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Abstract. We show that every unframed knot typeSlT*R2 has a representative obtained by
the Legendrian lifting of an immersed plane curve. This gives a positive answer to the question
asked by V.I.Arnold in [3]. The Legendrian lifting lowers the framed version of the HOMFLY
polynomial [20] to generic plane curves. We prove that the induced polynomial invariant can be
completely defined in terms of plane curves only. Moreover itis a genuine, not Laurent, polynomial
in the framing variable. This provides an estimate on the Bennequin-Tabachnikov number of a
Legendrian knot.
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Afewyears ago Arnold [2, 3] gave a hew breath to the study of invariants of plane
curves, the area which attracted Gauss and Whitney. The approach introduced
by Arnold is very similar to that successfully used by Vassiliev in knot theory,
which is to describe invariants in terms of their changes in generic homotopies
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of curves. Considering invariants which change only in homotopies of plane
curves involvingdirect self-tangencies (that is, when the tangent branches have
coinciding orientations) we arrive at a situation very reminiscent of knot theory
itself. Indeed, one can lift a generic plane curve to a Legendrian knot in the solid
torusST*R? or, if the winding number of the curve is zero,R¥. Such a knot

will experience crossing changes only at the above self-tangencies.

It has been observed that the theory of regular plane curves without direct self-
tangencies has in fact a far-reaching parallel with the theory of framed knots. For
example, the space of Vassiliev type invariants is the same in both cases [14,13].
Of course, this does not ensure that any framed knot can be represented by the
Legendrian lift of an immersed plane curve equipped with the canonical Legen-
drian framing. Indeed, this is not true in this generality: Bennequin’s inequality
[5] shows that the twisting numbers of the canonical framings of Legendrian
representatives of a fixed unframed knot type are bounded from one side. On the
other hand, while the classical result in the area claims that any unframed knot
type in the standard contact solid torus or 3-space has a Legendrian representa-
tive (see, e.g., [15]), the canonical projection to the plane of such a representative
may have cusps.

In the present paper we are trying to make the parallel between knots and
regular plane curves more explicit. We show that, in fact, the Legendrian rep-
resentatives can be chosen to be the lifts of regular curves. We also investigate
restrictions on the Legendrian framings of such lifts. We show that there is another
estimate on these framings which is often stronger than Bennequin’s inequality
(cf. [12]). Our estimate comes from the HOMFLY polynomial of a knot in a
solid torus. Other similar estimates provided by Legendrian lowerings of the
other polynomial knot invariants to regular plane curves and plane curves with
cusps are discussed in [7].

1. Legendrian realisation
1.1. Standard contact spaces

We recall a few basic notions.

A contact elemendt a point of a plane is a line in the tangent plane. Its
coorientationis a choice of one of two half-planes into which it divides the
tangent plane. The manifold of all cooriented contact elements of the plane is
the spherisatiod 7*R? of the cotangent bundle of the plane. It is diffeomorphic
to the solid toruR? x S*: the coorienting normal vector is defined by the angle
¢ mod 2r which it makes with a fixed direction on the plane. The manifidd
has the standard contact structure defined as zeros of the Lferiitosy)dx +
(sing)dy, where(x, y) are coordinates oR? with the positive direction of the
x-axis being that fixed above (see Fig. 1). We equpwith the orientation
dx Ndy ANdyp = —a Ada.
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Fig. 1. Coordinates in the solid torueT *R2

A generic oriented curv€ in R? is an immersed circle whose only singulari-
ties are transverse double points. Such a curve lifts to akpat the solid torus
M by settingy to be the direction of the normal which gives a positive frame on
the plane when followed by the orientation @f The knotL will be calleda
regular Legendrian knott is everywhere tangent to the contact structure.
__ Along with the solid torus\/ we will also be considering its universal cover
M ~ R3, with the orientation induced from that &f. Its standard contact form
is given by the same formula aswith the only difference that now the angular
coordinatey is not reduced mod2 A generic closed plane curve lifts to a
Legendrian knot iV only if its winding number (that is the number of rotations
made by the coorienting vector during one complete walk along the curve) is
zero.

1.2. Knots inR3

Theorem 1.1 Any unframed oriented knot typefm ~ R® has a regular Leg-
endrian representative.

Proof.We have to construct a regular Legendrian kndtiof a given topological
type.

Let K C M be an oriented non-Legendrian knot which represents this type
and is generic with respect to the canonical projection M — R2 The
plane curveD = p(K) is generic. Equipping it with the information about the
over- and under-crossings we get the knot diagra) of K. We are going to
make minor corrections d to obtain a curve whose Legendrian liftingAbis
topologically equivalent t& .

Choose any non-double poinbof D (see Fig. 2). Start the lifting procedure
from it sending: to any point ofd that corresponds to the direction of the normal
to D ata which agrees with our lifting orientation convention (the ambiguity of
the choice is a shift by a multiple of2along the fibre ofp). Follow D in the
direction of its orientation lifting it ta/ until nearly the first second-time visit
to a double point. Here we have to bother about the type of crossibg Afh:
the phase» € R which we have gained by this moment may be forcing us to
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L
X D(K)

Fig. 2.A knot diagramD(K) of thg right-Nhanded trefoil and its adjustment to get a generic plane
curveC whose Legendrian liftind.c to M ~ R3 is the same trefoil

make a crossing of the wrong type. But we can easily decrease or increase the
phase by inserting a certain number of extra small curls (either all clockwise or
all counter-clockwise) before our second-time visit and pass the double point in
the right way, as prescribed ly(K).

