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Projections of Generic Surfaces with Boundaries

V. V. GORYUNOV

We meet projections when we are studying various mathematical prob-
lems. For instance, let us consider bifurcations of equilibria of a certain
dynamical system. In this case we must examine a surface consisting of
equilibria for all possible values of parameters in the direct product of the
phase space and the parameter space of the system. Singularities of a pro-
jection of this surface onto the parameter space correspond to bifurcations
of equilibria. .

Systematical study of singular projections was started by V. I. Arnold
in [A1]. There he classified all singularities which that for a projection of
a generic surface in 3-space by any system of parallel rays. In the present
paper we consider a problem close to the one studied by Arnold. It is
that of classifying projections of surfaces with boundaries embedded in
R’ ina generic way by a system of rays originating at any point outside
the surface.

§1. Classifications

Here we formulate the main results of the paper. Their proofs are given
in §§3 and 4.

Recall that a projection of a surface V , embedded in RP? , from a
point 0 outside the surface, is the diagram V — RP® \VO— RP? , where
the first arrow is the embedding and the second one is the fibration that
maps any point into the line passing through this point and the center 0
of the projection. The local version is the germ of the diagram (¥, 0) —
(R3 ,0)— (Rz, 0} consisting of an embedding and a fibration.
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An equivalence of two (germs of) projections is a commutative 3 x
2-diagram whose horizontal lines are the {(germs of) projections and the
vertical ones are diffeomorphisms.

Let V' be a smooth surface with a smooth boundary embedded gener-
ically in RP?. All singularities that may occur at its interior points for
any choice of the center of projection in RP? \ ¥ are listed in [A2], §15
of Chap. VI. The aim of our work is to get a list of possible singularities
for boundary points of V. ‘ -

The set RP’ \ ¥V of projection centers is 3-dimensional space. So our
classification problem may be divided into two parts. First we have to
classify all projection-germs of surfaces with boundaries nonremovable in
3-parameter families. Then, inside the obtained list, we select singularities
that may be realized as projections of generic surfaces.

THEOREM 1. Consider a generic I-parameter Jamily of projections of
smooth surfaces with smooth boundaries from 3-space onto a plane, 1< 3.
Any projection from this family at any boundary point has a germ that is
equivalent to a germ at zero of the projection (x,¥, z) > (y.2) of surfaces
z=fi(x,¥), f,(x,y,2) >0 or z = Six,y), fi(x,v,2) <0, where
the pair of functions ( fis 1) is shown in Table 1 and has codimension < I .

The first two columns of the table represent Arnold’s list of projections
of generic surfaces from R’ onto R? by any system of parallel rays [A1].
Note that we preserve the terms axsy in 7 and ax4y in 8, which may
be killed by Arnold’s equivalence. We do so in order to make calculations
more convenient .

THEOREM 2. A prajection of a generic surface with boundary from 3-
space onto a plane by a system of parallel rays may have singularities at
boundary points only of the following types: 1, Ay, 4, 4,, B, B,, 3,,
3, (e#-1/3, 172, 2/3), 41i {a #0), 6,. For a projection by a system
of rays originating at any center outside the surface, only the following types
may additionally occur: Ay, By, 3y (a#—1/3, 1/2, 2/3), 4, (a#0),
4 13 4230 51 6,. All the singularities mentioned are observable
Jor a suitable choice of generic surface with ‘boundary and an appropriate
system of rays.

Examples of realizations are given in the last column of Table 1. Here
we indicate terms that one may add to the pair ( fi» f,) in order to get a
germ (at zero) of a generic surface with boundary z = f; , j; = 0, which
has the prescribed singularity for a projection along the x-axis (i.c., from
a center at infinity). “No” means that the singularity is nonrealizable.
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TABLE [
Surface- Boundary-
projection projection L Codjm- L.
lype h iype f Restriclions ension Realization
1 x Iy ¥y 0 0,0
) 2 A x4y k>0 k )
B, y+x* k> k 0, %
3 2 +xy 3, x 1 0,0
3, X tay Lyt a#0,1, 2 (0,0
, . a4 s 2 g f ra==173,172,
y x* +ay FERLH (¥, 0 23 o
3%, Xy tpk k>12 k41 no
You x* tap & 2 a=1},8; k=2 k+1 no
., y:I:xz+axzz" a#0 k> 1 k+2 no
4 x* vy’ 4 X4ay+y - 2 |oho
. 3 fora=0 no
45 X+ay 3 »,0)
4 y+ x4axt a#l 3 ao
4~ ot 4 xtap+yp? o #1/3, 473 2 0}, 0); fora=0 no
4 X+dy o £ 173, 473 3 {2+ By, 00, 60> —9Ba #4;
fore=0 no
4o | Tyt | asdo B | k2 0,0
k>
4, yrxt 2t aF0 3 no
5 X xy’ 5, Xty - 3 o', 0
6 M xy 6, xty - 2 2
Xx=x+Xx
6, x 3
[ x* +V+axy — 3 no
7 x +oax’y 7. x af?2 3 no
+.r2y +xy2
8 Fapn ux‘y 8. X adQ 3 no
+ xly + xy
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FIGURE 1. Adjacency of realizable boundary projec-
tions.

Using the hierarchy of Arnold’s singular projections
1 2« 3 — 6 8

[

4 ——— 7

I
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one can get the hierarchy of boundary projections from Table 1. In Figure
| we give its part containing the realizable singularities.

In Figure 2 we show the singularities of apparent contours and sets of
critical values of realizable boundary projections. Instead of two separate
illustrations for the surfaces z = f|, fLz0and z=f, f, <0, we
give an amalgamated one here—for the surface z = f; with a smooth
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FiGure 2. Projections of generic surfaces with bound-
aries.

curve f, =0 onit. We also indicate Puiseux exponents for the image of
the boundary and the set of critical values of the projection of the surface
z = f,. For classes with moduli, these exponents are the same for all
possible values of moduli. The drawings for 3, and 3,, 4, and 4, are
qualitatively identical. Members of the 4l+-fam11y with opposne values of
a are equivalent—the same is true for all realizable singularities denoted
by a 4 with various indices.

REMARK. The realizability of a class containing a module in its normal
form means that for a projection of a given generic surface we obtain some
separate singularity from this class for some specific value of the module.
For a projection of a neighboring surface, we also get a singularity from the
same class but, generally, with another (neighboring) value of the module.

Recall that a singularity is called simple if any of its sufficiently small
perturbations only yield singularities from a finite number of orbits of
equivalence,

THEOREM 3. Simple germs of boundary projections of surfaces from 3-

space onto a plane are precisely the singularities 1, 4., k=20, B,
k>1,3,,6,and6,.
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Equwalent projections have left-right equivalent composite mappings
V — RP? (i.e., one of these mappings may be transformed into the other
by d1ﬂ‘eomorph1sms of the source and the target). Moreover, the classi-
fication of projection-germs ¥ — rP? \O — RP’ of smooth surfaces is
absolutely identical to a left-right classification of germs ¥ — RP? of com-
posite mappings that have corank < 1 at a distinguished point: a COmpos-
ite mapping recorded in certain local coordinates as (x, ¥} — (v, flx,»)
corresponds to a germ at zero of the projection (x, y, z) — (¥, z) of the
surface z = f{x, y). We prove this quite obvious fact in a general seiting
in the Appendix.

