## Projection of 0-dimensional complete intersections onto a line and the $k(\pi, 1)$-conjecture

This content has been downloaded from IOPscience. Please scroll down to see the full text.
1982 Russ. Math. Surv. 37206
(http://iopscience.iop.org/0036-0279/37/3/L11)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 165.193.178.102
This content was downloaded on 04/05/2016 at 18:55

Please note that terms and conditions apply.

# Projection of 0 -dimensional complete intersections onto a line and the $k(\pi, 1)$-conjecture 

V.V. Goryunov

The concept of the projection of a surface from a fibre space to its base was introduced in [3], and the equivalence of projections was defined in the natural manner. In this note we provide a list of simple projections of 0 -dimensional complete intersections from $\mathbf{C}^{2}$ to $\mathbf{C l}^{1}$, and we prove that the germs of complements to the bifurcation diagrams of some of these are Eilenberg-MacLane spaces.

1. Theorem 1. The germ of a projection of a 0 -dimensional complete intersection from $\left(\mathbf{C}^{2}, 0\right)$ to $\left(\mathbf{C}^{1}, 0\right)$ is simple if and only if it is equivalent to the germ at zero of the projection $(x, u) \mapsto u$ of one of the complete intersections $f=\left(f_{1}, f_{2}\right)=0$ indicated in the table.

In the table, $\nu$ is the dimension of the base of the miniversal deformation of the projection (see [3]), and $N$ is the multiplicity of the point $\{0\}=\left\{f^{-1}(0)\right\}$.

| Notation | $f$ | $v$ | $N$ |
| :---: | :---: | :---: | :---: |
| $A_{\mu}, \mu \geqslant 0$ | $\left(x, u^{\mu+1}\right)$ | $\mu$ | $\mu+1$ |
| $X_{k, l}, 2 \leqslant k \leqslant l$ | $\left(x^{k}+u, x^{l}\right)$ | $k+l-2$ | $l$ |
| $U_{n+2}, n \geqslant 2$ | $\left(x^{2}+u^{n}, u x\right)$ | $n+2$ | $n+2$ |
| $V_{\mathbf{5}}$ | $\left(x^{2}, u^{2}\right)$ | 5 | 4 |
| $V_{6}$ | $\left(x^{3}+u^{2}, u x\right)$ | 6 | 5 |

The full contiguity diagram of the projections in Theorem 1 is as follows:

2. Let $F:\left(\mathbf{C}^{2} \times \mathbf{C}^{\boldsymbol{D}}, 0\right) \rightarrow\left(\mathbf{C}^{2}, 0\right)$ be a miniversal deformation of the germ of the projection $(x, u) \mapsto u$ of the complete intersection $f=0$, and let $\lambda \in \mathbf{C}^{\nu}$ be the deformation parameter. We denote by $\widetilde{F}$ a representative of $F$ defined for $|x|<\varepsilon,|u|<\varepsilon,|\lambda|<\rho, \varepsilon \ll \rho \ll 1$. We set $M_{\lambda}=\left(\left.\widetilde{F}\right|_{\lambda=\text { const }}\right)^{-1}(0)$.
Definition. The germ at zero of the set of those values of the parameter $\lambda$ for which $\Pi\left(M_{\lambda}\right)$ consists of fewer than $N$ points is called the bifurcation diagram $\Sigma \subset \mathbf{c}^{\nu}$ of the germ of the projection of the zero-dimensional complete intersection $f^{-1}(0)$ from $\left(\mathbf{C}^{2}, 0\right)$ to $\left(\mathbf{C}^{1}, 0\right),(x, u) \stackrel{H}{\leftrightarrows} u$.

A bifurcation diagram has two components: $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, where $\Sigma_{1}$ corresponds to the appearance of multiple points in $M_{\lambda}$, and $\Sigma_{2}$ to the fact that distinct points on $M_{\lambda}$ have the same $u$-coordinate (this component is empty for $A_{\mu}$ ).
Conjecture. Let $\Sigma$ be the bifurcation diagram of the germ of a simple 0 -dimensional complete intersection from $\left(\mathbf{C}^{2}, 0\right)$ to $\left(\mathbf{C}^{1}, 0\right)$. Then the germ at zero of the space $C^{\boldsymbol{N}} \backslash \Sigma$ is a $k(\pi, 1)$-space.
3. Theorem 2. The conjecture is true for the projections $A_{\mu}, f \geqslant 0 ; X_{k}, k, k \geqslant 2$;
$X_{2}, l, l \geqslant 3 ; U_{n+2}, n \geqslant 2$.
Proof. All the projections in Theorem 1 have quasihomogeneous miniversal deformations with positive weights in the deformation parameters $\lambda_{1}, \ldots, \lambda_{\nu}$. For such deformations the diagram $\Sigma^{\prime N} \mathbf{C}^{\boldsymbol{v}}$ is defined globally, and the assertion of the conjecture is equivalent to that for the whole space $C^{V} \backslash$.
$\boldsymbol{A}_{\mu}$.
The theorem follows from the fact that the definitions of the bifurcation diagram of the projection of $A_{\mu}$ and of that at zero of a function with a critical point $A_{\mu}$ coincide [1].
$X_{k, k}, v=2 k-2$.
Miniversal deformation:

$$
\left(u+\lambda_{1} x+\ldots+\lambda_{k-1} x^{k-1}, \quad \lambda_{k}+\lambda_{k+1} x+\ldots+\lambda_{2 k-2} x^{k-2}+x^{k}\right)
$$

