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We recall the construction defining the bifurcation diagram of a function [I]. 

We consider the space of smooth functions. The group of diffeomorphisms acts on it 
(change of independent variables). The orbits of this action are infinite-dimensional sub- 
manifolds, but if the critical points of the function are not very complicated (namely, are of 
of finite multiplicity, i.e., are obtained by the confluence of a finite number of Morse crit- 
ical points), then its orbit has finite codimension. In other words, through such a function 
as through a point of a function space, one can draw a finite-dimensional transversal to the 
orbit. The partition of the function space into orbits induces a partition of tile trans- 
versal into submanifolds (with singularities). The union ~ of the submanifolds whose dimen- 
sion is less than the dimension of the transversal (they correspond to functions with non- 
Morsean critical points or coincident critical values), is called the bifurcation diagram of 
the function. 

One can give an analogous definition for germs of holomorphic functions. In this case 
the transversal is the germ of a w-dimensional complex space (called the base of the versal 
deformation), where p is the multiplicity of the critical point (that is, the number of merged 

Morse points)° 

Let us assume that the germ of a holomorphic function is simple, has no continuous in- 
variants with respect to the group of substitutions of arguments. We consider the space C ~ \ 
~, the complement of the bifurcation diagram of such a function in the base of the versal 
deformation. About 10 years ago Lyashko and Looijenga proved that all the homotopy groups 
except the fundamental group of this space are trivial ([I, 9]). 

This theorem was later extended to simple functions on a manifold with boundary [6], and 
also to simple projections onto a line [4]. In the present paper, using the technique of [6, 
9], we show that the analogous assertion is valid in two more cases, for functions with simple 
linear singularities and for simple projections of a hypersurface with boundary onto a line 
(all the definitions needed are contained, respectively, in Secs. I and 2). 

We shall dwell briefly on the objects considered in the paper. 

It is known that in the classification of critical points of functions there arise in a 
natural way infinite series of singularities (A, D, T, etc., cf. [I]). Arnol'd indicated in 
[I] that the classification of the series themselves reflects the classification of singular- 
ities with nonisolated critical points (for example, the series of functions Ak, k ~ O, having 
the form x~ +I + x~ + ... + x~ in suitable coordinates, corresponds to the function A=: x~ + ...+ 
x n with singularity on the line x2 = ... = x n = 0). In his recent paper [7], Siersma singled 
out the simplest among the nonisolated singularities, the so-called linear ones, with smooth 
one-dimensional critical set. Siersma also gave the classification of simple linear singular- 
ities, which is cited in Paragraph I of Sec. I. We shall show that the start of the classi- 
fication of linear singularities of functions onto the plane coincides with the classification 
of critical points of functions on a manifold with boundary. But the bifurcation diagrams 
which arise naturally in our case differ from the bifurcation diagrams of boundary singular- 
ities considered in [6]. Namely, for the complements of these new diagrams we shall also 
prove in Seco I a theorem on the triviality of the higher homotopy groups. 

In Sec. 2 we consider projections of a hypersurface with boundary onto a line, i.e., 
of hypersurfaces in C m on which there is singled out a submanifoid of codimension I. Projec- 
tions of such manifolds are a natural generalization of projections of hypersurfaces [4] and 
functions with a critical point on a manifold with boundary [2]. Hence it is not surprising 
that the start of the classification of projections of hypersurfaces with boundary which we 
give coincides in part with the classification of projections of hypersurfaces (without bound- 
ary), and in part with the classification of functions on a manifold with boundary. Here the 
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new bifurcation diagrams of simple singularities do not differ from the previous ones , the 
complements of which, as we already noted, are Eilenberg--MacLane spaces. But for those sin- 
gularities which occur in our classification first, it turns out to be possible to prove the 
theorem that the germ of the complement of the bifurcation diagram is a space k(~, I). 

Finally, in Sec. 3 we study the bifurcation diagrams of zeros of quasihomogeneous pro- 
jections of complete intersections onto a line (here a complete intersection can have a 
boundary). It turns out that the analogof Zakalyukin's theorem about the stability of a 
vector field, transverse to the bifurcation diagram of zeros of a quasihomogeneous function 
with respect to the group of diffeomorphisms preserving the diagram [5] is also true for 
them. From this there follows as a corollary, Zakalyukin's theorem itself and its version 
for functions on a manifold with boundary. 

The author expresses profound thanks to Arnol'd for posing the problem and for his 
constant interest in the work. 

I. Simple Linear Singularities 

I. In [7], Siersma introduced the concept of a function with linear singularity ~s a 
function whose critical set is a line. He got a list of simple germs of functions with iso- 
lated linear singularities. Each term of this list is obtained as the limit in a certain in- 
finite series of isolated points singularities (cf. [I]). Up to stable equivalence [the 

2 function f(x, yl,...,y n) is stably equivalent with the function f(x, Yl,.-.,Yn) + Yn+l] 
Siersma's list is given in Table I. 

Here (x, yl ..... yn)~C ~+i, a-- codim f (cf. Paragraph 2), BB o is the generalized braid 
group of the series B [3]. The meaning of the last column is explained below. 

In this section we define the bifurcation diagram E C C ° of a function with an iso- 
lated linear singularity and we prove the theorem about the homotopy type of the space C ° \ 
E for simple singularities. 

THEOREM I. The germ at zero of the complementary space to the bifurcation diagram of 
a simple function with an isolated linear singularity is a space k(~, I), where ~ is a sub- 
group of finite index (indicated in the last column of Table I) in the group BB o. 

2. We recall the definition of a function with isolated linear singularity. Let f: 
(C n+l, O) + (C, 0) be the germ of a holomorphic function with smooth one-dimensional critical 
set L. We introduce in C n+1 coordinates (z, y)~C i X C ~. such that L = {y = 0}. 