From the above relation it follows that Table 1 may be easily trans-
formed into a table of normal forms of mappings of a half-plane into
a plane. For cxample, the B, -projection corresponds to the mapping
(x, ) (» — x** x%) of the half-plane y > 0.

On the other hand, mappings of a half-planc into a plane correspond to
mappings of a plane into a plane invariant under the reflection (x, u)—
(x, —u) in the source. The correspondence is given by the quotient-map
X=x, y=u’ into the half-plane y > 0.

The classification of projections of a generic surface with boundary from
3-space onto a plane by parallel rays (as the left-right classification of map-
pings of the half-plane into a plane of corank < 1) was considered by Bruce
and Giblin in {BG]. But in the version of their preprint available to the
author of this paper, the singularities that we denote by 41i Were missing.

§2. How to see the singularities

When we project a generic surface from a generic center, we get a 1-
singularity at a generic boundary point. Looking at a boundary point along
a direction tangent 1o the surface at this point, we generally get A, . Forthe
direction tangent to the boundary itself, we obtain B, . If this i 1s a tangent
at a flattening point of the boundary, we get B,. For a special choice of
obscrvation point on such a tangent, one can see a B ;-singularity [Dv].

A critical set of a projection is called a terminator. For a generic pro-
Jection center it meets the boundary of the surface transversally. As we
have already stated, the projection is then of type A, at the point of this
meeting. Now consider a surface consisting of stralght lines that are

(a) tangent to the initial surface at boundary points and

(b) orthogonal to the boundary in the sense of the second quadratic
form of our surface.
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FIGURE 3. Projective classification of points on a generic
surface.

For a projection from a point of this surface, a terminator has a contact
with the boundary. If the point is regular, this contact is simple and we
get an A -singularity.

Since the surface we have just described is fibered by (straight) lines, we
may expect that its nonregularity will be a cuspidal edge. One can show
that this is just the case and that every line-fiber has exactly one point
on the edge. Moreover, if the fiber is not tangent to the boundary (or,
equivalently, has only simple contact with the initial surface) this point
does not lic on the boundary (the converse is also true). Projection from
a nonsingular point of the cuspidal edge is of type 4,. Singular points
of the edge (i.e., swallow-tail points of our line-fibered surface) provide
A,-projections.

For our further description of visual opportunities, let us recall the pro-
jective classification of points on a generic surface in projective 3-space
and realizations of singular projections at interior points of such a surface
([P, L, A2]).

A smooth curve of parabolic points I, , divides a surface V' into a
region of elliptic points 11, (there are no real tangents of order higher than
1) and a region of hyperbolic points 11, | (there are two such tangents
called asymptotic lines, their directions at the point of contact are called
asymptotic directions).

In the region of hyperbolic points, there is a distinguished smoothly
immersed curve of inflections I1, | (atits points the order of contact of an
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asymptotic line with the surface is higher than 2). On this curve there are
separate points of bi-inflections I1; (where the order of contact is 4) and
points of self-intersections I , (both asymptotic lines have third order
contact). At the Il, ,-points the curve of inflections of the asymptotics is
simply tangent to the curve of parabolic points (here the single asymptotic
direction is tangent to the curve of parabolic points).

Armnold’s list 1-8 is realized in the following way.,

For a generic center the projection is nonsingular (type 1) at almost ev-
ery interior point of the surface, has a fold 2 along some smooth curve (a
terminator) and a cusp 3 at separate points of this curve. Singularities 4
and 6 are obtained by projections from generic points of surfaces consist-
ing of asymptotic lines passing through the points of the parabolic curve
and the curve of inflections of the asymptotics respectively. The first of
these surfaces has a cuspidal edge. From this edge one sees the singularity
5. We see 7 from any generic point of an asymptotic line tangent to the
curve of parabolic points {(i.c., passing through 1'I4,2-point), and we sec 8
from a generic point of an asymptotic tangent of the fourth order.

Now we return to the description of realizable boundary projections and
also point out obstructions for realizability of all forbidden singularities.

All the boundary singularities having the unique index 1 as a subscript
are obtained in the same way as the corresponding interior singularities
with the single additional condition on the point of interest—that it lies
on the boundary. For instance, 3, is realized by a projection from a point
of an asymptotic line applied at a boundary point.

At isolated boundary points asymptotic lines touch the boundary. For
a generic point of one of those lines as projection center, we get a 3,-
singularity, for a special point we have 3,. It is necessary to note that
a value of the module in the normal form of 3, does not depend on a
choice of generic point on the aforementioned line (see §4). By the way,
this is the reason for the absence of singularities 31 7 and 3, , /7 for
projections of generic surfacés with boundary. :

In order to see 4f-singularities, we must look from a generic center
on an asymptotic line of a parabolic point of the surface lying on the
boundary. Note that this time the value of the module in the normal
form 4T depends on the choice of projection center on the line (see §4).
For special choices of observation point on the same line, we obtain 42i ,
4;1/\/3 and 41_,2,,\/5 (and 5 , too).

Look at the surface from a special point of an asymptotic line pass-
ing through a boundary point situated on the curve of inflections of the
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asymptotics. Then we can realize the 6,-singularity (6, is obtained by a
projection from a generic point of the same line).

Now we comment on nonrealizability. The forbidden singularities could
occur only in the following cases:

8,—the point of biinflection II; (an isolated point of the surface) is
on the boundary;

7.—the point 1, ,, where the curve of inflections of the asymptotics
is tangent to the curve of parabolic points (also an isolated point of the
surface), is on the boundary;

6,—a projection from a point of an asymptotic line passing through a
common point of the boundary and the curve of inflections of the asymp-
totics. This asymptotic line must in addition be tangent to the boundary;

4f—the same as in the 6,-case but with the curve of parabolic points
instead of the curve of inflections;

32 —a projection from a point of an asymptotic line that is tangent
to the boundary curve at its flattening point.

1t is evident that none of the possibilities listed can occur for a generic
surface with boundary.

The 3, (-singularity has a 3/4-parabola as the image of the boundary—
this case cannot occur for the projection of a generic curve [DV].

In families 3, and 3,:

(1) the value a = 2/3 of the module is excluded as otherwise there
would be second order contact of the boundary with the integral curve of
the field of asymptotic lines (see §4);

(2) the bifurcation diagrams for values a = —1/3 and o = 1/2 are
distinct from the diagrams corresponding (o generic values of o (§4).

Finally, the value o = 0 of the module in the families 4f means that
the curve of parabolic points is tangent to the boundary {§4 again).

