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Abstract. We show that every unframed knot type inST ∗R2 has a representative obtained by
the Legendrian lifting of an immersed plane curve. This gives a positive answer to the question
asked by V.I.Arnold in [3]. The Legendrian lifting lowers the framed version of the HOMFLY
polynomial [20] to generic plane curves. We prove that the induced polynomial invariant can be
completely defined in terms of plane curves only. Moreover it is a genuine, not Laurent, polynomial
in the framing variable. This provides an estimate on the Bennequin-Tabachnikov number of a
Legendrian knot.
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A few years agoArnold [2,3] gave a new breath to the study of invariants of plane
curves, the area which attracted Gauss and Whitney. The approach introduced
by Arnold is very similar to that successfully used by Vassiliev in knot theory,
which is to describe invariants in terms of their changes in generic homotopies
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of curves. Considering invariants which change only in homotopies of plane
curves involvingdirect self-tangencies (that is, when the tangent branches have
coinciding orientations) we arrive at a situation very reminiscent of knot theory
itself. Indeed, one can lift a generic plane curve to a Legendrian knot in the solid
torusST ∗R2 or, if the winding number of the curve is zero, inR3. Such a knot
will experience crossing changes only at the above self-tangencies.

It has been observed that the theory of regular plane curves without direct self-
tangencies has in fact a far-reaching parallel with the theory of framed knots. For
example, the space of Vassiliev type invariants is the same in both cases [14,13].
Of course, this does not ensure that any framed knot can be represented by the
Legendrian lift of an immersed plane curve equipped with the canonical Legen-
drian framing. Indeed, this is not true in this generality: Bennequin’s inequality
[5] shows that the twisting numbers of the canonical framings of Legendrian
representatives of a fixed unframed knot type are bounded from one side. On the
other hand, while the classical result in the area claims that any unframed knot
type in the standard contact solid torus or 3-space has a Legendrian representa-
tive (see, e.g., [15]), the canonical projection to the plane of such a representative
may have cusps.

In the present paper we are trying to make the parallel between knots and
regular plane curves more explicit. We show that, in fact, the Legendrian rep-
resentatives can be chosen to be the lifts of regular curves. We also investigate
restrictions on the Legendrian framings of such lifts.We show that there is another
estimate on these framings which is often stronger than Bennequin’s inequality
(cf. [12]). Our estimate comes from the HOMFLY polynomial of a knot in a
solid torus. Other similar estimates provided by Legendrian lowerings of the
other polynomial knot invariants to regular plane curves and plane curves with
cusps are discussed in [7].

1. Legendrian realisation

1.1. Standard contact spaces

We recall a few basic notions.
A contact elementat a point of a plane is a line in the tangent plane. Its

coorientationis a choice of one of two half-planes into which it divides the
tangent plane. The manifoldM of all cooriented contact elements of the plane is
the spherisationST ∗R2 of the cotangent bundle of the plane. It is diffeomorphic
to the solid torusR2 × S1: the coorienting normal vector is defined by the angle
ϕmod 2π which it makes with a fixed direction on the plane. The manifoldM
has the standard contact structure defined as zeros of the 1-formα = (cosϕ)dx+
(sinϕ)dy, where(x, y) are coordinates onR2 with the positive direction of the
x-axis being that fixed above (see Fig. 1). We equipM with the orientation
dx ∧ dy ∧ dϕ = −α ∧ dα.
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Fig. 1.Coordinates in the solid torusST ∗R2

A generic oriented curveC inR2 is an immersed circle whose only singulari-
ties are transverse double points. Such a curve lifts to a knotLC in the solid torus
M by settingϕ to be the direction of the normal which gives a positive frame on
the plane when followed by the orientation ofC. The knotLC will be calleda
regular Legendrian knot. It is everywhere tangent to the contact structure.

Along with the solid torusM we will also be considering its universal cover
M̃ � R3, with the orientation induced from that ofM. Its standard contact form
is given by the same formula asα with the only difference that now the angular
coordinateϕ is not reduced mod 2π . A generic closed plane curve lifts to a
Legendrian knot iñM only if its winding number (that is the number of rotations
made by the coorienting vector during one complete walk along the curve) is
zero.

1.2. Knots inR3

Theorem 1.1 Any unframed oriented knot type iñM � R3 has a regular Leg-
endrian representative.

Proof.We have to construct a regular Legendrian knot inM̃ of a given topological
type.

LetK ⊂ M̃ be an oriented non-Legendrian knot which represents this type
and is generic with respect to the canonical projectionp̃ : M̃ → R2. The
plane curveD = p̃(K) is generic. Equipping it with the information about the
over- and under-crossings we get the knot diagramD(K) ofK. We are going to
make minor corrections ofD to obtain a curve whose Legendrian lifting tõM is
topologically equivalent toK.

