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R.Thom and V.Arnold noticed that the singularities that can be visu-
alized in many physical models are of special nature.

This was the starting point of the theory of Lagrangian and Legendrian
mappings developed by V.1.Arnold and his school some thirty years ago.
Since then the significance of Lagrangian and Legendrian submanifolds of
symplectic and respectively contact spaces has been recognised throughout
all mathematics, from algebraic geometry to differential equations, optimi-
sation problems and physics.

Alternatively these singularities are called singularities of caustics and
wave fronts.

Suppose, for example, that a disturbance {such as a shock wave, light, an
epidemic or a flame) is propagating in a medium from a given submanifold
(called initial wave front). To determine where the disturbance will be at
time £ (according to the Huygens prineiple} we must lay a segment of length
t along every normal to the initial front. The resulting variety is called an
equidistant or a wave front.
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Along with wave fronts, ray systems may also be used to describe prop-
agation of disturbances. For example, we can consider the family of all
normals to the initial front. This family has the envelope, which is called
caustic ~ “burning” in Greek — since the light concentrates at it. A caustic
is clearly visible on the inner surface of a cup put in the sunshine. A rain-
bow in the sky is the caustic of a system of rays which have passed through
drops of water with total internal reflection.

Generic caustics in three-dimensional space have only standard singular-
ities. Besides regular surfaces, cuspidal edges and their generic (transversal)
intersections, these are: the swallowtail, the ‘pyramid’ {or ‘elliptic umbilic*)
and the ‘purse’ (or ‘hyperbolic umbilic’). They are a part of R.Thom's
famous list of simple catastrophes. It is not so difficult to sec that the sin-
gularities of a propagating wave front slide along the caustic and trace it
out,

Symplectic space is essentially the phase space (space of positions and
momenta) of classical mechanics, inheriting a rich set of important proper-
ties.

It turns out that caustics and wave fronts are the loci of critical values of
special non-generic mappings of manifolds of equal dimensions or mappings
from n to n 4 1 dimensional manifolds. The general definition of these
mapping was given by V.Arnold via the projections of Lagrangian and
Legendre submanifolds embedded into symplectic and contact spaces.

These construction describes many special classes of mappings: Gauss
mapping, gradient mappping, etec.

In fact, Lagrangian or Legendre mapping is determined by a single fam-
ily of fuctions. This crucial fact makes the theory transparent and construc-
tive.

In particular, stable wave fronts and caustics are discriminants and bi-
furcation diagrams of singularities of functions. That is why their generic
low dimensional singularities are governed by famous simple Weyl groups.

Recently new areas in the theory of integrable systems in mathematical
physics (Frobenuous structures, D-modules) yield new field of applications
of Lagrangian and Legendre singularities.

In these lecture notes, we do not touch the fascinating results in sym-
plectic and contact topology, a young branch of mathematics which answers
questions on global behaviour of Lagrangian and Legendrian submanifolds.

An interested reader may be addressed to the paper [ [4]]. Our lectures is an .

introduction to the original local theory, with an accent on applications in
geometry. We hope that they will inspire the reader to do more extensive
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reading. Ttems on our bibliography list { [1-3]]. may be rather useful for
this,

1. Symplectic and contact geometry
1.1. Symplectic geometry

A symplectic form w on a manifold M is a closed 2-form, non-degenerate
a8 a skew-symmetric bilinear form on the tangent space at each point. So
dw =0 and w™ is a volume form, dim M = 2n. Manifold M equipped with
a symplectic form is called symplectic. It is necessarily even-dimensional.
If the form is exact, w = dA, the manifold M is called exact symplectic.

Examples. \
1. The basic model of a symplectic space is the vector space K = R =
{QI: ey @y Ply e es ,Pn} With the fO]’.'II].

n
A=plg= pdg, w=d\=dpAdq.
i=1
In these coordinates the form w is constant. The corresponding bilinear
form on the tangent space at a point is given by the matrix

0-I,
=(270)
Any non-degenerate skew-symmetric bilinear form on a linear space, has a
Darboux basis in which the form has this matrix.
2, M = T*N. X = pdq - Take for A the Liouwille form defined in a
coordinate free way as
M) = m(a)(pa{0)),
where
ae(T*N), «:T(IT*N)—->T*N and p:T"N-o N,

The manifold M, dX is exact symplectic. For local coodinates ¢;,...,¢, on
N, the dual coordinates py, ..., p, are the coeflicients of the decomposition
of a covector into a linear combination of the differentials dg;:

A=) pidy.
i=1

3. On a Kihler manifold M, the imaginary part of its Hermitian structure
w(e, £) = Im(a, B) is a skew-symmeiric 2-form which is closed.
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4. Product of two symplectic manifolds. Given two symplectic manifolds
(M;,w;), i = 1,2, their product M; x M equipped with the 2-form
{m1)str1 — (w2 )ewe, where the 7; are the projections to the corresponding
factors, is a symplectic manifold.

A diffeomorphism ¢ : M; - My which sends the symplectic structure
wy on My to the symplectic structure w; on M, :
Prwg = wi,

is called a symplectomorphism between (My,w;) and (Ma,wq). When the
(M;, w;) are the same, a symplectomorphism preserves the symplectic strue-
ture. In particular, it preserves the volume form w™.

Symplectic group.
For K = (R*,dp A dg) of our first example, the group Sp(2n) of linear
symplectomorphisms is isomorphic to the group of matrices S such that

§t=-J5t.

Here t is for transpose. The characteristic polynomial of such an S is recip-
rocal: if o is an eigenvalue, then o~ also is. The Jordan structures for a
and 0! are the same.

Introduce an awdliary scalar product (-,-) on K, with the matrix I, in
our Darboux basis. Then

wla,b) = (a, Jb),
where J is the operator on K with the matrix J. Setting g = Rez and
p =Imz makes K a complex Hermitian space, with the multiplication by
i = +/—1 being the application of J. The Hermitian structure is
(a,b) + tw(a,b).
From this,
Gl(n, C)()0(2n) = Gifn, C) (") Sp(2n) = O(2n) () Sp(2n) = U(n).

BRemark. The image of the unit sphere Sf"_l 1g>+p®> =1 under a
linear symplectomorphism can belong to a cylinder g2 +p? < r only if r > 1.
The non-linear analog of this result is rather non-trivial: S~ € T*R™
{in the standard Euclidean structure) canndt be symplectically embedded
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into the cylinder {q} + pj < 1} x T*R™~L. This is Gromov’s theorem on
symplectic camel.