We continue our lifting trip alond in the same fashion adjusting the curve
before second-time visits to double points if needed. Just before coming back
to the initial pointa we may also need to insert a few small curls to make the
winding number of the adjusted curve zero. We end up with a regular plane
curveC whose Legendrian liftind.c to M has the topological type of . This
is because the two diagram3(K) and D (L), differ by only small curls and
so give the same knot type (by using the Reidemeister move I). O

1.3. Knots in the solid torus

Theorem 1.2 Any unframed oriented knot type in the solid tods= ST*R?
has a regular Legendrian representative.

Proof. Take a generic representatikecC M of an oriented topological knot type
which we have to realise by a regular Legendrian knot.Let — R? be the
canonical projection an®d = p(K). The curveD is a generic plane curve. As
in the proof of the previous theorem we are going to make some chandes in
so that its Legendrian lift td/ is topologically equivalent t&.

We can assume th& is transversal to the sectign= 0 of M and that no
point of the seV = K N {¢ = 0} projects to a double point db.

Let us first make& “looking in the regular Legendrian way" around the Bet
Namely, by a homotopy that fixds and is trivial outside a small neighbourhood
of V in M we can make the velocities @ at all the points of the seb(V)
vertically upward. Moreover, we can choose our homotopy so thatdhsages
of the local (around’) branches oK along whichg is increasing (respectively
decreasing) are lying to the left (respectively to the right) of the above vertical
velocities (Fig. 3).
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Fig. 3. Projections of increasing and decreasing branches of a knot normalised in a neighbourhood
of the sectiorp = 0

M

Fig. 4. Breaking a knot in the solid toru&f into a tangleT and a modification of the tangle
diagramD(T) providing a regular curv€ whose Legendrian lift td/ is topologically equivalent
to K

Now we cutM along the sectiop = 0 and represent it as the direct product
R2 x [0,27] € R2 x R, = M (Fig. 4). The knotk becomes a tangl# in
R? x [0, 27r]. Projectionp : M — R? sendsT onto the curveD. The points of
the boundaryT of T are glued in pairs to become the pointspgh’).

The pair (D, p(V)), with the additional information about the over- and
under-crossings of the tanglg is the tangle diagran®(7') of T. The way to
breakD at the points ofp(V) to restore the boundary of the tangle is encoded
in the local pictures oD shown in Fig. 3.

_ Letus adjustD and lift the adjusted plane curve to a Legendrian curve
Lc C M with boundary, such thaf(3Lc) = p(V) and Lc closes after the
canonical projection td/ to become a knot equivalent 10 .

The adjustment is very similar to that of the previous subsection (see Fig. 4).

We start the straightforward lifting db to M at an arbitrary generic poiat
and go in the direction of the orientation bt The value of the coordinatec R
changes continuously according to the change of the direction of the normal until
we arrive at a point op (V). Having arrived to such a point along an increasing
branch (Fig. 3), we subtractz2from the current phase and continue our further
lifting from this reducedy. Having arrived along a decreasing branch, we add
27 to the current value ap.

As in the proof of Theorem 1.1, just before a second-time visit to a double
point of D we may have to insert some extra curls iftdo guarantee the type
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of the crossing prescribed by the tangle diagrBiT). Now we want to be a

bit more accurate than in the caseR¥: we make the absolute value of the
difference between the phases of two visits to the same double point less than
27 (unnecessary extra curls, like the one the reader can find in Fig. 2, are not
allowed now). Notice that the phases of the two visits to the double point of a
curl satisfy this condition.

On the final step we may have to insert some more curls into the adjbsted

to close the Legendrian curve M abovea.
_ We end up with a modificatio” of the curveD and its Legendrian lift
L¢c € M with boundary. Reduction @f modulo 2t projectsL ¢ onto the closed
regular Legendrian curveés C M. We claim thatL. is a knot topologically
equivalent tok .

Indeed, the condition on the difference of the phases at a double point guar-
antees that.¢ is an embedded curve. Moreover, the same condition implies
that there exists a smooth functigh such that the curvéc lies in the slice
f(x,y) <9 < f(x,y) + 27 of RZ | x R, with only the boundary L being
on the boundary of the slice. )

Homotop the above slice R x [0, 27 ] along fibres ofy putting the function
(1—1) f instead off into the inequalities. This homotopy sentis to a tangle
whose boundary and topological type coincide with thos&:ahe two tangle
diagrams inR? provided by the projectiop differ by Reidemeister moves |
only. Our homotopy lowers to a family of diffeomorphisms of the solid tavus
which therefore sends the knbt to a knot equivalent t& . O

Remark 1.3The link versions of Theorems 1.1 and 1.2 are also valid. In the case
of links in R® one has to be slightly patient: when starting to lift a component of
alink diagram one has to make it clear to which particyldevel in M this point

is lifted. This equips a starting point on each component of the curve collection
C with a real number.