Choose any non-double pointa of D (see Fig. 2). Start the lifting procedure
from it sendinga to any point ofM̃ that corresponds to the direction of the normal
toD ata which agrees with our lifting orientation convention (the ambiguity of
the choice is a shift by a multiple of 2π along the fibre of̃p). FollowD in the
direction of its orientation lifting it toM̃ until nearly the first second-time visit
to a double point. Here we have to bother about the type of crossing inD(K):
the phaseϕ ∈ R which we have gained by this moment may be forcing us to
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Fig. 2.A knot diagramD(K) of the right-handed trefoil and its adjustment to get a generic plane
curveC whose Legendrian lifting̃LC to M̃ � R3 is the same trefoil

make a crossing of the wrong type. But we can easily decrease or increase the
phase by inserting a certain number of extra small curls (either all clockwise or
all counter-clockwise) before our second-time visit and pass the double point in
the right way, as prescribed byD(K).

We continue our lifting trip alongD in the same fashion adjusting the curve
before second-time visits to double points if needed. Just before coming back
to the initial pointa we may also need to insert a few small curls to make the
winding number of the adjusted curve zero. We end up with a regular plane
curveC whose Legendrian lifting̃LC to M̃ has the topological type ofK. This
is because the two diagrams,D(K) andD(L̃C), differ by only small curls and
so give the same knot type (by using the Reidemeister move I). ✷

1.3. Knots in the solid torus

Theorem 1.2 Any unframed oriented knot type in the solid torusM = ST ∗R2

has a regular Legendrian representative.

Proof.Take a generic representativeK ⊂ M of an oriented topological knot type
which we have to realise by a regular Legendrian knot. Letp : M → R2 be the
canonical projection andD = p(K). The curveD is a generic plane curve. As
in the proof of the previous theorem we are going to make some changes inD

so that its Legendrian lift toM is topologically equivalent toK.
We can assume thatK is transversal to the sectionϕ = 0 ofM and that no

point of the setV = K ∩ {ϕ = 0} projects to a double point ofD.
Let us first makeK “looking in the regular Legendrian way" around the setV .

Namely, by a homotopy that fixesV and is trivial outside a small neighbourhood
of V in M we can make the velocities ofD at all the points of the setp(V )
vertically upward. Moreover, we can choose our homotopy so that thep-images
of the local (aroundV ) branches ofK along whichϕ is increasing (respectively
decreasing) are lying to the left (respectively to the right) of the above vertical
velocities (Fig. 3).
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Fig. 3.Projections of increasing and decreasing branches of a knot normalised in a neighbourhood
of the sectionϕ = 0
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Fig. 4. Breaking a knot in the solid torusM into a tangleT and a modification of the tangle
diagramD(T ) providing a regular curveC whose Legendrian lift toM is topologically equivalent
toK

Now we cutM along the sectionϕ = 0 and represent it as the direct product
R2 × [0,2π ] ⊂ R2

x,y × Rϕ = M̃ (Fig. 4). The knotK becomes a tangleT in
R2 × [0,2π ]. Projectionp̃ : M̃ → R2 sendsT onto the curveD. The points of
the boundary∂T of T are glued in pairs to become the points ofp(V ).

The pair (D, p(V )), with the additional information about the over- and
under-crossings of the tangleT , is the tangle diagramD(T ) of T . The way to
breakD at the points ofp(V ) to restore the boundary of the tangle is encoded
in the local pictures ofD shown in Fig. 3.

Let us adjustD and lift the adjusted plane curveC to a Legendrian curve
L̃C ⊂ M̃ with boundary, such that̃p(∂L̃C) = p(V ) and L̃C closes after the
canonical projection toM to become a knot equivalent toK .

The adjustment is very similar to that of the previous subsection (see Fig. 4).
We start the straightforward lifting ofD to M̃ at an arbitrary generic pointa

and go in the direction of the orientation ofD. The value of the coordinateϕ ∈ R
changes continuously according to the change of the direction of the normal until
we arrive at a point ofp(V ). Having arrived to such a point along an increasing
branch (Fig. 3), we subtract 2π from the current phase and continue our further
lifting from this reducedϕ. Having arrived along a decreasing branch, we add
2π to the current value ofϕ.

As in the proof of Theorem 1.1, just before a second-time visit to a double
point ofD we may have to insert some extra curls intoD to guarantee the type
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of the crossing prescribed by the tangle diagramD(T ). Now we want to be a
bit more accurate than in the case ofR3: we make the absolute value of the
difference between the phases of two visits to the same double point less than
2π (unnecessary extra curls, like the one the reader can find in Fig. 2, are not
allowed now). Notice that the phases of the two visits to the double point of a
curl satisfy this condition.

On the final step we may have to insert some more curls into the adjustedD

to close the Legendrian curve iñM abovea.
We end up with a modificationC of the curveD and its Legendrian lift

L̃C ⊂ M̃ with boundary. Reduction ofϕ modulo 2π projects̃LC onto the closed
regular Legendrian curveLC ⊂ M. We claim thatLC is a knot topologically
equivalent toK.

Indeed, the condition on the difference of the phases at a double point guar-
antees thatLC is an embedded curve. Moreover, the same condition implies
that there exists a smooth functionf , such that the curvẽLC lies in the slice
f (x, y) ≤ ϕ ≤ f (x, y)+ 2π of R2

x,y × Rϕ with only the boundary∂L̃C being
on the boundary of the slice.

