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Local invariants of maps between 3-manifolds

Victor Goryunov

Abstract

We classify order 1 invariants of maps between 3-manifolds whose increments in generic
homotopies are defined entirely by diffeomorphism types of local bifurcations.

We show that in the oriented case the space of integer invariants has rank 7 for any source
and target, and give a geometric interpretation of its basis. The mod2 setting, with R

3 as the
target, adds another 4 linearly independent invariants, one of which combines the self-linking of
the cuspidal edge of the critical value set with the number of connected components of the edge.

We also analyse general non-oriented settings and obtain either exact descriptions or rank
estimates for the spaces of integer- and mod2-valued invariants.

The proofs are based on the study of bifurcations in generic 1- and 2-parameter families
of maps.

Introduction

After Vassilev’s introduction of finite-type invariants of knots [10], a similar approach has
been developed to invariants of smooth maps in a range of other low dimensions. The first
to be mentioned is Arnold’s study of order 1 plane curve invariants [1, 2]. Among numerous
consequences of this study was construction of theory of higher-order invariants for certain
classes of curves in the plane [6, 11]. Order 1 local invariants of maps of surfaces to R

2 and
R

3 have also been classified [5, 8], followed by a higher-order construction in a special case
(see [7]). Finally, the last order 1 setting considered so far has been that for maps of 3-manifolds
to the plane [12].

This paper makes the next natural step in the direction of increasing dimensions, and is
devoted to the classification of the invariants of maps between 3-manifolds. Throughout the
paper, we assume that our manifolds have no boundary, and the source is compact. We are
trying not to restrict our attention to only R

3 as a target. We are considering all four possible
source–target orientation combinations. The invariants we study are order 1 local, that is, those
whose increments in generic homotopies of maps are determined entirely by the diffeomorphism
types of local bifurcations. Since no higher-order invariants will be involved, we call such
invariants just local. All invariants are considered modulo choices of additive constants.

For given source and target manifolds, M and N , each particular connected component
of the space Ω(M,N) of all smooth maps between the two manifolds gives rise to its own
space of local invariants. Different components may have different topology, which may imply
difference between the invariant spaces. However, none of the results of this paper depends on
the component choice. Therefore, we will frequently refer to local invariants of maps between
a pair of manifolds without even mentioning particular components of Ω(M,N).

The invariants will be integer- and mod2-valued. We describe most of them in terms of the
geometry of the critical value set C of a map.

Our first main result, Theorem 2.1, states that the space of integer local invariants has rank 7,
provided both M and N are oriented. In such a case all the invariants are coming from the
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numbers of points of C of various isolated singular types (for example, numbers of positive and
negative swallowtails), Euler characteristic of the critical point set, and the linking number in
J1(M,N) of the 1-jet extension of a map with the set of all 1-jets of corank at least 2.

Our second main result, Theorem 4.1, concerns mod2 local invariants of maps of an oriented
3-manifold to oriented R

3. This time the invariant space turns out to be of rank 11. We
express four new generators, not coming from the integer setting, in terms of their increments
across codimension 1 strata in Ω(M,R3). However, we have been able to find a homotopy-
independent interpretation for only one new generator: it combines a self-linking of the cuspidal
edge of C with the number of connected components of the edge (Theorem 4.3). A problem of
integrating three other mod2 invariants stays open.

Theorem 4.1 allows us to estimate the mod2 invariant spaces for arbitrary oriented source
and target manifolds (Corollary 4.2).

Our proofs of Theorems 2.1 and 4.1 are based on the analysis of generic 1- and 2-parameter
families of maps. Straightforward simplifications of the analysis yield descriptions of the integer
and mod2 invariant spaces in the cases when at least one of the two participating 3-manifolds
is not oriented (Theorems 6.1 and 6.2). In particular, we find that, for non-oriented source
and arbitrary target manifolds, the integer invariant space has rank 4 (certain attempts at this
result with non-oriented R

3 as the target were taken in [9]), while for maps from an oriented
3-manifold to a non-oriented one the rank of the integer space is either 4 or 5.