Thus, for n > 1, symplectomorphisms form a thin subset in the set of
diffeomorphisms preserving the volume w™.

The dimension k of a linear subspace L¥ C K and the rank r of the restric-
tion of the bilinear form w on it are the complete set of Sp(2n)-invariants
of L. '

Define the skew-orthogonal complement LZ of L ag
L ={veEKlwvu)=0 YueclL}.

So dim L = 2n — k. The kernel subspace of the restriction of w to L is
LN L. Its dimension is k — .

A subspace is called isotropic if L C L# (hence dim L < n).
Any line is isotropic.

A subspace is called co-isotropic if L4 C L (hence dim L > n).
Any hyperplane H is co-isotropic. The line HZ is called the
characteristic direction on H.

A subspace is called Lagrangian if L< = I (hence dim I = n).

Lemma. EBoch Lagrangian subspace L C K has o regular projection to at
least one of the 2* co-ordinate Lagrangian planes (py, g5}, along the comple-
mentary Lagrangian plane (ps,qi). Here IJJ ={1,....n} and I[}J = 0.

Proof. Let L, be the intersection of L with the g-space and dim L, = k.
Assume k > 0, otherwise L projects regularly onto the p-space. The plane
Lg has a regular projection onto some gr-plane (along q;) with |1} = k.
If L does not project regularly to the py-plane (along (g,p;)) then L con-
tains a vector v € (g,pr) with a non-trivial py-component. Due to this
non-triviality, the intersection of the skew-orthogonal complement v4 with
the g-space has a (k — 1)-dimensional projection to q; (along gy) and so
does not contain L,. This contradicts to L being Lagrangian.

A Lagrangian subspace L which projects regularly onto the ¢-plane is
the graph of a self-adjoint operator S from the g-space to the p-space with
its matrix symmetric in the Darboux basis.
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Splitting X = L; @ L; with the summands Lagrangian is called a
polarisation. Any two polarisations are symplectomorphic.

The Lagrangian Grassmanian Grr(2n} is diffeomorphic to U(r)/O(n). Its
fundamental group is Z.

The Grassmanian Gri(2n) of isotropic k-spaces is isomorphic to
U(n)/(Ok) + U(n — k)).

Even in & non-linear setting a symplectic structure has no local invari-
ants (unlike a Riemannian structure) according to the classical

Darboux Theorem. Any two symplectic manifolds of the same dimen-
sion are locally symplectomorphic.

Proof. We use the homotopy method. Let wy, ¢ € [0,1], be a family of
germs of symplectic forms on a manifold coinciding at the distingnished
point A. We are looking for a family {g:} of diffeomorphisms such that
giwy = wy for all £. Differentiate this by ¢:

Lywr=—1
where 7, = fw; /8t is @ known closed 2-form and £,, is the Lie derivative
along the vector field to find. Since £, = i,d + di,, we get

diy, oy = —7: -

Choose a 1-form «; vanishing at A and such that doy = —,. Due to the
non-degeneracy of wi, the equation i,,w; = w(-, v} = o has a unique solu-
tion »; vanishing at A. O

Weinstein’s Theorem. A submanifold of ¢ symplectic manifold is de-
fined, up to o symplectomorphism of its neighbourhood, by the restriction of
the symplectic form to the tangent vectors to the ambient manifold af the
points of the submanifold.

In a similar local setting, the inner geometry of a submanifold defines its
outer geometry:

Givental’s Theorem. A germ of ¢ submanifold in a symplectic manifold
is defined, up to e symplectomorphism, by the restriction of the symplectic
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structure to the tangent bundle of the submanifold.

Proof of Givental’s Theorem. It is sufficient to prove that if the restrictions
of two symplectic forms, wg and wq, to the tangent bundle of a submanifold
G C M at point A coincide, then there exits a local diffeomorphism of M
fixing (7 point-wise and sending one form to the other. We may assume that
the forms coincide on Ty M.

We again vse the homotopy method, aiming to find a family of
diffeomorphism-germs g¢;, t € [0, 1], such that

Gle=1ide, go=idy, gGiw)=wo (*) where w;=uwp-Hw—wp)t.

Differentiating (+) by #, we again get
Lo, (wi) = d(iutwt) =Wy —uwr

where v, is the vector field of the flow g;. Using the “relative Poincare
lemma”, it is possible to find a 1-form a so that doo = wp —wy and «
vanishes on G. Then the required vector field v; exists since w; is non-
degenerate. ) O

Darboux theorem is a particular case of Givental’s theorem: take a point
as a submanifold.

If at each point z of a submanifold L of a symplectic manifold M the
subspace T L is Lagrangian in the symplectic space T M, then L is called
Lagrangian.

Examples.

1. In T*N, the following are Lagrangian submanifolds: the zero section of
the bundle, fibres of the bundle, graph of the differential of a function on
N. :

2. The graph of a symplectomorphism is a Lagrangian submanifold of the
product space (it has regular projections onto the factors). An arbitrary La-
grangian submanifold of the product space defines a so-called Lagrangian
relation which, in a sense, is a multivalued generalization of a symplecto-
morphism.

Weinstein's theorem implies that a tubular neighbourhood of a Lagrangian
submanifold L in any symplectic space is symplectomorphic to a tubular
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neighbourhood of the zero section in T*N.

A fibration with Lagrangian fibres is called Lagrangian.

Locally all Lagrangian fibrations are symplectomorphic (the proof is
similar to that of the Darboux theorem).

A cotengent bundle is a Lagrangian fibration.

Let 4 : L — T*N be a Lagrangian embedding and p : T*N — N the
fibration. The product po# : L — IV ig called a Lagrangian mapping. It
critical values

T ={g€ N3p: (p,q) € L, rankd(po)|p,q < n}

form the caustic of the Lagrangian mapping. The equivalence of Lagrangian
mappings is that up to fibre-preserving symplectomorphisms of the ambient
symplectic space. Caustics of equivalent Lagrangian mappings are diffeo-
morphic.

Hamiltonian vector fields.
Civen a real function h : M — R on a symplectic manifold, define a
Hamiltonian vector field v, on M by the formula

w(-, 'Uh) =dh.
This field is tangent to the level hypersurfaces H, = h~1(c):

Vae H, dMT,H,)=0 = TH.=vf, but wecuvy.

The directions of v, on the level hypersurfaces I, of k are the characteristic
directions of the tangent spaces of the hypersurfaces.

Associating vy, to h, we obtain a Lie algebra structure on the space of
functions:

[n,vel =vgnyy  where {h, f} =va(f),
the latter being the Poisson bracket of the Hamiltonians £ and f.

