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Interest to the study of plane curve invariants goes back to Gauss. Re-
cently Arnold approached the subject from the point of view of Vassiliev
theory of finite order invariants and defined three basic order 1 invariants of
regular plane curves [1, 2]. In the present note we consider a theory corre-
sponding to a higher order generalisation of one of Arnold’s invariants, J™,
that changes only under direct self-tangency transformations. Our construc-
tions show that indeed, as Arnold remarked in [1], plane curves are much
more complicated objects than knots in 3-space.

The legendrian lifting of regular plane curves to the solid torus S7T*R?
defines a mapping from the space of Vassiliev type invariants of framed knots
in a solid torus to the space of Vassiliev type invariants of J*-theory of plane
curves. We show that this is an isomorphism for the complex-valued setting.

To achieve our goal we introduce chord diagram interpretations of both
the invariant spaces. In both cases we arrive to the same function space,
namely, to functions on marked chord diagrams subject to the marked 4-
term relation. The markings are naturally defined by the fundamental group
of a solid torus and by the Whitney winding number of plane curves.



The fact that the invariant spaces coincide with the function space fol-
lows from the consideration of a version of the universal Vassiliev-Kontsevich
invariant for framed knots in a solid torus. Our approach is different from
that by Lé and Murakami [10, 11] and serves arbitrary framings.

For the proofs and details see [6, 7].

1 Knots in R3

The theory of Vassiliev invariants of unframed oriented knots in R? starts
with the inductive extension of an invariant of embeddings S' — R3 to

immersions with a finite number of generic double points (such immersions
are called singular knots) [12, 3, 5, 9, 4]:
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The three curves involved in the definition differ only locally, by the shown
fragments.
Extensions of invariants are subject to the 1- and 4-term relations:
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To each singular knot we relate its chord diagram: on the oriented source
circle we join by chords pairs of points glued together by the parametrising
immersion. We identify chord diagrams which might be sent to each other
by diffeomorphisms of the circle preserving its orientation.

A knot invariant is said to have order less than n 4 1 if its extension
vanishes on any singular knot with more than n double points. We denote
by V,,(R?) the space of all complex-valued invariants of order less than n+ 1.

Consider the symbol of an invariant v € V,(R?) \ V,_1(R?), that is its
restriction to the set of singular knots with exactly n double points. This is
a function on n-chord diagrams. The values of this function satisfy the 1-
and 4-term relations which follow from those above:
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Here we show all the chords based on solid arcs and none of those based
on dotted arcs. The four diagrams in the 4-term relation differ only by the
chords based on solid arcs. Here and in what follows the circle of a diagram
is assumed to be oriented counter-clockwise.

Let A be the vector space of C-valued functions on n-chord diagrams
satisfying the 4-term relation and A%* its subspace of functions satisfying
the 1-term relation as well.

The 1- and 4-term relations turn out to be the only resrictions on the
values on symbols:

Theorem 1.1 [9] Vo (R3)/V,_1(R3) = A%
For oriented framed knots in R? the similar statement holds:

Theorem 1.2 [10] VIR VI (R?) = Ax

2 Knots in a solid torus

Of course, one can construct Vassiliev type theory for knots in any oriented
3-manifold using the local recursive definition of Section 1 [8]. In the case of
a solid torus (ST) we arrive to the following diagram description.

We say that a chord diagram is marked if its circle is equipped with an
integer number and each of its chords is furnished with a two-side integer
labelling such that the sum of the two labels is the marking of the circle.

A choice of a generator of 7(ST) = Z introduces the marking on the
chord diagram of an oriented singular knot in ST. Namely, a double point
cuts a knot into two subloops each of which defines an element of 7 (ST).
We write this element (the integer number) on the side of the chord which
faces the arc that parametrises the subloop. The basic circle is marked with
the fundamental class of the whole knot.

The 1- and 4-term relations for symbols of invariants of knots in ST are
naturally marked:
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Here we show only partial markings which allow to restore the complete ones.
The marking in the 1-term relation for symbols means the contractibility of
the “small” subloop in the 1-term relation for invariants. The markings in
the 4-term relation follow from the relation between the fundamental classes
of the subloops of a curve with a triple point.

We use M instead of A4 in the notation of the marked versions of the
function spaces of the previous Section.

Theorem 2.1 [6]
Vo(ST) Vet (ST) = M,

vI(ST) VI (ST) = M5

3 The universal invariant

Asin [12, 9], the difficult part in the proof of Theorem 2.1 is to show that the
relations mentioned in the claims are the only restrictions on the values of
symbols of invariants. At that point an appropriate version of the universal
Vassiliev-Kontsevich invariant [9, 4] is needed. In this Section we define
such an invariant for framed knots in ST (the construction for the unframed
setting follows from it and [9, 4] in an obvious way). Keeping in mind the
application of our universal invariant to the theory of plane curve invariants
in Section 4, we introduce a definition which covers arbitrary framings, not
only the blackboard one as in [10, 11].

