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VECTOR FIELDS ON BIFURCATION VARIETIES

V.V.GORYUNOV

Quite often we need to classify functions on a space containing a distinguished
hypersurface. This happens, for example, when we consider functions on vari-
eties with boundaries, equivariant singularities, perestroikas, section singularities,
[1,22,23,4,5,7,11,9,10]. On the infinitesimal level problems of this kind require the
description of the Lie algebra of vector fields tangent to the distinguished hyper-
surface. In many cases this hypersurface arises as a discriminant or a hifurcation
diagram of a certain object. In this lecture, following [3,§1.5], we give a survey of
some results concerning holomorphic vector fields tangent to such singular varieties,
namely, to

(1) diseriminants and bifurcation diagrams of functions,
(2) discriminants and bifurcation diagrams of projections onto a line,
(3) discriminants of eomplete intersections.

In all these cases the module of vector fields preserving the hypersurface is free
over the ring of functionis on the ambient space. Such a hypersurface is called a
free divisor in the sense of Saito [19,8]. Knowledge of the generators of the module
of these vector fields is also uscful calculating generators of the dual object, which
is the module of differential forms with a logarithmic pole along the diseriminant.
This leads to expressions for the coefficients of the Gauss-Manin connection of the
corresponding singularity [18].

1. FUNCTIONS ON SMOOTH VARIETIES

Consider a germ at the origin in C* of a holomorphic function f(z) with an

isclated critical point. Recall:

(1) a deformation Fz,A), A = (Ao,...,Ap—1) € C¥, of this funciion is R-
miniversal if its initial velocities 8F/8X;|ax=p represent a Clinear basis of
the space O, /O0.{8f/0z1,...,0f/0z,);

(2) a deformation &(z,A'), X' = (M1,..., 4m1) € C*7L, of fis truncated R-
miniversal {or Ry-miniversal) if the similar condition holds for the space
M, /O {8f/821,...,0f[Dz.}.

Here @, denotes the space of germs at the origin of holomorphic functions on C*
and m, is the ideal in @, of germs vanishing at the origin.

The parameter spaces C* and C#~! of these deformations contain respectively:

(1) the discriminani A = {}| the surface F(zx,A) = 0 in the z-space is not
smooth};
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(2) the bifurcation diagram of
functions B = {\| the func- (A} =CF5A
tion ®(z,A') on the z-space
has either a non-Morse criti-
cal point or equal critical

values}.

We say that a vector field v is tan-
gent to a hypersurface ¢ = 0 if the
derivative of ¢ along v belongs to the
ideal generated by ¢. We are going
to describe the modules @4 and Og

of the germs at the origins of holo-
morphic vector fields tangent to the
discriminant and to the bifurcation
diagram of functions.

The versality conditions on " and T CCrt =)
® imply existence of the following
decompositions:

F-8F[8); =
v0,;0F /0% + -+ + vyt :OF/BA,u_; mod Oy A(0F/Dz1,...,0F/3z,),
i=0,...,0—-1 [22,23],

and

37 =wy i+
w1 BB/BA + -+ w1 j0B/FAy1 mod O, A(0/Bx1,...,00/0x4),
i=l,pu-1 [6]:

where v, ;{}) and w, j(A") are germs of holomorphic functions.

Theorem 1.1.
(1) [22,23] Ba = Oalvo,...,vp1), wi=vgifh, + - Fvu_1i0a,_,.
(2) [6] Oz = Oxluwy,. .. !w#“l)r wj = wllja’\l +-+ w#—l.iaAp—: .

The both modules are free. For the simple functions this procedure gives the basis
of O4 different to the basis obtained by the convolution of invariants of Coxeter
groups {2,5.2.5.7]. _

In practice it is more convenient to take the deformations as

Flz,)) = 8(z,N) 4+ do = fl2) + dpmrepa(z) + -+ Mer(z) + Ao,
where ey,...,e,—; is a Clinear basis of m; /O, (6f/0z,,..., affa;nn_).

For F(z,A) = &(x, ') + A it is also convenient to use for calculations of the Ox
generators the matrix V = (va,i|ag=0), 8,¢ = 0,..., 1 — 1, of the components of the
Op generators. Set 7 : (Ag, A"} = A and let us write a vector field as a column of
its components.