A Hamiltonian flow {even if h depends on time) consists of symplecto-
morphisms. Locally {or in R**), any time-dependent family of symplecto-
morphisms that starts from the identity is a phase flow of a time-dependent
Hamiltonian. However, for example, on a torus R?/Z? (the quotient of the
plane by an integer lattice) the family of constant velocity displacements
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are symplectomorphisms but they cannot be Hamiltonian since a Hamilto-
nian function on a torus must have critical points.

Given a time-dependent Hamiltonian % = -ﬁ(t, 2,4q), consider the extended
space M x T*R with auxiliary co-ordinates (s,?) and the form pdg — sdt.

An auxiliary (extended) Hamiltonian & = —s + & determines a flow in the
extended space generated by the vector field

,_ Oh . ok . Oh_ . ok

P= dg’ q_ap' I TR

The restrictions of this low to the ¢ = const sections are essentially the
fiow mappings of h.

The integral of the extended form over a closed chain in M x {to} is
preserved by the A-Hamilionian flow. Hypersurfaces —s + h = const are
invariant. When % is autonomous, the form pdq is also a relative integral
invariant.

A (transversal) intersection of a Lagrangian submanifold L C M with a
Hamiltonian level set H, = h~!(c) is an isotropic submanifold L,. All
Hamiltonian trajectories emanating from L, form a Lagrangian subman-
ifold expg{L;) € M. The space Eg, of the Hamiltonian trajectories on H,
inherits, at least locally, an induced symplectic structure. The image of the
projection of expp(L.) to By, is a Lagrangian submanifold there. This is
a particular case of a symplectic reduction which will be discussed later.

Example. The set of all oriented straight lines in R is T*8" 1 as a space
of characteristics of the Hamiltonian h = p® on its level p* = 1 in K = R2®,

1.2, Contact geometry

An odd-dimensional manifold M2+l equipped with a maximally non-
integrable distribution of hyperplanes (contact elements) in the tangent
spaces of its points is called a contact manifold.

The maximal non-integrability means that if locally the distribution is
determined by weros of a 1-form o on M then oo A (da)™ # 0 (cf. the Frobe-
nius condition o A dee = 0 of complete integrability).

Examples.
1. A projectivised cotangent bundle PT* N™*1 with the projectivisation of
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the Liouville form a = pdg is & contact manifold. This is also called the
space of contact elements on N. The spherisation of PT*N7+! is a 2-fold
covering of PT*N™t! and its points are co-oriented contact elements.

2. The space J'N of 1-jets of functions on N™ is another standard model
of contact space. (Two functions have the same m-jet at a point « if their
Taylor polynomials of degree & at x coincide). The space of all 1-jets at all
points of IV has local coordinates ¢ € N, p = df(q) which are the partial
derivatives of a function at ¢, and z = f(g). The contact form is pdg — d=.

Contactomorphisms are diffeornorphisms preserving the distribution of con-
tact elements.

Contact Darboux theorem. All equidimensional contact manifolds are
locally contactomorphic.

An analog of Givental's theorem also holds.

Symplectisation.

Let M27+2 be the » space of all linear forms vanishing on contact elements
of M. The space M2"+2 ' is a “line” bundle over M (fibres do not contain
the zero forms). Let 7 : M — M be the projection. On M the symplectic
structure (which is homogeneous of degree 1 with respect to fibres) is the
differential of the canonical 1-form & on M defined as

&) =p(FE), EcTM.

A contactomorphism F of M lifts to a symplectomorphism of M:

F(p) = (Fpgm) 'p-
This commutes with the multiplication by constants in the fibres and pre-
serves &. The symplectisation of contact vector fields (= infinitesimal con-
tactomorphisms) yields Hamiltonian vector fields with homogeneous (of
degree 1) Hamiltonian functions h{rz) = rh(z).

Assume the contack structure on M is defined b)l}eros of a fixed 1-form 3.
Then M has a natural embedding z — g, into M.

Using the local model JIR™, 3 = pdq — dz, of a contact space we get
the following formulas for components of the contact vector field with a
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homogeneous Hamiltonian function K (x) = h(f;) (notice that K = 3(X)
where X is the corresponding contact vector field):

2=pK,— K, p=—K,—pK,, ¢ =K,

where the subscripts mean the partial derivations.

Various homogeneous analogs of symplectic properties hold in contact ge-
ometry (the analogy is similar to that between affine and projective geome-
tries).

In particular, a hypersurface (transversal to the contact distribution) in
a contact space inherits a field of characteristics.

Contactisation.
To an exact symplectic space M2" agsociate M = R x M with an extra
co-ordinate z and take the 1-form a = A — dz, This gives a contact space.

Here the vector field ¥ = 2 satisfies iya = 1 and i,do = 0. Such a
field is called a Reeb vector field. Its direction is uniquely defined by &
contact structure. It is transversal to the contact distribution. Locally, pro-
jection along x produces a symplectic manifold.

A Legendrian submanifold T of M2"*+1 is an n-dimensional integral sub-
manifold of the contact distribution, This dimension is maximal possible
for integral submanifolds due to maximal non-integrability of the contact
distribution.

Examples.
1. To a Lagrangian L ¢ T*M associate L C J*M:

f:{(z,p,q) | z=‘/IJ¢;‘IQs (p,q) € L}.

Here the intégral is taken along a path on L joining a distinguished point
on L with the point (p,q). Such an L is Legendrian.

2. The set of all covectors annihilating tangent spaces to a given sub-

manifold (or variety) Wy C N form a Legendrian submanifold (variety) in
PT*N.
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3. If the intersection I of a Legendrian submanifold I with a hyper-
surface T' in a contact space is transversal, then I is transversal to the
characteristic vector field on I'. The set of characteristics emanating from
I form a Legendrian submanifold.

A Legendrian fibration of a contact space is a fibration with Legendrian
fibres. For example, PT*N — N and J'N — J°N are Legendrian. Any
two Legendrian fibrations of the same dimension are locally contactomor-
phic.

The projection of an embedded Legendrian submanifold T to the base
of a Legendrian fibration is called a Legendrian mapping. Its image is called

the wave front, of I.

Examples. -

1. Embed a Legendrian submanifold I into J'N. Tts projection W (L) to
JON, which is the wave front, is a graph of a multivalued action function
f pdg + ¢ (again we integrate along paths on the Lagrangian submanifold
L = wl(f), where m : JIN — T*N is the projection dropping the =z
coordinate). If ¢ € N is not in the caustic X1 of L, then over g the wave
front W (L) is a collection of smooth sheets.