Remark 1.4The spaceP T*R? of non-cooriented contact elements of the plane

is another standard solid torus of contact geometry. The analogue of Theorem 1.2
for knots defining even classessia(P T*R?) (only consideration of such knots
makes sense) fails. The place where our proof does not go througtrfar?

is the adjustment of a crossing type by insertion of extra curls. Indeed, in the
projective case, we need the cutve lie in a slice ofR? | x R, of thicknessr.
Therefore, we must be able to change the phase Mmch is p053|ble only via
insertion of cusps.

Remark 1.5Theorem 1.2 was proved simultaneously and independently by
A. Shumakovich (not published). The method he used is not very much different
from ours.

Remark 1.6E. Ferrand has given results for more general situations [8].
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Fig. 5. Example of calculation of the Bennequin-Tabachnikov nungbef a regular Legendrian
knot in ST*R2

2. Framed knots
2.1. The Bennequin-Tabachnikov number

Legendrian knots in a 3-manifold with a cooriented contact structure are canon-
ically framed by a transversal shift in the direction of the coorientation of the
structure.

For aregular Legendrian knot in the stand&f= M = R?x R this framing
is exactly the blackboard framing with respect to the projection to the Rase
(notice that here we refer to Figs. 1-3 rather than to the covering of the leftmost
fragment of Fig. 4). Here the blackboard framing of a knot diagram is a shift of
the diagram in the plane in the direction of the coorienting normals. The writhe
B of this framing (the sum of the signs of the crossings of the knot diagram)
is called theBennequin numbeof the knot [5]. It equals the linking number
between the Legendrian knot and its shift along the framing.

The analog of the Bennequin number for the standard solid #drusS7*R?
was defined by Tabachnikov [18]. He set it to be the intersection number of a
Legendrian knot shifted in the direction of the canonical framing and a 2-film
which realises homology between the unshifted knot and the multiple of the
fibre over a sufficiently distant point of the plane. To calculate the Tabachnikov
number, one can consider the knot diagram of the projection of the Legendrian
knotfromM ~ R2 X S1 to the punctured plane with polar coordinat&sy. An
illustration to thls |s glven in Fig. 5. For the projection considered, the canonical
framing is not blackboard. Anyway, the Tabachnikov number is still calculated
as the ordinary linking number of the kndi{, the thick line) and its shift (the
thin line) along the framing: this is half the sum of the signs of the crossings of
L¢ with the shift.

Figure 5 illustrates the following algorithm to evalugteon a regular Leg-
endrian knotL¢ in M.
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Take a Cartesian coordinate systemRyngeneric with respect to the curve
C.

There are finitely many lines = const which interseaf at two points with
velocities in the same direction (dashed lines in Fig. 5). Call such a line positive
(respectively negative) if the curvatureof C at the upper of these two points
is greater (respectively less) than that at the lower one (the derivative of the unit
orienting vector with respect to the natural paramete€adn —«v, wherev is
the unit normal whose directignis used for the Legendrian lifting). Lét. and
¢_ be the numbers of all such positive and negative lines respectively.

Now consider an inflection poibtof C. Assume that the phag€b) is either
in the first or in the third quadrant. If the phase achieves its local maximum (min-
imum) atb, call this inflection positive (negative). Use the opposite terminology
for the second and forth quadrants. Letandi_ be the numbers of positive and
negative inflections respectively.

Letm be the number of extrema of functigron C.

Proposition 2.1 28(L¢) =20y — £ )+ (iy —i )+ m .

Proof. We will describe how to draw the canonical shift bg. It is parallel

to L¢ except near points corresponding to inflections and extrenta dfear

the point of L corresponding to a positive (respectively negative) inflection it
makes a positive (respectively negative) crossing Withand near the point
corresponding to an extrema it makes a positive crossing (Fig. 5). Therefore
twice the linking number betwedi- and its shift is the sum af. —i_ +m and

twice the self-crossing number &f-, which equals 2., — ¢_). O

Remark 2.2a) The numbers, and¢_ can be splitin an obvious way to provide
all the coefficients of Arnold’s and Aicardi’s polynomials [4,1].
b) Other formulas to calculae can be found in [18] and [9].

2.2. The two invariants of unframed knots

Not every framed knot type i or M canbe represented by a canonically framed
Legendrian knot. The Bennequin-Tabachnikov numbé& bounded from one
side (according to the chosen orientation) on a set of all Legendrian knots of
the same unframed topological type [5]. For our choice of the orientation the
number is bounded from below. Indeed, insertion of a small fragment containing
two curls with opposite directions of rotation into a generic plane cardoes
not affect the unframed type of the Legendrian khgtC M. On the other hand,
this operation increasgi L¢) by 2.

On aregular Legendrian kngtis odd [2,4] (see also Proposition 3.5 below).
To increase8 (L) by 1 within the same unframed knot typefhor M, one can
insertinto the curv€ a small non-self-intersecting fragment with two cusps and
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Fig. 6. A Legendrian left-handed trefoil knot i ~ R3 with the minimal Bennequin number

- e

Fig. 7. A Legendrian right-handed trefoil knot i ~ R3 with the minimal Bennequin number
6 and the minimal known example of a regular Legendrian right-handed trefoil knopwt!9

zero winding number. In the representation of the solid tafussed in Fig. 5,
such a fragment provides a small smooth curl with the blackboard framing of
writhe 1.