Definition. f has an isolated linear singularity if for any x = O the germ at the point 
(x, 0) of the restriction of f to the plane x = const is equivalent with the germ of the 

2 function y~ +,o. + Yn" 

We denote by Sx.u the space of germs at 0 of holomorphic functions on C~+1,(y)~x.u 
is the ideal generated by the elements Yl,--.,Yn. If f(O) = 0 and f has L as critical set, 
then ] ~ (y)~. 

Let ~ be the (pseudo)group of germs of diffeomorphisms of the space C n+1, preserving 
the line y = 0. The tangent space to the ~-orbit of the function f at the point f in (y)2 
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i s  r f  = ~x, u Ix -}- (Y) <Iv>, where  /x = O//Ox, </,,> ~- </u . . . . . .  /:in > . We s e t  c od i m  f = d im c ( y ) 2 / T f .  

3. We consider the question of the connection of the classifications of boundary and 

isolated linear singularities. 

It is easy to see that the quasihomogeneous singularities of functions h on C 2 with 

boundary C ~ = L (cf. [2]) and of quasihomogeneous isolated linear singularities of f for n = 

I are in one-to-one correspondence: 

h (x, : ~ ) ~  ! (x, y) = f h  (x, ~). 

Here  codim~.~. ~ ~h = codim(u, ~ / .  

For  s i m p l e  s i n g u I a r i t i e s  t h e  i n d i c a t e d  c o r r e s p o n d e n c e  i s  t h i s :  

t ~ A ~ ,  A ,  ~ D o o ,  A ~  Jt~÷l,~, 

The coincidence considered of the classifications of quasihomogeneous functions extends 
to boundary singularities C m+1 and functions on C m+1, whose critical set is a hyperplane and 

whose restriction to almost any transversal to it is a Morse function. 

Further, we consider a function on a manifold with boundary with isolated critical point 
0 and critical value 0, stably equivalent with a function of two variables: 

l~' (v, u , ,  . . ., u,,) h ( v , u , )  u ' ~ + . . . +  

(v, u 1 . . . . .  un) ~ C ~+l, v = (} - -  in the boundary 

The f u n c t i o n  v2h ' h a s  c r i t i c a l  s e t  t h e  h y p e r p l a n e  v = 0 .  C o n t r a c t i n g  t h i s  h y p e r p l a n e  
to  a l i n e  by t h e  map x = u l ,  y l  = v ,  y2 = v u 2 , . . . , y n  = r u n ,  we g e t  a f u n c t i o n  y ~ h ( x ,  Yl) + 

2 y l  + . . .  + y2 n w i t h  i s o l a t e d  l i n e a r  s i n g u l a r i t y  on y = 0 ,  s t a b l y  e q u i v a l e n t  w i t h  a f u n c t i o n  of  
two v a r i a b l e s .  

By t h e  same m e t h o d ,  f rom t h e  b o u n d a r y  s i n g u l a r i t y  D~, p ) 3 :  v + u l u ~  + u~ -1  one makes 
a s i n g u l a r i t y  Q p - z , ~ ,  and  f rom C 4 : v u 2  + u~ + u l u ~  one  makes t h e  s i n g u l a r i t y  $ 1 , ~ .  We n o t e  
t h a t  t h e  c o d i m e n s i o n s  o f  t h e  s i n g u l a r i t i e s  wh ich  c o r r e s p o n d  to  one  a n o t h e r  c o i n c i d e .  

4 .  D e f i n i t i o n .  By a k - p a r a m e t r i c  d e f o r m a t i o n  of  t h e  f u n c t i o n  ] ~ ( y ) ~  i s  m e a n t  t h e  
germ o f  a h o l o m o r p h i c  map f rom (C k ,  0 ) t o  ( ( y ) 2  f ) .  

One can  i n t r o d u c e  i n  a n a t u r a i  way t h e  c o n c e p t  o f  v e r s a i  d e f o r m a t i o n  of  a f u n c t i o n  f 
w i t h  i s o l a t e d  l i n e a r  s i n g u l a r i t y  ( i n  t h i s  c a s e  c o d i m f  < co c f .  [ 7 ] ) .  One c a n  show t h a t  

(l 

F (x, y, ~) = / (x, ~j) ~- Y, )o~e~ (x, .,;), ). ~ C °, 
i = 1  

i s  a m i n i v e r s a l  d e f o r m a t i o n ,  where  ~ = codim ] , e l  . . . .  , e o ~ ( y )  2 a r e  r e p r e s e n t a t i v e s  o f  a C -  
b a s i s  o f  t h e  s p a c e  ( y ) 2 / T f .  

L e t  F be  a r e p r e s e n t a t i v e  of  F.  F o r  a g e n e r i c  v a l u e  o f  t h e  p a r a m e t e r  ~ t h e  f u n c t i o n  
~x = FlX=cons t  h a s  on L o n l y  s i n g u l a r i t i e s  Aoo and  D~ ( t h e  c r i t i c a l  v a l u e  z e r o  c o r r e s p o n d s  
to  t h e m ) ,  and  o u t s i d e  L o n l y  A1 ( w h i l e  t h e  c o r r e s p o n d i n g  c r i t i c a l  v a l u e s  o f  ~ t  a r e  d i s t i n c t  
and  d i f f e r e n t  f r o m  z e r o ) .  Fo r  a l m o s t  a i 1  s u f f i c i e n t l y  s m a l l  t t h e  number  of  c r i t i c a l  v a l u e s  
o f  t h e  f u n c t i o n  F% i s  t h e  same.  L e t  t h i s  n u m b e r  be  a .  We s h a l l  show b e l o w  t h a t  a t  I e a s t  
f o r  n = 1, a = o + 1. 

D e f i n i t i o n .  The ge rm a t  z e r o  E o f  t h e  s e t  ~ C C  a of  t h o s e  v a I u e s  o f  t h e  p a r a m e t e r  
t ,  f o r  w h i c h  t h e  f u n c t i o n  p t  h a s  l e s s  t h a n  a c r i t i c a l  v a l u e s ,  i s  c a l i e d  t h e  b i f u r c a t i o n  d i s -  
gram o f  t h e  f u n c t i o n  f w i t h  i s o l a t e d  l i n e a r  s i n g u l a r i t y .  