If at two distinct points (¢, q), (p”,q) € L with a non-caustical value g,
the values z of the action function are equal, then at (z, g} the wave front
is a transversal intersection of graphs of two regular functions on N.

The images under the projection (z, g) — ¢ of the singular and transver-
sal self-intersection loci of W (L) are respectively the caustic Tz, and so-
called Maxwell {conflict) set.

2. To a function f = f(g), g € R", assoclate its Legendrian lifting L=j'p
(also called the 1-jet extension of f} to J'R™, Project L along the fibres
parallel to the g-space of another Legendrian fibration

71 {2, p,q} = (2 — pg,p)

of the same contact structure pdg—dz = —qdp—d{z—pq). The image 7 (L)
is called the Legendre transform of the function f. It has singularities if f
is not convex.

This is an affine version of the projective duality (which is also related
to Legendrian mappings). The space PT*P™ (P" is the projective space)
is isomorphic to the projectivised cotangent bundle PT*P™* of the dual
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space P™*. Elements of both are pairs consisting of a point and a hyper-
plane, containing the point. The natural contact structures coincide. The
set of all hyperplanes in P™ tangent to a submanifold § C P* is the front
of the dual projection of the Legendrian lifting of $.

‘Wave front propagation.

Fix a submanifeld Wy C N. It defines the (homogeneous) Lagrangian
submanifold Ly C T* N formed by zll covectors annihilating tangent spaces
to Wo.

Consider now a Hamiltonian function h : T*N — R. Let I be the
intersection of Ly with a fixed level hypersurface H = h~1(c). Consider
the Lagrangian submanifold L = ezpy(I) € H which consists of all the
characteristics emanating from 7. It is invariant under the flow of H.

The intersections of the Legendrian lifting L of L into J'N (z= [ pdg)
with co-ordinate hypersurfaces z = const project to Legendrian submani-
folds (varieties) I = C PT*N.In fact, the form pdg vanishes on each tangent
vector fo fz. In general, the dimension of Ez isn—1, ’

The wave front of  in J°N is called the big wave front. It is swept out
by the family of fronts W, of the L, shifted to the corresponding levels of
the z-co-ordinate. Notice that, up to a congtant, the value of z at a point
over a point (p, g) is equal to z = | pg—hdt along & segment of the Hamilto-

p
nian trajectory going from the initial I to (p, ¢).

When £ is homogeneous of degree k with respect to p in each fibre, then
z = kct. Let I, C L be the imago of 7 under the flow transformation g; for
time ?. The projectivised I; are Legendrian in PT*N. The family of their
fronts in IV is {Wye}. So the W; are momentary wave fronts propagating
from the initial Wy. Their singular loci sweep out the caustic ¥ e

The case of a time-depending Hamiltonian » = h(t,p,q) reduces to the
above by considering the extended phase space J! (N xR), o = pdg—rdt—
dz. The image of the initial Legendrian subvariety Z, C J1 (N x {0}) under
9¢ is a Legendrian L, C JY(IV x {t}).

When z can be written locally as a regular function in g, t it satisfies the

Hamilton-Jacobi equation —% + k%, §§= g) =0.
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2. Generating families
2.1. Lagrangian case

Consider a co-isotropic submanifold C™T* C M, The skew-orthogonal
complements T'4C, ¢ € C, of tangent spaces to C define an integrable dis-
tribution on C. Indeed, take two regular functions whose commeon zero level
set contains C. At each point e € C, the vectors of their Hamiltonian fields
belong to T4C. So the corresponding flows commute. Trajectories of all
such fields emanating from ¢ € ¢ form a smooth submanifold f, integral
for the distribution.

By Givental’s theorem, any co-isotropic submanifold is locally symplecto-
morphic to a co-ordinate subspace pr =0, I = {1,...,n— &}, in K = R*",
The fibres are the sets ¢y = const.

Proposition. Let L* and C"t* be respectively Lagrangian and co-isotropic
submanifolds of a symplectic manifold M>". Assume L meets C iransver-
sally at a point a. Then the intersection Xp = L[ C is transversal to the
isotropic fibres I, near a. C

The proof is immediate. If ToXo contains a vector v € Tol,, then v is
skew-orthogonsal to T,Z. and also to T,C, that is to any vector in T M.
Hence v = 0.

Tsotropic fibres define the fibration £ : & — B over a certain manifold
B of dimension 2k (defined at least locally). We can say that B is the
manifold of isotropic fibres.

It has a well-defined induced symplectic structure wg. Given any two
veelors u, v tangent to B at a point b take their liftings, that is vectors U, 7
tangent to G at some point of £71(b) such that their projections to I are
w and v. The value w(%, %) depends only on the vectors u, . For any other
choice of liftings the result will be the same. This value is taken for the
value of the two-form wp on B.

Thus, the base B gets a symplectic structure which is called a symplectic
reduction of the co-isotropic submanifold C.

BExample. Consider a Lagrangian section L of the {trivial) Lagrangian
fibration T*(R* x R™). The submanifold L is the graph of the differential
of a function f = f(z,q), z € R*, ¢ ¢ R™. The dual coordinates y, p are
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givenl on Lbyy= gz , P = %qﬁ. Therefore, the intersection L of L with the
co-isotropic subspace ¥ = 0 is given by the equations %5 = 0. The inter-
section is transversal iff the rank of the matrix of the derivatives of these
equations, with respect to z and g, is k. If so, the symplectic reduction of
L is a Lagrangian submanifold L, in 7*R™ (it may not be a section of
T*R™ - R™).

This example leads to the following definition of a generating function
(the idea is due to Hérmander).

Definition. A generating family of the Lagrangian mapping of a subman-
ifold L C T*N is a function F : E — R defined on a vector bundle F over
N such that

8F(z,q) 8F (z,q)
L= \ 3z L TR = L
Here g € N, and 2 s in the fibre over ¢. We also assume that the following
Morse condition is satisfied:

0 is a regular value of the mapping (z,q) — (:);_F .
T

The latter guarantees L being a smooth manifold.

Remark, The points of the intersection of L with the zero section of T*N
are in one-to-one correspondence with the critical points of the function F.
In symplectic topology, when interested in such points, it is desirable to
avoid a possibility of having no critical points at all (as it may happen on
& non-compact manifold E).

Therefore, dealing with global generating families defining Lagrangian
submanifolds globally, generating families with good behaviour at infinity
should be considered.