Thus we arrive at two a priori different characteristics of an unframed knotin
M or M. Those are the minimal Bennequin-Tabachnikov numbers of Legendrian
knots of the same unframed knot tyferealised as Legendrian liftings of either
regular plane curves or plane curves with cusps (the latter corresponds to arbitrary
Legendrian knots). We denote themgy:,, ., (K) andp,,i» (K) respectively. Of

CoUrse Buin,reg (K) = Buin(K).

Example 2.3For the left-handed trefoil knot i ~ R3, Bmin is known to be
—1 (see [5]). Itis easy to achieve the minimum in a regular way (Fig. 6).

Example 2.4For the right-handed trefoil knot i ~ R3, B,.., = 6 [16,12].
We show the corresponding extreme realisation with cusps in Fig. 7. The best
regular Legendrian realisation of the right-handed trefoil we knowhas 9

(Fig. 7).

Thus the numbeg,,;, .., (K) does not seem to be completely defined by the
parity argument correction g¢f,,;,,(K) above.

The main goal of the rest of the paper is to obtain an estimag,Qn., (K)
in M and M (Theorem 5.4). In fact, the lower bound we get here works for
Bmin (K) 100 [7]. The proof in [7] includes a theorem analogous to our Theorem
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P2 )=PX)=yP) ()

P()=xp(l)  P(&)=1 53:
erll) P
P(L,uL,)=P(L,)-P(L,) =a”

Fig. 8. Definition of the framed version of the HOMFLY polynomial for oriented links with the
blackboard framing in a solid torus

3.2 and is heavily based on the arguments of the present paper. Also our proof is
more delicate as less moves are allowed.
For other estimates, we refer the reader to [17,10,12,7,19].

3. HOMFLY polynomial
3.1. Legendrian lowering of the polynomial to plane curves

In a generic 1-parameter family of regular plane curves there can appear triple
points and points of self-tangency. A self-tangency can be eifinect (the two
velocity vectors have the same directionsywersg(the directions are opposite).
Topology of a regular Legendrian knét- in M or M can change only under
direct self-tangency perestroikas of the underlying regular cGrve

We call an invariant of collections of regular plane curves atype invariant
if it does not change under regular homotopies which involve no direct self-
tangencies. Our terminology follows the name of the first invariant of this type
introduced by Arnold in [2,3]. Arnold’s invariant* of a one-component regular
plane curve is basically the Bennequin-Tabachnikov number of its lifting to the
solid torus: in [3,4] Arnold shows that* (C) = 1 — B(Lc¢).

J*-type invariants can be induced via the Legendrian lifting from invariants
of knots inM or M. In [6] this approach was used to define polynomial invariants
of plane fronts. Now we do the same for regular plane curves.

In [20] Turaev defined the HOMFLY polynomial of an unframed oriented
link in a solid torus. This is an element @fx*?, y*, £.1, &5, ...]. A similar
polynomial of a framed oriented link in the same ring is uniquely defined by the
relations and initial data of Fig. 8. The lins and L, there are disjoint in the
projection.

For example, on an unknot with the trivial framify= (x — x~1)/y.



Regular Legendrian knots 399

PO -P)=vPX)
Pleop)=P(p)=xep(])  P(F)=1 22
P(C,uC,)=P(C,)-P(C,]  P(Z)=7  Z,=(33)

Fig. 9. Legendrian lowering of the definition of Fig. 8 to generic collections of regular oriented
plane curves

Definition 3.1 The HOMFLY polynomial of a plane curve collectiénis that
of the Legendrian link_¢ in the solid torusST*R?: P(C) = P(L¢).

Thus the Legendrian lifting lowers the polynomial to generic collections of
plane curves. Translation of the definition of Fig. 8 to that case is given in Fig. 9.
The collectiong™; andC, of the last line lie in disjoint half-planes (we call LIC;
thesplit unionof C; andC5). According to the second rule of Fig. 8, the relation
between the Legendrian generatarswe are using now and the blackboard
generatorg; is z; = x!'lg;: it is easily seen that ;, = &; as unframed knots in
the solid torus, and the canonical framinglof differs from the blackboard one
of Z; by 2i| positive half-twists similar to those on the vertical line through the
centre of the annulus in Fig. 5.

Theorem 3.2 There exists a uniqueJ'—type invariant P(C) €
Z[x2, y*1, 741, 740, .. .] Of @ generic collectiorC of oriented plane curves sat-
isfying the relations and initial data of Fig. 9.

Thus the HOMFLY polynomial of a regular plane curve turns out to be a
genuine polynomial irx, not a Laurent one. Moreover, only even powers of
occur in it.

We prove Theorem 3.2 is Section 4.

3.2. Basic curves

Example 3.3Consider classes of framed knots represented by the kobé

Fig. 8 with the blackboard framing. Since their polynomialsaréz;, Theorem

3.2 implies that they do not have any canonically framed regular Legendrian
representatives.

