THE POINCARÉ POLYNOMIAL OF THE SPACE OF FORM-RESIDUES ON A QUASIHOMOGENEOUS COMPLETE INTERSECTION

This content has been downloaded from IOPscience. Please scroll down to see the full text. 1980 Russ. Math. Surv. 35241
(http://iopscience.iop.org/0036-0279/35/2/L10)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 165.193.178.102
This content was downloaded on 04/05/2016 at 18:59

Please note that terms and conditions apply.

THE POINCARÉ POLYNOMIAL OF THE SPACE OF FORM-RESIDUES ON A QUASI-HOMOGENEOUS COMPLETE INTERSECTION

V. V. Goryunov

Suppose that quasihomogeneous functions $f_{1}, \ldots, f_{n} \in \mathbf{C}\left[z_{1}, \ldots, z_{m}\right], n \leqslant m$, give in $\mathbf{C}^{\boldsymbol{m}}$ a complete intersection X_{0} with an isolated singularity at the origin, and let $\operatorname{deg} z_{i}=A_{i}, \operatorname{deg} f_{j}=D_{j}(i=1, \ldots, m$; $j=1, \ldots, n)$. Then (see [1]), the non-singular fibre X_{ε} of the map $f=\left(f_{1}, \ldots, f_{n}\right):\left(\mathbf{C}^{m}, 0\right) \rightarrow\left(\mathbf{C}^{n}, 0\right)$ has the homotopy type of a bouquet of μ spheres of dimension $m-n$, and it was proved in [2] that $\mu=\operatorname{dim}_{\mathbf{C}} \mathcal{O}_{m} / I$ where $\mathcal{O}_{m}=\mathbf{C}\left\{z_{1}, \ldots, z_{m}\right\}$, and I is the ideal generated by the coordinate functions and all n-minors of the Jacobian matrix of f. We represent an arbitrary element in $\widetilde{H^{m-n}}\left(X_{\varepsilon} ; \mathbf{C}\right)$ as a form-residue

$$
q d z_{1} \wedge \ldots \wedge d z_{m} / d f_{1} \wedge \ldots \wedge d f_{n}, q \in \mathcal{O}_{m} / I_{.}
$$

We set $Q=\mathcal{O}_{m} / I, \quad \mathcal{O}_{n}=\mathrm{C}\left\{y_{1}, \ldots, y_{n}\right\}, B=\sum_{j=1}^{n} D_{j}-\sum_{i=1}^{m} A_{i}$ and denote by $p_{R}(t)$ the Poincaré polynomial of the graded ring R.

THEOREM.
$p_{\mathrm{Q}}(t)=\operatorname{res}_{s=0} \frac{s^{n-m}}{1+s}\left[s^{m-n-1} \prod_{j=1}^{n}\left(1-t^{D_{j}}\right) / \prod_{i=1}^{m}\left(1-t^{A_{i}}\right)-\right.$

$$
\left.-t^{B} \prod_{i=1}^{m} \frac{1+s t^{A_{i}}}{1-t^{A_{i}}} \prod_{j=1}^{n} \frac{1-t^{D_{j}}}{1+s t^{D_{j}}}+s^{-2} t^{B}\right]
$$

PROOF. For $n=m$ the formula is obvious. We consider the case $n<m$. Let $\{\Omega p, d\}, p \geqslant 0$, be the complex of germs at zero of holomorphic differential forms on \mathbf{C}^{m}. We write Ω_{f} for the factor-complex $\Omega_{f}^{p}=\Omega^{p} / d f_{1} \wedge \Omega^{p-1}+\cdots+d f_{n} \wedge \Omega^{p-1}$.

It is proved in [2] that the sequence

$$
0 \rightarrow f^{*} \mathcal{O}_{n} \complement_{\rightarrow} \Omega_{f}^{0} \xrightarrow{d} \Omega_{f}^{1} \xrightarrow{d} \ldots \xrightarrow{d} \Omega_{f}^{m-n-1} \xrightarrow{d} d \Omega_{f}^{m-n-1} \rightarrow 0
$$

is exact. Considering the grading $\operatorname{deg} z_{i}=\operatorname{deg} d z_{i}=A_{i}(i=1, \ldots, m)$ and using the fact that
we obtain