4 
The d i a g r a m  E c o n s i s t s  o f  f o u r  c o m p o n e n t s ,  E =  L!E~:Nt  c o r r e s p o n d s  t o  t h e  a p p e a r a n c e  i n  

I 
F% of  a s i n g u l a r i t y  A2 o u t s i d e  L; E2 t o  a s i n g u l a r i t y  J 2 , ~  on L;  E3 c o r r e s p o n d s  to  t h e  c r i t i -  
c a l  v a l u e  0 o f  t h e  f u n c t i o n  > t  o u t s i d e  L;  E4 to  t h e  c o i n c i d e n c e  of  c r i t i c a l  v a l u e s  F~ o u t s i d e  
L. 

Examp i e s. 

a)  -f~.o~. F = y2(y @ x z @)~i).  y' = {()}. 
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Fig. q Fig. 2 Fig. 3 

b) J~.~. F = y 2 ( y  q._x a ~ Zaxw~2). Z~ = {~a = 0 } ,  E z =  {27~-~- 4 ~  = 0}, E 3 =  ~ ,  Z , =  { S l ~ - -  
4z~=0}. (Fig. I). 

c )  r~ . , , , ~ ,  r ~ u ~ ( ~  + ~ ~ ~ ,u  - ~ , ) .  z ~  = { ~ 2 ~  ~ ~}, ~ = {z~ = o } ,  ~ = { ~  = ~ D ,  z ~  = 

{~, = O}. (Fig. 2). 

(Fig. 3 ) .  

Remark. Let f be a quasihomogeneous function of two variables with isolated linear 
singularity or ]~Q~-L=, Sz.~, and h be its dual function in the sense of Paragraph 3 on a 
manifold with boundary. It is easy to see that the correspondence indicated in Paragraph 3 
extends to miniversal quasihomogeneous deformations of f and h. Here the spaces of param- 
eters are mapped isomorphically and it turns out that ~ ~ E~ is the bifurcation diagram 
of zeros of the boundary singularity h, 

If ]~ T~.~,r, then o = q + r - 4 and C~\ (~2 U ~) = (C~-~W~_~) × (C r-~ \ ~r-~), where 

Wv~C v is the bifurcation diagram ol zeros of the boundary singularity By. 

5. Using the lists of contiguities of point and boundary singularities [I, 2], one can 
show that one has 

Proposition ~. All contiguities of simple isolated linear singularities with one another 
are obtained by composition of a finite number of contiguities indicated in the diagram (the 
index = is omitted). 

r~.~-.-- 6 "-- ze-.-- z3 - - -  
/ ' / / ' / ' / "  

",,,, \ \ *,, \ 

rq,;.--- r~;,.,. 
~ g ~  r~ r "  

ZF ~-" St 

One also has 

Propo.sition 2. All contiguities of simple linear singularities to point singularities 
are obtained by composition of contiguities of linear singularities to one another, of simple 
point singularities to one another, and contiguities listed below: 

A o ÷ X, where X is any of the simple linear singularities except Y~.~,r, q~-~.r~ 3, o 
is the codimension of X; 

6. Let an isolated linear singularity of f split into r singular points of type D~ on 
L = (y = O} and s singular points of type AI outside L. 

Conjecture (Siersma [7]). 

s ~- d i m e  ( y ) ' / { , x ,  ufx ~ (Y} f , ,>} ,  ~- e .  s iT; 

r ~-  s - -  d i m e  (y)/~.~:, y ( / x ,  ]~>. 

Proposition 3. The conjecture is true for n = I. 

Proof. Let F: (C '+I >( C ~, O)-~(C, 0), }~ C ~, be a versal deformation of the function f. 
For n = ~, f(x, y) = y2h(x, y) and F(x, y, I) = y2H(x, y, ~), where If~'x,y.~, h----Hl~=0. 
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s is the intersection index of the plane A = 0 with the germ of the surface M CZ_C ~+~ X 
C ° , which is the closure of the germ of the set {Fx = 0, Fy 0, y ~ 0}; r is the intersection 

index of I = 0 and the germ of M' = {y = 0, H = 0}. 

M = {H~ = 0 ,  2 H  = y H  u = 0}, 

.3I LJ 31 '  { y g ~  = O, 2 H  + yH,j = 0}. 

Whence 

s = d i m c  @~, y, ~/~x, u, ~ <H~, 2 H  + y H  v, >.> == 

---- d i m c  ~x,2 v /~x,u  (hx,, . 2h ~' yhv> = d i m c  (g)~/@x,u <y:h.¢, . . . . . .  2y~h + yahv> = d i m c  (g)z/g, y <ix, Y/y> = o ;  

F H o = (y), ~ .  ~ <f~, L>. = = <y"h~, - -  y~h,~> ,1 imc r ~ s d i m c  ~x,v,~/@x,u,~ <Y x, 2 H  + yH~,. L> d imc  (Y) /~x,v  2yh , ~ 

Direct calculation shows that Siersma's conjecture is also valid for simple linear sin- 
gularities. 

7. Proof of Theorem I. It is evident from Table I that any simple linear singularity 
has quasihomogeneous normal form f, having the following property. If e~,...,eo is a mono- 
mialbasis of the space (y) 2/Tf, then the weights of all arguments of the corresponding mini- 

versal deformation F (x, y, %) = / (x, y) ~ ,< %~e~ (x, y} are positive. 
1 

The quasihomogeneous map F and diagram ~ C C ~ are defined globally. We shall show 
that C ~ \ Z is a space k(~, I). 

If %C~6Z, then by Paragraph 5 the function F A = Fll=cons t has exactly o critical points 
of type A~ and at them it assumes distinct and nonzero values zl,...,z o. We construct a 
polynomial of degree o with leading coefficient I and roots zl,...,z o. We get a quasihomo- 
geneous map ~: C ~ \ ~-+C ~ \ ~, where C ~ \ ~ is the space of polynomials of the form z o + 

a~zo-~ +... +a~,a~C ~ , without multiple and zero roots. C °\ E is the classifying space of 

the generalized braid group of the series B: C ° \ ~ = k (BBo, I) [3]. 