223

Corollary 1.2 [21]. wj = m (V" lw), j=1,..., 4 — 1, where vy = V| ap=0-

Example 1.3. 4. F(.’B,,\) =g + doz? 4+ Az 4 Ao,
OF[0) =1, OF/0M =z, OF/a\ =2

4F - QF[0Xo =2 - BF [0z + 2)g - 2% 4+ 83X -z + 44X - 1,
AF -OF[0M\ = (2% + Aa/2) OF /02 + 301 - 0% + ($do — A2) - 3+ (=A1ha/2) - 1
4F - OF (02 = (2° + Xax/2 4 8M1/4) - OF [0z + (429 — A2) - 22+
(—2Mhe) -z + (=3M7/4) - 1.

g = (4X,3M,2)2) — Euler field,
mo= (=Ada/2,4% — A, 30),
vz = (=3X]/4,-2M)g, 400 — X2).

@(.’B,)l) = .’1,"4 + /\2&?2 + )\1:1:. uny = (3}1, 2A2), Wy = (—7/\1A§,9/\§ - 2Ag).

Consider the projection p : (z,A) — A. The decompositions preceding the the-
orem show that a field v preserves the discriminant if and only if it is pliftable
to a vector field ¥ (i.e. p.& = v) on the (x,A)-space tangent to the smooth vari-
ety F(z,)) = 0. We can also see that, for F{z, )} = @(z, X') + Ao, a vector field
preserves the bifurcation diagram X if and only if it is 7-liftable to a field on C*
tangent to the diseriminant.

These remarks are corollaries of the following general property. Consider a germ
of a reduced hypersurface V in C#. Suppose the resiriction to V of the fibration
m: € — CH 1 is proper. Let d be the multiplicity of the intersection of ¥V with
771(0). Then V is given by an equation which is polynomial of degree d along the
fibre of the projection. Let D : C*~! — C be the discriminant of this polynomial.
We call the zero-variety of D the bifurcation variety.

Fheorem 1.4 [16,17). Let Z C C#~! be the set of the base points over which
more than two points of the hypersurface glue together {i.e. the number of different
poinis of the hypersurface over such base point does not exceed d— 2). Suppose the
dimension of Z is sirictly less than the dimension of the bifurcation variety. Then
every germ of a holomorphic vector fleld on the base, preserving the bifurcation

variety, is liftable to a germ of a holomorphic field tangent to V in the space of the
fibration. '

Let us return to the discriminant A and the diagram ¥,

The dimension of the linear space spanned hy evaluating vector fields of B, at
0 € C* (this is the rank of the system of vectars at the origin of the basic fields)
is equal to the difference between the Milnor mumber # and the Tjurina number
7 of the singularity f. At an arbitrary point A € C# the corank of the system
of basic vector fields coincides with the contact codimension of the corresponding
multi-germ, The corank of the basic system of O at M € C*~ is measured by the
left-right codimension of the multi-germ &(-, \') at the critical points.”
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Corollary 1.5. (e.g.[4,6]) The following siatements are equivalent:
(1) the finciion f is right-equivalent o a quasihomogeneous one;
(2) every holomorphic vector field preserving the discriminant A C C# vanishes
at the origin;
(3) every holomorphic vector field preserving the bifurcation diagram of func-
tions & C C*! vanishes at the origin.

Remark 1.6. All the assertions of this section can be extended to the case of func-
tions on a variety with a smooth boundary z; = 0. To do this we only need to
substitute x8F/8z; and z,08/0z; for 8F/Jz; and 88/dz; in the decomposi-
tions. The adaptation for functions with linear singularities [20] is also easy [13].

2. PROJECTIONS ONTO A LINE

Consider a fibration C*¥! '— C, (x,u) — u. Let f(z,u) = 0 be a germ al the
origin of a complete intersection of positive dithension with an isolated singularity,
f (C™*1,0) - (CP,0), n > p. We call such an object in the space of the fibration

‘a projection .