§3. Classificational calculations

We treat the problem of the local classification of projections of surfaces
with boundary in the spirit of the theory of functions on a manifold with
boundary [A3], as a problem of the classification of projections of flags,
i.e., germs of diagrams R’ J,R— R L R? consisting of an embedding of
a flag and a fibration {of course, one must additionally fix a half-plane in
R? situated on one side or the other of the distinguished line R C R’ }.
The equivalence of flag-projections is analogous to the one for boundary
projections.

Let (x, ¥, z) — (¥, z) be the coordinate description of the fibration
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R® - R? {we fix this description up to the end of the paper), g,(x,y, z) =
0 - the equation of a plane embedded in 3-space and gz(x y,2)=0
- the equation of its distinguished curve R’ , R B - R? (in section
1, g =1, -z, g =f,). The condition of smoothness of the embedded
surface and the curve on it implies

(g 12 gz) _
rk (B(x, v, Z)) =%
The classification of flag-projections is the classification of germs at zero
of function-pairs (g, , &) up to:
(a) substitutions x(x", y', 2}, y(y', 2}, z(3', Z) (diffeomorphisms
of R® fibered over ]Rz) and
(b) transformations

(8, &) (ag,, bg +cg,),

where a, b, ¢ are germs at zero of functions on R®, a(0)-c(0) £ 0 (new
choice of equations of the surface and the curve).

We are interested in the classification of map-germs g = (g1 s &),
equivalence classes that have low codimension in the space (é” of all
analytlc (formal or C*-) germs (R’, 0) - R>. This codimension equals
dimy (9’ / , where Tg is the tangent space to the equivalence class of g:

(5):0)- (). 8) a3
(50 () ) 3. 2)

Here &; and &, are rings of function-germs in x, y, z and p, z
respectively, The mapping g and other elements of f?’ arc written in
columns.

REMARKS. 1°. The codimension of the family mentioned in classifi-
cation Table 1 equals the codimension of an individual member of this
family minus a number of moduli of the family.

2°. For a versal deformation of a boundary projection g (in the sense
traditional for singularity theory) one may take g+ E Ae;; where e, € 7, 2

are representatives of a basis of the linear space (ﬁ’ /T (see e.g., [Dm]).

It is convenient to carry out classificational calculatlons in the following
order Frrst reduce to normal form the germ of the surface-projection
R? & R® = R? , 1.e., function g, - Up to the depth of classification we need
(as one can easﬂy see, up to surface-projection singularities of codimension
2) we obtain on this step Arnold's list 1-8: 8 (x,¥,z)=f(xy)-z for
f; from Table 1.
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In the second step we reduce to normal form the curve g, = 0 that
belongs to one of the surfaces 1-8. This reduction is carried out by
diffeomorphisms of 3-space, preserving its fibration over the plane and
translating the surface g, = 0 into itself, and also by transformations
g — bg +cg,, c(0) # 0. Two diffeomorphisms of R® of the type
indicated, acting on g, = 0 in the same way, differ by a diffecomorphism,
which is the identity on g, = 0. An action of the latter diffeomorphism
on the equation of the curve adds a function divisible by g, to it. Hence,
instead of diffeomorphisms of R® fibered over the plane and preserving
the surface g, = 0, it is sufficient to consider diffeomorphisms ¥ of
the surface itself that can be lowered onto the plane (i.e., such that there
exist diffeomorphisms y’ of the plane for which m o y = x' o 7, where
n:{g, =0} — R” is the projection). 7 has a fold at almost every one of
its critical points. So, according to [A4], The Lie algebra 2 of a group of
diffeomorphisms of the surface, possessing the property we need, is exactly
the algebra of vector fields on the surface {g, = 0} C R’ that are projected
into fields on the plane tangent to the set ¢ of critical values of = .

For a weighted-homogeneous surface g,(x, y, z) =0, 2 is generated
over &, = (?y,z by two elements; the Euler field ¢ and the lifting # onto

g, = 0 of the Hamiltonian field h o= (0p/0z)0, — (0p/0y)),, where
(v, z) = 0 is the equation of the set C.

The codimension of a flag-projection is the sum of two codimensions:

¢, = dimy, 7,/{F,{g,, 8g,/0x})+&,{3g,/0y, 08,/02)}, the codimen-
sion of the projection of the surface g, =0;

¢, = dimy &, /{Ug, + (g, , &)}, the codimension of the curve g, =0
in the space of all curves on the fixed surface g, =0 in R’ fibered over
R?. ,

We denote the denominator of the latter quotient space by T;z , the
space of i-th coordinate functions of map-germs 'R3, 0 - R? by ﬁ’f) .
i=1,2. We write clements of (9‘32 in long formulas as columns of their
coordinate functions, in short formulas we write them in line. When we
want to show generators of a ring of functions, we write, say, ﬁ’y, , » instead
of &,.

Now we shall consider the variants 1-8 of the surfaces g, = 0, one
after another. Here we shall use standard techniques of singularity theory
[AGLV].

Since g = f(x, y) -z, we may take g, = g£,(x, V).

1. Let g = x - z; then the projection (x,y, z) — (¥, z) is an
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isomorphism. The distinguished curve is smooth, hence its equation may
be reduced to y =0, i.e. we get the singularity 1° from Table 1.

2. Let g =x"—z;then ¢, =0, C: z=0, A=5(3,, x0, +228,).

If 8g,/0x(0) # 0, we may suppose the main quasihomogeneous part of
g, tobe gg = x+yk+l for some integer X > 0. Then T;,g = @;(x, yk, z}.
Hence g, is equivalent to gg (g~ gg ) and the flag-projection has nor-
mal form 4, and codimension k.

If 3g,/8x(0) = 0, the smoothness of the boundary implies 8g,/8y(0)
# 0. Then gg r~ y+x2kJrl , k > 1 (one can kill the even powers x* in g
since it may be replaced by z* obtained by the substitution y := y+az"c ).
We have

3 2k—1>

0
é’z/T;ng(x,x yeras X , g ~g& and g~ B,.

3. Let g, =x3+xy— z. Here ¢, =0, C: 27zz+4y3=0.
The basic vector fields tangent to C are:

¢’ =2y0,+3z0, and K =9z0,-2y°0,.

So A=6, (xd, +2y8, +320,, (3x" +2p)0, — 920, + 2y°3,) .

Let us consider successively all possible main quasihomogeneous parts
of g, ordered by increasing weight (grading: wix =1, wiy =2, wtz =
3).
(a) gg =x. T;,;; =&(x, z) +é’y_z(x, y}. So g, ~ gg is of type 3,
and c=¢, =1,

(b) gy =x’+ay, a#0.

We have T;Q = @’3()63 +xy—z, x*+ay) +7, , (3x+2y)2x —9az) (we
omit the action of the Euler field as gg is quasihomogeneous). Substitute
x3+xy for z and then _lea for y in @;/T;;:. This yields

2 k)
A /T;g 20 (O (qye {90 — 15a +4)x),

So, for o # 1,1/3,4/3 this factor equals R(1, x, xz, xq) ~
R(1,x,y, yz) and g, ~ x+ ay + Byz. Normalization of # # 0 to
+1 by Euler stretching gives 3,. For § =0, we get 3, at once.