We shall show that ~ is a covering. 

extends continuously to strata of the highest dimension of the diagram ~, and hence 
also to a quasihomogeneous map ¢: (C ° , 0) ÷ (C ° , 0). 

L~m{A. ¢-~(0) : {0}. 

Proof. a) /~ T~.,~ ,, q~" r >~3. 

Let H(v, u, A) be the quasihomogeneous miniversal deformation corresponding to F of the 
boundary singularity h, dual to f (cf. Paragraph 3 and the remark of Paragraph 4). ~-}(0) 
belongs to the bifurcation diagram of zeros of h. It is easy to see that if 0 is the unique 
critical value of the function FA, then 0 is also the unique critical value of H A as a func- 
tion on a manifold with boundary. Since h is simple and the Dynkin diagram of a simple func- 
tion on a manifold with boundary is connected, H A has a unique critical point of multiplicity 
codimh = codimf = o, while at it H A = 0. The miniversality and quasihomogeneity of H now 
imply that A = 0. 

b)  / ~ _  T~,~,~,  q ~ > r > 3 .  

~'-' ' " 2 ~.. ÷ x q _ ~ v ~ - ~ v  - - -  ~q~,._~y~----x~. + ~ ( ~ ,  ~l.q~ ~ (~, ,  ~,)y~. 

For ~ ~ the critical points of F A outside L are 

{x = O, y~ = O, ([~TJ'Y2 + 213~ = O}[_j{x = O. y2 = O, (~:~)'yl + 2(:z'% = 0}. 

On the first of these subsets FA = BAy~, on the second F 1 = ~Xy~. Hence ~ ~qb-1 (0) 

if and only if Bly 2 = 0 everywhere on (~y~)' = 0, and ~y~ = 0 on (c~y~)' = 0. But the poly- 

nomial p(t), which vanishes at all zeros of its derivative, has the form A (t--e)#,A, a ~_-_C. 

Consequently, ~y~ ---- y~ and a~y~ = y~, i.e., ~-i(0) = (0}. 

The lemma is proved. 

From the lemma and the positivity of the weights of the arguments and the coordinate 
functions of the map ~ it follows that q is proper. 
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To prove the theorem now it suffices to show that ~ is a local diffeomorphism. 

In the space C ~ × C ~ ~ C ~ × C ~ with coordinates (z, x, y, ~) we consider the surface N 
which is the closure of the set {z = F(x, y, %), F x = 0, Fy = 0, y ~ 0}. We set N z- N 
{L = const}. 

Let %~_ E. Then N ~ = {p~}~, while for all i ~ j, z(pi) ~ z(pj) ~ O, Y(Pi) ~ 0.  The 
map ~ is constructed from the numbers z i = z(pi). It is easy to see that since z i ~ zj, 
the map (p is degenerate at the point %~C ~ \ ~ if and only if there exist vectors v i = 
(0, (dx) i, (dy) i, d%), d% = 0 tangent to N at the points Pi, i = I .... ,o. 

The tangency condition has the form 

/--01 F~ Fy F ~ I 
v~ ~E Ker I t Fx., F:,~v Fx • 

I 
• , 0 ];'Xy Fyy Fyg]ipt 

Since F % has a singularitY AI at the point (x(Pi) , Y(Pi)), one has FX(Pi) = Fy(Pi ) = 0 

and det (T~x ~xy) l ~|). Hence the condition of degeneracy of ~ assumes the form 

F ~ ( p ~ ) d ~ = O ,  ~ = t  . . . . .  ~. d ~ O .  

O e U This is equivalent With the degeneracy of the matrix (F~Q0~))~,~=~--( ~(p~))~.~=~, i.e. the 

linear dependence of the functions e~,...,e o on N ~. 

We shall show that as a matter of fact, {ej} is a C-basis of the o-dimensional function 
space 0 ~ on N~. 

a) n = I. f = y2h; F = y2H, h and H are polynomials. N z ~ {H~--0,. 2H ~ + yH~ = 0}. 

O = C [x, y]/C [x, y] < ~, 2H%~ yHy>, where C[x, y] is the space of polynomials in the Variables 
x, y. 

Since the linear singularity f is isolated, the ideal T~ = ~i~,v<f~, yfv> contains some 
power of the maximal ideal ~,v~x.y, multiplied by y ~ [7], Hence the monomials el,...,e o 
are a basis not only of the space (y)~/Tf, but also of the space C[x, y]y2/C[x, Y]<fx, Yfy>" 
Consequently, e~y-2,...,eoy -e is a basis of C[x, y]/C[X, y]<hx, 2h + yhy>, and hence also of 
the space ~ for sufficiently small (by quasihomogeneity also for any) ~ E. Since the 
function y is invertible on N%, one has that {ej} is a basis of O ~. 

b) n = 2. We consider f~Qo-l~. The cases [~T~., r and ]~SI,= are analyzed 
analogously. 

= -r gy, + ~'eYlY2, 

g = X ~ - !  - I "  ~ t~gO-2  - ~  • • • "~- 1"[~-1" 

Let ~o = O. The coordinates of the points Pl,---,Po of the set N ~ are determined by 
the conditions 

g r  X 2 2 ( ) y ~ + y :  = 0 ,  3y~ + 2 g ( x )  y, ÷ Z ~ y  2 = 0 ,  

2xy2 + ~aYl = O, y ~ 0  

or 4g'  (X) y~ + ~" = ---- X~ = 0, yl (X~ - -  4g (x) x)/6x, y: --~oy,/2x. 

T h e  c o n d i t i o n  ~ Z  U {~o = 0 }  i m p l i e s  f o r  a l l  i ~ k ,  x ( p i )  = x ( P k )  ~ 0 ~ Y z ( P i ) -  

Hence  t h e  f u n c t i o n s  x a n d  Yl a r e  i n v e r t i b l e  on  N ~- a n d  

de t  (ej (P0)  ~ 0 ~ de t  ((ejxy7 2) (PO) :/= O. 

