GEOMETRY OF BIFURCATION DIAGRAMS OF SIMPLE
PROJECTIONS ONTO THE LINE

V. V. Goryunov UDC 513.836+517.919

A projection of a submanifold Vofa fibered space E into the base B is a triple V—E — B, consisting of
an inclusion and a projection (cf. [5]). The germ of a projection is simple if it has no moduli (continuous invari-
ants with respect to the natural equivalence).

Below there is given a list of all simple germs of projections (not necessarily smooth) of manifolds onto
the line. The list consists of hypersurfaces and curves in three-dimensional space, Hypersurfaces are given
by functions with a simple critical point on a manifold with boundary (cf. [3]): the boundary is the preimage of
zero under the projection, It is proved that the germ of the complement of the bifurcation diagram of a simple
complex projection onto the line is a space k(m, 1), where 7 is a subgroup of the group of braids. This is a
generalization of the theorem of Lyashko— Looijenga (cf. [2, 9]), corresponding to the case when V is a smooth
hypersurface. For the boundary singularities By, Cy and F, our generalizafion differs from the generalization
given by Lyashko in [6] (the bifurcation diagrams and groups = are different),

We also prove a theorem on the normal form of the germ of a vector field, which is an extension of a
theorem of Lyashko on straightening a vector field by a diffeomorphism, preserving the bifurcation diagram of
zeros of a simple function (cf. [6]), to the case when the vector field at a point of a cuspidal edge of the dis-
criminant manifold is tangent to this manifold.

1. Classification of Simple Projections onto a Line

We consider the trivial fibration C® x ¢P — CP. We shall denote points of the fiber C2 by x, and points of
the base CP by u. A submanifold V is defined by a system of m equations f;(x,u) =0, ..., fm&, u) =0, Below
X, denotes one of the simple singularities of functions of n variables X = A, D, or E; cf, [1]). q denotes
x% .t X%l The following proposition constitutes part of the classification obtained by the author of germs
of projections onto.

Proposition 1. A germ of a projection onto the line (p = 1) is simple if and only if it is stably equivalent
with the germ at zero of the projection (x, u) —u of one of the manifolds f = 0, listed in Table 1.

Here {Xy | and N are the order and Coxeter number of the Weyl group X;;,. The meaning of the numbers u,,
u' and v is explained below.

One can show that the list of all germs of surfaces of positive dimension in the space C™™!, simple with
respect to the group of diffeomorphisms of C““, preserving the plane u = 0, coincides with our list,

. ; - 1,0 _ 1,0 _
It is convenient to assume that By = A4, Cri=Cups C" = B and F; = By,

There exist the following contiguities of projections of curves of Proposition 1:

Ay —= A/A-,,/»U Hﬂ—>ﬁﬂ,,,/¢>/

VXA K=1,0

?k+z——>€k+1_,,/<k<L & ~—>§l_,,,u>5

Y kL=t J’s —5~1 ©-1
ey O IS AL E/j_, ,5=7,‘.,,[ 3 J

All possible contiguities for n = m are exhausted by those enumerated up to transitivity A - B, B —C =
A—C).

2, Definitions of Equivalence and Simplicity

1. By an equivalence of projections Vi —Ej — Bj, i =1, 2, is meant a commutative 3 X 2-diagram, whose
verticals are diffeomorphisms h:E; —E,, k:B; — By, such that hv, = V,.
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2. A suspension of a projection V—E — B is a projection V~E' — B, where V is included in E' as a
submanifold of the space of a subbundle E C E'.

3. A stable equivalence of projections is an equivalence of suspensions.

4. Analogous definitions are given for germs. A germ V at 0 & CP x CP is given by a system of m equa-
tions f; = 0,. .., fm =0, where f;, . . ., fj, are germs of holomorphic functions of x and u, equal to 0 at the
origin, The system g = 0 gives the same germ V as f if g = Mf, where M is an appropriate square matrix,
holomorphic at zero, and detM(0) = 0.