We set $\lambda^{\prime}=\left(\lambda_{1}, \ldots, \lambda_{k-1}\right), \lambda^{\prime \prime}=\left(\lambda_{k}, \ldots, \lambda_{2 k-2}\right)$; let $W \subset \mathbf{C}^{k-1}$ be the complexification of the system of mirrors of the Weyl group $A_{k-1}, \Delta \subset \mathbf{C l}^{k-1}$ the bifurcation diagram at zero of the function with critical point $A_{k-1}$. It is not difficult to show that the map $\mathrm{C}^{2 k-2} \backslash \Sigma \rightarrow$ $\rightarrow \mathbf{C}^{k-1} \backslash \Delta,\left(\lambda^{\prime}, \lambda^{\prime \prime}\right) \mapsto \lambda^{\prime \prime}$ gives a locally trivial fibration with fibre $\mathbf{C}^{k-1} \backslash W$. Thus, $\mathbf{C}^{2 k-2} \backslash \Sigma$ is a $k(\pi, 1)$-space.
$X_{2, l}, v=l$.
Miniversal deformation:

$$
\left(x^{2}+u, x^{l}+\lambda_{l} x^{l-1}+\ldots+\lambda_{2} x+\lambda_{1}\right) .
$$

Let $\mathbf{C l}^{l}$ be the space with coordinates $x_{1}, \ldots, x_{l}, Y \subset \mathbf{C}^{l}$ the system of mirrors of the group $D_{l}$; let $A_{l-1} \subset D_{l}$ be the subgroup generated by the reflections in the diagonals $x_{i}=x_{j}, 1 \leqslant i \leqslant j \leqslant l$. For the singularity $X_{2, l}, \mathrm{C}^{\mathcal{V}} \backslash \Sigma$ is the space $\mathrm{C}^{l} \backslash Y$, factored by the action of $\boldsymbol{A}_{l-1}$. Hence, $\mathrm{C}^{l} \backslash \Sigma$ is a $k(\pi, 1)$-space, where $\pi$ is a subgroup of index $2^{l-1}$ in the group $B D_{l}$ of generalized braids [2].
$U_{n+2}, v=n+2$.
Miniversal deformation:

$$
\left(u^{n}+\lambda_{1} u^{n-1}+\ldots+\lambda_{n-1} u+\lambda_{n}+\lambda_{n+1} x+x^{2}, u x-\lambda_{n+2}\right)
$$

$\Sigma=\left\{\lambda=\mathbf{C}^{n+2} \mid\right.$ the polynomial $u^{n+2}+\lambda_{1} u^{n+1}+\ldots+\lambda_{n-1} u^{3}+\lambda_{n} u^{2}+\lambda_{n+1} \lambda_{n+2} u+$ $+\lambda_{n+2}^{2}$ has a multiple root $\}$. It is easy to see that $\mathbf{C}^{\boldsymbol{n}+2} \backslash \Sigma$ is a regular double covering of $\mathbf{C}^{n}$ where $Z=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n+2}\right) \in \mathbf{C}^{n+2} \mid\right.$ the polynomial $v^{n+2}+\Lambda_{1} v^{n+1}+\ldots+\Lambda_{n-1} v^{3}$. $+\Lambda_{n} v^{2}+\Lambda_{n+1} v+\Lambda_{n+2}$ has a multiple or a zero root $)$. Hence, $\mathrm{C}^{n+2} \backslash \Sigma$ is a $k(\pi, 1)$-space. where $\pi$ is a subgroup of index 2 in the group $B \mathrm{C}_{n+2}$ of generalized braids [2].

Remarks. a) For the singularity $U_{n+2}, \Sigma_{1}$ is the bifurcation diagram at zero of the complete intersection $\left(x^{2}+u^{n}, u x\right), \Sigma_{2}=\left\{\lambda_{n+2}=0\right\}$. As Knörrer has shown in [4], for $n=2$ the $s$ r $\mathrm{C}^{4} \backslash \Sigma_{1}$ has a non-trivial group $\pi_{3}$.
b) It is not known whether the $k(\pi, 1)$-conjecture is true for the projections $X_{k, l}, 3 \leqslant k<$ and $V_{6}$.

## References

[1] V.I. Arnol'd, Critical points of smooth functions and their normal forms, Uspekhi Mat. Nauk 30:5 (1975), 3-65. MR 54 \# 8701. = Russian Math. Surveys 30:5 (1975), 1-75.
[2] E.V. Brieskorn, Sur les groupes de tresses (d'après V.I. Arnol'd), Lecture Notes in Math. 317 (1973). MR 54 \# 10660.
$=$ Matematika 18:3 (1974), 46-59.
[3] V.V. Goryunov, Geometry of the bifurcation diagrams of simple projections onto a line, Funktsional. Anal. i Prilozhen. 15:2 (1981), 1-8. MR 82i:58017.
$=$ Functional Anal. Appl. 15 (1981), 77-82.
[4] H. Knörrer, On the $K(\pi, 1)$-conjecture, 1980.

Moscow State University
Received by the Editors 22 November 1981