Homotop the above slice toR2×[0,2π ] along fibres of̃p putting the function
(1 − t)f instead off into the inequalities. This homotopy sendsL̃C to a tangle
whose boundary and topological type coincide with those ofT : the two tangle
diagrams inR2 provided by the projectioñp differ by Reidemeister moves I
only. Our homotopy lowers to a family of diffeomorphisms of the solid torusM

which therefore sends the knotLC to a knot equivalent toK. ✷

Remark 1.3The link versions of Theorems 1.1 and 1.2 are also valid. In the case
of links inR3 one has to be slightly patient: when starting to lift a component of
a link diagram one has to make it clear to which particularϕ-level inM̃ this point
is lifted. This equips a starting point on each component of the curve collection
C with a real number.

Remark 1.4The spacePT ∗R2 of non-cooriented contact elements of the plane
is another standard solid torus of contact geometry. The analogue of Theorem 1.2
for knots defining even classes inπ1(PT

∗R2) (only consideration of such knots
makes sense) fails. The place where our proof does not go through forPT ∗R2

is the adjustment of a crossing type by insertion of extra curls. Indeed, in the
projective case, we need the curveL̃C lie in a slice ofR2

x,y ×Rϕ of thicknessπ .
Therefore, we must be able to change the phase byπ which is possible only via
insertion of cusps.

Remark 1.5Theorem 1.2 was proved simultaneously and independently by
A. Shumakovich (not published). The method he used is not very much different
from ours.

Remark 1.6E. Ferrand has given results for more general situations [8].
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Fig. 5.Example of calculation of the Bennequin-Tabachnikov numberβ of a regular Legendrian
knot inST ∗R2

2. Framed knots

2.1. The Bennequin-Tabachnikov number

Legendrian knots in a 3-manifold with a cooriented contact structure are canon-
ically framed by a transversal shift in the direction of the coorientation of the
structure.

For a regular Legendrian knot in the standardR3 = M̃ = R2×R this framing
is exactly the blackboard framing with respect to the projection to the baseR2

(notice that here we refer to Figs. 1–3 rather than to the covering of the leftmost
fragment of Fig. 4). Here the blackboard framing of a knot diagram is a shift of
the diagram in the plane in the direction of the coorienting normals. The writhe
β of this framing (the sum of the signs of the crossings of the knot diagram)
is called theBennequin numberof the knot [5]. It equals the linking number
between the Legendrian knot and its shift along the framing.

The analog of the Bennequin number for the standard solid torusM = ST ∗R2

was defined by Tabachnikov [18]. He set it to be the intersection number of a
Legendrian knot shifted in the direction of the canonical framing and a 2-film
which realises homology between the unshifted knot and the multiple of the
fibre over a sufficiently distant point of the plane. To calculate the Tabachnikov
number, one can consider the knot diagram of the projection of the Legendrian
knot fromM � R2

x,y×S1
ϕ to the punctured plane with polar coordinatesex, ϕ.An

illustration to this is given in Fig. 5. For the projection considered, the canonical
framing is not blackboard. Anyway, the Tabachnikov number is still calculated
as the ordinary linking number of the knot (LC , the thick line) and its shift (the
thin line) along the framing: this is half the sum of the signs of the crossings of
LC with the shift.

Figure 5 illustrates the following algorithm to evaluateβ on a regular Leg-
endrian knotLC inM.
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Take a Cartesian coordinate system onR2 generic with respect to the curve
C.

There are finitely many linesx = const which intersectC at two points with
velocities in the same direction (dashed lines in Fig. 5). Call such a line positive
(respectively negative) if the curvatureκ of C at the upper of these two points
is greater (respectively less) than that at the lower one (the derivative of the unit
orienting vector with respect to the natural parameter onC is −κν, whereν is
the unit normal whose directionϕ is used for the Legendrian lifting). Let�+ and
�− be the numbers of all such positive and negative lines respectively.

Now consider an inflection pointb ofC. Assume that the phaseϕ(b) is either
in the first or in the third quadrant. If the phase achieves its local maximum (min-
imum) atb, call this inflection positive (negative). Use the opposite terminology
for the second and forth quadrants. Leti+ andi− be the numbers of positive and
negative inflections respectively.

Letm be the number of extrema of functiony onC.

Proposition 2.1 2β(LC) = 2(�+ − �−)+ (i+ − i−)+m .
Proof.We will describe how to draw the canonical shift ofLC . It is parallel
to LC except near points corresponding to inflections and extrema ofC. Near
the point ofLC corresponding to a positive (respectively negative) inflection it
makes a positive (respectively negative) crossing withLC and near the point
corresponding to an extrema it makes a positive crossing (Fig. 5). Therefore
twice the linking number betweenLC and its shift is the sum ofi+ − i− +m and
twice the self-crossing number ofLC , which equals 2(�+ − �−). ✷

Remark 2.2a) The numbers�+ and�− can be split in an obvious way to provide
all the coefficients of Arnold’s and Aicardi’s polynomials [4,1].
b) Other formulas to calculateβ can be found in [18] and [9].

2.2. The two invariants of unframed knots

Not every framed knot type inM orM̃ can be represented by a canonically framed
Legendrian knot. The Bennequin-Tabachnikov numberβ is bounded from one
side (according to the chosen orientation) on a set of all Legendrian knots of
the same unframed topological type [5]. For our choice of the orientation the
number is bounded from below. Indeed, insertion of a small fragment containing
two curls with opposite directions of rotation into a generic plane curveC does
not affect the unframed type of the Legendrian knotLC ⊂ M. On the other hand,
this operation increasesβ(LC) by 2.