Moreover, according to Theorem 3.2, the Bennequin-Tabachnikov number of
the curveL z, is the minimum of all such numbers on the set of all regular Leg-
endrian representatives of the unframed knot typ&;0fThis minimal number
is, thus, 2i| — 1. In fact, it is possible to show th@,;, req (Zi) = Bmin (E:) [7].
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en ) <)+ #(2)
-P(8) +#(0R) - 3 2r( D)

Fig. 10.Calculations of the HOMFLY polynomial of the figure-eight curve

Q. Q.
W=Z= (>0 W=C >0 W= W, =
Jg O J 0

Fig. 11.The curvesW;

Example 3.4The calculations of Fig. 10 show that the polynomial of the figure-
eight curve isx? — 1)/y. Indeed, the curve lifts to the Legendrian unknoddn
with 8 = 1, so its HOMFLY polynomial should be that of an unknot with the
trivial framing timesx.

In what follows, we will denote the figure-eight curve By.
The oddness of thg(L ) implies

Proposition 3.5 The Bennequin-Tabachnikov number of a regular Legendrian
knot in the solid torus = ST*R? is odd.

Proof. By the Whitney-Graustein theorem [21], any regular plane curve may be
deformed by a regular homotopy to one of the curigsi € Z. In a generic
regular homotopy, the Bennequin-Tabachnikov number of the corresponding
regular Legendrian knot changes only under direct self-tangency perestroikas.
Each time the change is2. O

Example 3.6In some cases, it is convenient to use a different system of gener-
ators,w;, instead ofz;. Thew; is P(W;), whereW; is the circle equipped with
outer|i| + 1 a-shaped curls and the orientation providing it with the winding
numberi (see Fig. 11). For exampl®&/y = Zo andw+; = z41, Since the curves
W4, can be homotoped without direct self-tangencies to the embedded circles.
The way the two systems of generators are related is shown in Fig. 12. There
and below we write the relations on polynomials as relations on the corresponding
curves.

Definition 3.7 A simple curlof a curve collection is am-shaped loop that
contains no fragments of the collection in its interior.

Example 3.8A figure-eight curve that has no intersection with other components
of a curve collection passes through such a collection freely, with no effect on
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Fig. 12.Recursive relation between the generatgrandw;

o] - oo

Fig. 13.The figure-eight curve as a neutrino

O+y0<

Fig. 14.A circle passes through a line

o -

the polynomial. Indeed, the homotopy of Fig. 13 does not involve any direct
self-tangencies.

A circle can also pass through a line, but at the expense of a certain change
in P (see Fig. 14).

In general, a basic cun#& makes a similar pass generating many extra sum-
mands inP (see Figs. 15 and 16). The crucial point for our further considerations
is that all these summands can finally be expressed as the polynomials of curve
collections that have nothing on that side of the line from whighhas been
removed and have only basic curvgson the other side. The part of the line
involved receives only a number of additional simple curls.
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Fig. 15.Removing a basic curve from one side of a line generates a “cloud" of basic curves on
the other side. The closed component of the lower right curve has one simple curl less than that
of the upper left

4. Proof of Theorem 3.2

The existence of an invariant is guaranteed by [20]. We only need to show that
the rules of Fig. 9 are sufficient to define the polynomial of any curve collec-
tion uniquely. The restriction on the powersxothat are allowed to appear in
the polynomials will immediately follow from the way in which the proof of
uniqueness is carried out: we show that in calculations it is sufficient to use the
skein relation involvinge just to omit pairs of curls.

Our proof is inductive, by a complexity of a curve collectién The com-
plexity is measured by two quantities. One of them is just the nurhf@y
of connected components 6f (of course, not the same as the number of its
irreducible components). The other is as follows.

Definition 4.1 The double point of a simple curl is calledganple double point.
An essential double poiris one which is not simpléMe denote by (C) the
number of essential double points of a curve collection
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Fig. 16.Removing a basic curve in the case of the other orientation of a line

We define thecomplexityy (C) of a generic curve collection to be the pair
(e(C), k(C)) with lexicographical order.

4.1. The base of induction

If x(C) = (0, 0) the curve collectiort” is empty. According to the rule of Fig. 9
its polynomial is 1.

The rest of the proof shows that the polynomial of any curve collection can
be expressed, via our rules, in terms of the polynomials of collections of lower
complexity. We construct a homotopy of an arbitrary curve colleofiomhich
performs one of the following reductions:

(a) makes one of essential double points simple;

(b) creates a situation in which a self-tangency perestroika is able to kill two
double points;

(c) splits a basic curv&; or W; off the rest of the collection.

All the intermediate collections in our homotopies as well as auxiliary col-
lections participating in the calculations 8{C) due to the skein relations are
controlled to have complexity lower thas(C) (or at least it is shown that their
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Fig. 17.A curve collectionC and its essential pa@’

polynomials can be expressed in terms of the polynomials of collections of com-
plexity less thary (C)). This guarantees that the transformations (a,b,c) provide
the inductive reduction.

In our constructions, all the transformations of the above three types are
applied to certain elementary domains introduced in the next section.

