In this note we have computed the cohomologies of groups of braids of series C and D and we have indicated as well the connection of braids of series C with the theory of singularities of smooth functions.

1. Let an irreducible group W, generated by reflections, act in a real n-dimensional Euclidean vector space. Then group W acts also in the complexification C^{n} of this space. If UW is the union of complexifications of mirrors, then the space ($\mathrm{C}^{n} \backslash U W$)/W of regular orbits of action of W on C^{n} is the space $k(\pi, 1)$ (see [1]). The fundamental group of this space is called the group of (generalized) braids connected with group W and is denoted $B W$ (see [2]).

If $W=A_{n-1}$, then $B W$ is the group $B(n)$ of ordinary n-thread braids. Its cohomologies have been computed by Vainshtein [3]. The cohomologies of groups $B C_{n}$ and $B D_{n}$ are described by the following two theorems.

THEOREM C. $H^{q}\left(B C_{n} ; \mathrm{Z}\right)=\underset{i=0}{\infty} H^{q-i}(B(n-i) ; \mathrm{Z})$.
THEOREM D. $\quad H^{q}\left(B D_{n} ; \mathrm{Z}\right)=H^{q}(B(n) ; \mathrm{Z}) \oplus\left[\oplus_{\mu=0}^{\infty} H^{q-2 \mu}(B(n-2 \mu) ; \mathrm{Z}) / H^{q-2 \mu}(B(n-2 \mu-1) ; \mathrm{Z})\right] \oplus\left[\oplus_{\lambda=0}^{\infty} H^{q-2 \lambda-3}(B(n-\right.$ $\left.\left.2 \lambda-3) ; Z_{2}\right)\right]$.

Both statements are proved by constructing triangulations of the classifying spaces, analogous to the triangulation in [4]. Multiplicative structures in $H *\left(B C_{n} ; Z\right)$ and $H^{*}\left(B D_{n}\right.$; Z) are induced by multiplication in the cohomologies of the groups of ordinary braids.

From the stabilization theorem for groups $B(n)$ (see [5]) we obtain
COROLLARY. $H^{q}\left(B C_{n+1} ; \mathbf{Z}\right)=H^{q}\left(B C_{n} ; \mathbf{Z}\right)$ for $n \geqslant 2 q-2 ; H^{q}\left(B D_{n+1} ; \boldsymbol{Z}\right)=H^{q}\left(B D_{n} ; \mathbf{Z}\right)$ for $n \geqslant 2 q-1$.
Hence for the limit groups (see [6, p. 40])

$$
\begin{aligned}
H^{q}\left(B C_{\infty} ; \mathrm{Z}\right) & =\stackrel{\oplus}{i=0} H^{q-i}(B(\infty) ; \mathrm{Z}) \\
H^{q}\left(B D_{\infty} ; \mathrm{Z}\right) & =H^{q}(B(\infty) ; \mathrm{Z}) \oplus\left[\underset{\lambda=0}{\infty} H^{q-2 \lambda-3}\left(B(\infty) ; \mathrm{Z}_{2}\right)\right]
\end{aligned}
$$

2. The space ($\left.C^{n} \backslash U C_{n}\right) / C_{n}$ can be identified with the set of polynomials $p_{\lambda}(x)=x^{n}+\lambda_{1} x^{n-1}+$ $\ldots+\lambda_{n}$ without multiple and zero roots. The space $\mathbb{C}^{n} / C_{n} \simeq \mathbb{C}^{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ has a stratification corresponding to the coinciding and vanishing of the roots of $p_{\lambda}(x)$.

Definition. The set of polynomials in which there are exactly k zero roots and no other multiple roots is called the stratum C_{k}.

Proposition 1. Stratum $C_{k}(k \geqslant 1)$ is isomorphic with the space $\left(C^{n-k} \backslash U C_{n-k}\right) / C_{n-k}$ and is the space $k\left(B C_{n-k}, 1\right)$.

Let $f:\left(C^{m}, 0\right) \rightarrow(C, 0)$ be the germ of a function having a normal form $D_{n}, n \geqslant 4$ (see [7]). Let us consider a miniversal deformation of f (see [7]) and the bifurcation diagram of the zeros of D_{n}, viz., those points of the base of the deformation that correspond to functions with critical value zero.

Definition. A subset of the base, to which correspond functions with a single critical point at the zero level, where this point is of type D_{k}, is called a stratum D_{k}.

Proposition 2. The stratum $D_{k}(k \geqslant 4)$ of the bifurcation diagram of the zeros of D_{n} is the space $k\left(B C_{n-k}, l\right)$.

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 12, No. 2, pp. 76-77, April-June, 1978. Original article submitted March 25, 1977.

