
GEOMETRY OF BIFURCATION DIAGRAMS OF SIMPLE 

PROJECTIONS ONTO THE LINE 

V. V. Goryunov UDC 513.836+517.919 

A projection of a submanifold V ofa fibered space E into the base B is a triple V -  E --B,  consisting of 
an inclusion and a projection (el. [5]). The germ of a projection is simple if it has no moduli (continuous invari- 
ants with respect to the natural equivalence). 

Below there is given a list of all simple germs of projections (not necessarily smooth) of manifolds onto 
the line. The list consists of hypersurfaees and curves in three-dimensional space. Hypersurfaees are given 
by functions with a simple critical point on a manifold with boundary (el. [3]): the boundary is the preimage of 
zero under the projection. It is proved that the germ of the complement of the bifurcation diagram of a simple 
complex projection onto the line is a space k(=, 1), where ,v is a subgroup of the group of braids. This is a 
generalization of the theorem of Lyashko-Looijenga (el. [2, 9]), corresponding to the case when V is a smooth 
hypersurface. For the boundary singularities B#, Cp and F 4 our generaliza0ion differs from the generalization 
given by Lyashko in [6] (the bifurcation diagrams and groups 77 are different). 

We also prove a theorem on the normal form of the germ of a vector field, which is an extension of a 
theorem of Lyashko on straightening a vector field by a diffeomorphism, preserving the bifurcation diagram of 
zeros of a simple function (cf. [6]), to the case when the vector field at a point of a euspidal edge of the dis- 
criminant manifold is tangent to this manifold. 

i. Classification of Simple Projections onto a Line 

We consider the trivial fibration C n × cP -- C p. We shall denote points of the fiber C n by x, and points of 

the base C p by u. A submanifold V is defined by a system of m equations f1(x, u) = 0 ..... fro(x, u) = 0. Below 

X# denotes one of the simple singularities of functions of n variables (X = A, D, or E; cf. [I]). q denotes 

x~ + . . . + X2n . The following proposition constitutes part of the classification obtained by the author of germs 
of projections onto. 

Proposition i. A germ of a projection onto the line (p = I) is simple if and only if it is stably equivalent 

with the germ at zero of the projection (x, u) -- u of one of the manifolds f = 0, listed in Table I. 

Here IXpl and N are the order and Coxeter number of the Weyl group Xtt. The meaning of the numbers ~0, 
#' and ~ is explained below. 

One can show that the list of all germs of surfaces of positive dimension in the space C n+1, simple with 

respect to the group of diffeomorphisms of C a+l, preserving the plane u = 0, coincides with our list. 

It is convenient to assume that B i = At, C ~,! C~, I I+I =C/+I' = B 2 and F 3 =B 3. 

T h e r e  e x i s t  the fo l lowing  c o n t i g u i t i e s  of  p r o j e c t i o n s  

+ " -%, . .  
~' w.-s a " J J - ' 1 ,  I.< k < I  

All possible contiguities for n = m are exhausted by 
A --C). 

of curves of Proposition i: 

[%-,] / ~ - I  ~ - ' , . . . ~  

t hose  e n u m e r a t e d  up to t r a n s i t i v i t y  (A ~ B, B - -  C 

2. D e f i n i t i o n s  of E q u i v a l e n c e  and S i m p l i c i t y  

I. By an equivalence of projections Vi -- Ei -- B i, i = 1, 2, is meant a commutative 3 × 2-diagram, whose 
verticals are diffeomor phis ms h : El -- E2, k : B~ -- B 2, such that hV I = V 2. 
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2. A suspension of a projection V --E --B is a projection V--E' --B, where V is included in E' as a 
submanifold of the space of a subbundle E ~ E'. 

3. A stable equivalence of projections is an equivalence of suspensions. 

4. Analogous definitions are given for germs. A germ V at 0 ~ C n x CP is given by a system of m equa- 

tions fl =0,- .., fm= 0, where fl,. •., fmare germs ofholomorphic functions ofxandu, equal to 0 at the 

origin. The system g = 0 gives the same germ V as f if g = Mf, where M is an appropriate square matrix, 

holomorphic at zero, and detM(0) ~ 0. 

Caution. Two systems of generators of one ideal with different numbers of elements give different germs 

V. 

5. We consider the canonical projection C n × C p -- C p, (x, u) -- u. An equivalence of given systems f = 0 

and g = 0 of germs of projections at 0 is a germ of a local diffeomorphism h, leaving the origin fixed, of the 
form h(x, u) = (a(x, u), b(u)), for which h*g = Mf. 