All our analysis is local, and thus gives exact ranks of the invariant spaces for connected
components of Ω(M,N) with trivial fundamental groups. In the majority of the integer
settings, passing to non-trivial fundamental groups does not reduce the rank since all the
invariants possess homotopy-independent interpretations. However, in the remaining integer
setting (oriented source, and non-oriented target) and for mod2 invariants, it would be very
interesting to understand when such reduction is possible, that is, when the linear combinations
of the strata in Ω(M,R3), dual to the local invariants of maps from M to R

3, fail to stay trivial
codimension 1 cycle if the target is changed.

The structure of the paper is as follows.
In Sections 1–5, we consider maps between oriented 3-manifolds.
Section 1 describes a stratification of the critical value set C of a generic map in terms of

stable multi-singularities of maps, with an emphasis on the contribution of the orientations.
In Section 2, we introduce seven natural local invariants, and formulate in Theorem 2.1 that

certain simple linear combinations of the seven form a basis of the space of all integer local
invariants.

Section 3 contains a complete list of codimension 1 strata in the space of all maps and provides
expressions for the basic invariants in dual terms, as linear combinations of such strata.

In Section 4, we consider mod2 invariants. Theorem 4.1 on the rank and basis of the mod2
invariant space for N = R

3 is stated there, along with Theorem 4.3 on a way to derive a local
invariant from the geometry of the framed link defined by the cuspidal edge of C.

Section 5 contains proofs of Theorems 2.1 and 4.1. Here, we study bifurcations of codimension
2 singularities of the maps.

Finally, Section 6 carries out invariant classification, both over Z and Z2, in the assumption
that either source or target manifold, or both of them are not oriented.

1. Stratification of a generic critical value set

The main object of our study is the critical value set C(f) of a generic map f between two
3-manifolds. A regular point of C is the value of f at its fold point, an A1 singularity, near
which we can locally write f as (f1, f2, f3) : (x, y, z) �→ (x2, y, z). In the first five sections of
the paper, we are considering maps between oriented manifolds, and so, in local normal forms
within these sections, we assume that dx ∧ dy ∧ dz and df1 ∧ df2 ∧ df3 are our fixed orientations
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Figure 1. Positive and negative swallowtails.

of the source and target. Many of our normal forms will have ambiguities in sign choices which
cannot be eliminated if the source and target orientations stay fixed.

Following [8], we fix a natural co-orientation of the A1 stratum of C, to its side on which the
number of local preimages of a point is greater.

Irregular points of C are coming from various multi- and uni-germ singularities of generic
maps between 3-manifolds. They are:

A2
1, transversal intersections of two smooth sheets;

A3
1, same for three sheets;

A±
2 , cuspidal edges, consisting of values of f at its pleat points, that is, points near

which f has normal form (±x3 + yx, y, z);
A±

2 A1, transversal intersections of edges with regular sheets;
A±

3 , swallowtail points, at which f locally is (±x4 + yx2 + zx, y, z).

The sign ± in the edge notation stays for the local degree ±1 of the map. Two edges of
opposite signs meet at a swallowtail. A swallowtail is positive if the positive edge rotates to
the negative edge anti-clockwise as seen from the pyramidal side of the surface (see Figure 1).

Near edges, the co-orientation of the smooth part of C is inside the smaller of the two local
connected regions.

Let Ω = Ω(M,N) be the space of all C∞-maps between two oriented three-dimensional
manifolds, M and N . As has already been mentioned, we assume throughout the paper
that both manifolds are without boundaries, and that M is compact. Mappings with more
complicated singularities of their critical value sets than those described above form the
discriminantal hypersurface Ξ in Ω.

Consider connected components of Ω \ Ξ. A numerical invariant is a way to assign numbers
to each of them. Along a generic path in Ω, the values of an invariant change at the moments
of discriminant crossings.

Definition 1.1. We say that an invariant is local if every increment of the invariant is
completely determined by the diffeomorphism type of the local bifurcation of the map at the
crossing.

For integer invariants, this assumes that the discriminant should be locally co-oriented.

2. Integer invariants in the oriented setting

2.1. Examples

It is clear that the number of isolated singularities of C of a particular type is a local invariant.
We introduce notations for five such invariants:

It, the number of triple points A3
1;
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Is± , the numbers of positive and negative swallowtails;
Ic± , the numbers of A±

2 A1 points.

Another obvious local invariant is

Iχ, half of the Euler characteristic of the critical locus K.

The Euler characteristic of K is even since K is a smooth surface with a natural co-orientation
in the oriented source M , for example, to the side where the local degree of the map is +1.