The assertion is true for one of the irreducible components of strata (A_{1}, A_{1}) $=D_{2}$ and $\mathrm{A}_{3}=\mathrm{D}_{3}$.

The next proposition is valid for complex caustic D_{n} (see [7]).
Proposition 3. The stratum $D_{k}(k \geqslant 4)$ of caustic. D_{n} is the space $k\left(B C_{n-k}, 1\right)$.
This proposition is true as well for one of the components of stratum $A_{3}=D_{3}$.
Remark. The Betti numbers of the complement to the complex caustic D_{n} are: $\beta^{0}=\beta^{1}=1$; $\beta^{q}=0, q>1$.

The author thanks V. I. Arnol'd for posing the problem and also D. B. Fuks for valuable discussions.

LITERATURE CITED

1. P. Deligne, Invent. Math., 17, 273-302 (1972).
2. E. Briskorn, Matematika, 18, No. 3, 46-59 (1974).
3. F. V. Vainshtein, Funkts. Ana1. Prilozhen., 12, No. 2, 72-73 (1978).
4. D. B. Fuks, Funkts. Anal. Prilozhen., 4, No. 2, 62-73 (1970).
5. V. I. Arnol'd, Tr. Mosk. Mat. Ob-va, 2 $\overline{1}, 27-46$ (1970).
6. D. B. Fuks, Funkts. Anal. Prilozhen., 8 , No. 1, 36-42 (1974).
7. V. I. Arnol'd, Usp. Mat. Nauk, 30, iNo. 5, 3-65 (1975).

SELF-dual yang-mills fields over a sphere

V. G. Drinfel'd and Yu. I. Manin

UDC 519.46

1. Let G be one of the classical compact Lie groups: $O(r), U(r), S_{p}(r) ; P$ be a principal G-bundle over S^{4}. In this note we describe all the connectivities on P satisfying the duality equation $* F=F$, where the $*$ is constructed relative to the standard conformal lattice on S^{4} and F is a curvature form. In a number of physics papers [1-5, 7, 8] these connectivities are called self-dual Yang-Mills fields or multi-instant solutions of the Yang Mills equations. For all three series of groups we can establish a one-to-one correspondence between such solutions and certain objects of a linear algebra (the "parameters" of the solution). Following [3] we realize S^{4} as a space of planes in C^{4}, invariant relative to the maps $\sigma:\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \mapsto\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4} \bar{z}_{3}\right)$. The vector bundle L on S^{4}, associated with P, is constructed as the direct summand of the trivial bundle $S^{4} \times H$ whose rank depends on G and on the Pontryagin number of L. The instant connectivity on L is induced by the trivial connectivity on $\mathrm{S}^{4} \times \mathrm{H}$.
2. Data on a Linear Algebra. In all cases the initial object is the diagram $I \subset H \otimes \mathbf{C}^{4}$, where H is a real space with a positive definite quadratic form Q and I is a complex space invariant relative to $\mathrm{id}_{H} \otimes \sigma$. In addition, in case $G=U$, on H there must be given an orthogonal operator J with $J^{2}=-1$, while in case $G=S p$, two orthogonal operators J_{1} and J_{2} with $J_{1}^{2}=J_{2}^{2}=-1, J_{1} J_{2}=-J_{2} J_{1}$. The subspace I is then assumed invariant relative to $J \otimes$ id or $J_{1} \otimes \mathrm{id}$, and $J_{1} \otimes$ id, respectively. The data described must satisfy the following conditions. Let $E \subset \mathbf{C}^{4}-\mathbf{C}$ be a linear space; we set $I_{E}=\sum_{l}\left(\mathrm{id}_{H} \otimes l\right) I \subset H \otimes \mathrm{C}$, where Z ranges the set of linear forms $C^{4} \rightarrow C^{R}$, zero on E.
a) For any hyperplane $E \subset C^{4}$ the space I_{E} is isotropic relative to $Q \otimes C$.
b) For any σ-invariant plane $D \subset C^{4}$ we have $\operatorname{dim}_{C_{D}} I_{D}=2 \operatorname{dim}_{C} I$.
3. Bundles. The data described define a bundle $L \subset S^{4} \times H$ with fiber $H \cap I_{D}^{\perp}$ over a point $p \in S^{4}$, corresponding to plane D . The real rank of L equals $r=\operatorname{dim}_{\mathrm{R}} H-2 \operatorname{dim}_{\mathbf{c}} I$ and the Pontryagin number equals $n=(1 / 2)$ dim $_{C} I$. The orthogonal (respectively, unitary, quaternion-
[^0]
[^0]: Moscow State University. V. A. Steklov Mathematics Institute. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 12, No. 2, pp. 78-79, Apri1-June, 1978. Original article submitted November 27, 1977.