‘There is a notion of Ri-equivalence on the space OF , of all projections [3,
5.1.3.4]: we say that two projections f' and f" are R+-equ1va.lent iff we can find
germs at 0 € C"*' of a p x p-matrix M, det M(0) # 0, and of a diffeomorphism
(z',u) — (z"(z',u),u + ¢), ¢ =const, such that

(@' w) = M2, u) - (2" (2 u),u + ¢).

Actually, this is an equivalence of height functions on complete intersections. This
generalizes the notion of the R4 -equivalence of functions on smooth manifolds. (If
we do not require a diffeomorphism to be fibred, we get the usual contact equiva-
lence.) :
An ‘R4 -miniversal deforma.tmn of a projection f is a deformation F (z,u, M),
= (A1y+.-»Ap—1) € C*71, of a map-germ f(z,u) such that its initial velocities
BF/ x| =0 represenl; a Clinear basis of the space

OL IO+ Os,u{0f/8z1,...,0f[02,) + C 3f/0u}.
Here Iy C Oy, is the ideal generated by the coordinate functions of the mapping

Let C* be the (v, /\)—spa.ce

The spaces C* and C#~! contain respectively:

(1) the discriminant A = {(u, X')| the variety F{z,u,X") = 0 in the a:-spaoe Is
not smooth};

(2) the bifurcation diagram of projections T = {)'| either the variety F (z,u,
XY = 0 in the (z,u)-space is not smooth or the function u on this variety
has degenerate eritical points or equal critical values}.

We are going o describe the modules Oa and Gp of the ta.ngent vector fields.
The description will be quite similar to the previous section. .
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In what follows it is convenient to set w = Ap and ) = (20, A").
The versality condition- implies existence of the decompositions in the space

OL A Ir O\ + O \(0F[8z1,...,0F [8zy)} (12]:

wdFf0N = w0 0F[Bho +...4vu 1 0F [y,  i=0,...,p—1;

ujaF/au . wrg.,-BF/a,\o+...+w,1_1__,-3F/6,\u_1, jl :-1,...,,[5— 1,

il

where v, {(X') and w, ;(X'} are holomorphic, functlons
Let &, ; be the Kronecker symbol.

Theorem 2.1 [12].
(1) OA = OA(UQ,.. . ,'Up—l)r
vi'= (vo,i — Bo,iu)Bng + -+ (vaci,i — Epca ju)0 .
(2) 92 :Oa\'(l_wll"'!w#—l)i . # "
w; = wly.fa)u Feeet w"Hl'ja'\"_t.

Both modules are-free,

The liftability properties of the elements of @ and Ox from the previous section
are hold again. The corank at (u,X") of the system of ©4-basic fields is equal
to the contact codimension of the multi-germ of the variety F(-,u, ') = 0 at its
singular points. The corank of the system wy,...,w,—1 at A € C*~! is the left-right
codimension of the germ of the projection F(-,-, X'). Consequently, if the projection
[ is quasihomogenious, all the basic vector fields vanish at the origin.

Corollary 1.2 expressing the fields w; in terms of the matrix of the fields o
extends to the case of projections word to word,

gxample 2.2 (18]. Consider a miniversal deformation of the simple projection
2,2

Fz,u, X} = (mf +MTtuddazy + :1:2,:1:1.'52 + As).

The calcula.tmns provide the following matrices of the components of the basic fields
{we write a field out in a line):

@A : 2u Al Az - 2/\3
'—Gz\zAa 42 — A% —8)\3 Al)\s
—6/\1/\3 - —SA_'; 4y — )\% Az/\;;
4)\3 _— 2)\1)12 . —3/\2 —3A1 u
Oz : A1 Az 2)a
)\3 4+ 32523 Ag + 3201 3a —)\'%)\3 — )\%/\3
AT — 3603, s+ A — 361 A2),+ 128X3 — 176X A X2 —

Let us remark that in this example the matrix for Oa also provides basic vector
fields tangent to the discriminant of the fat point (x3 4 22,21 24). This is so because

our deformation gives a 4-parameter miniversal deformatlon of this fat point (u is
the additional parameter). .
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In [13] there are given examples of reduction to normal forms of functions on
spaces containing the discriminant or the bifurcation diagram of a projection of low
codimension.