But  {elxy~ ~} {x, x 2, ., x ~-1, xy2y[ 1} a n d  on  N ~ x -1 ~- '' Y~Yl ----~0a"2 • Since x(pi) ~ x(pk) for 

i ~ k, one has det ((ejxy7 ~) (Pl)) ~= 0. 

Now let k o = 0. Then 

2 _N x ----- {g' (x) = 0,  y ,  = - -  -5- g (x), g ,  ---- 0}  [_J {x - ~  0,  3y~ + 2%a_, --= 0, Xa-,y,* + y~ ----- 0} .  
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For ~ E the function Y2 is invertible on N 1 and 

det (e i (Pi)) =/= 0 64 det  ((ely7 ~) (pg)) :4= O, 

{ejy72} = {t ,  x . . . . .  x '~-~, y2y~} .  

/ 
((ejy[~)(p,))= i1 0 (_Xo_,)V, t '  k , r - - ~  . . . . .  ~ - - 2 .  

0 _ (_ ~ ~V,l 
.-0_2! / 

H e r e  {X k} a r e  t h e  r o o t s  o f  t h e  p o l y n o m i a l  g ' ,  d e g g '  = o --  2 .  

S i n c e  f o r  ~ Z U {~o-~ = 0 }  t h e  r o o t s  o f  g '  a r e  d i s t i n c t  and  d i f f e r e n t  f r o m  z e r o ,  f o r  
~o-2  ~ 0 t h e  m a t r i x  w r i t t e n  down i s  n o n d e g e n e r a t e .  

Thus, on C ° \ .  (52. U {~,o -- ~o-~ -- 0}) , and hence also everywhere in C ° \. .  E. ~ is a local 
dif feomorphism. 

Thus, we have shown that C g \. ~ = k(a, i), where ~ is a subgroup of finite index in the 
group BB o. The index of ~ is sought as the degree of the quasihomogeneous map ~. If B±,..., 
~o are the weights of the parameters I~,...,io, ~0 is the weight of f, then B0, 2~0,...,oB0 
are the weights of the coordinate functions of ~0 and 

o 

1 

2. Projections of Hypersurfaces with Boundary onto a Line 

In this section we consider the problem of Classification of projections of hypersur- 
faces with boundary onto a line, we list all simple objects of this classification and for 
them we prove a theorem on the homotopy type of the complementary space to the bifurcation 
diagram, analogous to Theorem I on linear singularities. 

I. Definition. By the boundary of a hypersurface S~C ~', n~ I, is meant a submani- 
fold of 3S of codimension i. 

By a projection of a hypersurface S with boundary 3S onto a line is meant a diagram 

where the first two arrows are imbeddings, H is a projection. An equivalence of two such 
projections is a commutative diagram 

a s  --~ s --~ c TM ~ C' 

a S  1 ---> S1 --> C;t,,-l..H_H, C1 ' 

w h e r e  h and  k a r e  d i f f e o m o r p h i s m s  and  h (S,  aS)  ~ ($1, aS1). 

One c a n  g i v e  a n a l o g o u s  d e f i n i t i o n s  f o r  g e r m s .  

2 .  We i n t r o d u c e  i n  C n + l  c o o r d i n a t e s  (x, u) ~ C" ;< C ' ,  i n  w h i c h  t h e  p r o j e c t i o n  E c a n  be  
w r i t Z e n  a s  ~(x~ u)  = u .  I t  w i l l  b e  a s s u m e d  t h a t  t h e  g e r m s  a t  0 o f  t h e  m a n i f o l d s  S a n d  3S a r e  
complete intersections: S = {fl = 0}, 3S = (fl = f2 = 0}, where fl and f2 are elements of the 
maximal ideal n!~,,,~ ~ Sx:,~. The germ at 0 of the projection (x, u) ÷ u of the hypersurface 
fz(x, u) = 0 with boundary fl(x, u) = f2(x, u) = 0 will be called a boundary projection f. 

Let ~x,~ be the set of all germs at 0 of holomorphic mappings from C n+1 to C m. The 
space rax.~#~#..~ splits into equivalence classes of boundary projections: projections f = 
(fl, f2) and g = (gl, g2) are considered equivalent if and only if there exist a, b, c~x .... 
ac~m ..... and a germ of a diffeomorphism h: (C n+1, 0) ÷ (C n+1, 0), h(x, u) = (ho(x, u), 
k(u)), such that h*gl = afl, h'g2 = bfl + cf2. 

Definition. The germ of a boundary projection is simple if it has no moduli (continuous 
invariants) with respect to the equivalence introduced. 

We set Tf = ~f ...... <(/i, 0), (0, ],), (0; ]o), Ix> ~- ~Jr~ and we introduce the codimension of the 
boundary projection ]: v = dime ~'~. ~. TI. 
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One can prove by traditional methods of the theory of singularities 

Proposition 4. Any germ of a projection of a hypersurface with boundary onto a line, 
which is simple, is equivalent the germ at zero of a projection (x, u) ÷ u of a hypersurface 
f = 0 with boundary fl = f2 = 0, where f = (fl, f2) is one of the maps of Table 2. 

Remarks. a) The problem considered here can be posed not only for hypersurfaces, but 
also for complete intersections of arbitrary codimensiono One can show that up to stable 
equivalent of projections [4] any simple projection of a complete intersection with boundary 
onto a line is a projection of a hypersurface with boundary. 

b) The whole classification of germs at 0 of projections of hypersurfaces fl = 0 with 
boundary fl = f2 = 0 from C n+1 onto C I, (x, u) + u, such that flx(0) ~ 0, is equivalent with 
the classification of projections of hypersurfaces without boundary from cn to C I. Now the 
classification of boundary projections (fl, f2), such that fmx(0) = 0, but f2x(0) = 0 +nd 
flu(0) ~ 0, is equivalent with the problem of RL-classification of germs of functions onto an 
n-dimensional with boundary. 