$$
\begin{gathered}
p_{\Omega_{f}^{p}}(t)=\operatorname{res}_{s=0} s^{-p-1} \prod_{i=1}^{m} \frac{1+s t_{i}^{A_{i}}}{1-t^{A_{i}}} \prod_{j=1}^{n}\left(1+s t^{D_{j}}\right)^{-1}, \\
\\
p_{f * \mathcal{O}_{n}}(t)=\prod_{j=1}^{n}\left(1-t^{D_{j}}\right)^{-1} \quad(\text { see [3]), }
\end{gathered}
$$

$$
\begin{aligned}
& p_{d \Omega_{r}^{m-n-1}}(t)=\operatorname{res}_{s=0} s^{-m+n} \sum_{k=0}^{m-n-1}(-s)^{k} \prod_{i=1}^{m} \frac{1+s t^{A_{i}}}{1-t^{A_{i}}} \prod_{j=1}^{n}\left(1+s t^{D_{j}}\right)^{-1}+ \\
& +(-1)^{m-n} \prod_{j=1}^{n}\left(1-t^{\left.D_{j}\right)^{-1}}=\operatorname{res}_{s=0} \frac{s^{n-m}}{1+s}\left[\prod_{i=1}^{m} \frac{1+s t^{A_{i}}}{1-t^{A_{i}}} \prod_{j=1}^{n}\left(1+s t^{D_{j}}\right)^{-1}-\right.\right. \\
& -s^{-2} \prod_{j=1}^{n}\left(1-t^{\left.D_{j}\right)^{-1}}\right],
\end{aligned}
$$

since

$$
\sum_{k=0}^{m-n-1}(-s)^{k} \equiv \frac{1}{1+s} \bmod \left(s^{m-n}\right) \text { and }(-1)^{m-n}=-\operatorname{res}_{s=0} \frac{s^{n-m-2}}{1+s}
$$

We consider now the map from $d \Omega_{f}^{m-n-1}$ to Ω^{m} of multiplication by $d f_{1} \wedge \ldots \wedge d f_{n}$ and, on dividing the holomorphic form of highest degree in C^{m} by $d z_{1} \wedge \ldots \wedge d z_{m}$, we identify Ω^{m} with \mathcal{O}_{m}. Then we obtain a map $d f: d \Omega_{f}^{m-n-1} \rightarrow \Theta_{m}$ of degree B. It is proved in [2] that $d f$ is an embedding and that $\Theta_{m} / \operatorname{Im} d f$ is a free $f^{*} \mathcal{O}_{n}$-module of rank μ. Thus, if $M=\mathcal{O}_{m} /\left(\operatorname{Im} d f+\sum_{j=1}^{n} f_{j} \mathcal{C}_{m}\right)$, then

$$
p_{M}(t)=\left(p_{\mathcal{O}_{m}}(t)-t^{B_{d}}{\underset{f}{f}}^{m-n-1}(t)\right) \prod_{j=1}^{n}\left(1-t^{D_{j}}\right)
$$

which coincides exactly with the expression for $p_{Q}(t)$ in the statement of the theorem. But since it is clear that

$$
I \supset \operatorname{Im} d f+\sum_{j=1}^{n} f_{j} \Theta_{m}, \quad \operatorname{dim} M=\operatorname{dim} Q=\mu
$$

we have

$$
I=\operatorname{Im} d f+\sum_{j=1}^{n} f_{j}\left(\Theta_{m} \text { and } M=Q\right.
$$

COROLLARY. The polynomial $p_{Q}(t)$ is reciprocal for $n=1$ and $n=m-1$.
In the remaining cases the polynomial is not reciprocal, in general.
We remark also that if $n=m-1$,

$$
J_{i}=\operatorname{det} \frac{\partial\left(f_{1}, \ldots, f_{m-1}\right)}{\partial\left(z_{1}, \ldots, \hat{z_{i}}, \ldots, z_{m}\right)} \quad \text { and } \quad J_{i j}==\frac{\partial}{\partial z_{j}} J_{i},
$$

then the element of highest weight in Q has the form

$$
\sum_{i, j=1}^{m}(-1)^{i+j}\left(J_{i i} J_{j j}-J_{i j} J_{j i}\right)
$$

References

[1] H. M. Hamm, Lokale topologische Eigensehaften komplexer Räume, Math. Ann. 191 (1971), 235-252. MR 44 \# 3357.
[2] G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. MR 53 \# 417.
[3] G.-M. Greuel and H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Inventiones Math. 49 (1978), 67-86. MR 80d: 14003.