A generating family J* is said to be quadratic at infinity (QI) if it co-
Incides with e fibre-wise quadratic non-degenerate form Q(z, g) outside a
compact. '

On the topological properties of such families and on their réle in sym-
plectic topology see the papers by C.Viterbo, for example [4].

Existence and uniqueness (up to a certain equivalence relation) of QI
generating families for Lagrangian submanifolds which are Hamiltonian iso-
topic to the zero section in T*N of a compact N was proved by Viterbo,
Laundeback and Sikorav in the 80s:

Given any two QI generating families for L, there s a unique integer
m and a teal £ such that H*(F, F,) = Hk_m(Fb._g,Fa_g) for any pair of
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a < b. Here F, is the inverse image under F of the ray {t < a}.

However, we shall need a local result which js older and easier.

Existence.
Any germ L of a Lagrangian submanifold in T*R™ has a regular projection
to some (ps,qr) co-ordinate space. In this case there exists a function f =
f(pr,qr) (defined up to a constant) such that

i) af
L={ (.psQ) | QJz_%a pI':a_qI }

Then the family Fy = zqy + f{z, qr), = € RV, is generating for L. If |.7] is
minimal possible, then Hess,, Fy = Hess,,, f vanishes at the distinguished
point.

Uniqueness.

Two family-germs Fi(z,q), z € R®, ¢ € R™, i = 1,2, at the origin are called
R-equivalent if there exists a diffeomorphism 7 : (z,g) — (X (z,49),q) (ie-
preserving the fibration R* x R™ — R™) such that Fz = F o 7.

The family ®(z,v,¢) = F(z,q) £y} £...,+y% is called a stabilisation
of F.

Two family-germs are called stably R-equivalent if they are R-equivalent
to appropriate stabilisations of the same family (in a lower number of vari-
ables).

Lemma. Up to addition of o constani, any twe genereling families of the
same germ L of a Lagrengian submanifold are stably R-equivalent.

Proof. Morse Lemma with parameters implies that any function-germ
F(z,q) (with zero value at the origin which is taken as the distinguished
point) is stably Ro-equivalent to F:' (y,4) & 2? where z = (y, 2) and the ma-
trix Hessyyf]o vanishes. Clearly F(y,q) is a generating family for L if we
assume that F'(z,q) is.

Since the matrix §2F/8y* vanishes at the origin, the Morse condition
for F implies that there exists a subset J of indices such that the minor

|
‘;
i
i
|
i
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Bzf/ Oy0qy is not zero at the origin. Hence the mapping

8 : (y,9) = (ps,q) = (0F/0q5,q)

is a local diffeomorphism. The family G = Fo©-!, G = G(ps,4q), is also a
generating famiiy for L.

The variety O.F /8y = 0 in the domain of @ is mapped to the Lagrangian
submanifold L in the (p, q)-space by setting p = Bﬁ/Bq and forgetting .
Therefore, the variety X = {3G/dpsy = 0} in the (p;, g)-space is the image
of L under its (regular) projection (p,q) = (p1, ).

Compare now G and the standard generating family Fy defined above
(with py in the role of z). We may assume their values at the origln coin-
ciding. Then the difference G — Fy has vanishing 1-jet along X. Since X is
a regular submanifold, G — Fy is in the square of the ideal 7 generated by
the equations of X, that is by 8F;/dp,.

The homotopy method applied to the family A, = F; + (G — Fy),
0 < ¢ < 1, shows that G and F; are Rg-equivalent. Indeed, it is clear that
the homological equation

a4, OA; |
TR Fs~-G= %PJ
has a smooth solution p; since ¥; — G € Z? while the 8A;/8p; generate T
for any fixed ¢. W

2.2. Legendrian case

Definition. A generating family of the Legendrian mapping 7|z, of a Leg-
endrian submanifold L € PT*(N) is a function F' : £ — R. defined on a
vector bundle F over ¥V such that

‘ 0F(z, q) 8F(z, q)
L= , 3z: Flz,q)=0, ——% - =

{ (g | 3z (z,9)=0 T 0, p 3 ;

where ¢ € N and x is in the fibre over g, provided that the following Morse
condition is satisfied:

0 is a regular value of the mapping (z, ¢} — {F, (-;);E} .
z

Definition. Two function family-germs Fi(z,q), i = 1,2, are called
V-equivalent if there exists a fibre-preserving diffeomorphism © : (z,q)
(X({z,q),q) and a function ¥(z, g) not vanishing at the distinguished point
such that F; 0 © = UF,.
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Two function families are called stably V-equivalent if they are stabili-
-gations of a pair of V-equivalent functions (may be in a lower number of
variables ).

Theorem. Any germ 7| of o Legendrion mapping has a generating family.
All generating families of o fired germ are stably V-equivelent.

Proof. For an n-dimensional N, we use the local model 7 : JIN! — JON',
N’ =R, for the Legendrian fibration.

Consider the projection my : JIN’ - T* N’ restricted to L. Its image
is a Lagrangian germ Lo € T*N. If F(z,q) is a generating family for Lg,
then F(z,q) — z considered as a family of functions in z with parame-
ters (g, z) € JON' = N is a generating family for L and vice versa. Now
the theorem follows from the Lagrangian result and an obvious property:
multiplication of a Legendrian generating family by a function-germ not
vanishing at the distingnished point gives a generating family. After mul-
tiplication by an appropriate function ¥, a generating family (satisfying
the regularity condition) takes the form F(z,q) — z where (g, z) are local
coordinates in N. a

Remarks.
A symplectomorphism ¢ preserving the bundle structure of the standard

Lagrangian fibration o : T*R™ — R™, (¢,p) — ¢ has a very simple form

v:(g,9) — (Qa), Q™™ (@)(p +df ()

where DQ~1*(q) is the dual of the derivative of the inverse mapping of the
base of the fibration, @ ¢+ = T o @, and f is a function on the base.

To see this, it is sufficient to write in the coordinates the equation p.A—
A=df.

The above formula shows that fibres of any Lagrangian fibration posses
a well-defined affine structure.

Consequently, a contactomorphism 1 of the standard Legendrian fibra-
tion PT*R™ — R™ acts by projective transformations in the fibres:

P (g0 — (Q(g), Q™™ (g)p).

Hence, there is a well-defined projective structure on the fibres of any Leg-
endrian fibration.

We also see that Lagrangian equivalences act on generating families as

i
;
i
f
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R-equivalences (z,q) — (X(a, g),@(g)) and additions of function in pa-
rameters gq.

Legendrian equivalences act on Legendrian generating families just as R-
equivalences.

2.3. Ezamples of generating families

The importance of the constructions introduced above for various applica-
tions is illustrated by the following examples.