Definition. The boundary projection f abuts the boundary projection g, g * f, if f lies 
in the closure of the equivalence class of g. 

Proposition 5. All abutments of simple boundary projections are obtained by composi- 
tions of a finite number of the following: 

a) Y~+--Z~,, Y,Z-- A,B,C, D, E,F~> there is just such an abutment of projections of 
hypersurfaces [4]; 

b)  "* * ) 'u+--Zu,,  Y , ' Z = A , B , C , F  ( h e r e  A* = A u ) ~ 4 Y ~ + - - - Z  u, a s  f u n c t i o n s  on  a m a n ± f o l d  w i t h  
b o u n d a r y  [ 2 ] ;  

c )  Bt<--X~,~-~B~ 

Xr,+, ,  k ~ k ' ,  l ~ l ' .  

3. The concepts of deformation and versal deformation of a boundary projection can be 
introduced in the traditional way. Here it turns out that, for example, the deformation 

Fix, u, ~)--~- f (x, u) ~ ~ie+ (x, u), where {e+}C+~.~ are representatives of a C-basis of the space 
! 

~'~. u/T~ is a miniversal deformation of the boundary projection f = (fl, f2) of finite codi- 
mension +. 

Let F be a representative of F, pu.x -- ~ l(u,~)=const- We denote by ~[+~ Z C r-v the set of 
those values of the parameters (u, I) for which the function ~,I has critical value 0, and 

TABLE 2 

n Notation f= (f~. f-0 v 

>/2 Ao (x n, Xl) 0 

>~I .4,., B~ 

>_.2 ++t~, +~2,  
Ctt, F4 

>i-3 Du, EtL 

(xn, li (zl ..... xn_ 1, u)),. l! is a simple 
projection (xl . . . . .  x + . ,  u) ~-~u of a 
hypersurface onto a l'in~, which is of the 
same name as the boundary projection [4] 

C+,, ~>+>~3 

(+,++x++ ... +++,+u, +,) 

,l 

~+  2 2 
(XlX2-~:~27-X3- ~- . . .  - ~ X n - ~ U  , Xl) 

p+--I 

>j2 

1 Xh.j. k,l~2 (xk--~u, xt) k-~l--2 
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Fig. 4 

by W2 the analogous set for the mappings ~u,l. For example, for n = 1, W2 = {(u, I)IF u,l 
assumes the value 0}. 

Definition. The germ at 0 ~C I+~, W of the set ~7 = W~ U Ws is called the bifurcation 
diagram of zeros of the boundary projection f. 

For almost all sufficiently small values of the parameter I the set ~7 N {~ = c0nsL} 
consists of the same number of points. We denote by ~ ~C v the set of those I, for which 

this number is smaller. 

Definition. The germ at 0 ~C v, Z of the set ~ is called the bifurcation diagram of the 

boundary projection f. 

.Example. f ~ X2,2. F ~ (x'-' -~u, x 2 ~- ~x-~- ~2)- ~V = {u ---- 0} ~ {(~2 -- u) 2 -~ u~, ~ = 0}, Y. = {~2 x 

(%.> -- i/4%~) = 0} (cf. Fig. 4). 

We note that for boundary projections Ap, B~, C~, D~, Ep, F4 the bifurcation diagrams 
(of zeros) we have introduced coincide with the bifurcation diagrams (of zeros) of mononomial 
projectlons of hypersurfaces [ " " " * * ~ " 4], and for stngularltles B~, C~, F4, wlth the bifurcation dia- 
grams (of zeros) of functions fliu=0 on the manifold C n with boundary xl = 0 (these are, re- 
spectively, functions B~, C~, F4, cf. [2]). 

4. THEOREM 2. For a simple boundary projection the germ at zero of the space C v\ 
is a space k(~, I), where ~ is a subgroup of finite index in the braid group on (v + I) 
strings. 

Proof. From what was said at the end of the preceding paragraph and [4, 6] the validity 
of the assertion of the theorem follows for all singularities except the series Xk,~. 

We shall Show that the theorem is also true for /~X~.#. In this case ~ = k + Z -- 2, 
and as minive~:sal deformation one can take 

f - - - -  (x ~ + ~ , x  ~:-' + . . .  ~ ~_~x  + u, ,~z q_ ~ z l - I  + . . .  + ~+~.2) = (p + u, q~. 

The quasihomogeneous map F, the weights q0f ~Ii of whose arguments axe positive, and the 

diagrams W and I are defined globally. We shall show that C~+~-~ y~ is a space k(n, 1). 

The bifurx:ation diagram of zeros of Xk, ~ is W = {(u,~ ~ C ~'+z-l|~ :/~(~ q- u---- 0, p~(x) 

q~(x) ==O}, where p~ =p ~=~,mt ,  p~  = ~ 0 p / 0 ~ ,  etc. We see that for ~ E the set W ~ == W [] {~---- 

const} consists of k + ~ -- ~ distinct points: W 1 = {(ui, I)}. We construct the polynomial of 
~-I-l--~ 

d e g r e e  k + ~ --  1 w i t h  r o o t s  {u~ - -  (k q- l - -  ] ) - '  ~ u~} a n d  l e a d i n g  c o e f f i c i e n t  1 .  

We g e t  a map ~: C~.+~-2\ v _~ C~+~-2 . \  E ,  w h e r e  t h e  l a t t e r  s p a c e  i s  t h e  s e t  o f  p o l y n o m i a l s  

o f  t h e  f o r m  z ~+~-~ -~- o~z ~'+~-3 -~ ... -[-o~.+~_~., a ~ C ~'+~-', w i t h o u t  m u l t i p l e  r o o t s .  C ~+t-= \ =. - -  k (B (/¢ q- l - -  
I ) ,  1 ) .  

We s h a l l  s h o w  t h a t  g0 i s  a c o v e r i n g .  

