(@" +Ma"™ o M +u, & 02 - Rpge) = (P + 1, )

The quasihomogeneous map F, the weights of .all of whose arguments are positive, and the
diagrams W and & are defined globally. We shall show that €2\ 2 is a space k(m, 1).

_ The bifurcation diagram of zeros of Xk,7 is W= {(u,A) & C+1|Jz:ph () +u =0, Pt (2)
¢* (z) = 0}, where P* = p lhi—consts Px = 9p/dx , etc. We see that for A S the set Wrh= W [} {A =

const} consists of k + 7 — { distinct points: WA = {(uj, A)}. We construct the polynomial of
ko-l—1
degree k + I — 1 with roots {u;—(k+1—1)" uﬁ and leading coefficient 1,
1

We get a map ¢: CF-2\ X — Ct+-2\ E, where the latter space is the set of polynomials

of the form 2! 4 ad™2 -+ . oy, a € €2, without multiple roots. Ci+-2\ Z =k (B + 1 —
1), . .

We shall show that ¢ 1is a covering.
As in Sec. 1, @ extends to a map ®: C+-2—~ C"*2 and the fact that @ is proper follows
from the fact that ©1(0) = {0}: A= @1 (0) & p* = ¢ = const on pig* =0, whence p* = (z — a)* -+

e=C, and ¢* = (z — a)'; since the sum of the roots of q* is zero and pA(O) = 0, one has

¢, a,c
=c¢ =0, i.e., A = 0.

a
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Repeating the argument of Theorem 1, we see that the degeneracy of ¢ at some point AeE X
is equivalent with the existence of the vector dd # 0 and vectors du, (dx)J such that
(du—1—pxd7u)]xi;v=0 P=1, ..., k—1,

(du -+ padh -+ py(dx)y) ‘;( 2 =0, (‘hdk + g (dz))) le b = 0,
] == k', . 415 ‘—r I — '1

where {xi}k'.l ‘are the roots of the polynomial p;‘(, and {xj }E"'Z-l are the roots of g*.
‘We shall show that this cannot hold - ' ' '

For fixed. %, du and dk ~du + pydi is-a polynomial in x of degree not higher than k -t
 X15..4,%k-1 are its roots.  All these roots are dlstlnct and 'are roots of the polynom1a1 p}\

" having degree k ~ 1. Hence (du + Padhy = fipx, pecC.
_Since A'G ¥, at the points 5] =k, .k + 1—1, pi‘qu% 0 : :Conseq‘uent‘iy, (dz); = {—qdh/
4=l in and’ (Bpx — pqudxqu) lz;a =0, whence’ (ﬁqx "%d?v) lia = 0. We conclude from the form of

. the . polynomlal (ﬁqx —qhdl)’“, which has. degree in x no h1gher than I ~ "1 and- L dlstmct roots

{xj}, we conclude that B = d?»]k =, .-d?»;,+g,3 =0. Whence (du -+ p;dk)’“ =0 and d?s,, = .. =d?s,;(_1 =
du = 0. o . .

‘ Thus, ¢ is a. covermg. . .
- The 1ndex of the group 7 in the brald group can be calculated as the- degree of the quas1—

hombgeneous map ¢: (B (k —}— I—1):n) = Chi 17::’”"2

3 Stablllty of Vector Flelds

Now we analyze the question of the stability of a vector fleld deflned ina nelghborhood
of the bifurcation diagram of zeéros of a quasihomogeneous projection onto ¢t Everythlng
'said below in this connection transfers inm an obvmus way to the case of a progectmn of a
complete 1ntersect10n with boundary onto a line, ' : S

1. We consider the germ at. zero of the progeetion from € to €', (x, u) > u of the |
surface £(x, u) = 0 (without boundary), fe&%,u,n+1>m [4]. We shall call it the pro-
jection f. - ' - o o I

Let F: (G, 0) — (C™, 0) be a miniversal deformation of the projection f, A EC" be