If a=1, (?’3/3";3 ~ @'x/ﬁx;(xj) ~ R{x) + &,. This is the coker-
nel Cokerd, of the O-differential of the corresponding spectral sequence
[AGLY]. Consideration of the first nontrivial positive differential of this
sequence shows that Euler stretching yields g, to x*+ y=+ yk L k> 2,
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and ﬁ’a/T;;) ~R{x,1,y,..., yk_l). So we get 3; | of codimention
c=c,=k+1.

If « =1/3,4/3, then: Cokerd; = é’/T'u ~ & _, g, isreduced by
d, to the form X+ ay + ¢(x) (orderg > 3) and the kernel Kerd,
of the O-differential of the spectral sequence contains the module over

g, ,=0a ,» penerated by e and h (modZ,(g,, gg }). The action of

this kernel on ¢ of order k+1 givesus &2 s (x"c+1 R k+2) C T . Thus,
g~ X +ay+x*, k>2,ic., g belongsto B3 O s =6 =
k+1.

(c) Let g;’ =y. Then Téf = ﬁs(x:" ~z,y) +&(z). Hence, g, ~
¥+ x2(p,(2) +x9,(2)).

Calculations of higher differentials of the spectral sequence show that
for ¢,(0) #0, g, isreduced to 3, , : y+xz+ﬁx P ,B#0, k>1.
Here @':‘/T;,2 ~R{1, x, xz, xzz, vees xzzk) and c=¢c,=k+3.

4. g =x3—xy2—z. Then ¢, =1, C: 2722—4y6=0. The

surface is quasihomogeneous: wix =wiy =1, wtz=13.
2 2 5
e =x0, +yd, +3z0,, h=(3x"-2y")2y0_+ 928, +4y°0,.
(a) Let dg,/3x(0) # 0. Hence, gg ~ X + &y . We obtain
Ty =@y(x’ - xy' -z, x + ay) +8, ((3x" =2y")2y +9az).

Thus, x = —ay and z = afl - az)y3 in ﬁJ/T;g ~ @;/ﬁ;((—%ﬁ +

o — 4.

So, for o’ #1/3,4/3 we have g, ~x +ay +ﬁy2. If § =0, we have
4, . If B # 0, we normalize it to 1 by Euler stretching and get 4,

For o = 1/3,4/3 we have (ﬁa/Tég ~ @, and g ~ x +ay+ ¢(y),

k1 and we

orderp = k + 1 > 2. The Euler transformation takes ¢ to y
get 4, with @’3/T;22R(1,y, e, V¥ and e=1 +o,=k+2.

(b) Let 8g,/0x(0) =0. Then gg =y. T;g :Cﬁ’3(x3 -z, +6, [{z).
Cokerd,, =~ ﬁx/ﬁ_'xa(xa) .

In the general case g, ~y + raxt4. . Higher differentials of the
spectral sequence show that “+... ” may be omitted. Thus, we get 4,
with c=14+¢, =4.

4*. g, =x*+x)y* — z. The substitution y := iy in 4 yields the
classification for this surface.
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5. g = x4 )cy3 —z. Itis preferable here to consider the quasi-

homogeneous grading on the space @’ of pairs g = (g,, g,) induced
by the genenc linear part x + y of g2 Then the main part of g is

gL=0-z , X +y). We have:
& 1T =71{E,{5%), (22, (), COY +a (). )
2@ - 2, X (x +) +E,(1, 3xY)
~(9’(1 A ANE (x+y))+f§;,_x3(1,x2)}
g

Hence, the differential d, takes g to the form (x -z + x¢(y),
x+y),order ¢ = k > 3 Smce the Euler transformation is in Kerd),,

we may reduce ¢ 1o :I:y Such a singularity has codimension k. In the
nondegenerate case, £k =3 and we get 5, .

6. g =x* +xy—z.Here ¢, =1 and C: 27y4+25623=0.
e=x3,+3y0,+420,, h=(16x"+28x"y + 9")a, — 642", + 94,

Grading: wtx =1, wiy=3, wiz=4.

(a) Let gf:x. Then T;;=@3(z,x)+ﬁ’2(y2). So g, ~x+ By. For
B#0 weget 6, (c=2)andfor =0 - 6, (c=3)

(b) Let g) = x*. Then

[T = VICAGEES X'y + Gy} = 8, + R(x, xp).

Thus, g, ~ X+ o) +axy, ¢(0) = 0. Generally ¢'(0) # 0 and by

Euler transformation g, ~ xt 4 ¥+ axy. Since there is no element of
degree 1 in Kerd , aisa module So, we get 6, (c=4).

7. g = x + x* y +xy — z. Generally agz/ax(()) # 0, and as the
main part g of g we may take the pair (x +x° y—2z,x). Then

G110 =81 {& (779, ), (), (¥12))
+4,((5), )}
Nﬁ(l)/{ﬁ (x4+x2y—z 2x4+x2y)+@'2'(x2, 1
=~ [0, x X 18, o6, 1)
~d(x, x ).

2
Thus, g ~ (x* +x°y — z + x0%0,(0) + Xye,(0), x).
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The kernel Kerd, contains the Euler generator and the generator (2x3+
xy)o,. — 2y28y - 8):2(,_9;l ,0)— (2x2 +y)(0, g,). Their action on the terms

(oux3 v+ )6’.>cy2 , 0) of g,, which have the lowest degree after go , gives us
modulo Imd,

(axay + ﬁ'xyz, 0) and {(4a— 14-/3).7«:3y2 — Sﬁxys).

Hence, for
a da- 148 ‘

0,
g -3 |7

ie., Ala—2B)#0, weobtain g ~ (x*+ax’y+x*y+xy*—z, x), a #0.
Thus g has type 7,. c=4.

8. g = X+ x3y + xy — z. Again generally we have go = (xs +Xxy—
z,x). Then,

G 1Tp =81 {8 (079, (), ), 7))
+2, (), )}
= ANOU +xy — 2, x(5x* + )+ G,(1, x))
~ @ R, x(5x N+ O, s, (1, X))
@O o xGx ) 18, AL, X))

o ]R(x2 , x°

det

3 4 4 4 2
Y XY, X L,X Y, X))

Hence, d, takes g to the form (x5 +xy—z+ ﬂx3y + ax4y + yx“y2 , X).
Higher differentials normalize this mapping by the Euler transformation:
if aff #0, we can achieve f =+1, y = 0. So we have the singularity 8,
of codimension ¢ = 4.

We have finished our classificational computations. One of their by-
products is Theorem 3 on simple boundary projections. Indeed, our clas-
sificational tree shows that any nonsimple singularity is adjacent to one of
the families 3,, 4f , 7., 8, with moduli in their normal forms. On the
other hand, it is quite obvious that the projections, listed in Theorem 3 as
simple, are not adjacent to these families.