Caution. Two systems of generators of one ideal with different numbers of elements give different germs
V.

5, We consider the canonical projection c? x cP —-Cp, , u) —u. An equivalence of given systems f =0
and g = 0 of germs of projections at 0 is a germ of a local diffeomorphism h, leaving the origin fixed, of the
form hx, u) = (afx, u), b@)), for which h*g = Mf,

6. Analogous fo points 4 and 5, definitions are given for formal series f, h, M.

7. A germ of a projection is called simple, if a sufficiently small neighborhood of it intersects only a
finite number of equivalence classes.

More precisely, a germ is simple, if there exists a finite collection of equivalence classes such that for
any k, any k-jet sufficiently close to the k-jet at the origin, giving a germ of the collection of functions f, is a
k-jet of the collection, giving the germ of a projection of one of the classes indicated.

8. A germ of a projection is called a germ of a projection onto, if the number of equations defining the
germ V does not exceed the dimension of the fiber: in the notation introduced above m = n, In this case the
projection of the germ V at zero will, in general, be the whole germ (C®, 0).

3. Bifurcation Diagrams of Simple Projections onto a Line

Below the germ of the projection (x, u) = u of the manifold defined by the system of equations fix, u) = 0
will be called the projection f for short.

1. Let & (n + p) = &7 . be the space of germs at zero of holomorphic mappings from C® x CP into
g gt = &y W (m) be the maximal ideal in & (m) = & (m).

For f < &; + we set
Q () = & J* (m (m) -8 o + Ex, u (0f/02y,. . ., Ofl0xnd | & 0f0uys. « ., Offdupy}, v = dime Q (f).
Germs of projections at points q; and g, are t-equivalent if they become equivalent after translation of the
points g4 and g, to 0,
The number v is the codimension of the t~equivalence class of the projection f in the space &7 ..

2. For projections one can, in a natural way, introduce the concept of miniversal deformation (cf. [1]).
Let 7 be the parameter of the deformation. One has the following proposition.
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Proposition 2, If v <= and §, ..., {, are representatives of a C-basis of space Q(f), then the deforma-
tion F,
F (.T, U, 7]) =f(xa ”) + Tllgl (-'1"7 u) \_ v ‘i_ "ﬂvgv (.CE, LL),

is a miniversal deformation of the projection f,

3. Let S = [JS" be a stratified space, {sl} be its strata, dimSi =i, If L, dimL = r, is a smooth mani-
fold, then by the visible contour of the stratification S under the map G: S — L, G; = GISi, is meant the set
{{c=L|l=0G(s) (k G)|s<r}

4. We consider a miniversal deformation of the projection f as a (p + v)-parameter deformation of the
map f; = £l In the space CP*V there is the bifurcation diagram of zeros A (cf. [2]) of the map f;. The space
A is stratified by the strata u = const and their mutual intersections, Let Al be the union of all i-dimensional
strata, A= [J A, i=0,..., p+v—1

The visible contour Z of the stratification A under the projection P: cPHY — cY, w, n) —n, we call the
bifurcation diagram of the projection f.

5. THEOREM 1. If f is a simple projection onto the line, then the germ of the space C¥ \ X is a space
k(r, 1), where 7 is a subgroup of finite index (indicated in the table) of the group B(v + 1) of braids of (v + 1)
threads.

Proof. Let the projection be reduced to normal form of Proposition 1. We consider its quasihomogeneous
(cf. [7]) miniversal deformation F, written in the form indicated in Proposition 2. We shall prove that in this
case the space C¥\ Z has type k(m, 1).