6. Analogous to points 4 and 5, definitions are given for formal series f, h, M. 

7. A germ of a projection is called simple, if a sufficiently small neighborhood of it intersects only a 

finite number of equivalence classes. 

More precisely, a germ is simple, if there exists a finite collection of equivalence classes such that for 

any k, any k-jet sufficiently close to the k-jet at the origin, giving a germ of the collection of functions f, is a 

k-jet of the collection, giving the germ of a projection of one of the classes indicated. 

8. A germ of a projection is called a germ of a projection onto, if the number of equations defining the 

germ V does not exceed the dimension of the fiber: in the notation introduced above m _< n. In this case the 

projection of the germ V at zero will, in general, be the whole germ (C p, 0). 

3. Bifurcation Diagrams of Simple Projections onto a Line 

Below the germ of the projection (x, u) -- u of the manifold defined by the system of equations fCx, u) = 0 

will be called the projection f for short. 

I. Let ~'~ (n +p) = ~ x, ~ be the space of germs at zero of holomorphic mappings from C n x cP into 
C~ ~,~= g .... ; re(re) be the maximal ideal in ~i (m) =8(m). 

For f ~ ~ ~,~ we set 

Q (f) = ~x ~, u/{]*  (m ( m ) ) . ~ x  ~, u +4.- ~x, u (O//Ox~ . . . . .  a ] / ax n}  @ ~ u ( a / / O u ~  . . . . .  O f/Oup>}, v = d i m c  (2 (]). 

G e r m s  of p r o j e c t i o n s  at  poin ts  ql and q2 a r e  t - e q u i v a l e n t  i f  they  b e c o m e  equ iva l en t  a f t e r  t r a n s l a t i o n  of the 
poin ts  ql and q2 to 0. 

The n u m b e r  , is  the c o d i m e n s i o n  of  the t - e q u i v a l e n c e  c l a s s  of the p r o j e c t i o n  f in the s p a c e  8 TM x , u  • 

2. F o r  p r o j e c t i o n s  one can ,  in a n a t u r a l  way ,  i n t r o d u c e  the concep t  of m i n i v e r s a l  d e f o r m a t i o n  (cf. [1]). 
Le t  ~ be the p a r a m e t e r  of the d e f o r m a t i o n .  One has  the fo l lowing p r o p o s i t i o n .  
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Proposition 2. If ~ < ~-' and }~, . . ., }~ are representatives of a C-basis of space Q(f), then the deforma- 

tion F, 
(~, ~, ~) = i (z, ~) + ~ h  (~, ~) + . . .  + ~,,[~ (~, ~), 

is a 

fold, 

miniversal deformation of the projection f. 

3. Let S = US ~be astratified space, {S i) be its strata, dims i--i. If L, dimL--r, is asmoothmani- 

then by the visible contour of the stratification S under the map G: S -- L, G i = G[si, is meant the set 
L [ l  ~ Gi (s),  (rk G , ) ] s ~ r } .  

4. We c o n s i d e r  a m i n i v e r s a l  d e f o r m a t i o n  of the p r o j e c t i o n  f as  a (p + u ) - p a r a m e t e r  d e f o r m a t i o n  of the 
map f0 = fJu=0. In the space CP +~ there is the bifurcation diagram of zeros ~ (ef. [2]) of the map f0. The space 

is stratified by the strata ~ = const and their mutual intersections. Let <A i be the union of all i-dimensional 

strata. A = U A~, i ~ 0,..., p _uv_ I. 

The visible contour E of the stratification A under the projection P: C p+~ --C ~, (u, ~I) ~v, we call the 

bifurcation diagram of the projection f. 

5. THEOREM i. If f is a simple projection onto the line, then the germ of the space C ; \ Z is a space 

k(Tr, i), where ~ is a subgroup of finite index (indicated in the table) of the group B(u + I) of braids of (~ + I) 

threads. 

Proof. Let the projection be reduced to normal form of Proposition i. We consider its quasihomogeneous 

(cf. [7]) miniversa[ deformation F, written in the form indicated in Proposition 2. We shall prove that in this 

case the space C;\E has type k(~, i). 