Another byproduct is a list of possible minimal transversals ¢, to the
equivalence classes of classified boundary projections. We have brought
together R-linear bases {e,} of these transversals in Table 2. This table
provides, for instance, the miniversal deformation of the boundary pro-
jection g: g+ 4€;.
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TABLE 2

type {e;}

1 -

Ay ©, 1), (0,5), -, (0,

By (0, %), (0, %%, -, (0, x*71)

3 0, 1)

3, (0, 1), (0, x), (0, )

33 (0, 1), (0, x), (0, ¥), (0, ¥*)
3.1 (0, %), (0, 1), (0, ), , (0, 557"
3,13

(0, 1), (0, x), (0, x2), -, (0, x* 1)
3, 4/3
3k (0, 1), (0, x), (0, x%), (0, x%z), .-+, (0, x?2¥)

4 (x,0), (0, 1), (0, »)

4 (x, 0), (0, 1), (0, ), (0, ¥%)

af (x,0), (0, 1), (0, x), (0, x*)

4;:,1/\/3
- (x,0), (0, 1), (0, ¥}, -+, (0, ¥F)
k,2/v3

5, {x,0), (xy, 0), (xy?, 0)

6y (x,0), (0, 1)

6 (x2,0),(0, 1), (0, x), (0, xy)

62 (x%,0), (0, 1), (0, y)

7e (x,0), (x3,0), (xy, 0), (x*y, 0)

8. (x%,0), (x3, 00, (x4, 0), (x*y, 0)
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§4. Realization of Singularities

Consider the projection (x, y, z) — (¥, z} of the surface g/(x,y, z)
= 0 along a system of parallel rays. A variation in the direction of this
projection corresponds to the substitution x = x', y = ¥ +&,x’, z =
7+ szx' into g, followed by the projection (x' V. e o, z').

We may also consider the first projection as a projection from a point
of RP® situated at infinity. Then a change of the center of the projection
corresponds to the substitution x = x', ¥y = (' +¢,x")/(1 + £;,x"), z =
(2 +&x")/(1 +&x"), |¢| <1 into the equation of the surface.

Thus, a surface-projection singularity is realized as a projection of a
generic surface in RP? along a sysiem of parallel rays (or rays initiating at
one point) iff the corresponding substitution into some (and hence, almost
any) representative of its equivalence class provides a versal deformation
of this singular projection. This is equivalent to providing a transversal to
the equivalence class of surface projections.

A reformulation for the case of boundary projections gives us the fol-
lowing '

REALIZATION CRITERION. The projection (x,y, z) — (¥, z) of the sur-
Jace g(x,y,2)=0, g(x,y, z) 0 with boundary can be realized for
a surface with boundary, embedded generically in RP?,

(a) as a projection by a system of parallel rays iff

@f:T +R<xa—f,xa—g> ;

(b} as a projection from a point iff

_ g dg 08 0g
é’3—Tg+]R<x6y,xaz,xy +xz .

Here the pair g = (g, , &,) is not necessarily one from our classification
Table 1. It need only be equivalent to a table singularity (since the table
singularity itself may be “too reduced™).

When we are dealing with the realization of a family with modulus «,
we must to add the term R{0g/0«a) to the right sides of the relations
above,

We have already mentioned that every boundary projection (x, y, z) —
(v, z) may be reduced to the form g = (fi(x,y) — z, f,(x, ) (al
table singularities, except 3*’ « » are given in this form). Then @’]2/ T e =

2 ~ —~
&, Ty, where T, =0, (0, f,), 6‘g/6x)+@;,?ﬁ(x’y)(8g/8y, dgloz).
For such g, we have the following obvious {but useful)
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Lemma 1. Let g' = g+ (p(y), 0) be a boundary projection (equivalent

to g)y. Then T,=Tg.

The realization criterion for the g’ considered in the lemma may be
“rewritten in the following form:

(a') c?'xz, =T, +R{xdg'/0y, x0g'[dz} or

(b") ﬁfy = T + R(xdg' /8y, x0g' [0z, xydg'[dy + xf8g'102),
fi= f1+¢

If g is a normal form from the table, then the monomials listed at
the end of §3 generate a minimal transversal to T in cﬁ (g ¢ 3, k)
Almost all possible generic reallzatlons of the smgular1t1es are listed in
the classification table in the form g’ = g + (p(»), 0). Thus, in order to
prove that such g’ provides a realization of the singularity with normal
form g, we must show that the additional finite-dimensional space in
(a') or (b') coincides modulo 7T . With the aforementioned transversal.
We shall usually treat the realization criterion in this way in our subsequent
considerations of table singularities.

A, . Here g = (xz—z,x+yk+l) and g’=g+(y2, 0). Then

’ !

g k ag B
xay —(2xy,(k+1)xy ), xaz = (-x, 0),
3 e+l
xya +xfl' 2 _x (k+1xy ™)

Now g is quasihomogeneous for the grading: wix = k+ 1, wty =
1, wtz = 2(k +1). As usually done for mappings, we set w¢(1, 0) =
—2(k+1), wt(0, 1) = —(k + 1) in order to make the weight of g equal
to zero. Consider the minimal transversal to Tg in ﬁxz, y generated by
0, 1),(0,»,...,(0, yk_'). Then the quasihomogeneity of g implies
that T contains a subspace # @'2 .y Of (,’9’2 . of non-negative filtration,
So the thrce above elements are equal modulo T to 2xy,0), {(-x,0),
(xy 0). Since dg/dx = (2x, 1), we may replace these monomials by
(0, —»), (0, 1/2) and (0, —y2/2) respectively. Thus, the singularities

A,, 4, and A, are realizable in the sense of Theorem 2,

B, . g = (x2 -z, X y+ x") {obviously, the monomial x? may
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be killed and then we get the normal form B, ). We have:
el Ty =G {8y (i) (o s00))
+2,.2(0 @)}
= xﬁxzz, Wy ((x’g“) ’ (xy?rxi) (o) ((2k+1[;x2"+‘)>
v x@’)fzzfyl;\:ﬁ’xz,y(xﬂc , ¥+ x4)

~ R{(0, x), (0, x°), ..., (0, x**"").
On the other hand,

08" _ 8¢ _ _ 3 x
xay = (0, x), -y (-x,0)=(0, 2x")mod7
Xy—agf +x —agl =(—x3 xy)=(0 xy+2x5)z(0 xs)mod’.l"‘,.
ay 1'az ’ ’ : g

So B,, B, and B, are realizable.

3,. By Table 2, a miniversal deformation of the 3,-singularity g =
(x3 +xy —z, x) may be chosen in the form g+ (0, A). This deformation
is equivalent to the deformation

(-’ +(x—y-z,x)=
(=3 x(y+ 3 — 2+ Ay + 1Y), x) ~ (P = 3 xy — 2, x).

The velocity (—3x2, 0) of the latter deformation is proportional to
x0g/dy = (x*, 0). This implies the realizability of 3, .

3,. In the proof of the realizability of this family, we show that the
modulus of its normal form is a projective invariant. We also discuss
why some values of this modulus are exceptional and nonrealizable by
projections of generic surfaces with boundaries.