2.2. Linking with Σ2

To define our next invariant, consider the subset Σ2 of the jet space J1(M,N). The subset
consists of all 1-jets with the linear parts of corank at least 2, and is of codimension 4 in the jet
space. It has a canonical co-orientation (see, for example, Section 3.3) which does not depend
on the orientability of M and N .

Fix a map f0 ∈ Ω(M,N) \ Ξ. Consider a generic homotopy {ft}0�t�1 in Ω from f0 to a map
f1 /∈ Ξ in the same connected component of Ω. The images of the extensions j1ft define a four-
dimensional film ϕ ⊂ J1(M,N) which meets Σ2 at isolated points. We orient ϕ as [0, 1] ×M ,
and, having Σ2 co-oriented, obtain the intersection index 〈ϕ,Σ2〉. We assume the orientation of
J1(M,N) being the co-orientation of Σ2 followed by its orientation, hence the index compares
the orientation of ϕ with the co-orientation of Σ2 at the meeting points. We now introduce

IΣ2 , the linking number of the image of the 1-jet extension of a map with Σ2, as

IΣ2(f1) = 〈ϕ,Σ2〉 + IΣ2(f0),

where the last term is an arbitrary fixed number.

Owing to the parallelizability of oriented 3-manifolds, the invariant is integrable, that is, may
be expressed in a homotopy-independent way. Namely, the parallelizability allows us to consider
J1(M,N) as Hom(R3,R3) ×M ×N , and Σ2 in it as Σ2

0 ×M ×N , where Σ2
0 ⊂ Hom(R3,R3)

is the set of operators of corank at least 2. Let ψ ⊂ Hom(R3,R3) be a codimension 3 closed
film with boundary Σ2

0. We orient the codimension 3 closed film Ψ = ψ ×M ×N ⊂ J1(M,N)
so that Σ2 is its boundary. Up to an additive constant, we have

IΣ2(f) = 〈Image(j1f),Ψ〉.
All 6 invariants from the previous section were introduced in a homotopy-independent, we

call it integral, form.

2.3. Classification

All through the paper, local invariants are considered up to additive constants which may be
chosen arbitrarily for each connected component of Ω.

Theorem 2.1. (a) The space of integer local invariants of maps between two oriented
three-dimensional manifolds has rank 7.

(b) This space is generated by

(Is+ ± Is−)/2, (Ic+ + Ic−)/2, It, (It + Ic+)/2, Iχ, IΣ2 .

We prove part (b) of the theorem in Section 3.3 modulo part (a). Part (a) itself will be
derived in Section 5.4 from the study of codimension 2 singularities undertaken in Section 5.
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3. Codimension 1 bifurcations

A local invariant is dual to a trivial codimension 1 cycle in Ω(M,N). Such cycle is a linear
combination of strata of codimension 1 singularities of our maps. Its coefficients are the
increments of the invariant at crossings of the strata (in the positive direction if we are working
over Z). We are now listing all codimension 1 singularities up to orientation-preserving local
diffeomorphisms of the source and target.

3.1. Multi-germs

First of all, we have interactions of generic singularities of C which involve certain tangencies and
further intersections. They differ by the co-orientations of the participating smooth sheets and
by the signs of the edges and swallowtails. It is usually possible to co-orient the corresponding
codimension 1 strata in Ω. In such cases, our figures may show the critical sets only for the
‘positive resolutions’ and indicate by arrows how one of the local components has been moved
during the bifurcations.

The notations of the bifurcations below are self-explanatory, with T used for the tangency of
the participating strata. Letters e and h distinguish between elliptic and hyperbolic versions of
similar bifurcations. Letter r stays for the number of faces of the bounded region appearing after
the bifurcation, which are co-oriented outward the region. If there is no such bounded region,
we make a special comment on the meaning of r. The figures illustrate only one particular value
of r from the range. Signs of the edges and swallowtails are usually omitted from the figures.

So, we have (see Figure 2):

A4,r
1 , r = 2, 3, 4, intersection of four smooth sheets. The pre-bifurcation tetrahedral

region has 4 − r faces co-oriented outwards. Therefore, the r = 2 stratum A4,2
1 is not

co-orientable in Ω by local means.
TA3,r

1 , r = 0, 1, 2, 3, three smooth sheets are pairwise transversal to each other, but the
line of intersection of any two of them is tangent to the third sheet at the moment of bifurcation.