Let % e£ 3. It is easy to show that then the set P~ (7)) () A consists of (v + 1) distinct points { @% m,...,
@”, m}, where the point xi such that F&i, ul, m) =0, cork OF &L, ul, 1) /Dx) =1, is uniquely determined by
@i, 7). We construct a polynomial y”*' + «;y’' + ...+ a,, a= €, withroots ul = @’ + ...+ u") /(v + 1),
i=0,..., v {cf. [6]). We get a map ¢ from C°\_Z into the space € \ E, of polynomials of the indicated

form without multiple roots, i.e., into a space k(B(v + 1), 1), We shall show that this is a covering,

It is not difficult to extend the map ¢ to (Cv \ 2) |J 2+-1, and hence to all of C¥. We get a quasihomo-
geneous map ®@: (Cv, 0) — (C¥, 0), the arguments and coordinate functions of which have positive weights. Now
if we show that $~1(0) = {0}, then we will he able to deduce that ¢ is proper.

Let ¢=1(0) = y. Then for any n ey the set P71 (n) N A consists of one point (u*, 7). Let ne<v bea
general point and x!, ..., xF be all those points for which the germ F1 of the projection F( , , n) at the point
i, u*) (n fixed) is not equivalent with Ay v1 be the corresponding codimension. For the codimensions we get

Syt (r—1) - dimy =v. On the other hand, since {(u*, m)} = P~1(n) ] A and all the projections {F} are
(r—1) 1 ]

=1
simple, one has }] (v~ 1)=v -+ 1. Consequently, dimvy = 0, and since ¢ is quasihomogeneous, one has 7 =
{0 }' i=1

We shall show that ¢ is a diffeomorphism at the point .

Let m = 1, Since ul = u, 1 # j, the nondegeneracy of ¢ is equivalent with the nondegeneracy of the matrix
(OF lom; j;,’aj,ﬁ){ j=0» Mo = . But since the function f is quasihomogeneous, for n =0, {oF /ani }é) is a basis of the

space &y, v/ (f, 0f/0zy, . . ., 0f/dx,).

For m = 2, the nondegeneracy of ¢ is equivalent with the nondegeneracy of the matrix (Hi()_ij, o, ﬁ))f’jzo,
where Hj = det (D(F, §) /D, n;)), 6 = det (DF/Dx). Using the fact that 6&J, uJ, ) = 0, for each projection of
the table we show that outside a set of codimension 2, and consequently also everywhere, ¢ is a local diffeo~
morphism.

The index of the group 7 in B(v + 1) can be expressed as the degree of the quasihomogeneous mapping of

v
the formula og (v - 1)! /H a;, where ay, @, ..., a, are quasihomogeneous weights of the variables u, 4, . . .,
T’V‘ f==1

4, Dynkin Diagrams

1. For a versal deformation F of the projection f, we fix a sufficiently small € > 0 and a small, in com-
parisonwith €, value 1 of the parameter of the deformation and we consider inside the e-ball B; with center at
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zero in the space ¢n+! the surface V77 ={F&, u, 7) =0}. Let V= Vo N {u = 0}. If f gives a simple projec-

Vo1
tion of a curve, then Vy/Vy=\/ S.

2. As was noted in Sec. 1, the list of simple projections for p = 1 coincides with the list of germs of
surfaces, simple with respect to the group of diffeomorphisms preserving the plane u = 0. We consider pro-
jections onto the line precisely from this point of view and we carry out for them the construction of vanishing
cycles and hemicycles, similarly to the way this was done in the case of a function with a critical point on a
manifold with boundary (cf. [3]).

3. Let € and 1 be the same as in Point 1; &1- + -» &m & &, o« be general linear combinations of the func—
tions Fy, ..., Fyy (7 fixed). On the surface ¥ = {gi=...= Em-1 = 0} we consider the function me V=T N
{gm = 0}. At &' critical values of gy, on ¥ and g, critical values on ¥° =¥ ] {u = 0} (¥° is smooth for gen-
eral choice of n and g, . . ., §m-1) We can define, as for boundary singularities in (3], in the space H =
Hp—m+ (V v ), vanishing cycles and hemicycles. We number them from 1 to ' + @, just as one orders a
dlstmgulshed homologr basis of a nonsingular fiber of a function with an isolated critical point (cf. [2]). H is
spanned by the indicated cycles and hemicycles, but if cork (Df;/ Dx)lx=, > 1, then there are relations among

them (for the projections Cllz’ 2 =< k = I, the vanishing hemicycles already form a basis of the space H). Let

p=dim H, w' =dim Hyms (Va), po=dim Hpn(Vn).