Every boundary projection of type 3, may be reduced by a projective
transformation of RP> to the form g’ = (x3+xy—z+. . x2+ay+. ),
where “+...” denotes terms of positive filtration (grading: wix = 1,
wty = 2, wtz =3, wit(1,0) = -3, wt(0, 1) = -2, then the weight
of the main part of g’ is zero). On the other hand, let ¢’ be a generic
mapping of the above form. Then it is 3,-singular (as a consequence of
the classification carried out in §3), So Tg, contains 7 cﬁf , a subspace of

éf,y of positive filtration. Since we may slightly vary all coefficients of
the main part of g', staying in the 3,-class, the space T, + R(8¢'/8a),

tangent to this class, contains 96@2 .



176 V. V. GORYUNOV
Consider the grading on ﬁf and compare it with the grading on

agl agl ag' agf ag-’
T, +R(x2E 98 08 .08 Og,
g PROG S X Xy gt Xz 5 )

Poincaré series of 6?32 is 2 +202 43" +5{°4.... The second

space has the following linear generators with main parts having nega-
tive weights. In weight —3 : dg'/dz = (1, 0); in weight —2 : dg' /oy =
(x,a), x8g'/0z = (—x, 0); in weight —1 : 8g'/ax = 3x* +y, 2x),
x0g' 18y = (x*, ax), y9g'/dz = (-y, 0) (we write only the main parts
here). So, variation of the direction of projection provides a transversal
at g’ to the equivalence class of all 3,-singularities in @f iff these main
parts are linearly independent, i.e., a{cx —2/3) #0.

Thus, the 3,-singularity is realized by projections of a generic surface
with a boundary along separate directions. Consider one such direction,
Take a ray passing through a 3,-point. A projection from almost every
point of this ray is again of type 3, with the same value of the modulus
« . Indeed, there are five elements of O-weight in é’; and five elements
with " O-weight main parts in T, . But there is a Euler relation between

these main parts. On the other hand, the element xydg'/dy + xzdg [0z
{(which corresponds to velocity of deformation of g' by variaton of the
projection center on our ray) has filtration 1. So we cannot get a transversal
to the equivalence class of g’ by variaton of the projection center.

Hence, we cannot realize (as a projection of a generic surface with
boundary) the projection with main part (x3 +xy—z, x4 ay) and
the prescribed value of the modulus . Thus, we cannot realize 3, /3
and 34 /3 These singularities are really exceptional:

32,1 /3> the critical set of the projection of the surface g, = 0, has
second order contact with the boundary;

32, 437 the set of critical values of the surface projection is 4)23-}—27'22 =
0 and the image of the boundary has the same equation modulo terms of
higher weight (for other values of the modulus o # 1/3, it is a 3/2-
parabola with other coefficients).

We have found one more exceptional value - o = 2/3. In order to
understand this case, consider the field of asymptotic directions on the
surface z = x° + xy +.... These directions are self-orthogonal in the
sense of the second quadratic form. Ina (x, y)-chart, the direction 8, at
the origin is included in the field x =1, = —3x+... . This field has an
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integral curve y = —%xz + ... passing through the origin. For a = 2/3,
this curve has second order contact with the boundary.

Two more exceptional values of o will appear when we consider bifur-
cation diagrams of 3,-singularities in the next section.

3,. This singularity has quasihomogeneous normal form g = (Jc3 +
Xy -z, xt+ ay) (the grading on ﬁf is the same as for 3,: wix =1,
wi(l,0) = -3, etc.). T, contains the subspace .9’;@‘32 C ﬁf of elements
with filtration > 3 (see §3). Consider g=g+ (y2 ,0) ~ g. By Lemma
1, in order to prove that such a g’ gives us an example of a projection
of a generic surface with boundary, we have to show that c?xz . coincides
with

! I F i’ r
T, +R<x%, x%;‘;, xy% +x(x +xy +y2)%%, %>
in weights < 2. :

Coincidence in weights < 0 for a{e — 2/3) # 0 is similar to the
case 3,. Computations from §3 show that cvery element of c?’;', » of
weight 1 lies in T,. Hence, in xydg'/ay + x(x® + xy + yhog' 1oz
the terms having this weight may be omitted modulo Tg. Then this el-
ement gives the term (xyz, 0) of weight 2, In weight 2, where @'xZ, v
has a 6-dimensional subspace, T . also has 6 quasihomogeneous genera-
tors: x36g/8x = (3x5 + xay, 2x4) , Xyogfox = (3x3y + xyz, 2x2y) ,
X0, 8) = (0,x" + ax’y), ¥(0, &) = (0, X’y + w?), y0g/0y =
(xy2 , ayz) . y(x3 +xy)og/oz = (—x3y - xy%, 0). The 7 x 6-matrix of
coeflicients of these generators together with (xy2 ,0) has rank = 6 iff
a # 0. This implies that the 3,-family is observable in general position.
We see 3, from a separate point of the asymptotic ray tangent to the
boundary. From the other points of this ray we see 3, . The values of the
modulus o for 3,-and 3,-singularities, observable from the same ray, are
equal.

41i, 41_‘ V3 41_, VL These singularities have normal form g = (x3:!:
ch2 —z, x+ay+ yz) . Consider the grading on @’32 cwix =wty =1,
wtz =1, wit(l,0) = -3, wt(0, 1) = —1. The calculations of §3 show
that the subspace Zé"’f » is contained in Tg .

Now take g' = g+ (y2 , 0). Again, by Lemma 1, in order to prove that
g provides a general realization of the singularity g, we have to show
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that ﬁ’xz,y coincides with

ay’ " ez’ oy

in nonpositive weights. One may check that this coincidence takes place
for o # 0 (since ideologically there is nothing new as compared w1th the
cases 3, and 3,, we omit the calculatlons) Thus, the singularities 4 (for
all values of the modulus a #0), 4 113 and 4, V3 Are observable as
projections of certain generic surfaces with boundary from certain centers.

Consideration of the same boundary projection g’ allows us to say
that the families 4 are realized as projections of generic surfaces with
boundary along scparate directions. This follows from the relation

2 38 33’ g
ﬁx‘y_Tg+]R< 6‘y x 8a>

T +R< 6g R B—g,xyag +x(x +xy +y)—>

which is easily checked for o #0.

Why is the value a = 0 exceptional? Every 41i- singularity can be
reduced by a projective transformation to the form g = (x3 + xy2 + y2 +
By3 —-z+...,x+apy+...). Then the curve of parabolic points on the
surface g, = 0 is given by the equation x = %yz + ... (zeros of the
determinant of the second quadratic form). So, this curve is tangent to
the boundary when o: = 0 This position is not generic.

4 . Here g = (x :i:xy -z x+ay) and as a candidate for its generic
realization we take g’ = g+(y +By, 0) with B #0 for 4, and B=0
for 4 . 1t is easy to show that

2 ~
ﬁx,y:Tg
og' og 08 1,08’ og'
+R<x6y’xaz ya (x :I:xy +y + By ) 7 Ba

iff a(6a2 —9Ba—4)#0 for 4, and o # 0 for 4+ (it suffices to demon-
strate the commdence of two spaces only in welghts <1 for grading as in
the case 4 ). So we are done.