TA2,e,r
1 , r = 0, 1, 2, elliptic tangency of two smooth sheets.

TA2,h,r
1 , r = 0, 1, same, but hyperbolic. We write r = 1 if the sheets have the same co-

orientation, and r = 0 if the co-orientations are opposite. For r = 1, we fail to locally co-orient
the stratum in Ω.

A±
2 A

2,r
1 , r = 0, 1, 2, cuspidal edge meets the intersection of two smooth sheets.

A2,e,±,±
2 , two edges of given signs meet face to face. We will use A2,e,+,−

2 , not A2,e,−,+
2 .

A2,h,±,±
2 , one of the edges is overtaking the other. If the signs of the edges coincide, we

fail to co-orient the stratum in Ω by local means. For A2,h,+,−
2 , we set the positive side of the

bifurcation to be that with two A+
2 A1 points.

A±
3 A

r
1, r = 0, 1, a smooth sheet passes through a swallowtail.

TA±
2 A

e,r
1 , r = 0, 1, cuspidal edge becomes tangent to a smooth sheet so that the two

local components of C do not intersect before the bifurcation.
TA±

2 A
h,r
1 , r = 0, 1, the hyperbolic version of the previous. For r = 1, the co-orientation

of the A1 sheet is towards the cuspidal edge before the bifurcation. For r = 0, it is opposite.

3.2. Uni-germs

Figure 3 shows codimension 1 degenerations of corank 1 uni-germs. The normal forms of the
degenerate maps are taken below from [4]. The sign of the real parameter λ in the local formulas
for the families co-orients the strata in Ω. Since all families have normal forms (h(x, y, z, λ), y, z),
we are listing the functions h only.

A±,+,+
2 : ±(x3 + (y2 + z2 − λ)x), birth of a flying saucer. Here ± is the sign of the edge,

and the two pluses in the notation are the signs of the squares in the coefficient of x.
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2A2,e

1A0A32A2,h,+,−

1Ae,1TA2 1Ah,1TA2

TA1
3,1

TA1
2,e,2 TA1

2,h,0

1A2,1A2

1A4,3

Figure 2. Codimension 1 multi-germs.
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writhe = 
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e

A3
h

A4
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Figure 3. Codimension 1 corank 1 uni-germs.

A±,+,−
2 : ±(x3 + (y2 − z2 + λ)x), hyperbolic transformation of an edge.

A±,−,−
2 : ±(x3 − (y2 + z2 + λ)x), death of a compact component of an edge.

Ae
3, birth of cuspidal lips.

Ah
3 , beaks bifurcation on an edge.

Aσ,s
4 , σ, s = ± : σ(x5 − λx3 + syx2 + zx). Here σ is the local degree of the whole map,

while s is the sign of the two swallowtails born in the bifurcation.

Finally, we have four corank 2 degenerations:

D+,±
4 : (x2 + y2 + zy + λx,±xy, z), where ± is the sign of the edge (see Figure 4, λ = 0).

D−,±
4 : (±(x2 − y2) + zx− λy, xy, z), of the local degree ±2.
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λ = 0 λ = 0

σ
,σ

4
+D

4D−,−
4D−,+

Figure 4. Codimension 1 corank 2 uni-germs.

The critical value sets of these families have been depicted in [3]. However, their features
responsible for the co-orientability of the strata in Ω have not been emphasized.

What happens geometrically during theD4 transitions is presented in Figure 4. For λ = 0, we
are getting the purse and pyramid, the well-known stable singularities D+

4 and D−
4 of caustics

in three dimensions. The critical value sets for λ = −1 are mirror images of those for λ = 1.
This provides the co-orientation of the strata in Ω.

Namely, we co-orient the D+,±
4 strata, so that to their positive side (corresponding to λ > 0)

we have a pair of positive swallowtails (hence for λ < 0 we have a negative pair). Note that
the surface D+,±

4 , λ 	= 0, in Figure 4 is the result of gluing its half shown on the right with a
copy of this half obtained by the rotation through 180◦.

In the D−,±
4 cases, the edges for λ 	= 0 are not as straight as they were for λ = 0. They form

screws with the rotation angle 2π/3. We choose the positive resolution of D−,σ
4 to be that with

the σ2π/3 rotation.