We represent ST as the direct product C x S* with the complex coordinate
z and the angular coordinate #mod 27.

We say that a knot in ST is a Morse knot if 6 is a Morse function on it.

Let K be an oriented non-singular framed Morse knot in ST.

A. For small € > 0, we shift K in the direction of its framing v:

(2,0) — (2,0) +cv(z,0).
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We denote by K, the result of the shift. For all sufficiently small ¢, K, is a
knot that does not intersect K.

B. In order to have a good definition of a chord diagram later on, we make
an adjustment of the link K U K,. Near a local maximum of the function
f on K, 6 has the local maximum on K, as well. We take the lowest of
the two critical levels and remove the small arc of K U K, that is locally
above this level. In the similar way, we remove the small arc that is locally
below the highest of the two critical levels near a local minimum of 6 on
K. After the surgery at all the local extrema, we remain with the subsets
K C K and K C K.. The shift along the framing provides the one-to-one
correspondence between the sets of intervals of monotonicity of the function
6 on K and K,. For each non-critical point (2',6) € K. this correspondence
uniquely defines its neighbour (2,6) € K on the same 6-level.

C. Now we take n different non-critical levels 0 < 6, < 6y, < ... <80, <
27. In each section 6 = 6; of KU f(\g, we choose an ordered pair of points
(25, 2;) = (2, 25)(0;) € K x K.. Let P be a set of n such pairs, one pair per
level.

The set P defines the marked n-chord diagram as follows (see Fig.1).

In each pair we substitute 2} € K. by its neighbour zj € K. The knot
K is the image of an immersion of an oriented circle that we take to be a
standard counter-clockwise oriented Clrcle on the plane. If z; # 27, we join
the preimages of the points z; and 27 on the source circle by the chord The
chord has the two-side marklng by the fundamental classes of the two loops
obtained by a homotopy of K in ST that glues together z; and z; and is the
identity outside a small neighbourhood of the section 6§ = 6;,. We assume
here that a generator of 7, (ST) = Z is fixed. Say, it goes once around the
torus in the direction of increase of 6.

If z; = z;, we draw a small chord between two arbitrary points on the
circle that are very close to the preimage of z;. We mark the side of the
chord facing the small arc with 0 and its other side with the class of K in
m (ST).

The whole circle is marked with the class of K in 7;(ST) as well.

We denote by D(P) the equivalence class of the obtained marked chord
diagram in the space M,, of all formal C-linear combinations of finitely many
marked n-chord diagrams modulo the marked 4-term relation. The latter is
the relation of Section 2 for diagrams rather than functions on them.



Figure 1: A pairing on the knot with the blackboard framing and its marked
chord diagram.

D. We introduce

~

Definition 3.1 Zn(K,K,) =

1 " dz; —dz"
@z 2 (AT EDP) €M
0<B1<z<...<Op<2n P={(25,2})(6;)} j=1 J

where P runs through all possible pairings on KU f(\g and P, is the number
of points in the n pairs at which the function 6 is decreasing along K U K.

Definition 3.2 ZI(K) = lim,_o Z,(K, K,).

Theorem 3.3 ([6], cf. [9]) i) The limit that defines ZL(K) is finite.

i) Z{(K) is invariant under the homotopy in the class of framed Morse
knots.

iti) Z{(K) is an invariant of order less than n + 1.

We set
Z1(K) =3 Z](K) e M,

n>0

where M = ano Mn



E. The space M = ®,>¢,M,, contains a subspace .4 spanned by the
diagrams with all the markings vanishing. A is an algebra with respect to
the connected sum operation. It is isomorphic to the algebra of non-marked
chord diagrams modulo the non-marked 4-term relation [9, 4]. The connected
summation provides an .4-module structure on the space M [6].

Let U be the curve

0
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equipped with the framing v = i0,. The curve lies in a sector of the annulus
Im z = 0 of the solid torus C x S*.
The series Z/(U) € A = [I,50 A, is invertible since it starts with 1 € Aj.
Let ¢ be the number of critical points of the function 6 on a knot K.

Definition 3.4 The element
ZHK)=Z/(K)x ZI(U)'"2 e M

is called the universal Vassiliev-Kontsevich invariant of a framed Morse knot
K in the solid torus.

Example 3.5 Let w € A; be the one-chord diagram with all three marks
zero. Consider an unknot with the framing that makes one positive rotation
around it. The value of Z/ on such unknot in ST is exp(w).