5. Now g= (x3+xy3—z, x+y) and we take g’ = g+(y2, 0). Con-
sider the same grading on é’xz,y as for 4f Twix=wiy=1, wtz =13,
wi(1,0) = =3, wi(0, 1) = —1. By §3 we have F& , c T, and the
transversal to Tg in ﬁf .y may be chosen as the linear space generated
by (x,0), (xy,0), (xyz, 0). One easily checks (omitting the terms
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of positive weight) that modulo Tg these three elements are equal to
~x0g'18z, 1xdg 10y and xydg /8y +x(x’ +xy’ +y")0g [0z respec-
tively. Thus, g’ is a generic realization of 5.

6, . We begin with

LEMMA 2. Suppose that some germ h of a fibration-preserving diffeo-
morphism of 3-space takes the boundary projection g to the boundary
projection g': g =goh. Then h takes the tangent space T, C (?32 and
its transversal to T, and the transversal to Tgf .

The proof is by direct comparison of Tg, and Tg.

REMARK. Lemma 2 remains valid for transformations g — g’ when
we additionally multiply both components of g by the same function a,
a(0) # 0 on the base of the fibration.

The 6,-normal form is g = (x4 +xy—z,x+y). We want to show
that g’ = g _ , provides a generic realization of 6, as the projection
along a syste)rcri B?Lgarallel rays.

Consider the grading on ﬁf: wtx=1, wy =3, wtz=4, wi(l, D)
=—4, wt(0, 1) = —1. According to §3, Tg contains the subspace 96@’32
C ﬁf of elements of non-negative filtration, This subspace is invariant
with respect to the substitution x = x+x2. So, by Lemma 2, Ty D 9(;(?’32 .
Thus, in order to show that g’ provides the realization, it is enough to
demonstrate that the negative subspace R{(1, 0), (x, 0), (xz, 0}, (x3, 0,
(y,0),(0,1)) of @’32 is equal to the negative subspace of 7. +

R{x8g'/dy, x8g /0z). There are six elements in the latter space that
have terms of negative weights (we write out these terms only):

ag' 3 og' 2 ag' I
E=(4x,1), E=(x+x,1), XWZ(X +x7,0,
ag' og' ag'
=L, yE =0, xZE-x0

The matrix of coeflicients of these elements with respect to the chosen
basis of negative subspace of @’32 is nondegenerate. So we are done.

6,. Here g = (Jc4 +xy-z,x). Weput g’ = g' ' , and repeat
everything we have done for the singularity 6, . The oxn'ly?xgi?l‘erence: now
to Tgf we also add R{xydg'/8y + xz8g'/0z) and write out the matrix
of coefficients corresponding to the terms of weight < 1. This matrix is

again of maximal rank,
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Theorem 2 is now proved, since the reasons for the nonrealizability of
the other singularities in the classification table have been already discussed
in §2.

§5. Bifurcation diagrams

Consider the base of a versal deformation of a boundary projection. It
contains a hypersurface organized by the values of deformation parameters
that correspond to unstable (multi)singularities. We call this hypersurface
a bifurcation diagram of the boundary projectton. It has up to fifteen com-
ponents (fifteen is a number of possible codimension 1 singular complex
projections). Only ten of them appear in bifurcation diagrams of realizable
boundary projection. Denote by € and C’ the set of critical values of
the surface’s projection and of the image of its boundary. Then these ten
components correspond to: boundary singularities 4,, B,, 3,; interior
singularities 4t 6; tangency of C and €’ (we shall denote this bisin-
gularity by X ); self-tangency of C' (X'); C or ¢’ passing through the
image of A,-point (T and T’ respectively); C’ passing through a cusp
of C(K ). Flag versions of all these bifurcations arc shown in Figure 4.

FIGURE 4. Codimension 1 bifurcations of flag-projections.
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FIGURE 5. Versal deformation (x -z,x+ y +,1[ y +
Aoy +4,) of 4.

In [BG] bifurcation diagrams of 4,, B,, 3, (two variants only), 6,
were given, as well as drawings of CUC’ corresponding to various strata in
the decompositions of the bases of versal deformations by these diagrams.
But not all the components of the diagrams were present there.

In this section we present bifurcation diagrams of all boundary singu-
larities realizable by projections of generic surfaces with boundaries from
points of 3-space (frankly speaking, we do omit some diagrams when they
are easily seen in diagrams of more complicated singularities, e.g., 4, in
A, ). We also show how one sees a surface with a boundary curve on it
from points near a point from which a degenerate projection singularity is
observable.

A, k > 0. The versal deformation is ()c2 - z,x + p(y)), where

py) =y 4+ llyk Yot A . The bifurcation diagram is an ordinary

diagram A, (p has a multiple real root). For k = 3 it is shown in
Figure 5. There, on a generic plane section of the A,-diagram, we show
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FIGURE 6. Versal deformation (x2 -z, ¥+ x +4 Ix5 +
A,x* + A,x) of B,.

the distribution of qualitative flag-projection types by strata of the base of
the deformation.

B, k > 1. The versal deformation is (x2 -zZ,¥+ xp(xz)) , wWhere
p(xh =x%+ Alxzk_z + -+ 4, . The bifurcation diagram is the discrim-
inant B, of a function on a real manifold with a boundary ( p(xz) hasa
multiple real root). In Figure 6 we represent B, in the same way as it was
done for 4,.
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3,. The versal deformation is (x”+xy—z, X2 oA £y A, X +4,) .
For a general value of the modulus «, the germ of this deformation is
topologically trivial along the A;-direction. So we give only the sections
Ay = 0 of the bifurcation diagrams (this corresponds to a variation of
the projection center for a fixed flag in 3-space). There are five curves
in these sections: 4,, B, 3,, X, T'. Now 3, has the equation A, =
0. The others are given by A, = klf+ higher order terms in A, . The
coefficient & depends on «. It equals (4 — 12a)_l for 4,, {1 +3a)/4
for B, (4—3a)”' for X and (3a—2) for 7’ (Figure 7). These four
coefficients provide two new exceptional values of «: —1/3 and 1/2.
Thus, the exceptional values divide the a-axis into e¢ight intervals where
the bifurcation diagram’s topological type is constant. In Figures 8-14 we
show all of them. In those figures:

1°. We show distributions of the perturbed projections only for a half
A, 2 0 of the base of the deformation (since there is a symmetry that
changes the signs of x, z and A, and preserves y and 4, ).

2°. In Figure 11 we represent the distributions for two cases: 1/3 <
a < 1/2 and 1/2 < « < 2/3. These distributions differ only in the
projections corresponding to the curves A, and T and the sector between
these curves. So we give two versions of illustrations for three strata.