4.2. Minimal 0- and 1-gons

Consider an arbitrary generic curve collecténSmooth out all its simple curls.
Let C’ be the resulting curve collection (see Fig. 17).

Definition 4.2 The collectionC’ is called theessential parof the collectionC.

Definition 4.3 A closed discD’ is called ann-gon of the collectionC’ if its
boundaryd D’ is contained irC” and has exactly vertices, that is double points
of C” whered D’ fails to be differentiable.

For example, a 0-gon is bounded by an embedded circle.
The choice of the notation (with dashes) indicates that we are going to use
only n-gons of the essential parts of curve collections.

Definition 4.4 A 0- or 1-gonD’ of C’ is calledminimal if there are neither O-
nor 1-gons ofC’ inside D'.

Intersection of the interior oD’ with C’ may be non-empty.

Any non-empty curve collection contains a 0- or 1-gon. Indeed just make
a smooth walk along the curve from an arbitrary point until the first second-
time visit to some point;. The loop traced between the two visitsgdas no
self-intersections and bounds a disc required.

Note that a minimal 1-gon ig-shaped, not heart-shaped: walking inside a
heart-shaped 1-gob’ from its only vertex we find a smaller 1-gon ¥ (see
Fig. 18).

We distinguish two kinds of minimal 0- and 1-gofx of the essential part
C’ of a collectionC: simple when the interior o’ has no intersection wit’,
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Fig. 18.An «-shaped 1-gon contained in a heart-shaped

andnon-simple(all the others). For example, the boundary of a simple 1-gon is
a simple curl.

The boundary of am-gon D’ of C’ comes from the fragment af after
omitting simple curls and smoothing the vertices. This fragment bounds a planar
domain which we call thancestorof D’ and denote by. We call the fragment
itself theboundary ofD and denote 8 D.

4.3. Inductive step: Reduction of the complexity of a curve collection

In four separate subsections below we consider four types of minimal domains
at least one of which can be found in any non-empty curve colleciorhese

are simple and non-simple minimal O- and 1-gons of ékwential part C’. In

each case, applying a choice of reductions mentioned in Sect. 4.1, we show that
itis possible to expresB(C) in terms of the polynomials of collections of lower
complexity.

4.3.1. Simple minimal 0-gonThe aim in this case is to reduce the complexity
of a curve collection by passing to a collection with one connected component
less.

Up to omitting pairs of opposite curls, we may assume that the boundary of
the ancestoD of a simple minimal 0-gon is one of the basic curves, either
or W;. There are no fragments 6finside the basic curve.

If 3D is split from the rest of the collectiof, the product rule of Fig. 9 gives

P(C) = P(3D) - P(C\ aD)

where the collectiorC \ 9D has complexitye(C), k(C) — 1), and therefore,
by the inductive assumption, its polynomial is uniquely defined by the rules of
Fig. 9.

Now assume thai D is not split from the rest of and thatoD = Z;. The
reduction algorithm for this case is as follows. We make small enough and
choose a generic pajhto evacuaté D into a half-plane separate from the rest
of C. According to Example 3.8, pulling; throughC once expresseB(C)
in terms of the polynomials of collections obtained fra@m\ aD by adding
a number of simple curls as well as a number of small basic cuyeght
after the first intersection of with C. We iterate the process by pulling all
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Fig. 19.Making a simple double point of the essential part of a curve simple on the curve itself

‘/Q'» = ‘#; + y/%\_> = ‘],Os + y)q/,

Fig. 20.A simple curl passes through an essential double point

thus obtained small componeris of the new collections further along This
finally expresse® (C) via the polynomials of collections which are split unions
of C \ D (equipped with new simple curls) and a number of the cuies
The product rule reduces each of such polynomials to the polynomial éfD
(with extra simple curls) whose complexity (8(C), k(C) — 1). The inductive
assumption finishes the proof of the uniqueness for this case.

Finally, if 8D = W; is not split from the rest of’, Fig. 12 expresseB(C)
in terms of the polynomials of collections obtained frahby substitutingd D
with a number of the curveg;. Evacuation of all of them out from the rest of
the collection follows the above pattern for oAg

4.3.2. Simple minimal 1-gonA disc D’ being a simple minimal 1-gon means
that, after possible omitting pairs of successive curls of opposite orientations, its
ancestoD in a curve collectiorC is bounded by one of the loops of Fig. 19. The
figure shows how to make the essential double point of such a loop simple so
that the auxiliary collections appearing in the skein relation have less essential
double points thal'.

By the inductive assumption the proof in this case is complete.

4.3.3. Non-simple minimal 1-gonThis is a more complicated case. Now the
aim of the reductionis to allow a self-tangency perestroika killing a pair of double
points within the ancestdd of a non-simple minimal 1-go®’ of C".

We start with some preliminary “cleaning” observations.

First of all, from the minimality, there is no irreducible componentofside
D.

Secondly, we can assume thatthere are no simple cuflgwsideD as well as
onits boundary. Indeed, due to the relation of Fig. 20, a simple curl move through
an essential double point changes the polynomial by the summand corresponding
to a collection having less essential double points.
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In fact, altogether our assumptions mean that the passing dramits es-
sential pariC’ makes no changes within the 1-gbn= D’.