On a regular Legendrian knotβ is odd [2,4] (see also Proposition 3.5 below).
To increaseβ(LC) by 1 within the same unframed knot type inM or M̃, one can
insert into the curveC a small non-self-intersecting fragment with two cusps and
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LC

Fig. 6.A Legendrian left-handed trefoil knot iñM � R3 with the minimal Bennequin number
−1

Fig. 7.A Legendrian right-handed trefoil knot iñM � R3 with the minimal Bennequin number
6 and the minimal known example of a regular Legendrian right-handed trefoil knot withβ = 9

zero winding number. In the representation of the solid torusM used in Fig. 5,
such a fragment provides a small smooth curl with the blackboard framing of
writhe 1.

Thus we arrive at two a priori different characteristics of an unframed knot in
M orM̃. Those are the minimal Bennequin-Tabachnikov numbers of Legendrian
knots of the same unframed knot typeK realised as Legendrian liftings of either
regular plane curves or plane curves with cusps (the latter corresponds to arbitrary
Legendrian knots). We denote them byβmin,reg(K) andβmin(K) respectively. Of
course,βmin,reg(K) ≥ βmin(K).
Example 2.3For the left-handed trefoil knot iñM � R3, βmin is known to be
−1 (see [5]). It is easy to achieve the minimum in a regular way (Fig. 6).

Example 2.4For the right-handed trefoil knot iñM � R3, βmin = 6 [16,12].
We show the corresponding extreme realisation with cusps in Fig. 7. The best
regular Legendrian realisation of the right-handed trefoil we know hasβ = 9
(Fig. 7).

Thus the numberβmin,reg(K) does not seem to be completely defined by the
parity argument correction ofβmin(K) above.

The main goal of the rest of the paper is to obtain an estimate onβmin,reg(K)

in M and M̃ (Theorem 5.4). In fact, the lower bound we get here works for
βmin(K) too [7]. The proof in [7] includes a theorem analogous to our Theorem
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Fig. 8.Definition of the framed version of the HOMFLY polynomial for oriented links with the
blackboard framing in a solid torus

3.2 and is heavily based on the arguments of the present paper. Also our proof is
more delicate as less moves are allowed.

For other estimates, we refer the reader to [17,10,12,7,19].

3. HOMFLY polynomial

3.1. Legendrian lowering of the polynomial to plane curves

In a generic 1-parameter family of regular plane curves there can appear triple
points and points of self-tangency. A self-tangency can be eitherdirect (the two
velocity vectors have the same directions) orinverse(the directions are opposite).
Topology of a regular Legendrian knotLC in M or M̃ can change only under
direct self-tangency perestroikas of the underlying regular curveC.

We call an invariant of collections of regular plane curves aJ+-type invariant
if it does not change under regular homotopies which involve no direct self-
tangencies. Our terminology follows the name of the first invariant of this type
introduced byArnold in [2,3].Arnold’s invariantJ+ of a one-component regular
plane curve is basically the Bennequin-Tabachnikov number of its lifting to the
solid torus: in [3,4] Arnold shows thatJ+(C) = 1 − β(LC).
J+-type invariants can be induced via the Legendrian lifting from invariants

of knots inM orM̃. In [6] this approach was used to define polynomial invariants
of plane fronts. Now we do the same for regular plane curves.

In [20] Turaev defined the HOMFLY polynomial of an unframed oriented
link in a solid torus. This is an element ofZ[x±1, y±1, ξ±1, ξ±2, . . .]. A similar
polynomial of a framed oriented link in the same ring is uniquely defined by the
relations and initial data of Fig. 8. The linksL1 andL2 there are disjoint in the
projection.

For example, on an unknot with the trivial framingP = (x − x−1)/y.
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Fig. 9. Legendrian lowering of the definition of Fig. 8 to generic collections of regular oriented
plane curves

Definition 3.1 The HOMFLY polynomial of a plane curve collectionC is that
of the Legendrian linkLC in the solid torusST ∗R2: P(C) = P(LC).

Thus the Legendrian lifting lowers the polynomial to generic collections of
plane curves. Translation of the definition of Fig. 8 to that case is given in Fig. 9.
The collectionsC1 andC2 of the last line lie in disjoint half-planes (we callC1�C2

thesplit unionof C1 andC2). According to the second rule of Fig. 8, the relation
between the Legendrian generatorszi we are using now and the blackboard
generatorsξi is zi = x |i|ξi : it is easily seen thatLZi = Ξi as unframed knots in
the solid torus, and the canonical framing ofLZi differs from the blackboard one
of Ξi by 2|i| positive half-twists similar to those on the vertical line through the
centre of the annulus in Fig. 5.

Theorem 3.2 There exists a uniqueJ+–type invariant P(C) ∈
Z[x2, y±1, z±1, z±2, . . .] of a generic collectionC of oriented plane curves sat-
isfying the relations and initial data of Fig. 9.

Thus the HOMFLY polynomial of a regular plane curve turns out to be a
genuine polynomial inx, not a Laurent one. Moreover, only even powers ofx

occur in it.
We prove Theorem 3.2 is Section 4.