Let ~ Y. It is easy to show that then the set p-z (-Q ~ A consists of (; + i) distinct points {(u °, ~) .... , 
(u u, ~)}, where the point xi such that F~ i, u i, ~) = 0, cork (DF~ i, u i, ~)/Dx) = i, is uniquely determined by 

(u i, ~). We construct a polynomialy~+l + aly~-1 + . . . + av, a~C ~, with roots u i- (u °+ . . . + u ~)/(u + i), 

i = 0 ..... u (cf. [6]). We geta map ~from C ~ \ E into the space C v \ Ev of polynomials of the indicated 

form without multiple roots, i.e., into a space k(B(u + i), i). We shah show that this is a covering. 

It is not difficult to extend the map ~ to (C ~ \ E) U YrV--~, and hence to all of C u. We get a quasihomo- 

geneous map (1): (C ~, 0) -~- (C v, 0), the arguments and coordinate functions of which have positive weights. Now 

if we show that @-I(0) = (0}, then we will be able to deduce that ~0 is proper. 

Let ~-I(0) =T. Then for any ~] ~7 the set p-z (71) N A consists of one point (u*, ~?). Let ~I ~7 be a 

general point and x I, . . ., x r be all those points for which the germ F i of the projection F( , , ~) at the point 

(x i, u*) 07 fixed) is not equivalent with A0; ~i be the corresponding codimension. For the eodimensions we get 
r 

~,v ~_u(r_l).vdimT~v. On the other hand, since {(u*,~])} ~ p-z(~) ~ A and all the projections {F i} are 
i=1 

simple, one has ~ (vi~ l)~v-k I. Consequently, dimT = 0, and since ~p is quasihomogeneous, one has % = 

{ 0 } .  ~=~ 

We shall show that q~ is a diffeomorphism at the point ~. 

Let m = I. Since u i ~ uJ, i ;~ j, the nondegeneracy of ~0 is equivalent with the nondegeneraey of the matrix 

(SFl~q~  " ~ l~,~.~)~,~=0, ~10 ---- ~. But s i n c e  the funct ion  f is  q u a s i h o m o g e n e o u s  fo r  ~ = O, { 8 E / a ~ i }  [ is  a b a s i s  of the 

space ~. ~ / (/, 8/l~x~ ..... ~/l~x~). 

For m 2, the nondegeneracy of ~0 is equivalent with the nondegeneracy of the matrix (Hi(x j, u 3, ~ )i,j=0, 

where H i = det (D(F, 6)/D(x, ~?i)), 6 = det (DF/Dx). Using the fact that 6(x3, u3, )}) = 0, for each projection of 
the table we show that outside a set of codimension 2, and consequently also everywhere, ~ is a local diffeo- 

morphis m. 

The index of the group ,~ in B(~ + 1) can be expressed as the degree of the quasihomogeneous mapping of 

the formula a~(v + ~)[/fl a~, where a0, ~1 ..... a~ are quasihomogeneous weights of the variables u, ~I ..... 
V" i=1 

4. Dynkin Diagrams 

I. For a versal deformation F of the projection f, we fix a sufficiently small s > 0 and a small, in com- 

parisonwith ~, value 77 of the parameter of the deformation and we consider inside the s-bail B s with center at 

79 



z e r o  in the space  C n + l t h e s u r f a c e V ~ = { F ( x ,  u, ~ ) = 0 } .  Let  V ° - -  V~ N { u = 0 } .  If f g ives  a s i m p l e p r o j e c -  

t ion of a cu rve ,  then V~/V ° ~ ~/1 S 1. 

2. As was noted in Sec.  1, the l is t  of s imp le  pro jec t ions  for  p = 1 co inc ides  with the l is t  of g e r m s  of 
s u r f a c e s ,  s imple  with r e s p e c t  to the group of d i f f eomorph i sms  p r e s e r v i n g  the plane u = 0. We cons ide r  p r o -  
jec t ions  onto the line p r e c i s e l y  f r o m  this point of view and we c a r r y  out fo r  t h e m  the cons t ruc t ion  of vanish ing  
cyc le s  and h e m i c y c l e s ,  s i m i l a r l y  to the way this was done in the case  of a funct ion with a c r i t i c a l  point on a 
manifold with boundary  (el. [3])° 