As i n  S e c .  1, q0 e x t e n d s  t o  a map (D: C ~+~-=--+ C ~+~-'-' a n d  t h e  f a c t  t h a t  go i s  p r o p e r  f o l l o w s  

f r o m  t h e  f a c t  t h a t  ~D -~(0)  = {0}: ~ ~ ~a-~(0) < ~ p k  = c = c o n s t  on  p~qX = 0 ,  w h e n c e  p~ - -  ( x - -  a) ~ q- 

¢, a , c ~ C ,  a n d  q X ~  ( x - - a ) t ;  s i n c e  t h e  sum o f  t h e  r o o t s  o f  q t  i s  z e r o  a n d  p t ( 0 )  = 0 ,  o n e  h a s  
a = c = 0 ,  i . e . ,  t = 0 .  
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Repeating the argument of Theorem I, we see that the degeneracy of ~ at some point %~E 
is equivalent with the existence of the vector d% ~ 0 and vectors du, (dx)j such that 

(du + p~d~) Ix~,~ = O, i -~ t . . . . .  k -- t ,  

(du _.1_ p~d~ -7 Px (dx)~) !xj ~ = O, (q~,d~ q- qx (dx)7) ,1~ 9. z = O, 

] - - - k  . . . . .  k T I  t ,  

where {xi }k-1 are the roots of the polynomial Pix and {xj xk+/-I • Jk are the roots of qh 

We shall show that this cannot hold. 

For fixed h, du and d%, du + p%d% is a polynomial in x of degree not higher than k- I. 
xl,...,Xk- l are its roots. All these roots are distinct and are roots of the polynomial P%x' 

having degree k -- io Hence (du -[- P~d~) ~-- ~p~, ~ ~ C. 

Since %~ ~, at the points x/,j--k ..... k-~-l--l, pxqx=i= O. Consequently, (dx)i=(--q~d%/ 

qx) !x I,~ and (~P~ --Px~d%/qx) .Ix~.~ -- O, whence (~qx -- q~d%) Ix/;z ---- O. We conclude from the form of 

the polynomial (~qx- ¢~d~) ~, which has degree in x no higher than 1 -- ~ and l distinct roots 

Ixj }, we conclude that ~ -- d%~ ---- ... ----d%~+~_~ = 0. Whence (du --~ p~dh) x ~ 0 and d%, ..... d%~_~ -- 

du = 0. 

Thus, ~0 is a covering. 

The index of the group ~ in the braid group can be Calculated as the degree of the quasi- 

homogeneous map ~: (B (k ~- l- i) : ~) = C~.+t-tk ~+~-~. 

3. Stability of Vector Fields 

Now we analyze the question of the stability of a vector field defined in a neighborhood 
of the bifurcation diagram of zeros of a quasihomogeneous projection onto C I. Everything 
said below in this connection transfers in an obvious way to the case of a projection of a 

complete intersection with boundary onto a line. 

I. We consider the germ at zero of the projection from C n+l to C I, (x, u) ÷ u of the 
= m U surface f(x, u) 0 (without boundary), f ~x, ,nq- 17 m [4]. We shall call it the pro- 

jection f. 

Let F: (Cn+1+~ 0)-+ (C m, 0) be a miniversal deformation of the projection f, % ~ C)' be 
v 

the parameter of the deformation. For example, F(x,u,~) =f(x,u)-~-~%~e~(x,u), where el ..... 
1 

e~xm, u are representatives of a C-basis of the space ~xm, u/{f*(m(m)) m , 

{h: (C'% O) ~ (C, 0)}. 
We recall that the bifurcation diagram of zeros of the projection f is the set WCO +v 

of critical values of the projection (x, u, %) ÷ (u, %), restricted to F = 0 (cf. the defi- 
nition of the bifurcation diagram of zeros of a boundary projection). For example, for m = 

n + I, W is the image of this restriction. 

For a quasihomogeneous map F the diagram W is defined globally. 

2. THEOREM 3. Let the miniversal deformation F of the projection f be quasihomogeneous. 
Then the germ at 0~C 1+v of the field ~u is stable: If v is a vector field which is suffi- 

ciently close to 9u, then there exists a point q~C ~+v close to zero and a germ of a diffeo- 

morphism H: (C 1+v, W, 0)-+ (C 1+v, W, q), carrying the germ at zero of the field ~u into the germ 

of v at the point q. 

Proof. We shall not impose the requirement of quasihomogeneity on F yet. 

Let F and W be representatives of F and W, v be a vector field without singular points, 
defined on C l+~ in the same neighborhood U of the point 0 as W. In U we introduce coordi- 
nates (u', ~'), u' (0)----0,~' (0)- 0:~C v is a parameter indexing the phase curves of the field 

v, u' is the time of motion along the field v from some smooth hypersurface passing through 

0 ~C I+~ and transverse to the field v; v = 3u,. 
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We denote by G the new coordinate description of the map F: G(x, u', ~') = F(x, u(u', 
X'), %(u', %')). This description does not preserve the projection CI+v-+C v, (u,~)~ %. 

We consider G as a representative of a v-parametric deformation of the projection (x, 
u') ÷ u' of the surface G ~' = 0. W is a representative of the bifurcation diagram of zeros 

of this projection. 

Let the field v be sufficiently close to 3u- Then the coordinates (u', ~') can be chosen 
to differ slightly from (u, X), and since F is a versal deformation of the projection f, close 
to '0~Cn+t+ v there exists a point (x0, u0, ~) such that: 

a) the germ G of the map G at the point (x0, u~, %~) is a versal deformation of the germ 

at the point (x0, u~) of the projection (x, u') ÷ u' of the surface ~X0 = 0; 

b) the indicated germ of a projection is equivalent with the germ at zero of the projec- 

tion (x, u) ÷ u of the surface f(x, u) = 0. 

This follows from the property of stability of a versal deformation of a projection, 
which can be proved using the technique of Wasserman [8]. 

The terms G and F are equivalent as miniversal deformations of equivalent projections. 
We note that it follows in particular from this that the germ at zero of the direction field 
3u on C 1+v is stable (the quasihomogeneity of F is not required). 