3.2. Basic curves

Example 3.3Consider classes of framed knots represented by the knotsΞi of
Fig. 8 with the blackboard framing. Since their polynomials arex−|i|zi , Theorem
3.2 implies that they do not have any canonically framed regular Legendrian
representatives.

Moreover, according to Theorem 3.2, the Bennequin-Tabachnikov number of
the curveLZi is the minimum of all such numbers on the set of all regular Leg-
endrian representatives of the unframed knot type ofΞi . This minimal number
is, thus, 2|i| − 1. In fact, it is possible to show thatβmin,reg(Ξi) = βmin(Ξi) [7].
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Fig. 10.Calculations of the HOMFLY polynomial of the figure-eight curve
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Example 3.4The calculations of Fig. 10 show that the polynomial of the figure-
eight curve is(x2 − 1)/y. Indeed, the curve lifts to the Legendrian unknot inM
with β = 1, so its HOMFLY polynomial should be that of an unknot with the
trivial framing timesx.

In what follows, we will denote the figure-eight curve byZ0.

The oddness of theβ(LZi ) implies

Proposition 3.5 The Bennequin-Tabachnikov number of a regular Legendrian
knot in the solid torusM = ST ∗R2 is odd.

Proof.By the Whitney-Graustein theorem [21], any regular plane curve may be
deformed by a regular homotopy to one of the curvesZi , i ∈ Z. In a generic
regular homotopy, the Bennequin-Tabachnikov number of the corresponding
regular Legendrian knot changes only under direct self-tangency perestroikas.
Each time the change is±2. ✷

Example 3.6In some cases, it is convenient to use a different system of gener-
ators,wi , instead ofzi . Thewi is P(Wi), whereWi is the circle equipped with
outer |i| + 1 α-shaped curls and the orientation providing it with the winding
numberi (see Fig. 11). For example,W0 = Z0 andw±1 = z±1, since the curves
W±1 can be homotoped without direct self-tangencies to the embedded circles.

The way the two systems of generators are related is shown in Fig. 12. There
and below we write the relations on polynomials as relations on the corresponding
curves.

Definition 3.7 A simple curlof a curve collection is anα-shaped loop that
contains no fragments of the collection in its interior.

Example 3.8A figure-eight curve that has no intersection with other components
of a curve collection passes through such a collection freely, with no effect on
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Fig. 12.Recursive relation between the generatorszi andwi

Fig. 13.The figure-eight curve as a neutrino

= + y

Fig. 14.A circle passes through a line

the polynomial. Indeed, the homotopy of Fig. 13 does not involve any direct
self-tangencies.

A circle can also pass through a line, but at the expense of a certain change
in P (see Fig. 14).

In general, a basic curveZi makes a similar pass generating many extra sum-
mands inP (see Figs. 15 and 16). The crucial point for our further considerations
is that all these summands can finally be expressed as the polynomials of curve
collections that have nothing on that side of the line from whichZi has been
removed and have only basic curvesZj on the other side. The part of the line
involved receives only a number of additional simple curls.
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Fig. 15.Removing a basic curve from one side of a line generates a “cloud" of basic curves on
the other side. The closed component of the lower right curve has one simple curl less than that
of the upper left

4. Proof of Theorem 3.2

The existence of an invariant is guaranteed by [20]. We only need to show that
the rules of Fig. 9 are sufficient to define the polynomial of any curve collec-
tion uniquely. The restriction on the powers ofx that are allowed to appear in
the polynomials will immediately follow from the way in which the proof of
uniqueness is carried out: we show that in calculations it is sufficient to use the
skein relation involvingx just to omit pairs of curls.

Our proof is inductive, by a complexity of a curve collectionC. The com-
plexity is measured by two quantities. One of them is just the numberk(C)

of connected components ofC (of course, not the same as the number of its
irreducible components). The other is as follows.

Definition 4.1 The double point of a simple curl is called asimple double point.
An essential double pointis one which is not simple. We denote bye(C) the
number of essential double points of a curve collectionC.
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Fig. 16.Removing a basic curve in the case of the other orientation of a line

We define thecomplexityχ(C) of a generic curve collection to be the pair
(e(C), k(C)) with lexicographical order.

4.1. The base of induction

If χ(C) = (0,0) the curve collectionC is empty. According to the rule of Fig. 9
its polynomial is 1.

The rest of the proof shows that the polynomial of any curve collection can
be expressed, via our rules, in terms of the polynomials of collections of lower
complexity. We construct a homotopy of an arbitrary curve collectionC which
performs one of the following reductions:

(a) makes one of essential double points simple;
(b) creates a situation in which a self-tangency perestroika is able to kill two

double points;
(c) splits a basic curveZi orWi off the rest of the collection.

All the intermediate collections in our homotopies as well as auxiliary col-
lections participating in the calculations ofP(C) due to the skein relations are
controlled to have complexity lower thanχ(C) (or at least it is shown that their
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C"C

Fig. 17.A curve collectionC and its essential partC′

polynomials can be expressed in terms of the polynomials of collections of com-
plexity less thanχ(C)). This guarantees that the transformations (a,b,c) provide
the inductive reduction.

In our constructions, all the transformations of the above three types are
applied to certain elementary domains introduced in the next section.