3. ISOLATED SINGULARITIES OF COMPLETE INTERSECTIONS

Recall that the discriminant A of an isolated singularity of complete intersection
is the subset in the base of a contact versal deformation of this singularity consisting
of the values of the deformation parameters corresponding to non-smooth perturbed
complete intersections.

Theorem 3.1 [15]. The discriminant of an isolated complete infersection singular-
ity is a free divisor.

Let us show how to construct free generators of Og.

Let F(x,)) be a contact versal deformation of a complete intersection fo(z) =
0, fo: (C*,0) - (CP,0), n = p. A = (ho,A1,--.,Ar) is the parameter of the
deformation. Suppose the Ag-axis has a finite index of intersection p with the
discriminant A ¢ €™, Then u is the dimension of the base of R-miniversal
deformation of the projection (#, Ag) — Aq onto the line of the complete intersection
f = Fla,==a,=0 = 0. Thus the space

OF 3,5 0% 5, + Oz,20(8F /824, - .., 0f[0x,)}

is p-dimensional and for its linear basis one can take the restrictions to the Ay =
+» = A, = 0-plane of the elements

BF[BXg,..., N> 1 OF[8X,,
AF(BX;,..., N TraF [0,
S OF 8Dy ... A TIOF0A,,

In the space 02,3/{11?‘92.:\ + O, A{0F[0x1,...,0F/8x,}} there exist decompo-

sifions:

whereall i, > 0and po+pn + -+ e = o

AL AF[OX; = v iOF A + -+ 4+ v 0F [0, i=0,...,m

where v,;(\) are polynomials in )\o of degree strictly less than g, (vs = 0 for
s =0).
Theorem 3.2 [12].

Oa = Oalo,..yvrhy i = (voi — Boidg")Ong + -+ {vri — Bridg") -

For a quasihomogeneous complete intersection of positive dimension there is an-
other algorithm for constructing generators of the module ©a.

Let J7(z, ) be this time a quasihomogeneous 7-parameter miniversal deformation
" of a complete intersection fo(zp) =0, fa : {(C™,0) — (C?,0), n > p. Let ay,...,a;
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be the weights of the parameters Ay,..., A, The Euler vector field ¢ = a3 M, 8y, +
-+ ar A B, is tangent to the discriminant A C C7. Let us express the other
generators of @4 in terms of e.
Let ¥ = (¥;;(A)) be the matrix of multiplication by the function #{x) € ©,
in the @y-module O‘;,A/{IFO;A + Oy A(0F /0%y, ...,8F/dz,)} with respect to the
generators 8F/0A;,...,0F/dA\

$-OF[3%; = W ;0F/0M + - + U, 0F/3,, j=1,...,7

The matrix ¥ is determined up to addition to its columns of columns of compo-
nents of any fields from O4.

We identify a vector field on C™ with the 7-colunm of its components. One can
easily see that the field ¥¢ preserves the discriminant.

Now, consider the ideal I C O, generated by the coordinate funcl;lons of the
mapping fo and by all the p-minors of the Jacobi matrix (8fe/3z). Its codimension
coincides with the Tjurina number t [14]. Let 91,...,%, € (), represent a basis of
O/ and ¥,,..., ¥, be the corresponding multiplication matrices.

Theorem 3.3 [13]. The vector fields Ty¢,..., Ure are free generators of the ;-
Jrlxodule of vector fields tangent to the discriminant of the quasihomogeneous isolated
singularity of complete intersection fy = 0 of positive dimension.

4. EQUATION OF A FREE DIVISOR

Let = < € be a free divisor. The module of vector fields on C" Langent to = is
free. Let v; = vyi0y, +++- + v, t = 1,...,r, be its generators.

Theorem 4.1 [19]. = = {det{w;) = 0}.

Examples 4.2.
a} Example 1.3 provides the equation 273 4 84,A3 = 0 for the bifurcation
diagram of functions Aj.
b) According to Example 2.2, the bi-
furcation diagram I of projection Cj o
is given in C* by the equation

As(A2 — AZ)(409A3 + 768A M4
2701 A3 — 6ATAI A 4+ 27080 + 23D
=0.

This surface is shown on the right.
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