Notice that, within our “cleaning” assumptions, the minimality implies that
neither branch o€ N D has a self-intersection in the interior Df.

We call an elementary generic homotopy of a curve collection via a collection
with a triple point ariple-point move

Lemma 4.5 Within the assumptions done, triple-point moves homatdp a
curve collection in which a self-tangency perestroika kills two double points in
D.

A series of triple-point moves followed by a self-tangency perestroika have
either no effect o (C) (for the inverse self-tangency) or represeriC), by the
main skein relation, as the combination of the polynomials of collections with
the number of essential double points reduced. Therefore, in the case considered,
the inductive step in the proof of Theorem 3.2 is provided by the lemma.

Proof of Lemma 4.5The proof reduces to the consideration of the following two
cases determining #D itself has to be involved in the self-tangency perestroika:
(a) Each pair of branches @ N D in the interior of D has at most one point
of intersection.
(b) There exists at least one pair of branche<Caf D having at least two
points of intersection in the interior db.

We start withCase (a)and prove the lemma in this situation by induction on
the numbern of double points of” in the interior ofD.

m = 0. Thisimplies thaD contains a 2-gon adjacent to its boundarywith
no other branches @ inside it. This is the 2-gon to be killed by a self-tangency
move.

m > 0. If there exists a 2-gon adjacentd® we can kill it like in the case
m = 0.

Suppose that there is no such 2-gon. We use the following lemma to proceed.

Lemma 4.6 The 1-gonD contains a 3-gomA with exactly one of its sides on
a D and with no fragments af in the interior ofA.

Pushing the inner vertex of such minimal 3-garthrougha D by the triple-
point move we reduce:. By the inductive hypothesis, the proof of Lemma 4.5
in case(a) is complete.

Proof of Lemma 4.6Let B, be a branch o N D that intersects some other
branches insidd. We may assume that the double pointodd? and all the
branches insid® which do not intersecB; are on the same side 8f. This is
a sort of a minimality condition oB;.

Let P € B; be the double point closest to an endpaindf B; (see Fig. 21).
Let B, be the other branch passing throughOne of its endpointsR, is a vertex
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Fig. 21. Search for a minimal 3-gon

of a 3-gonN P Q based ord D. This 3-gon may be non-minimal: there can be
some other double points 6fon the sideP Q (due to the minimality o, this
is the only possible obstruction to the minimalityfP Q). Choose the oneg,
closest toQ. Consider the brancBs throughR. It cuts the corner piec@ RS
off NP Q. This is guaranteed by the fact that neither pair of the branches has
more than 1 point of intersection.

Now, if Q RS is still not minimal, we iterate the descending procedure. Lemma
4.6 is proved.

Now we consideCase (b)

As in casg(a), m > 0, we assume that there is no empty 2-gon adjacent to
a D (otherwise we could immediately Kill it and make the reduction desired).

Let B! and B2 be branches with more than one common point. Then there
exists a 2-gol" ¢ D whose boundary lies on these branches and whose vertices
are two successive intersectionsBf and B2. We may assume the following
minimality properties off":

1) the endpoints of any branch 6fN T are on different sides df;
2) any pair of branches @ N T has at most one common point.

If there are any double points @f inside T, we move them out using the
triple-point moves after finding minimal 3-gons as it was done in the proof of
Lemma 4.6. After this we move all the brancheg<obut from T by the triple-
point moves across the verticesiafNow the 2-gor¥” is empty and can be killed
by a self-tangency perestroika.

This finishes the proof of Lemma 4.5.

4.3.4. Non-simple minimal 0-gonGathering all the simple curls of the bound-
ary of D in a small neighbourhood of some poibhte 9 D, we reduce this case
to that of subsection 4.3.3 with the poiAtplaying the role of the double point
of the curl.

The proof of Theorem 3.2 is now finished.
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R =R )= yR(X) P )=1
Plep)=Rulh)=eR(l)  R(Cwe,)=Ric)R(c,)

Fig. 22. Legendrian lowering of the framed version of the HOMFLY polynomial of links in
M ~R3to aJJ-type invariant of generic collections of plane curves of winding numbers zero.
The phases of the two interacting branches in the main skein relation coincide

5. Other versions of the HOMFLY polynomial for regular plane curves
5.1. Regular Legendrian links in the standard 3-space

There exists an obvious analog of Theorem 3.2 that corresponds to links in
M ~ RS,

Definition 5.1 A J*-type invariant of generic one-component plane curves of
winding number zero is called & -type invariantf it changes only under direct
self-tangency perestroikas in which the winding numbers of the two subcurves
into which the self-tangency point breaks the curve are zero.

This corresponds to a change of the topological type of the lifted Legendrian
knot in M. _

A multi-component oriented regular Legendrian link#h is defined by a
collection of oriented plane curves in which each of the components has the
winding number zero. According to Remark 1.3, on each of the components
there should be a point marked by a real number whose reduction modugo 2
the anglep of the corresponding normal. The markings define phaseR at
all the points of the collection.