4.2. Minimal 0- and 1-gons

Consider an arbitrary generic curve collectionC. Smooth out all its simple curls.
LetC ′ be the resulting curve collection (see Fig. 17).

Definition 4.2 The collectionC ′ is called theessential partof the collectionC.

Definition 4.3 A closed discD′ is called ann-gon of the collectionC ′ if its
boundary∂D′ is contained inC ′ and has exactlyn vertices, that is double points
of C ′ where∂D′ fails to be differentiable.

For example, a 0-gon is bounded by an embedded circle.
The choice of the notation (with dashes) indicates that we are going to use

only n-gons of the essential parts of curve collections.

Definition 4.4 A 0- or 1-gonD′ of C ′ is calledminimal if there are neither 0-
nor 1-gons ofC ′ insideD′.

Intersection of the interior ofD′ with C ′ may be non-empty.

Any non-empty curve collection contains a 0- or 1-gon. Indeed just make
a smooth walk along the curve from an arbitrary point until the first second-
time visit to some pointq. The loop traced between the two visits toq has no
self-intersections and bounds a disc required.

Note that a minimal 1-gon isα-shaped, not heart-shaped: walking inside a
heart-shaped 1-gonD′ from its only vertex we find a smaller 1-gon inD′ (see
Fig. 18).

We distinguish two kinds of minimal 0- and 1-gonsD′ of the essential part
C ′ of a collectionC: simple, when the interior ofD′ has no intersection withC ′,
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Fig. 18.An α-shaped 1-gon contained in a heart-shaped

andnon-simple(all the others). For example, the boundary of a simple 1-gon is
a simple curl.

The boundary of ann-gonD′ of C ′ comes from the fragment ofC after
omitting simple curls and smoothing the vertices. This fragment bounds a planar
domain which we call theancestorofD′ and denote byD. We call the fragment
itself theboundary ofD and denote it∂D.

4.3. Inductive step: Reduction of the complexity of a curve collection

In four separate subsections below we consider four types of minimal domains
at least one of which can be found in any non-empty curve collectionC. These
are simple and non-simple minimal 0- and 1-gons of theessential part C ′. In
each case, applying a choice of reductions mentioned in Sect. 4.1, we show that
it is possible to expressP(C) in terms of the polynomials of collections of lower
complexity.

4.3.1. Simple minimal 0-gonThe aim in this case is to reduce the complexity
of a curve collection by passing to a collection with one connected component
less.

Up to omitting pairs of opposite curls, we may assume that the boundary of
the ancestorD of a simple minimal 0-gon is one of the basic curves, eitherZi
orWi . There are no fragments ofC inside the basic curve.

If ∂D is split from the rest of the collectionC, the product rule of Fig. 9 gives

P(C) = P(∂D) · P(C \ ∂D)
where the collectionC \ ∂D has complexity(e(C), k(C) − 1), and therefore,
by the inductive assumption, its polynomial is uniquely defined by the rules of
Fig. 9.

Now assume that∂D is not split from the rest ofC and that∂D = Zi . The
reduction algorithm for this case is as follows. We make∂D small enough and
choose a generic pathγ to evacuate∂D into a half-plane separate from the rest
of C. According to Example 3.8, pullingZi throughC once expressesP(C)
in terms of the polynomials of collections obtained fromC \ ∂D by adding
a number of simple curls as well as a number of small basic curvesZj right
after the first intersection ofγ with C. We iterate the process by pulling all
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Fig. 19.Making a simple double point of the essential part of a curve simple on the curve itself
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Fig. 20.A simple curl passes through an essential double point

thus obtained small componentsZj of the new collections further alongγ . This
finally expressesP(C) via the polynomials of collections which are split unions
of C \ ∂D (equipped with new simple curls) and a number of the curvesZ�.
The product rule reduces each of such polynomials to the polynomial ofC \ ∂D
(with extra simple curls) whose complexity is(e(C), k(C) − 1). The inductive
assumption finishes the proof of the uniqueness for this case.

Finally, if ∂D = Wi is not split from the rest ofC, Fig. 12 expressesP(C)
in terms of the polynomials of collections obtained fromC by substituting∂D
with a number of the curvesZj . Evacuation of all of them out from the rest of
the collection follows the above pattern for oneZi .

4.3.2. Simple minimal 1-gonA discD′ being a simple minimal 1-gon means
that, after possible omitting pairs of successive curls of opposite orientations, its
ancestorD in a curve collectionC is bounded by one of the loops of Fig. 19. The
figure shows how to make the essential double point of such a loop simple so
that the auxiliary collections appearing in the skein relation have less essential
double points thanC.

By the inductive assumption the proof in this case is complete.

4.3.3. Non-simple minimal 1-gonThis is a more complicated case. Now the
aim of the reduction is to allow a self-tangency perestroika killing a pair of double
points within the ancestorD of a non-simple minimal 1-gonD′ of C ′.

We start with some preliminary “cleaning” observations.
First of all, from the minimality, there is no irreducible component ofC inside

D.
Secondly, we can assume that there are no simple curls ofC insideD as well as

on its boundary. Indeed, due to the relation of Fig. 20, a simple curl move through
an essential double point changes the polynomial by the summand corresponding
to a collection having less essential double points.
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In fact, altogether our assumptions mean that the passing fromC to its es-
sential partC ′ makes no changes within the 1-gonD = D′.