3,. In order to get a versal deformation of this singularity, take a

versal deformation of 3, and substitute the term +£{4y2 for :i:yz. This
leads to bifurcation diagrams topologically trivial along 4, . Hence, we see
the general surface with boundary from points near the 3,-center looking
similar to the 3,-case.

élli . The versal deformation is (Jc3 +x(4, :l:y2) -z, Xx+(a+i;)y +y2 +
4,). Again we have topological triviality along A,-axis and consider only
the sections 4, = 0 of bifurcation diagrams (see figures 15-18). Codimen-
sion 1 strata have simple contact at the origin. We consider singularities
with positive o (singularitics with opposite values of the modulus are
equivalent). The illustrations are given only for a half of the base strati-
fication, because there is a qualitative symmetry that changes the signs of
all arguments except 4, .

4:; . One reduces this case to 41i in the same way as 3, was reduced
to 3,.

4[_, N 41_, I3 The versal deformation may be taken in the form

of 4, above with a@ = 1/V3 and a = 2/v3. This time there is no
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A B

FiGure 7. Ordering of strata in bases of versal deforma-
tions of singularities 3, for different values of the modulus
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Figure 8. Deformation (x"+xy—=z, x2+ay:l:y2+)u1x+
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FiGgure 9. Deformation (x +xy—z,Xx +ayﬂ:y2+itlx+
Ay of 3,, —1/3<a<0.

FIGurg 10. Deformation (x3 +xy—z, X+ ay + y2 +
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FiGure 11. Deformation (x3 +xy—z,x + ay + y2 +

Ax+d) of 3,, 1/3<a<1/2and 1/2<a<2/3.
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FiGUrRE 12. Deformation (x3 +xy-z, x> tay iy2 + A4, x+4,) of 3,,
2/3<a<.
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FiGure 13. Deformation (x3 +xy -z, X+ ay + y2 +

Ax+4,) of 3,, 1 <a<d/3.




PROJECTIONS OF GENERIC SURFACES WITH BOUNDARIES 189

FIGURE 14. Deformation (x3 +xy-—2z, X + ay iyz +Ax+4,) of 3,,
a>4/3.



V. V. GORYUNOV

U
S

RN

FIGURE 15. Deformation ( x +x(A, + y -z, X+ ay+
y +4,) of 4+
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FiGURE 16. Deformation (x3 +x(4, - yz) —Z,Xx+ay+yi 4+ Ay) of 4,
O<a< /3.
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Ficure 17. Deformation (x3 +x(4, — yz) —Z,X+ay+
V+ay) of 47, 1/V3<a<2/V3.
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FiGURE 18. Deformation (x° + x(4 — y2) -z, x+tay+ ¥ +4,) of 4,

a>2/V3.
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FIGURE 20. Versal deformation (x + x(4, y
(2/V3+2)+¥* + 1) of 47 25

-z,

X+
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FIGURE 21. Versal deformation (J«c3 + x(y3 +A4y+4,) -
z,xX+y+4,} of 5,.
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FIGURE 22. Versal deformation (Jc4 +xy +/113c2 -z, x+
y+4,) of 6;‘.

Appendix. Projections and left-right equivalence

Recall that in a general setting a projection of a subvariety V c R

on R’ is a diagram V — R*Y? _, R? organized by an embedding and a
fibration. An equivalence of such objects is a fibration-preserving diffeo-
morphism of R**? that takes one subvariety to the other.

THEOREM. The classification of projection-germs R" <+ R _ R? is
identical to the left-right classification of map-germs R" — R® with <
k-dimensional kernel at a distinguished point: the equivalence class of a
projection corresponds to the equivalence class of its composite mapping.

Proor. Indeed, equivalent projections have left-right equivalent com-
posite mappings. Of course, the dimension of the kernel of a compos-
ite mapping cannot exceed the dimention of the fiber of the fibration
Rkﬂa L R? . :

On the other hand, consider any germ ¢ : (R", 0) — (R”, 0) with < k-
dimensional kernel at zero. Take its coordinate record ¢ ~ (¢'(x, ¥), ¥),
dimx =k, dimy = n — k. The projection (x,y, z}— (¥, z), dimz =
p+k—n,of asurface z = (0'(x , ¥) has the composite mapping ¢.

We have to show that projections with left-right-equivalent composite
mappings are equivalent.
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Consider the germ of the commutative diagram

(R", 0) —— (R, 0) —— (R?, 0)

4 dl

(R, 0) —— (RS, 0) —— (RS, 0)

with diffeomorphisms # and y. We want to add a diffeomorphism of
{k + p)-spaces which preserves commutativity. Consider two cases.

(a) n < k. Project R;‘ﬂ’ (linearly) onto the distinguished fiber (]Ri.c ,0)
so that the embedded (Rf . 0} maps isomorphically on its image. The
diffeomorphism 4 induces diffeomorphism 4’ of these images.

The fibrations over R‘}’ and R‘:.‘ introduce the structure of a direct prod-
uct (R, 0) x (R¥, 0) on (R¥*”,0). We define the diffeomorphism we
need as an isomorphism of these structures: we set it to be y on the first
factors and for the second ones take any continuation of %4 to a diffeo-
morphism of k-spaces (or A’ itself if n = k).

{b) n > k. Here again we construct an isomorphism of direct products,
but a bit more carefully than in the previous case (Figure A).

]Rilc+p ]Rlzc+p
Rf \ RV ¥,
B —7 % ?
—h__., > /_ —a
[ A -
|~ ) ?
—

P -
A’f / —x—“'Aa R" /
FiGurg A. Construction of the equivalence of projec-
tions with left-right equivalent composite mappings.

Define a decomposition (R, 0) ~ (R?, 0) x (R, 0) by means of a

projection of IR'IC’L" onto (]Rf, 0} with maximal rank %k on the fibered
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(R}, 0). Then (R, 0) is fibered over (R', 0) with a fiber diffeomorphic
to (R" %, 0). The diffeomorphism / takes this fibration onto (R, 0).

The projection of R’z”‘” on the fiber (]R"Zc , 0) is constructed in two steps.
First take a germ of a generic subvariety (R" %, 0) in the base (R, 0).
Let (R", 0) be the space of the restriction of the fibration REY R} to
this subvariety. The generic projection of ]R’zcﬂ’ onto R" maps the em-
bedded (R, 0) isomorphically. Take the fibration by (n- k)-dimentional
fibers from (R, 0) onto (R",0). By general position, we may sup-
pose that the projection of (R", 0) along these fibers onto the distin-
guished fiber (]Rlz‘, 0) of the fibration R" — R * has rank k. When
we take the composition of the two aforementioned projections, we get
a projection of R’z‘“’ onto the fiber ]R’zc and a direct-product structure
(RE™, 0) ~ (RZ, 0) x (R¥, 0). At the same time the fibration of the dif-
feomorphism # induces a diffeomorphism 4’ of the spaces ]R':.‘.

Define the diffeomorphism of (R{*”, 0) = (R?, 0)x(R¥, 0) as (x, &)

REMARK. The correspondence between the two classifications may obvi-
ously be extended to a correspondence between (mini)versal deformations.
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