An equivalence of G and F carries the germ of W at (u~, ~) into the germ of W at zero. 
Hence in what follows in clarifying the question of stability of the vector field 3u we shall 
consider only germs at 0~C t+v close to 3u of vector fields v = 3u', having the same singu- 

larity as 3u, i.e.: 

i) the germs at zero of the projections f and g = Gl%'=0 are equivalent; 

ii) the germ at zero G of the map G is a miniversal deformation of the projection g. 

When are 3u and 3u' carried into one another by the germ at 0 of a diffeomorphism of the 
pair (C I+~, W)? This holds, for example, if on (C 1+v, |~) there exists a change of coordinates 

u = u '  ~ a ( ~ ' ) ,  ~ = ~ ( ~ ' ) ,  a ( 0 )  = 0 , ~ ( 0 )  = 0 ,  i . e . ,  i f  one  h a s  

G ( x ' , u ' , E ' )  = M ( x ' , u ' , E ' ) F ( x ( X ' , u ' , ~ ' ) ,  u + a ( E ' ) ,  k ( k ' ) )  (1 )  

for some germ of a matrix M, detM(0) x 0, and some change of variables x = x(x*~ u', ~'), 
x(0) = 0 (the coordinate description of the diagram W is independent of multiplication of F 
by M and changes of x-coordinates). 

The tangent space at the point F ~  m ,_ x.~.~ to the set of mappings which are induced from 
F by (I) is 

~"~ ~ R = F* (m (m)) ~ ,  ~, ~ m~, ~ ~ <F~> + mx <F~, F~>. 

We compare R with the tangent space T to the set of those germs g for which i) and ii) 
hold. Here we should again take into account the arbitrariness in the choice of coordinates 
x and the fact that the germ F is defined up to multiplication by a germ of a matrix. 

We have the obvious inclusion 

T ~ F* (m (m)) ~m ~. ~, ~ + m . . . .  ~ (F~> + mu, ~F,~ + m~ (F~>. (2 )  

The versality of F implies T + <Fx, F~, F~>c = ~x~u.~ , i.e., codim~m T ~ n + I + v. 
On the other hand, by i) x,u,~ 

= ~ , u  and c o d i m m  [ l ~ . = o = n ± l - ~ w .  From the miniversality of F TIx=o+</x,/,/,Fxl~=o)c ~m 
x~ 

Whence codim~m T ~-~ n + I + v. 
X, U,  ~* 

Hence the inclusion of (2) is in fact an equality. 

The modality of the vector field 3 u with respect to the group of formal diffeomorphisms 
(C l+v, W, 0) in the class of fields for which i) and ii) hold, does not exceed the number 6 = 
dimcT/R which coincides with the number dimc~ ra . . . . .  x / {F* (va ( m ) ) ~  ~, ~ -? $~, u, ~ <F~) .+ ~x <F,,, Fx)}.  

L e t  u s  a s s u m e  t h a t  F i s  a q u a s i h o m o g e n e o u s .  Then m d = C / * ( m ( m ) ) ~ , ~ ÷  $~,~</~> and  
[mV~ ~m 

Xp U 
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Hence @~,~- -F*(m(m))  . . . . .  z + ~x,=,~<F~> +g~<F~,F~> +mx~,=,z. 
By Wasse rman ' s  1emma [8] the  l a s t  summand can be o m i t t e d .  Hence 6 = 0. 

Thus,  in  the  fo rma l  c a s e  Theorem 3 is  p r o v e d .  I t s  v a l i d i t y  in  the  h o l o m o r p h i c  s i t u a t i o n  
f o l l o w s  from the  f a c t  t h a t  i f  

then  F i s  f i n i t e l y  d e f i n e d  w i t h  r e s p e c t  to  the  group of  germs a t  0 ~ E =+l+v of  b i h o l o m o r p h i s m s  
of  the  form (z, u, ~) ~-~ (x' (x, u, £), u H- a (E), ~' (M) and m u l t i p l i c a t i o n  o f  F by germs of  m a t r i c e s  
M(x, u,  X), de tM(0)  = O. But a g a i n  the  l a s t  a s s e r t i o n  i s  p roved  w i t h  the  h e l p  o f  the  t e c h -  
n ique  o f  [ 8 ] .  

3.  COROLLARY ( Z a k a l y u k i n  [ 5 1 ) .  Let  F(x,%)=1o(x)-4-~l "[-~i~i@) be a quas ihomogeneous  
2 

m i n i v e r s a t  d e f o r m a t i o n  of  the  f u n c t i o n  fo w i t h  i s o l a t e d  c r i t i c a l  p o i n t  O, W O O  ~ he the  
b i f u r c a t i o n  d i a g r a m  o f  z e r o s  o f  f 0 .  Then the  germ a t  0 ~ E "  o f  the  v e c t o r  f i e l d  3Xz i s  
s t a b l e  wi th  r e s p e c t  to  the  g roup  o f  germs a t  z e r o  o f  d i f f eo r ao rph i sms  o f  the  p a i r  (C~, W). 

Proof. F is a miniversal deformation of the germ at zero of the projection (x, Iz) ÷ Iz 
of the surface f0(x) + 11 = 0, %2,...,% n are the parameters of the deformation. The bifur- 
cation diagram of zeros of this projection is precisely W. 

We note that an assertion analogous to the corollary is also true for quasihomogeneous 
functions on a manifold With boundary. To prove it one must note that if F(x, %) = f0(x) + 

~lq- ~i~ (x) ~s a quasihomogeneous miniversal deformation of the function f0 on the manifold 
2 

C n with boundary x1 = O, then (F(x, %), xl) is a miniversal deformation of the projection 
(x, 11) ÷ %1 of the hypersurface f0(x) + %~ = 0 with boundary f0(x) + I~ = xz = 0 (cf. Remark 
b) of Paragraph 2 of Sec. 2). Here the bifurcation diagrams of zeros of the function on the 
manifold with boundary and of the boundary projection coincide. It remains to apply the ver- 
sion of Theorem 3 for boundary projections. 
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