Notice that, within our “cleaning” assumptions, the minimality implies that
neither branch ofC ∩D has a self-intersection in the interior ofD.

We call an elementary generic homotopy of a curve collection via a collection
with a triple point atriple-point move.

Lemma 4.5Within the assumptions done, triple-point moves homotopC to a
curve collection in which a self-tangency perestroika kills two double points in
D.

A series of triple-point moves followed by a self-tangency perestroika have
either no effect onP(C) (for the inverse self-tangency) or representP(C), by the
main skein relation, as the combination of the polynomials of collections with
the number of essential double points reduced. Therefore, in the case considered,
the inductive step in the proof of Theorem 3.2 is provided by the lemma.

Proof of Lemma 4.5.The proof reduces to the consideration of the following two
cases determining if∂D itself has to be involved in the self-tangency perestroika:

(a) Each pair of branches ofC ∩D in the interior ofD has at most one point
of intersection.

(b) There exists at least one pair of branches ofC ∩ D having at least two
points of intersection in the interior ofD.

We start withCase (a)and prove the lemma in this situation by induction on
the numberm of double points ofC in the interior ofD.
m = 0. This implies thatD contains a 2-gon adjacent to its boundary∂D with

no other branches ofC inside it. This is the 2-gon to be killed by a self-tangency
move.
m > 0. If there exists a 2-gon adjacent to∂D we can kill it like in the case

m = 0.
Suppose that there is no such 2-gon. We use the following lemma to proceed.

Lemma 4.6 The 1-gonD contains a 3-gon∆ with exactly one of its sides on
∂D and with no fragments ofC in the interior of∆.

Pushing the inner vertex of such minimal 3-gon∆ through∂D by the triple-
point move we reducem. By the inductive hypothesis, the proof of Lemma 4.5
in case(a) is complete.

Proof of Lemma 4.6.Let B1 be a branch ofC ∩ D that intersects some other
branches insideD. We may assume that the double point of∂D and all the
branches insideD which do not intersectB1 are on the same side ofB1. This is
a sort of a minimality condition onB1.

LetP ∈ B1 be the double point closest to an endpointN of B1 (see Fig. 21).
LetB2 be the other branch passing throughP . One of its endpoints,Q, is a vertex
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Fig. 21.Search for a minimal 3-gon

of a 3-gonNPQ based on∂D. This 3-gon may be non-minimal: there can be
some other double points ofC on the sidePQ (due to the minimality ofB1, this
is the only possible obstruction to the minimality ofNPQ). Choose the one,R,
closest toQ. Consider the branchB3 throughR. It cuts the corner pieceQRS
off NPQ. This is guaranteed by the fact that neither pair of the branches has
more than 1 point of intersection.

Now, ifQRS is still not minimal, we iterate the descending procedure. Lemma
4.6 is proved.

Now we considerCase (b).

As in case(a), m > 0, we assume that there is no empty 2-gon adjacent to
∂D (otherwise we could immediately kill it and make the reduction desired).

Let B1 andB2 be branches with more than one common point. Then there
exists a 2-gonT ⊂ D whose boundary lies on these branches and whose vertices
are two successive intersections ofB1 andB2. We may assume the following
minimality properties ofT :

1) the endpoints of any branch ofC ∩ T are on different sides ofT ;
2) any pair of branches ofC ∩ T has at most one common point.

If there are any double points ofC insideT , we move them out using the
triple-point moves after finding minimal 3-gons as it was done in the proof of
Lemma 4.6. After this we move all the branches ofC out fromT by the triple-
point moves across the vertices ofT . Now the 2-gonT is empty and can be killed
by a self-tangency perestroika.

This finishes the proof of Lemma 4.5.

4.3.4. Non-simple minimal 0-gonGathering all the simple curls of the bound-
ary ofD in a small neighbourhood of some pointP ∈ ∂D, we reduce this case
to that of subsection 4.3.3 with the pointP playing the role of the double point
of the curl.

The proof of Theorem 3.2 is now finished.
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Fig. 22. Legendrian lowering of the framed version of the HOMFLY polynomial of links in
M̃ � R3 to aJ+

0 -type invariant of generic collections of plane curves of winding numbers zero.
The phases of the two interacting branches in the main skein relation coincide

5. Other versions of the HOMFLY polynomial for regular plane curves

5.1. Regular Legendrian links in the standard 3-space

There exists an obvious analog of Theorem 3.2 that corresponds to links in
M̃ � R3.

Definition 5.1 A J+-type invariant of generic one-component plane curves of
winding number zero is called aJ+

0 -type invariantif it changes only under direct
self-tangency perestroikas in which the winding numbers of the two subcurves
into which the self-tangency point breaks the curve are zero.

This corresponds to a change of the topological type of the lifted Legendrian
knot in M̃.

A multi-component oriented regular Legendrian link iñM is defined by a
collection of oriented plane curves in which each of the components has the
winding number zero. According to Remark 1.3, on each of the components
there should be a point marked by a real number whose reduction modulo 2π is
the angleϕ of the corresponding normal. The markings define phasesϕ ∈ R at
all the points of the collection.