Definition 5.2 A J*-type invariant of the above marked oriented curve collec-
tions is called aJ; -type invariantif it changes only under self-tangencies in
which the difference of the phases is zero.

Similar to Theorem 3.2 we have

Theorem 5.3 There exists a uniqué; -type invariantPy(Co) € Z[x2, y*1] of
generic collectiong’y of marked oriented plane curves of winding numbers zero
satisfying the relations and the initial data of Fig. 22.

5.2. The polynomials of unframed links
and the Bennequin-Tabachnikov number estimates

Let 8 be the Bennequin or Tabachnikov number of an oriented regular Legendrian
link Lc, € M or Le C M. The traditional, unframed versions of the HOMFLY



410 S. Chmutov et al.

xR(OC)-xR( I )=yR( X))
Rlk)=R(%)=R(1)  R(Z)=1 Z=(Y
R(C.HC,)=R(C)RIC:)  R(Z)=2  Z.=(

Fig. 23.Legendrian lowering of the unframed version of the HOMFLY polynomial of links in a
solid torus to generic plane curve collections

polynomials [11,20] of these links, in terms of the underlying plane curves, are
Po.(Co) = x P Po(Co) € Z[x*, y*]

and
P(C)=x"PP(C) € Z[x*, y*!, 241, 242, .. ..

Those are topological invariants of the links.

The J-type invariantP, is calculated by the rules of Fig. 23. Omitting the
initial data of this figure related to the curvgs, one gets the rules to calculate
the Jg"-type invariantP, ,. As earlier, the systems of the rules define the plane
curve polynomials unambiguously.

Theorems 3.2 and 5.3 immediately imply

Theorem 5.4 Let £ be an oriented unframed link in the standard contact man-
ifold M ~ R3or M = ST*R2. Letx* be the minimal power of the framing
variable x in the corresponding unframed version of the HOMFLY polynomial
of £. Then

ﬁmin,reg (E) = —k.

Remark 5.5For R? this is guaranteed by the theorem of Fuchs and Tabachnikov
[12] which derives the same estimate &y, (L) from comparison of the results
of [5] and [17].

5.3. HOMFLY polynomials of curves with few double points

In Fig. 24 we give the results of calculations of the polynonitaior Arnold’s

list [2,3] of all the plane curves with at most 3 double points. We set there
70 = (x2—1)/y. The orientations of the curves with non-zero winding numbers
are chosen so that these numbers are positive. Change of orientation is covered
by the following
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Proposition 5.6 Let C be a generic collection of oriented regular plane curves
whose polynomialP(C) is p(x, y, z1,2-1,22,Z_2, - ..). Let C~ (respectively
C7") be the collection obtained froifi by the change of orientation of all of its
components (respectively by reflection of the plane). Then

P(CT)=P(C") = p(x,y,2-1,21,2-2,22, - --) -

Proof. One can calculat® (C~) and P(C") following the chain of calculations

of P(C). All the curve collections appearing in this chain should be respectively
either equipped with the opposite orientations or reflected. The chaih(iGy
ends up with disjoint collections of the curvgs i € Z. Both operations send a
curveZ; to Z_;. |

Corollary 5.7 P{(CH") = P(C).
An illustration to this is seen in the fifth line of Fig. 24.

There is one more rather obvious observation which follows from the coin-
cidence of the total winding numbers of all three curve collections participating
in the main skein relation foP.

Proposition 5.8 The sum of indices of all thevariables appearing in a partic-
ular monomial ofP(C) is equal to the winding number of the curve collection
C.

The table of Fig. 24 contains the Bennequin-Tabachnikov numbers of the
corresponding regular knots in the solid torus [2—4]. They do not depend on the
orientations of the curves and the plane.

Most of the polynomials of Fig. 24 which have no obvious reason to be
divisible byx? (those are polynomials of the curves with no pairs of simple curls
of opposite orientations) are not divisible by it. Non-divisibility BfC) by x?
means that the Bennequin-Tabachnikov number of the kpotc ST*R? is
the minimal possible among all the regular knots of the same topological type:
IB(LC) = ﬁmin,reg(LC)-

The converse does not seem to be true. For example, for the last curve in the
forth line, P = xz(%‘l + yz_1z1), but there seems to exist no regular plane
curve whose polynomial is that in the brackets of this formula. Another similar
example is the first curve of the fifth line. Arnold’s tables in [2, 3] contain some
other curves of the same nature. All of them are certain modifications of those two
of Fig. 24. This indicates that the estimate of Theorem 5.4 may not be exactin all
the cases. Perhaps there are some special bounds for powdrsarfefficients
of various products af-variables in the HOMFLY polynomials of regular plane
curves.

The polynomialsPy(C) of the curvesC of Fig. 24 of winding number zero
are trivial: each of them is obtained from ti®&C) by formally settingy = 0
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Fig. 24. The HOMFLY polynomials and Bennequin-Tabachnikov numbers of plane curves with
at most 3 double points

everywhere except for the relatiag = (x> — 1)/y. Thus, for a table curve,
Po(C) = x“zo, wherea + 1 is the Bennequin number of the corresponding
Legendrian knot inV/. Of course, such a reduction is not correct in general.
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