3. Let  e and ~? be the s a m e  as in Poin t  1; gl,  . . . .  g~ ~ ~ . ~  be gene ra l  l inear  combina t ions  of the func-  
t ions F1, . . . .  F m  07 fixed). On the s u r f ace  '~ = (g l  = • • • = gm-1 = 0} we cons ide r  the funct ion gin. V~ = T 0 
{ g m  = 0}. At a '  c r i t i c a l  values  of gm on • and a 0 c r i t i c a l  values  on g0 = ~ (~ {u = 0}  (~?0 is s m o o t h  for  gen-  
e r a l  choice  of ~ and gl . . . . .  gm-~) we can define,  as fo r  boundary  s ingu la r i t i e s  in [3], in the space  H = 
Hn_m+l(V~?, V~), vanishing  cyc le s  and h e m i c y c l e s .  We number  them f r o m  1 to a '  + a 0 just  as  one o r d e r s  a 
d is t inguished homology basis  of a nons ingu la r  f ibe r  of a funct ion with an i so la ted  c r i t i c a l  point  (cf. [2]). H is 
spanned by the indicated cyc le s  and h e m i c y c l e s ,  but if c o r k  (Df 0 /Dx)Ex=0 > 1, then there  a r e  r e l a t ions  among  
t h e m  (for the pro jec t ions  ck~/ ,  2 -< k -< l, the vanish ing  hemicyc l e s  a l r e a d y  f o r m  a bas is  of  the space  H). Let  

~t = dim H, ~' = dim H~-m+l (V~,), ~t 0 = dim H._~ (V~). 

4. Set t ing u = x °, we in t roduce  two-shee ted  cove r ings  ~ and V~ over  • and V~ with b ranch ing  along ~0 
and V~. The function gm lifts to ~. Here  to each  c r i t i c a l  point of  gm on • the re  c o r r e s p o n d  two c r i t i c a l  points 
of gm on ~,  and to each  c r i t i c a l  point of gm on @0 one.  We get  2a '  + a 0 vanishing  cyc les  in ~I = Hn-m+l (V~), 
dim~I = 2# '  + #0- These  cyc l e s  gene ra t e  ~I. We cons ide r  in fI the subspace  H-  of c y c l e s ,  an t i invar ian t  with 
r e s p e c t  to pe rmuta t ions  of the shee ts  of the cover ing .  It is gene ra t ed  by a 0 s h o r t  cyc les  (ones which p ro jec t  
into V~ in the f o r m  of twice t r a v e r s e d  vanishing  hemicyc les )  and a '  long cyc les  (which a r e  d i f fe rences  of two 
in te rchanged  involutions of vanishing  c y c l e s ,  s i tua ted  on d i f fe ren t  shee ts ) .  Since d im H- = t~, one can choose  
f r o m  them a bas is  o f #  cyc l e s .  We call  such  a bas is  d is t inguished.  

5. Fol lowing [3], by the Dynkin d i a g r a m  of p ro jec t ions  we shal l  mean the g raph  whose  v e r t i c e s  c o r r e -  
spond to the e lements  of a d is t inguished basis  of H-.  The v e r t i c e s  a re  indexed by # numbe r s  f r o m  1 to a '  + a 0 
(like the vanishing cyc les  and h e m i c y c l e s  in H). The i - th  and j - t h  v e r t i c e s ,  i < j, a r e  joined by k s imp le  (dotted) 
edges ,  if the in t e r sec t ion  index of the i - t h  and j - t h  cyc les  in H- is equal to k ( - k )  and at  l eas t  one of the cyc l e s  
is s h o r t  or  if the index is equal to 2k ( -2k)  and both cyc le s  a r e  long. E d g e s ,  joining the r - t h  and s - t h  v e r t i c e s ,  
c o r r e s p o n d i n g  to long and s h o r t  c y c l e s ,  a r e  o r ien ted  f r o m  r to s. 

6. One has the following propos i t ion .  
_k , l  

P ropos i t i on  3. Let  f be a p ro jec t ion  of the c l a s s  Ck+l, 2 _< k <- t, o r  F#,  p --- 5. Then one can choose  a 
d is t inguished bas is  fo r  which the Dynkin d i a g r a m  has the f o r m  (the indexing of the v e r t i c e s  is omitted) 

2 x  

C£+ z ~ - ~  . . . . . .  ~ 

/z-2 

7. F r o m  the ex is tence  of the cont igui t ies  of p ro jec t ions  Fg - -  C~-1 (See. 1), we get  

COROLLARY 1. The Giust i  d i a g r a m  of cont igui t ies  of s imple  cu rves  in C 3 (ef. [7, 8]) is incomple te .  

P roof .  Let  ~'~ be a cu rve  which is a two-shee ted  c o v e r i n g  of the cu rve  ¥~.  In the notat ion of [8] 

F~ = TT, -Po = W8, F7 = Zg, F8 = Z10. 