3.3. The integer invariants in terms of linear combinations of the strata

Lemma 3.1. The basic integer-valued invariants of Theorem 2.1 are dual to the following
linear combinations of the codimension 1 strata:

Is/2 = (Is+ + Is−)/2 : A
e/h
3 +A4,

(Is+ − Is−)/2 : A±,+
4 −A±,−

4 + 2D+,±
4 ,

Ic/2 = (Ic+ + Ic−)/2 : 2A2,e
2 +A3A1 + TA2A1 +A4,

It : 2TA3
1 + 2A2A

2
1 +A3A1,

(It + Ic+)/2 : TA3
1 +A2A

2
1 + 2A2,e,+,+

2 +A
2,e/h,+,−
2 +A3A1 + TA+

2 A1 +A+,±
4 ,

Iχ : A±,+,+
2 +A±,+,−

2 +A±,−,−
2 ,

IΣ2 : D4.

The last relation holds for an appropriate co-orientation of Σ2.

Here a missing index ± or r or e/h in the notation of a stratum means the sum of the
elementary strata along the whole range of the index, for example,

A3A1 = A+
3 A

1
1 +A+

3 A
0
1 +A−

3 A
1
1 +A−

3 A
0
1, or A2,e

2 = A2,e,+,+
2 +A2,e,+,−

2 +A2,e,−,−
2 ,

or TA2A1 = TA+
2 A

e
1 + TA+

2 A
h
1 + TA−

2 A
e
1 + TA−

2 A
h
1 .
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We keep an index if its omission may cause confusion, for example, A±,+
4 = A+,+

4 +A−,+
4 . We

also use notation like Ae/h
3 = Ae

3 +Ah
3 .

Proof of Lemma 3.1. The expressions for the first six invariants easily follow from inspection
of Figures 2–4. We do the seventh invariant in detail.

Let j be a regular point of the variety Σ2 ⊂ J1(M3, N3). The linear part of j is a rank 1
linear operator ψ : R

3 → R
3. Let {a1, a2} and {b1, b2} be bases of, respectively, the kernel and

cokernel of ψ. We take (a1 ⊗ b1) ∧ (a1 ⊗ b2) ∧ (a2 ⊗ b1) ∧ (a2 ⊗ b2) as the co-orientation of Σ2

at j (it does not depend on the order in the initial bases).
The Jacobi matrix of the D+,+

4 family is
⎛
⎝

2x+ λ 2y + z y
y x 0
0 0 1

⎞
⎠ .

It confirms that the 1-jet extension of the family meets Σ2 just at the origin. It also
provides the linear map (λ, x, y, z) �→ (2x+ λ, y, 2y + z, x) from the domain of the family to the
oriented four-dimensional transversal to Σ2. The determinant of the map is 1. Since, following
Section 2.1, the domain of D+,+

4 is oriented by dλ ∧ dx ∧ dy ∧ dz, the intersection index of the
1-jet extension of the family with Σ2 is +1. Similar calculations for the other three D4 families
give the same result.

Proof of part (b) of Theorem 2.1. The claim now follows from part (a) of Theorem 2.1
and an observation that the minor of the coefficients of the strata Ae/h

3 , A+,+
4 , TA−

2 A1, A3A1,
TA+

2 A1, A
±,+,+
2 and D−,−

4 in the linear combinations of Lemma 3.1 is 1.

4. mod2 invariants

4.1. Lists of invariants

In the case of the simplest target we have the following result.

Theorem 4.1. The space of mod2 local invariants of maps from an oriented three-
dimensional manifold to oriented R

3 has rank 11. Its basis is formed by seven invariants
of Theorem 2.1 reduced modulo 2, and four further invariants dual to the following linear
combinations of the strata:

I8 : TA2
1 +A+,+,+

2 +A+,+,−
2 +A+,−,−

2 +D±,+
4 ,

I9 : A4
1 +A+

2 A
2
1 +A

2,e/h,+,+
2 ,

I10 : A2A
2
1 +A

2,e/h,+,+
2 +A

2,e/h,−,−
2 ,

I11 : A
2,e/h
2 +A−,±

4 .

We prove the theorem in Section 5.4 after analysing codimension 2 degenerations in the rest
of Section 5.

