

Home Search Collections Journals About Contact us My IOPscience

Projection of 0-dimensional complete intersections onto a line and the $k(\pi, 1)$ -conjecture

This content has been downloaded from IOPscience. Please scroll down to see the full text. 1982 Russ. Math. Surv. 37 206 (http://iopscience.iop.org/0036-0279/37/3/L11)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 165.193.178.102 This content was downloaded on 04/05/2016 at 18:55

Please note that terms and conditions apply.

Projection of 0-dimensional complete intersections onto a line and the $k(\pi, 1)$ -conjecture

V.V. Goryunov

The concept of the projection of a surface from a fibre space to its base was introduced in [3], and the equivalence of projections was defined in the natural manner. In this note we provide a list of simple projections of 0-dimensional complete intersections from C^2 to C^1 , and we prove that the germs of complements to the bifurcation diagrams of some of these are Eilenberg-MacLane spaces.

1. Theorem 1. The germ of a projection of a 0-dimensional complete intersection from $(\mathbb{C}^2, 0)$ to $(\mathbb{C}^1, 0)$ is simple if and only if it is equivalent to the germ at zero of the projection $(x, u) \mapsto u$ of one of the complete intersections $f = (f_1, f_2) = 0$ indicated in the table.

In the table, ν is the dimension of the base of the miniversal deformation of the projection (see [3]), and N is the multiplicity of the point $\{0\} = \{f^{-1}(0)\}$.

Notation	ŧ	v	N
$A_{\mu}, \mu \ge 0$ $X_{k, l}, 2 \le k \le l$ $U_{n+2}, n \ge 2$ V_{5} V_{6}	$(x, u^{\mu+1}) (x^{k}+u, x^{l}) (x^{2}+u^{n}, ux) (x^{2}, u^{2}) (x^{3}+u^{2}, ux)$	$\begin{vmatrix} \mu \\ k+l-2 \\ n+2 \\ 5 \\ 6 \end{vmatrix}$	$ \begin{array}{c} \mu+1\\ l\\ n+2\\ 4\\ 5 \end{array} $

The full contiguity diagram of the projections in Theorem 1 is as follows:

2. Let $F: (\mathbf{C}^2 \times \mathbf{C}^{\nu}, 0) \to (\mathbf{C}^2, 0)$ be a miniversal deformation of the germ of the projection $(x, u) \mapsto u$ of the complete intersection f = 0, and let $\lambda \in \mathbf{C}^{\nu}$ be the deformation parameter. We denote by \widetilde{F} a representative of F defined for $|x| < \varepsilon$, $|u| < \varepsilon$, $|\lambda| < \rho$, $\varepsilon \ll \rho \ll 1$. We set $M_{\lambda} = (\widetilde{F} \mid_{\lambda = \mathbf{const}})^{-1}(0)$.

Definition. The germ at zero of the set of those values of the parameter λ for which $\Pi(M_{\lambda})$ consists of fewer than N points is called the *bifurcation diagram* $\Sigma \subset \mathbf{C}^{\nu}$ of the germ of the projection of the zero-dimensional complete intersection $f^{-1}(0)$ from $(\mathbf{C}^2, 0)$ to $(\mathbf{C}^1, 0), (x, u) \xrightarrow{II} u$.

A bifurcation diagram has two components: $\Sigma = \Sigma_1 \cup \Sigma_2$, where Σ_1 corresponds to the appearance of multiple points in M_{λ} , and Σ_2 to the fact that distinct points on M_{λ} have the same *u*-coordinate (this component is empty for A_{μ}).

Conjecture. Let Σ be the bifurcation diagram of the germ of a simple 0-dimensional complete intersection from (\mathbb{C}^2 , 0) to (\mathbb{C}^1 , 0). Then the germ at zero of the space $\mathbb{C}^{\mathbb{N}} \Sigma$ is a $k(\pi, 1)$ -space.

3. Theorem 2. The conjecture is true for the projections A_{μ} , $\mu \ge 0$; X_h , $k \ge 2$; $X_{2, l}$, $l \ge 3$; U_{n+2} , $n \ge 2$.

Proof. All the projections in Theorem 1 have quasihomogeneous miniversal deformations with positive weights in the deformation parameters $\lambda_1, ..., \lambda_p$. For such deformations the diagram $\Sigma^{\nu} \subset C^{\nu}$ is defined globally, and the assertion of the conjecture is equivalent to that for the whole space $C^{\nu} \Sigma \Sigma$.

A_{μ} .