The r e m a i n i n g  cu rves  F~ a r e  nons imple .  

On the o ther  hand C# = D#+I. Thus,  l if t ing the cont inui t ies  F# ~ C#_~, # -> 5, we r e a l i z e  the cont igui t ies  

T7 ~,- D~, Ws ~+ D~, Z9 -+ D~, Zt0 -+ Ds, 

of which the Giusti  d i a g r a m  contains  only the f i r s t .  

Example .  Contigui ty of F 6 to C5: 

(x~ + x] - -  t~z~, xlx~ + u + 3tx~ - -  4t~xl - -  4t~x=). 
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Making the substitution u = x 2, we get the contiguity of W 8 to D~. 

5 .  S t r a i g h t e n i n g  V e c t o r  F i e l d s  

F r o m  T h e o r e m  2C~ (for ~ = 3) f o r m u l a t e d  below fo l lows  

COROLLARY 2. A v e c t o r  f i e ld  in g e n e r a l  p o s i t i o n  in t h r e e - d i m e n s i o n a l  s p a c e  wi th  c o o r d i n a t e s  (x, y ,  z) 
can  be r e d u c e d ,  p r e s e r v i n g  the s u r f a c e  x 2 = y3, by a d i f f e o m o r p h i s m  in the ne ighborhood  of e a c h  point  of the 
c u s p i d a l  edge  to one of the  two f o r m a l  n o r m a l  f o r m s :  ~ / 8 x  (at a g e n e r a l  point) ,  ~ / a y  + z 8 / a x  (at i s o l a t e d  

po in ts ) .  

We c o n s i d e r  on the s p a c e  (C~-~, ~ _ , )  x C ~ (cf. Po in t  3.5) a v e c t o r  f i e ld  in g e n e r a l  pos i t ion .  At  a g e n e r a l  
poin t  ~- of the l ine  0 x C 1 i t  i s  t r a n s v e r s a l  to  the  t angen t  p lane  to E~_~ x C ~, a t  i s o l a t e d  points  i t  l i e s  in i t .  In the 
f i r s t  c a s e ,  by L y a s h k o ' s  t h e o r e m  [6], in a ne ighborhood  of the poin t  ~, by a d i f f e o m o r p h i s m  p r e s e r v i n g  E~_~ x 
0 ~, the f i e ld  can  be r e d u c e d  to the f o r m  8 / ~ # _ 1 ,  i f  E~_I is  the d i s c r i m i n a n t  of the p o l y n o m i a l  y #  + aly p-2 + . . .  + 
a#_i. The n o r m a l  f o r m  of the v e c t o r  f i e ld  in the s econd  c a s e  is  d e s c r i b e d  by the fo l lowing  a s s e r t i o n .  

THEOREM 2C#. Le t  Ap  be the d i s c r i m i n a n t  of the p o l y n o m i a l  

y~ _ ~y~-1 + ~y~-~ _ . . .  ~__ ~ ,  ~ ~ C~, 

v be the g e r m  a t  the point  0 ~ C, of a f o r m a l  v e c t o r  f i e ld ,  t angen t  a t  z e r o  to the space  Ap ,  and at  o t h e r s  in 
g e n e r a l  pos i t i on  (the t r a n s v e r s a l i t y  of the v e c t o r  f ie ld  a t  0 to the p lane  ~#_~ = 0 in the s p a c e  ~p = 0 i s  n e c e s -  
s a r y ) .  Then by a f o r m a l  d i f f e o m o r p h i s m  of  the s p a c e  (0 # ,  0) p r e s e r v i n g  A ~ ,  the  f i e ld  v can  be r e d u c e d  to the  

f o r m  ~/8~#_~. 

P r o o f .  We s e t  a / 8 ~ i  = 8i.  

By [4] the  a l g e b r a  ~ of v e c t o r  f i e lds  p r e s e r v i n g  &p and l eav ing  0 in p l a c e  is  m~L, ~- ~ (L~ . . . . .  L~t>, 

w h e r e  m~ ~ $o is the m a x i m a l  i d e a l ,  L ~ =  ~ L~aj, 
J ~ l  

i - - 2  

L~ ----- (~ - -  ] + i) (h-i(~-, - -  !~ (i + ] - -  2r - -  2) (~o~+~_~_~, 
r ~ 9  

w h e r e  ~0 = 1 and o- k = 0, if  k > p  [the f i e ld  L1 p r e s e r v e s  a]~, but LI(0) ;~ 0]. 