. the p’arémeter- of the deformation.v For example, F(x u, A) -uf(x u)—i—Zk el z, u),' where el, ey

ey & & u are representatlves of a C-basis of the space %’x,u/{f* (m(m)) gx,u’f‘%x,lt<fx>”‘ Eufu}, m{m)=—=
{h:(C™,0) — (C,0)}. . ‘ o -
; We 'recall that the bifurcation diagram of zeros of the projection f-is the set WCC”"
“of critical values of the projeection (x, u; i) - (4, A}, restricted to F = 0 (ef. the defi-

‘nition of the blfurcatlon diagram of zeros of a boundary prOJectlon) For example ‘for m =
n+ 1, Wis the image of this restriction. A

For a quamhomogeneous map F the diagram W is defined globall}vrb.

2. THEQREM 3. Let the miniversal deformation F of the projection f be quasihomogeneous.
Then the germ at 0 & € of the field 3, is stable: If v is a vector field which is suffi-
ciently close to 3,;, then there exists a point ¢ & @ close to zero and a germ of a diffeo-
morphism H: (G, W, 0) > (C*v,-W, q), carrying the germ at zero of the field 3, into the germ
of v at the point q. ) o

Proof., We shall not impoAse the requirement of quasihomogeneity on F yet.

Let F and W be representatives of F and W, v be a vector_field w1thout singular points,
defined on G'*V in the same neighborhood U of the point 0 as W. In U we introduce coordi-
nates (u', M), ' (0) = 0,2 (0) =0: 2 e ¥ is a parameter indexing the phase curves of the field
v, u' is the time of motion along the field v from some smooth hypersurface passing through
0 (0%  and transverse to the field v; v = 3.
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We denote by ¢ the new coordinate description of the map F: G(x, u', A") = F(x, uu',
A"), A(u', A")). This description does not preserve the projection CM*V— C¥ (u, k)~ A.

We consider G as a representative of a v-parametric deformation of the projection (x,
u') > u' of the surface GA' = 0. W is a representative of the bifurcation diagram of zeros
of this projection.

Let the field v be sufficiently close to 3,. Then the coordinates (u', A') can be chosen
to differ slightly from (u, A), and since F is a versal deformation of the projection f, close
to ‘0 & (»+v  there exists a point (xg, ug, Ag) such that:

a) the germ G of the map G at the point (xgq, ua, Ao) is a versal deformation of the germ
at the point (xg, ué) of the projection (x, u') » u' of the surface CAO = 0;

b) the indicated germ of a projection is equivalent with the germ at zero of the projec-
tion (x, u) > u of the surface f(x, u) = 0.

This follows from the property of stability of a versal deformation of a projection,
which can be proved using the technique of Wasserman [8].

The terms G and F are equivalent as miniversal deformations of equivalent projections.
We note that it follows in particular from this that the germ at zero of the direction field
9, on Cc'*V is stable (the quasihomogeneity of F is not required).

An equivalence of G and F carries the germ of W at (ug, Ag) into the germ of W at zero.
Hence in what follows in clarifying the question of stability of the vector field 3y we shall
consider only germs at Q& C# close to 3, of vector fields v = 3,', having the same singu-
larity as 3,, i.e.:

i) the germs at zero of the projections f and g = é‘A'=0 are equivalent;
ii) the germ at zero G of the map G is a miniversal deformation of the projection g.

When are 9, and 3,' carried into one another by the germ at 0 of a diffeomorphism of the
pair (C*¥, W)? This holds, for example, if on (CW¥, W) there exists a change of coordinates
v=u +a(M), A=rRY), a0 =0,A(0) =0, i.e., if one has

G, ,u,My=M(@,u, V) Flz@,u,7), v+a@), L)) (N
for some germ of a matrix M, det M(0) # 0, and some change of variables x = x(x', u', A"),
x(0) = 0 (the coordinate description of the diagram W is independent of multiplication of F

by M and changes of x—coordinates).