Theorem 3.6 ([6], cf. [9]) For any framed Morse knot K, Z{(K) depends
only on the topological type of K and its framing.

Theorem 3.6 implies Theorem 2.1. N

The degree n component ZJ(K) € M, of Z’(K) is an invariant of order
less than n 4 1.
4 Finite type invariants in J*-theory

A generic plane curve is an immersed curve with a finite number of double
points of transversal self-intersection. In the space of all C*°-immersions
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S — R2, the complement to the set of all generic curves consists of three
hypersurfaces [1, 2]. They correspond to the three possible degenerations in
generic 1-parameter families of immersed curves. In such families there can
appear either a curve with a triple point or a curve with one of two types of
self-tangencies. A self-tangency can be either direct (when the two velocity
vectors at the self-tangency point have the same direction) or inverse (when
they are opposite).

Here we restrict our attention only to invariants of oriented immersed
plane curves without direct self-tangencies. The values of such invariants
on isotopy classes of curves do not change during inverse-self-tangency and
triple-point transformations. The first invariant of this kind was defined by
Arnold [1, 2] and called J*. That is why the whole theory of invariants that
we consider is called J-theory.

In the spirit of Vassiliev theory for knots, invariants of regular plane
curves without direct self-tangencies have a natural extension to curves with
finitely many simple (quadratic) direct self-tangencies:
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The definitions of the space V,,(J1) of C-valued invariants of order less
than n + 1 and of symbols of finite order invariants are obvious.

Theorem 4.1 [7] The values of J*-theory invariants on plane curves with
direct self-tangencies are subject to the 2- and 4-term relations:
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Any oriented regular plane curve rises to an oriented legendrian curve in
the solid torus ST*R?: we add the direction of the normal vector such that
the basis {normal, velocity} gives a fixed (say, counter-clockwise) orientation
of the plane. A point of direct self-tangency rises to a generic double point of
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the legendrian curve. The choice of an orientation of R? defines the generator
of 7, (ST*R?) which is the legendrian lift of an embedded circle of Whitney
winding number 1.

Definition 4.2 The marked chord diagram of a regular plane curve v with
a finite number of direct self-tangencies is the marked chord diagram of the
legendrian lift of y to ST*R? (Fig.2).

The marking introduced in this way is the same as the marking with the
Whitney winding numbers of the “half-curves” into which the plane curve is
cut by its self-tangency points.

L% &3

Figure 2: A plane curve and its marked chord diagram.

It is easy to see that any marked m-chord diagram is the marked chord
diagram of a regular plane curve with n direct self-tangencies. Application
of the Whitney-Graustein theorem [13]| and the 2-term relation imply

Theorem 4.3 [7] The value of an invariant v € V,,(J*) on a regular plane
curve with n direct self-tangencies depends only on the marked chord diagram
of this curve.

The legendrian lifting of the recursive definition of the extension of an
invariant in the J-theory is exactly the recursive definition of the extension
of an invariant of knots in the solid torus ST*R? (with the proper choice of
the orientations).

Moreover, on the level of symbols, the legendrian lifting of the 4-term
relation of the JT-theory is exactly the marked 4-term relation for invariants
of knots in ST*R?2.

All this identifies the quotient V,(JT)/V,1(JT) as a subspace of the
function space M. It turns out that the equality holds:



Theorem 4.4 [7] VoI [ Via (JT) = M5,

The theorem easily follows from the definition of the universal invariant
for the J*-theory as induced from the universal invariant of framed knots
in the solid torus ST*R? via the legendrian lift. The lift of a regular plane
curve possesses a canonical framing defined by the lift of the family of plane
curves obtained by small shifts of the original curve in the direction of the
normals. The crucial point is that the value of the extension of the universal
invariant on a regular plane curve with n direct self-tangencies subject to a
marked chord diagram D € M,, is 2" D modulo higher order terms.

Corollary 4.5 [7] The space of finite type complez-valued invariants of regqu-
lar plane curves without direct self-tangencies is isomorphic to that of framed
knots in a solid torus.

Remark 4.6 In the similar way one can show the coincidence of the spaces of
complex-valued Vassiliev type invariants of finite order for two other settings.
On one side of the equality there is the theory of oriented regular plane curves
without self-tangencies (both direct and inverse). This is Arnold’s J*-theory
[1, 2]. On the other side we put oriented framed knots in the solid torus
PT*R? which define even classes in the fundamental group.

Remark 4.7 The approach of this Section assumes that the Whitney wind-
ing number is an invariant of order zero. Setting it to have order 1 makes the
situation rather different. For example, for every n, the space of invariants
of order less than n becomes finite.
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