The f ie ld  v which  is spoken  of in the t h e o r e m  has the f o r m  v = ~ v~a~, v~ (0)=0,  v~_, (0) ea 0. Le t  v = 
~=1 

O~_~. We s e t  [v, ~ ]={[v ,  l], l~SQ,  ~ = $~ <0~ . . . . .  O~>, ~ = (~, . . . . .  ~m-~, ~ ) .  

/ f - I  O~ = ~ <L %-~ . . . . .  ~_~> <a~ . . . . .  a ~ > .  

We need to show tha t  [8~-i, ~] = mo8~ + ~ <0, . . . . .  a~-i> o r  tha t  [0~-i, ~ ' ]  = 0, w h e r e  5~' = ~ -P EL,. We 
denote  [a~_1, ~ ']  by M. 

? 
F o r  c o n v e n i e n c e ,  as  g e n e r a t o r s  of ~ '  we take  L] = (1 - p ) L 1 ,  L 2 = I~ . . . .  , I ~ _ l  = L # - i ,  L~ = L# - 

~#_lL~. The  m a t r i x  L'{~=0 has  the  f o r m  

( i  - -  ~ )  V ( i  - -  ~) e~_, 
0 (i - -  B) %-~ 

(i - -  ~) %_~ 
(i - -  ~) %_~ 0 

L e t  M . ~  ~ (for k = 0 th is  is  obvious) .  We s h a l l  show that  then M ~ 0~+1. Since the  m a p  is an ~ -  
k m o r p h i s m ,  i t  su f f i ce s  to p rove  tha t  M ~ ~,_l<a, . . . . .  0~>c -~ ~ .  It i s  e a s y  to s e e  tha t  [0~_~, ]: ~ --+ O, 1 ~ [0~-1, l] 

%-1L,1 - -  (k + 1) (l - -  ~) o~_,0~ rood 0#, [a~-l, ~ ' 

~_lL2] ~-~ (k ~ t) (l - -  bt) ~_lO~_l mod (#~ -}-g~- lO~)  . . . .  

. . . .  [8._i, g~_~L~] ~ (k d- i) (I - -  ~t) (~_~a~ mod (~k ,J- ~Go~_~ <a2 . . . . .  a.>). 

Consequent ly ,  ~k+i C M.  The theorem is proved. 
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In the case F 4 the analog of the a s se r t ion  proved is the following. We consider  in the space C 4 = C 2 × C 2 

the sur face  7 = E2 x C 2. Let  v be the g e r m  at  the point 0 ~ C ~ of a fo rma l  vec tor  field, tangent at 0 to the 
plane 0 × C 2, and otherwise  in general  position. We introduce in C 4 coordinates  (u, 71, 72, 7a) [not p re se rv ing  
the s t ruc tu re  of d i rec t  product  on (C 4, ~/)], in which the su r face  is descr ibed  as the bifurcat ion d i ag ram of 
ze ros  (cf. Point 3.4) for the project ion F4: 

7 = {27 (u ~ -f- ~h) 2 -~ 4 (U~la + ~1~) ~ = 0}. 

THEOREM 2F 4. By a fo rma l  d i f feomorphism p re se rv ing  ~, the field v can be reduced to the f o r m  ~/~u.  

The proof of this a s se r t i on  is analogous to the previous one: we seek  f i r s t  the s ta t ionary  a lgebra  of (% 0), 
and then, acting on it by the field ~/3u, we get the space 

m~, n <~/@1, Ol&h> ~- &,, n <OlOu, Ol&la>. 

Remark .  Theorem 2 shows that for  min ive r sa l  deformat ions  of project ions Cp and F4, the project ion 
P: C t+" ~ C ' ,  (u, 7) - -  7? of the d i sc r iminant  A f r o m  Point 3.4 is s table.  Whether the corresponding a s se r t i on  
about vec tor  fields and the stabil i ty of the project ion P for project ions C~- 5, 2 -_ k -< t, and Fp,  ~ >- 5, is t rue 
is unknown. 

In conclusion, the author exp re s se s  profound thanks to V. I. Arnol 'd  for posing the problem,  constant  
attention to the work,  and many useful d iscuss ions .  In pa r t i cu la r ,  he indicated the connection between p ro jec -  
tions onto the line and functions with c r i t i ca l  points on manifolds with boundary,  and also formula ted  Theo rem 
2 as a conjecture .  
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