The theorem follows from the fact that the definitions of the bifurcation diagram of the projection of A_{μ} and of that at zero of a function with a critical point A_{μ} coincide [1].

$$X_{k,k}, \ v = 2k - 2.$$

Miniversal deformation:

$$(u + \lambda_1 x + \ldots + \lambda_{k-1} x^{k-1}, \quad \lambda_k + \lambda_{k+1} x + \ldots + \lambda_{2k-2} x^{k-2} + x^k).$$

We set $\lambda' = (\lambda_1, \dots, \lambda_{k-1})$, $\lambda'' = (\lambda_k, \dots, \lambda_{2k-2})$; let $W \subset \mathbb{C}^{k-1}$ be the complexification of the system of mirrors of the Weyl group A_{k-1} , $\Delta \subset \mathbb{C}^{k-1}$ the bifurcation diagram at zero of the function with critical point A_{k-1} . It is not difficult to show that the map $\mathbb{C}^{2k-2} \setminus \Sigma \rightarrow$ $\rightarrow \mathbb{C}^{k-1} \setminus \Delta$, $(\lambda', \lambda'') \mapsto \lambda''$ gives a locally trivial fibration with fibre $\mathbb{C}^{k-1} \setminus W$. Thus, $\mathbb{C}^{2k-2} \setminus \Sigma$ is a $k(\pi, 1)$ -space.

 $X_{2,l}, v = l.$ Miniversal deformation:

$$(x^2 + u, x^l + \lambda_l x^{l-1} + \ldots + \lambda_0 x + \lambda_1).$$

Let \mathbf{C}^{j} be the space with coordinates $x_{1}, ..., x_{l}, Y \subset \mathbf{C}^{l}$ the system of mirrors of the group D_{l} ; let $A_{l-1} \subset D_{l}$ be the subgroup generated by the reflections in the diagonals $x_{i} = x_{j}, 1 \leq i \leq j \leq l$. For the singularity $X_{2,l}, \mathbf{C}^{\vee} \Sigma$ is the space $\mathbf{C}^{l} \vee Y$, factored by the action of A_{l-1} . Hence, $\mathbf{C}^{l} \setminus \Sigma$ is a $k(\pi, 1)$ -space, where π is a subgroup of index 2^{l-1} in the group BD_{l} of generalized braids [2].

 U_{n+2} , v = n + 2. Miniversal deformation:

$$(u^n + \lambda_1 u^{n-1} + \ldots + \lambda_{n-1} u + \lambda_n + \lambda_{n+1} x + x^2, ux - \lambda_{n+2}).$$

 $\Sigma = \{\lambda \subset \mathbb{C}^{n+2} | \text{the polynomial } u^{n+2} + \lambda_1 u^{n+1} + \ldots + \lambda_{n-1} u^3 + \lambda_n u^2 + \lambda_{n+1} \lambda_{n+2} u + \lambda_{n+2}^2 \text{ has a multiple root} \}.$ It is easy to see that $\mathbb{C}^{n+2} \setminus \Sigma$ is a regular double covering of \mathbb{C}^{n+2} where $Z = \{(\Lambda_1, \ldots, \Lambda_{n+2}) \in \mathbb{C}^{n+2} | \text{ the polynomial } v^{n+2} + \Lambda_1 v^{n+1} + \ldots + \Lambda_{n-1} v^3 + \Lambda_n v^2 + \Lambda_{n+1} v + \Lambda_{n+2} \text{ has a multiple or a zero root} \}.$ Hence, $\mathbb{C}^{n+2} \setminus \Sigma$ is a $k(\pi, 1)$ -space. where π is a subgroup of index 2 in the group $B\mathbb{C}_{n+2}$ of generalized braids [2].

Remarks. a) For the singularity U_{n+2} , Σ_1 is the bifurcation diagram at zero of the complete intersection $(x^2 + u^n, ux), \Sigma_2 = \{\lambda_{n+2} = 0\}$. As Knörrer has shown in [4], for n = 2 the sp $C^4 \searrow \Sigma_1$ has a non-trivial group π_3 .

b) It is not known whether the $k(\pi, 1)$ -conjecture is true for the projections $X_{k,l}$, $3 \le k <$ and V_6 .

References

- [1] V.I. Arnol'd, Critical points of smooth functions and their normal forms, Uspekhi Mat. Nauk 30:5 (1975), 3-65. MR 54 # 8701.
 = Russian Math. Surveys 30:5 (1975), 1-75.
- [2] E.V. Brieskorn, Sur les groupes de tresses (d'après V.I. Arnol'd), Lecture Notes in Math. 317 (1973). MR 54 # 10660.
 = Matematika 18:3 (1974), 46-59.
- [3] V.V. Goryunov, Geometry of the bifurcation diagrams of simple projections onto a line, Funktsional. Anal. i Prilozhen. 15:2 (1981), 1-8. MR 82i:58017.
 = Functional Anal. Appl. 15 (1981), 77-82.
- [4] H. Knörrer, On the $K(\pi, 1)$ -conjecture, 1980.

Moscow State University

Received by the Editors 22 November 1981