1. Consider a Hamiltonian & : T*R® — R which is homogeneous of
degrec & with respect to the impulses p: A(rp,¢) = 7*h(p,q), 7 € R.

An initial submanifold Wy C R™ (initial wave front) defines an exact
isotropic I € H, = h™!(c). Assume I is a manifold transversal to . Put
c=1,

The exact Lagrangian Aow-invartant submanifold £ — expp () is a cylin-
der over I with local coordinates @ € 7 and time ¢ from a real segment {on
which the flow is defined).

Assume that in a domain U C T*R" x R the restriction to L of the
%I}Jase flow g; of vy is given by the mapping (@, ) — (Q{a, t), P{e,t)) with
#az 7 0 Then the following holds.

. Proposition, a) The family ¥ = P(o, t)(g — Qfex, t)) + bt of functions
in o, with parameters ¢ € R™ is a generating family of . in the domain
U.

b) Eor any fixed ¢, the family F; = P(a, t){q — Q(a,t)) is a Legendrian
generating family of the momentary wave front W,

The proof is an immediate verification of the Hormander definition us-
ing the fact that value of the form pdg on each vector tangent to g.(I)
vanishes and on the vector vy, it is equal to pg—g =kh =k,

2. Let ¢ : T*R™ — I™R*, (q,p) ~ (Q, P} be a symplectomorphism close
to the identity. Thus the system of equations ¢’ = (g, p) is solvable for ¢.
Write its solution as ¢ = §{g’, p).

Assume the Lagrangian mapping of a Lagrangian submanifold L has
a generating family F(z,q). Then the following family & of functions in
,¢,p with parameters ¢’ is a generating family of w(L):

G(z,p,¢:¢') = F(z,§) + p(7— ) + S(n, 7).
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Here S(g',p) is the “generating function” in the sense of Hamiltonian me-
chanics of the canonical transformation ¢, that is

dS = PdQ — pdg.

Notice that, if ¢ coincides with the identity mapping cutside a compact,
then & is a quadratic form at infinity with respect to the variables (g, p).

The expression p(§ — ¢) + 8(p, ¢') from the formula above is the gener-
ating family of the symplectomorphism .

3. Represent a symplectomorphism ¢ of T*R™ into itself homotopic to the
identity as a product of a sequence of symplectomorphisms each of which
is close to the identity. Iterating the previous construction, we obtain a
generating femily of (L) as a sum of the initial generating family with
the generating families of each of these transformations. The number of the
variables becomes very large, dim(x) 4+ 2mn, where m is the number of the
iterations. Namely, consider a partition of the time interval [0,T)] into m
small segments [t;,¢;41],1=0,...,m—1. Let p =@ 0y 0.. .1 where
w; 1 (Qi, B} — (@441, Fiya) is the flow map on the interval [t;,2541]. Then
the generating family is
m—1
G(2,Q,P,¢) = Fz, Q) + ¥ (BilUi(Qis1,P) — Qi) + il P, Qu1))
i=0
where: Q = Qu,..., @m-1,7= Q@m, @ € R®, ¢ € R, 5; is a generating
function of @;, and U;(Q;41, F;) are the solutions of the system of equations
Qit1 = Qi11(Qs, Pr) defined by ;.

One can show that if ¢ is a flow map for time ¢ = 1 of a Hamiltonian
function which is convex with respect to the impulses then the generating
family & is also convex with respect to the P; and these variables can be
removed by the stabilisation procedure. This provides a generating family
of (L) depending just on x,Q, ¢ for the image of Lagrangian submanifold
L admitting a generating family itself. Usually these variables x, (), g are
taken from a compact domain. In this case, the generating family has nice
properties. For example, the family attains minimal and maximal values on
the fibre over point ¢. This means, that for any point ¢ from the image of
the projection of w(L) among all projections of the Hamilton vector field
trajectories emanating at ¢ = 0 from L and coming to 7 !(g) at time t = 1
there are some which provide global minimal value of the action function.

In particular, this implies that going from the initial point along a
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generic geodesic the first point where the geodesic segment fails to be min-
imal is & a conflict point. At generic (regular} point of the caustic the
generating family does not have minimum value.

3. Applications
3.1. Singularities of wave fronts and caustics

Famous results of Amold and Thom relating stable singularities of low-
dimensional wave fronts to the discriminants of the Weyl groups are based
on relation between caustics and wave fronts and discriminants and bifur-
cation diagrams of families of functions depending on parameters.

Caustics
Singularities of Lagrangian projections are essentially the singularities of
their generating familics treated as families of functions depending on pa-
rameters. In particular, the caustic £(L) of Lagrangian submanifold L pro-
Jection coincides with the stratum of the bifurcation diagram of the gener-
ating family f(z,¢) which is the collection of parameter ¢ values such that
the restriction f{:,¢) has a non-Morse critical point.

Stability of Lagrangian projection with respect to symplectomorphisms
preserving the fibration structure corresponds to the versality of the gen-
erating family with respect to the R.- equivalence group {diffeomorphisms
of the source space and additions of the function with constants).

In the space of germs of functions in & variables there are only finitely
many orbits of codimension & + n with n < 5 of the R -equivalence group
[ [3]]- Those are the orbits of simple A4, D, E singularity classes. This fact
implies the following

Theorem. Let E(L) be the space of Lagrangian embeddings of a com-
pact monifold L (of the dimension n < 5) into a Legrangian fibration space,
equipped with C*™ topology. Then o Lagrangian projection woi for an embed-
ding i from an open and dense subset of E(L) at any point is equivalent to
e Lagrangian projection determined by the germ af the origin of some of the
Jollowing standard versal deformations of simple singularities of functions
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withm <n-+1:

Ap: F==£2™ L qa™ Moo 4 gyo13;

Dp: F=zlry 2l '+ @zl 2+ + gmoa®a + Qm-11;

Eg: F=gita)+qziz]+ qaoizs +qs23 + @z + gsTe.
Remarks.
1. In particular, the caustics of generic local Lagrangian projections to 3-
space are diffeomorphic of the caustics of Ag(smooth surface), Az (cuspidal
ridge), A4 (swallowtail), D ( purse or pyramid). Germs of generic caus-
tics can have several several components of these types which are mutually
transversal.

2. Starting from n = 6 some R orbits have continuous invariants (mod-
uli). Therefore, respective Lagrangian projections have invariants which are
functional moduli (invariants depending on parameters. However even in
this cases generating families provide some useful information of topologi-
cal structure of caustics.