As for a geometric sense of the four new invariants, I8 may be interpreted as the parity
of a generalized number of self-tangencies of the regular part of the critical value set in a
generic homotopy, and I9 as a similarly generalized parity for quadruple points of C. The
generalizations are taking account of the behaviour of cuspidal edges of fixed sign. The I10
invariant must be somehow related to the linking of the self-intersection of C and its cuspidal
edge. An interpretation of I11 is given in the next subsection.
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Figure 5. Making a framed link from the edges.

In the general setting, we have the following estimate.

Corollary 4.2. The rank of the space of mod2 local invariants of maps between arbitrary
oriented 3-manifolds is at least 7 and at most 11. The upper bound is achieved for connected
components of Ω(M,N) with trivial fundamental groups.

The lower bound here is provided by the modulo 2 reduction of the integer invariants.
A reason for the upper bound will be given in Section 5.4.

4.2. The number of components and self-linking of the cuspidal edge

Among the four new invariants introduced in Theorem 4.1, the best understanding in terms
of the geometry of the critical value set we have at the moment is that of the I11 invariant, or
rather of its linear combination with the reduced integer invariants. To formulate the statement,
we start with a construction of a framed link from cuspidal edges of C.

The way we introduce the framing at a regular point of an edge depends on the sign of the
edge and is illustrated by the transversal sections shown in Figure 5, left. Near swallowtails,
we smoothen the edge and join the framings along the two branches by adding a half-twist of
the sign coinciding with that of the swallowtail.

Let us arbitrarily orient our framed link, and calculate its writhe w as the algebraic number
of crossings of the cores of the components in the link diagram obtained plus the sum of the
algebraic numbers of full rotations done by the framing of each of the components around its
own core. Since the number of crossings of two different components in a link diagram is even,
the quantity wmod4 does not depend on the orientations of the components.

We denote by n the number of components of our link.

Theorem 4.3. The mod2 invariant Ife = n+ w/2 is local. It is dual to the cycle

A
2,e/h
2 +A±,+,+

2 +A±,+,−
2 +A±,−,−

2 +A
e/h
3 +A+,±

4 +D4.

We do not touch here the question of (w/2) mod2 being either integer or half-integer. The
point is that its increments are integer.

Recalling the expressions for our earlier invariants, we see that the linear combination in the
theorem states that, up to an additive constant,

Ife = I11 + Iχ + Is/2 + IΣ2 .

Proof of Theorem 4.3. The only increments of (n+ w/2) mod2 which need detailed
consideration are those across the A±,+,−

2 , Ah
3 and D−,±

4 strata. Coincidence of the increments
across all other strata with the coefficients in the linear combination given in the theorem
follows easily from Figures 2–4.



LOCAL INVARIANTS OF MAPS BETWEEN 3-MANIFOLDS 767

4 3

1 2 1

34

2
1

4 3

21

4 3

2

Figure 6. The A±,+,−
2 link transformations.

1 2 3

4 65

1 2

4 5

3

6

Figure 7. Edges in the D−,±
4 transformations.

A±,+,−
2 . The move makes a local modification of the link as shown in Figure 6 (left), with

the fragments equipped with the blackboard framing. The rest of the link diagram is outside
the disc and connects points 1, 2, 3, 4 by arcs which we will call external.

Assume the external arcs are 14 and 23. Then the transformation produces two components
from one. We choose an orientation of the initial component, and orient the two final so that
the external arcs keep their orientations. Then the writhe is kept unchanged and the increment
of Ife is 1 due to the change in n.

If the external arcs are 12 and 34, then the move reverses the one just considered.
In the remaining case of external arcs 13 and 24, the number of components is preserved.

Assume the orientations of the only components involved are as in Figure 6, right. The change
in Ife is due to the reorientation of the external arc 24. The change in (w/2) mod2 due to the
crossings of this arc with the other components of the link is 0: indeed we can close the arc with
the diameter 24 to obtain a separate link component, and reorientation of a link component
does not affect (w/2) mod2. Also, no change to Ife comes from the self-linking of the arc 24
after its reorientation. The only change may come from the mutual crossings of the external
arcs 24 and 13. This increment is 2 · 1

2 · 〈−→42,
−→
31〉 = 〈−→42,

−→
31〉 ≡ 1 mod2, since the endpoints of

the arcs alternate on the boundary of the disc. We have used here the angular brackets for
the total algebraic number of positive and negative crossings of the arcs. This completes the
A±,+,−

2 considerations.
The Ah

3 case is basically the same.
D−,±

4 . A move of this type replaces three local edge fragments having the rotation angle of
the framing 2π/3 along each of them with similar fragments having the framing rotating in
the opposite direction. This provides the increment of 1 in Ife. Therefore, the theorem follows
from the following statement.