4. Setting u = xJ, we introduce two-sheeted coverings ¥ and \7‘,’ over ¥ and V, with branching along ¥’
and VI, The function g, lifts to ¥, Here to each critical point of g, on ¥ there correspond two critical pomts
of gy On \l/ and to each critical point of Zm Oon ¥’ one, We get 2a' + a, vanishing cycles in H = Hpom+y (Vﬂ)
dimH =2u' + u, These cycles generate B we cons1der in H the subspace H™ of cycles, antiinvariant with
respect to permutations of the sheets of the covering. It is generated by «, short cycles (ones which project
into Vp in the form of twice traversed vanishing hemicycles) and a' long cycles (which are differences of two
interchanged involutions of vanishing cycles, situated on different sheets). Since dimH™ =p, one can choose
from them a basis of u cycles. We call such a basis distinguished.

5. Following [3], by the Dynkin diagram of projections we shall mean the graph whose vertices corre~
spond to the elements of a distinguished basis of H™. The vertices are indexed by ¢ numbers from 1 to a' + ¢
(like the vanishing cycles and hemicycles in H). The i-th and j-th vertices, i < j, are joined by k simple (dotted)
edges, if the intersection index of the i-th and j-th cycles in H™ is equal to k (—k) and at least one of the cycles
is short or if the index is equal to 2k (—2k) and both cycles are long, Edges, joining the r-th and s-th vertices,
corresponding to long and short cycles, are oriented from r to s,

6. One has the following proposition.

[
Proposition 3. Let f be a projection of the class Cilb 2 =k=, or Fy, p = 5. Then one can choose a
distinguished basis for which the Dynkin diagram has the form (the indexing of the vertices is omiited)

K 1A
P A" N
f»’(kfl HTH—O
o

7. From the existence of the contiguities of projections ¥, — Cy-1 (Sec. 1), we get

COROLLARY 1, The Giusti diagram of contiguities of simple curves in C? (cf. [7, 8]) is incomplete.

Proof, Let S?“ be a curve which is a two-sheeted covering of the curve Y. In the notation of {8]
Fy=1T, Fo= Wy F, =2,, Fy = Z,.
The remaining curves f‘“ are nonsimple,
On the other hand 6” = Dy 4. Thus, lifting the continuities Fy, — C;_y, 4 = 5, we realize the contiguities
T:~> Dy, Wy~ Dsg, Zy — Dy, Zyy— Dy,
of which the Giusti diagram contains only the first,

Example, Contiguity of Fg to Cy:
(2] + 25 — 2, 2z, + v + 32 — bz, — 4832,).
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Making the substitution u = x2, we get the contiguity of W to Dg.

5. Straightening Vector Fields

From Theorem 2Cy, (for p = 3) formulated below follows

COROLLARY 2. A vector field in general position in three-dimensional space with coordinates ,y, z)
can be reduced, preserving the surface x* = y°, by a diffeomorphism in the neighborhood of each point of the
cuspidal edge to one of the two formal normal forms: 8 /9x (at a general point), 0 /9y + z8/ 0x (at isolated
points).

We consider on the space (C#-1, E,,) x C! (cf. Point 3.5) a vector field in general position. At a general
point T of the line 0 X ¢! it is transversal to the tangent plane to €, X C!, at isolated points it lies in it. In the
first case, by Lyashko's theorem [6], in a neighborhood of the point 7, by a diffeomorphism preserving Z,, x
C!, the field can be reduced to the form 8/8ay_q, if E,; is the discriminant of the polynomial yH - ayh-te, L+
4, 1. The normal form of the vector field in the second case is described by the following assertion.