3. For the dimensions n > 3 the list of generic singularities of Lagrangian
projections differs from the list of singularities of arbitrary mappings of
spaces of equal dimensions. Lagrangian mapping are special. However, they
arise in many physical and geometrical problems. For example, Gauss map
is Lagrangian. Envelope of geodesics emanating from an initial point on
a Riemannian manifold is the caustic of so-called exponential Lagrangian
mapping. The intensity of light at caustic points of a family of optical rays
increases. The asymptotics of the intensity given by the oscillation integral
was studied by A.Varchenko, P.Pham and others. It is related to the spec-
trum and mixed Hodge structure of respective function singularity [ [1]).

4. Some specific applied problems involye non-generic Lagrangian sin-
gularities. They can be symmetric, or even determined by a non-smooth
Lagrangian varieties projections. The study of the correponding generating
families require special singularity theory techniques (equivariant mappings,
non-isolated singularities, etc.). A recent example of a caustic related to a
generating family with non-isolated singularities is given by the exponential
mapping on subriemannian 3-space with contact distribution | [5]].

‘Wave fronts
The wave front of a local Legendrian projection is the discriminant D(F')
of its generating family F(z,q) that is the set of parameters g such that
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the zero level set of F{cdot, ¢} contains a critical point.

Legendre equivalent Legendre projections have V-equivalent generating
families and diffeomorphic wave fronts. Under some mild conditions, the
converse holds also [ [6]].

A Legendre submanifold germ L embedded into a Legendre fibration is
called regular if the regular points of the Legendre projection are dense in
L and the projection is proper.

Proposition. If the front of a Legendre submanifold germ I coincides
with the front of the regulor germ L, then L coincides with L.

The proof follows from the fact that near the regular point (p, g} the Leg-
endre submanifold L C PT*M coincides with the set of contact elements p
annihilating tangent vectors to wavefront w(L). The entire Legendre sub-
manifold is the closure of its regular points.

So, regular Legendrian submanifolds having diffeomorphic wavefronts
are Legendre equivalent and the respective generating families are V-
equivalent. Hence the classification of the generic singularities of Legen-
dre projections is essentially the classification (up to diffeomorphisms) of
generic singularities of wave fronts. Notice that in the Lagrangian case the
similar statement is false.

Theorem. Let E(L) be the space of Lagendrien embeddings of o com-
pact manifold L (of the dimension n < 5) into o Lagrangian fibration space,
equipped with C™ topology. Then o Legendrian projection 7 o for an em-
bedding i from on open and dense subset of E (L) at any point is equivalent
to o Legendrian projection determined by the germ at the origin of some
of the following standard V -versal deformations of simple singularities of
functions with m <n+1:

Ap: F=4z™ L qz™ 4 oo 1T+ Qo
Dp: F=zlzexzl "+ @izl 2+ -+ gm-aT2 + Gm_151 + gm;
Bs: F=ugltz]+qai2}+ @zizs + 25 + @ty + 3522 + om.

Generic wave fronts germs in 3-space are diffeomorphic either to swallow-
tails (A4) or to collection of mutually transversal smooth surfaces (4z2) and
cuspidal ridges (Ag). :
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3.2. Metamorphosis of wave front

Consider a germ at the origin of the R-versal deformation depending on
parameters g

n
Fla,q) = f() + ) aipila) (1)
i=1
of the polynomial f(x) having at the origin a critical point of multiplicity
gL
Assume the germs ¢;, i=1,...,u form a basis of local gradient factor
algebra

Q) = C(2)/C=(a) {"’f } .

of the algebra C°°(x) of germs at the origin of smooth functions in ». As-
sume that @)pmy1,-..,9¢n are equal to zero.

Proposition.(see[ [6]]) The real-analytic vector fields which are tangent
to the wave front of the Legendrign projection germ determined by the gen-
erating family I form o free module over the ring of germs of functions in
g with n generators.

In other words the wave fronts of R-versal families of functions are

Saito’s ree divisors. A distinguished system of generators Vi,...,V, are
easy to deseribe. For any ¢;, j=1,...,p consider the decomposition
aF (:r; q
_Fla.aey(a) = 3 enspiamod( 0, 9 LDy,

i=1

Then vector fields

n
V; =§e,-j(q)% j=1,...,p and V; =-5?1—j, for j=p+1,...,n

form the basis of tangent (logarithmic) vector fields. An easy proof of this is
bases just on the wave front property mentioned above. An one-parameter
group of diffeomotphisms mapping the wave front to itself correspond to
a family of V-equivalences of the family F with itself. The infinitesimal
version of the latter condition provides the decomposition being the linear
combination of the decompositions for V;.
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Let L; be a family of Legendre submanifolds germs in PT*M smoothly
depending on ¢ € R. We can choose generating families F(z, g,1) of L; also
smoothly depending on ¢. Then F{z,g,f) considered as a family of func-
tions in z with parameters g, is a generating family for a (big) Legendre
submanifold in PT*{M x R).

Hence, to reduce the family of Legendrian prejections Ly to a normal
form we can reduce the big Legendre projection to a normal form, and then
using diffeomorphisms preserving the big front normalize the fibration of
the extended configuration space g,t by level hypersurfaces of the function
t.

Let the big generating family be R—stable (this holds generically in
small dimensions) and be equivalent to the family (1). Take a distinguished
generator ¢, from the annibilator of the maximal ideal of the algebra Q5.
Applying logarithmic vector fields to a generic function £ on the parameter
space, the normal forms of a generic function are either g;, for 7 > p or
g, + Z +q3.

j=p+1

These formulas describe singularities of moving wave front transforma-
tions. In variational problems the family of wave fronts are given by the level
sets of the action function. The distance function f{wz,q) between point
from certain initial variety Xy and a point ¢ in the ambient space deter-
mines a family of equidistants of X whose generic metamorphosis are also
described by these normal forms.

3.3. Affine generating families

An example of wave front propagation different from the Riemannian dis-
tance function is provided by the generating families related to the systemns
of chords described in [ [7}].

Let M, ag and N, by be two germs at points eg and by of smooth hyper-
surfaces in an affine space R™. Let r; : U'i"_1 — R™ 4 = 1,2 be local
regular parametrizations of M and N, where U are viscinities of the origin
in R™~! with local coordinates « and v respectively, r1(0) = ag, r3(0) = bo.

A parallel pair is a pair of points @ € M, b € N, a # b such that the
hyperplane Ty M which is tangent to M at g is parallel to the tangent hy-
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perplane Ty N.