The tangent space at the point F & &y w,» to the set of mappings which are induced from
F by (1) 1is

R=F*(m (m)) &, u, 2. 4 M, w0 (Fod + mp (Fuy Fade
We compare R with the tangent space T to the set of those germs G for which i) and ii)

hold. Here we should again take into account the arbitrariness in the choice of coordinates
x and the fact that the germ F is defined up to multiplication by a germ of a matrix.

We have the cobvious inclusion
TEF*(m(m))égzu.lJ“mx,u,?y<Fx> +mu,}nFu+m7»<F7»>- (2)

The versality of F implies T -+ {(F,, Fu, Fidog = ((Qp;r:u,}, , 1.e., codim(qum r<n+1+w
On the other hand, by 1) % u, A

r i?»zozf* {m (m)) é‘gfu A e, w fx) + myfu.

From the miniversality of F T |peg -+ {fusfut Fa |;,=0>C=é“§zu and codimgm T|A=o=n+ 1w,
x, 1
Whence codhnem T >n4+14v.
x, U, b

Hence the inclusion of (2) is in fact an equality.

The modality of the vector field 3, with respect to the group of formal diffeomorphisms
(C*v, W, 0) in the class of fields for which i) and ii) hold, does not exceed the number § =
dimg T/R, which coincides with the number dimg& ., 5 /{F* (0 (M) & u, b -+ Ex,u, n Fe> + Ea (Fy, Frd}.

Let us assume that F is a quasihomogeneous. Then myfy C f*m(m) &xw+ &, u{fx) and
:cn,’u=f* (m (m» E’()):c",'u. ‘{“ gx,u<fx> + <fu1F7~|h=0>C-
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Hence, ((g;?u, a=—F* (m (m) %;;rcn,, u d Egx, u,a {F) + &, Fu, Fry + m,x&'ﬁu,;,-
By Wasserman's lemma [8] the last summand can be omitted. Hence § = 0.

Thus, in the formal case Theorem 3 is proved. Its validity in the holomorphic situation
follows from the fact that if

dimg &%, o, 2/ {F* (m (m)Ex u,n -+ Ex, u,a {Fd + & (Fuy FrD} < 00,

then F is finitely defined with respect to the group of germs at 0. C**¥ of biholomorphisms
of the form (z,u,A)~ (z'(z,u,A), v+ a (), A (A)) and multiplication of F by germs of matrices
M(x, u, 1), det M(0) = 0. But again the last assertion is proved with the help of the tech-
nique of [8]. : o '

u - .
3. COROLLARY (Zakalyukin [5]). Let F(z,A)=fo(z)+ M + 2 Mip; () be a quasihomogeneous

miniversal deformatlon of the function f, with isolated critical point O, PV(::C” be the
bifurcation diagram of zeros of fg. Then the germ at 0 & C* of the Vector field 3), is
stable with respect to the group of germs. at zero of dlffeomorphlsms of the pair (CH, W).

Proof. F is a miniversal deformation of the germ at zero of the projection (x, A1) - Ki
of the surface fg{x) + A1 =0, Az,... »Ap are the parameters of the deformation. The bifur~
cation diagram of zeros of this projection is precisely W. : : '

We note that an assertion analogous to the corollary is also true for quasihomogeﬁeous
functions on a manifold with boundary ~To prove it one must note that if F(x, A) = fo(x) +

h1+—§5%nm,(x) is a qua51homogeneous miniversal deformation of the function f, on the manifold

Ch with boundary x1 = 0, then (F(x, A), x1) is a miniversal deformation of the projection

(x, A1) = A1 of the hypersurface fo(x) + A1 = O with boundary fo(x) + A1 = x; = 0 (cf. Remark
b) of Paragraph 2 of Sec. 2). Here the bifurcation diagrams of zeros of the function on the
manifold with boundary and of the boundary projection coincide. It remains to apply the ver-
sion of Theorem 3 for boundary projections. : . :
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