THEOREM 2Cy. Let Ay be the discriminant of the polynomial
Y — Gyl 4 gyt — .. 0, o0

v be the germ at the point 0 < C* of a formal vector field, tangent at zero to the space A, and at others in
general position (the transversality of the vector field at 0 to the plane o,y = 0 in the space oy = 0 is neces-
sary). Then by a formal diffeomorphism of the space (CH, 0) preserving Ay, the field v can be reduced to the
form /80y -4.

Proof. We set 3/80; = 9i.

By [4] the algebra £ of vector fields preserving Ay and leaving 0 in place is meL; + & <{Ly,. . ., Ly,

w
where my C &, is the maximal ideal, L;= Y L;;0;,
i=1

Lijj=p—1i+ 1) 051051 — "E (i+j—2r— 2) 010i4j-r-2;

r=9

wheregy=1and g, =0, if k >p [the field Ly preserves Ay, but L;(0) = 0],

w
The field v which is spoken of in the theorem has the form v= Y v;0;, v, (0)=0, vy, (0) 5= 0. Letv =
j=1

j=

8“_1. We Set {v, z]:{[va l]7 lez}y ﬁ = %0’ <811‘ LR} au,>7 6 = (0'19' .y G]Jr—?y Up.)-
O =& A, Ouy - -y 041> Buye o T

We need to show that [6,;, %I = med, + & <{O1s. - -, du-1> O that [9,,, Z'1 =10, where & = & 4 CL,. We
denote 18,5, £'] by M.

For convenience, as generators of %' wetake L{ = (1 —u)Ly, Ly = Ly, . . .y 111—1 =Ly-1, Ly =Ly -
0y -1Ly. The matrix L'l;~, has the form

(I—pp (1 —p)opy
0 (1 —p) Ous

(1—p) O
(1—p)ops 0

Let M D9 (for k = 0 this is obvious). We shall show that then M D ¥. Since the map is an &;-
morphism, it suffices to prove that M D 0f <8y, . . ., d,>c + By. It is easy to see that [0,y, ) L~ 9, I~ [8,, I
[Ou-1s Op i Lal= (k + 1) (1 — p) 6}i10, mod Ty,

[Op-1» Oy L] = (k 4+ 1) (1 — p) 040y mod (8x +&;0048,), - . .
ceos [Bymgy OhgL) = (B +1) (1 — p) 0fiyd, mod (O + 8505 <Oy, - - .y ).
Consequently, ¥y, C M. The theorem is proved.

81



In the case F, the analog of the assertion proved is the following., We consider in the space ct=¢ x¢?
the surface y = £, X G%. Let v be the germ at the point 0 & C* of a formal vector field, tangent at 0 to the
plane 0 X 02, and otherwise in general position. We introduce in ¢! coordinates (u, ngy M9, My) [not preserving
the structure of direct product on (C%, v}], in which the surface is described as the bifurcation diagram of
zeros (cf. Point 3.4) for the projection F,:

v = {27 (u* + m2)* + 4 (uny + mo)* = 0}
THEOREM 2F,. By a formal diffeomorphiém preserving vy, the field v can be reduced to the form 3/8u.

The proof of this assertion is analogous to the previous one: we seek first the stationary algebra of (y,0),
and then, acting on it by the field 8/0u, we get the space

1, g <0/My, 80N> + 8, v <3/du, 8/0ns).

Remark. Theorem 2 shows that for miniversal deformations of projections Cu and ¥, the projection
P: ¢!tV — Y, @, n) — n of the discriminant A from Point 3.4 is stable, Whether the corresponding assertion
about vector fields and the stability of the projection P for projections Cifl, 2 =k=I and Fy, b 2 5, is true
is unknown.

In conclusion, the author expresses profound thanks to V. I. Arnol'd for posing the problem, constant
attention to the work, and many useful discussions, In particular, he indicated the connection between projec-~
tions onto the line and functions with critical points on manifolds with boundary, and also formulated Theorem
2 as a conjecture.
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