Suppose the distinguished pair ag,bp is a parallel one. A chord
is the straight line I(a,b) pessing through a parallel pair: I{a,b) =
1geR™| g=la+pub, AR, peR, A+p=1}.

An pffine (A, p)-equidistant Ey of the couple (M, N) is the set of all
geR"suchthat ¢ =da+pbforgiven A€ R, peR, A+ p =1andall
parallel pairs a, b (close to ag, bg).

The ertended affine space is the space R%! = R x R* with baricentric
cocordinate A € R, p € R, Ay = 1on the first factor (called affine time).

Denote by pr : w = (A, q) — ¢ the projection of Rt to the second
factor.

An affine extended wave front W(M, N) of the couple (M, N) is the
union of all affine equidistants each embedded into its own slice of the
extended affine space: W(M, N) = {(A, E,)} C RP+L.

The bifureation set Bif(M, N) of a family of affine equidistants {or of
the family of chords) of the couple M, N is the image under pr of the locus
of the critical points of the restriction pr;. = pr |was,n A point is critical
if pry 2t this point fails to be a regular projection of a smooth submanifold.

In general Bif (M, N) consists of two components: the caustic ¥ being
the projection of singular locus of extended wave front W({M, N) and the
envelope A being the (closure of) the image under pry of the set of reg-
ular points of W(M, N) which are the critical points of the projection pr
restricted to the regular part of W(M, N).

"The caustic consists of the singular points of momentary equidistants E,
while the envelope is the envelope of family of regular parts of momentary
equidistants.

On the other hand the affine wave front is swept out by the Jiftings to
R2*! of chords. Each of them has regular projection to configuration space
R". Hence the bifurcation set B(M, N) is essentially the envelope of the
family of chords.

A germ of a family F(z,w) of functions in z ¢ R* with parameters
w = (t,q) € RT*! where ¢ ¢ R and ¢ € R” determines the following col-
lection of variefies:

The fiberwise critical set is the set Cp ¢ R* x R, x R® of the solutions

i
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(z,w) of so-callled Legendre equations:

oF

F(z,w) =0, Fle 0.

The wave front (discriminant) is W(F} = {{t,q) | 3z : (z,w) € Cr}.

The intersections of (big) wave front with £ = const subspaces are called
momentary wave fronts W (F).

The bifurcations set Bif(¥) is the image under the projection pr :
{t,q) — ¢ of the points of W(F) where the restriction pr IW(F) fails to
be a regular projection of a smooth submanifold. Projections of singular
points of W(F) form the caustic JI(F), and singular projections of regular
points of W(F) determines the envelope or criminant A(F).

Family F is generating family of a Legendre subvariety E(F) C
PT*(R*+1) which is smooth provided that the Legendre equations are lo-
cally regular, i.¢ standard Morse conditions are fulfilled [ [1]].

Two germs of families F; ¢ = 1,2 are called space-time-contect—
equivalent ("v” - for short) if there exist a non-zero function ¢(x,%,q) and
a diffeomorphism 8 : R* x R*! — R* x R™+1, of the form

0: (:I.‘,t., q) Lol (X($1 t: Q)aT(tl Q)i Q(Q))

such that ¢Fy = Fh o 8.

The sum of the family F(x,t, ¢) with a non-degenerate quadratic form
in extra variables y1,..., % is called a stabilization of F. Two germs of
families are v-stable equivalent if they are v-equivalent to stabilizations of
one and the same family in fewer variables.

The bifurcation diagrams of v-stable equivalent families are diffeomor-
phic. Theory of singularities of functions with respect to this equivalence
group see in [ [8,9]].

The critical peints of the projection pr|g, satisfy the equation:

OF 9F
Oz at

det =0
*F 8°F

&5t BT
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Since the first &k entries g—f of the first row vanish, the determinant fac-
torises. Hence the bifurcation diagram B(F) splits into two components,
One of them (which is the criminant A(F)) is the image of the projec-
tion (z,t,9) — g of the subvariety Cq C C determined by the equation
4F 0. The other one (which is the caustic Z(F)) is the image of the pro-
jection (z,¢,q) — g of the subvariety C, C C determined by the equation
det (%g = 0.

The following version of Hyugens principle holds: the criminant {enve-
lope) coincides with the wave front of F, considered as a, family in variables
x and ¢ with parameters q only.

Definition. An affine gencrating family F of a pair M, N is a family of
functions in u, v, p € U1 xUa x ((R*}*\{0}, 0 with parameters A, ¢ € RxR™
of the form

Flu,v,p) = A <r1(u) —q,p> +p <ra{v) —q,p>.

Here A, p =1 — A are baricentric cooordinates on R, and <,> is the stan-
dard pairing of vectors from R™ and covectors p from the dual space (R™)A.

Proposition. The germ at o point g0 = Aoay + oy of affine equidis-
tants generated by o pair (M, as), (N,bo) coincides with the family of mo-
mentary wave fronis generated by the germ F af the point z = 0, y =
0, [p] = {dr1 e, ] = ldrale,]. The wave front Wi coincides with the affine
extended wavefront W(M, N). Bifurcation diagram Bif(F) coincides with
the set B(M,N).

The classification of germs of functions f(z,t) with zero one-jet with
respect to stable v-equivalence (withoul parameters) starts with the orbits
[89] (zeR):

Be: 4?45 Cr: :nk+tz; k=234 Fooo® 4t

The complement to them has codimension 4. Their miniversal deformations
in parameters ¢ € R3 are as follows:

Bi: e+t +qet* P+ gy

Cr: 2" pwt+ gz 4+ g3z + got s
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Fpix® + 2+ gaut+ iz + gt +qu.

Introduce a non-generic singularity class (related to D.Mond classifice-
tion of mappings from plane to space):

C‘,;:_qul + (g2 +t + z103 +=U?+ﬂ7§)-

The following results were proven in [ [7]].

Theorem.(Transversal case) If n <5 and the intial chord (a,b) is not
parallel o ToM then there is an open dense subset of the space of germs of
hypersurfaces M and N such that at any point the criminant is void and
caustic is diffeomorphic to that of some of simple singularities Ay, D, B
provided that m <n 41,

Theorem. (Tangential case) If n = 3 and the intial chord (a,b) is
parallel to T, M then there is an open dense subset of the space of germs of
surfaces M and N such that the eriminant coinsides with the ruled surface
swept by bitangent chords, and the bifurcation set B(M, N) germs ot any
point of e bitangent chord iz diffeomorphic to the bifurcation diagram of
some of stmple classes By, Cy, k = 2,3,4, Fy or of the exceptional class
Cy.
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