Definition 5.2 A J+-type invariant of the above marked oriented curve collec-
tions is called aJ+

0 -type invariantif it changes only under self-tangencies in
which the difference of the phases is zero.

Similar to Theorem 3.2 we have

Theorem 5.3 There exists a uniqueJ+
0 -type invariantP0(C0) ∈ Z[x2, y±1] of

generic collectionsC0 of marked oriented plane curves of winding numbers zero
satisfying the relations and the initial data of Fig. 22.

5.2. The polynomials of unframed links
and the Bennequin-Tabachnikov number estimates

Letβ be the Bennequin orTabachnikov number of an oriented regular Legendrian
link L̃C0 ⊂ M̃ orLC ⊂ M. The traditional, unframed versions of the HOMFLY
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Fig. 23.Legendrian lowering of the unframed version of the HOMFLY polynomial of links in a
solid torus to generic plane curve collections

polynomials [11,20] of these links, in terms of the underlying plane curves, are

P0,u(C0) = x−βP0(C0) ∈ Z[x±1, y±1]

and

Pu(C) = x−βP (C) ∈ Z[x±1, y±1, z±1, z±2, . . .].
Those are topological invariants of the links.

TheJ+-type invariantPu is calculated by the rules of Fig. 23. Omitting the
initial data of this figure related to the curvesZi , one gets the rules to calculate
theJ+

0 -type invariantP0,u. As earlier, the systems of the rules define the plane
curve polynomials unambiguously.

Theorems 3.2 and 5.3 immediately imply

Theorem 5.4 LetL be an oriented unframed link in the standard contact man-
ifold M̃ � R3 or M = ST ∗R2. Let xk be the minimal power of the framing
variablex in the corresponding unframed version of the HOMFLY polynomial
ofL. Then

βmin,reg(L) ≥ −k.
Remark 5.5ForR3 this is guaranteed by the theorem of Fuchs and Tabachnikov
[12] which derives the same estimate forβmin(L) from comparison of the results
of [5] and [17].

5.3. HOMFLY polynomials of curves with few double points

In Fig. 24 we give the results of calculations of the polynomialP for Arnold’s
list [2,3] of all the plane curves with at most 3 double points. We set there
z0 = (x2 − 1)/y. The orientations of the curves with non-zero winding numbers
are chosen so that these numbers are positive. Change of orientation is covered
by the following



Regular Legendrian knots 411

Proposition 5.6 LetC be a generic collection of oriented regular plane curves
whose polynomialP(C) is p(x, y, z1, z−1, z2, z−2, . . .). Let C− (respectively
Cr ) be the collection obtained fromC by the change of orientation of all of its
components (respectively by reflection of the plane). Then

P(C−) = P(Cr) = p(x, y, z−1, z1, z−2, z2, . . .) .

Proof.One can calculateP(C−) andP(Cr) following the chain of calculations
of P(C). All the curve collections appearing in this chain should be respectively
either equipped with the opposite orientations or reflected. The chain forP(C)

ends up with disjoint collections of the curvesZi , i ∈ Z. Both operations send a
curveZi toZ−i . ✷

Corollary 5.7 P((C−)r) = P(C).
An illustration to this is seen in the fifth line of Fig. 24.

There is one more rather obvious observation which follows from the coin-
cidence of the total winding numbers of all three curve collections participating
in the main skein relation forP .

Proposition 5.8 The sum of indices of all thez-variables appearing in a partic-
ular monomial ofP(C) is equal to the winding number of the curve collection
C.

The table of Fig. 24 contains the Bennequin-Tabachnikov numbers of the
corresponding regular knots in the solid torus [2–4]. They do not depend on the
orientations of the curves and the plane.

Most of the polynomials of Fig. 24 which have no obvious reason to be
divisible byx2 (those are polynomials of the curves with no pairs of simple curls
of opposite orientations) are not divisible by it. Non-divisibility ofP(C) by x2

means that the Bennequin-Tabachnikov number of the knotLC ⊂ ST ∗R2 is
the minimal possible among all the regular knots of the same topological type:
β(LC) = βmin,reg(LC).

The converse does not seem to be true. For example, for the last curve in the
forth line, P = x2( x

2−1
y

+ yz−1z1), but there seems to exist no regular plane
curve whose polynomial is that in the brackets of this formula. Another similar
example is the first curve of the fifth line. Arnold’s tables in [2,3] contain some
other curves of the same nature.All of them are certain modifications of those two
of Fig. 24. This indicates that the estimate of Theorem 5.4 may not be exact in all
the cases. Perhaps there are some special bounds for powers ofx in coefficients
of various products ofz-variables in the HOMFLY polynomials of regular plane
curves.

The polynomialsP0(C) of the curvesC of Fig. 24 of winding number zero
are trivial: each of them is obtained from theP(C) by formally settingy = 0
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Fig. 24.The HOMFLY polynomials and Bennequin-Tabachnikov numbers of plane curves with
at most 3 double points

everywhere except for the relationz0 = (x2 − 1)/y. Thus, for a table curve,
P0(C) = xαz0, whereα + 1 is the Bennequin number of the corresponding
Legendrian knot iñM. Of course, such a reduction is not correct in general.
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