Lemma 4.4. Consider a local modification of a framed link shown in Figure 7, left. Assume
that the framing of all participating fragments is blackboard. Then the move preserves the
quantity (n+ w/2)mod2.

The sense of the numbers n and w is the same as earlier, in the particular case of a link
constructed from the edges.
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Proof. Like for the A±,+,−
2 transformation, we inspect all possible ways to connect

the endpoints of the fragments by external arcs. Combinatorially, there are 15 different
configurations, but the symmetries involved reduce their number to at most 8. We consider
one of them as an illustration. All others are done similarly.

Assume that the external arcs are 13, 26 and 45, as shown in Figure 7, right. Similar to
the A±,+,−

2 case, we choose here orientations of the components we have before and after the
transformation. The increment of (w/2) mod2 is seen to be

〈−→31,
−→
62〉 + 〈−→31,

−→
45〉 + (0 − 0)/2.

The last summand here reflects the change in the signs of the crossings inside the ellipse. The
first summand is odd since the endpoints of the arcs alternate along the ellipse, while the second
is even since the endpoints do not alternate. Therefore, the total increment of (w/2) mod2
is 1. Since n is reduced by 1 in the transformation, the quantity (n+ w/2) mod2 stays
unchanged.

This completes our proof of Theorem 4.3.

5. Bifurcations in 2-parameter families

Our main tool to prove part (a) of Theorem 2.1, and Theorem 4.1 will be a study of bifurcations
of codimension 2 singularities of maps between 3-manifolds carried out in this section. We will
consider generic 2-parameter families of either maps or just of the critical value sets, and
construct the bifurcation diagrams of the families. Each diagram yields a linear equation on
the increments of a local invariant across the codimension 1 strata. The equation represents
the fact that the total increment along a generic loop in Ω must be zero (cf. [5]): in particular,
it should be so for a small loop around the origin in the parameter space of a codimension 2
map singularity. We denote the increment across a particular stratum as for the stratum itself,
but in small characters. Increments which may be non-zero only in the mod2 case will be kept
in square brackets.

The normal forms of all simple uni-germs of maps we are using are taken from [4]. The
majority of the other normal forms are easy to obtain. The relevant calculations are rather
routine even in the most involved cases. Therefore, we omit such calculations as well as details
of calculations of the bifurcation diagrams.

5.1. Gluing codimension 1 strata together

We start with all 52 strata, four of which (A4,2
1 , TA2,h,1

1 , A2,h,+,+
2 and A2,h,−,−

2 ) we have failed
to co-orient in Ω. Our initial goal is to reduce the number of unknown increments.

5.1.1. Extra A1 component. First of all, we consider the easiest kind of codimension
2 bifurcations when an extra generic A1 sheet of C passes through a point of a codimension

A+,+
4 A+,+

4

A2
1A+

2 A2
1A+

2

A0
1A+

3 A1
1A+

3

S S

U V A2
1A+

2

A2
1A+

2 A2
1A−

2

A2,e,+,−
2 A2,e,+,−

2

A2
1A−

2

Figure 8. Discriminants of the families obtained from interaction of a generic smooth sheet
with a codimension 1 bifurcation.
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1 bifurcation S. For cases 1–5 of the table below, the planar discriminants are of the form
shown in Figure 8, left. Such a discriminant gives the equation u = v for the increments. The
discriminants for cases 6 and 7 are in the same figure in its centre and right. The equations
obtained at this stage allow us to consider in what follows sums of the strata differing only by
certain indices in their notation. Such bigger strata will be denoted as introduced in Section 3.3
and the notation of the increments will follow the pattern. If one of the summands in a big
stratum is non-co-orientable, then the increment of any integer invariant across the big stratum
is zero.

S r Equation Big stratum

1. TA3,r
1 2, 3 [a4,2

1 ] = a4,3
1 = a4,4

1 A4
1

2. TA2,e,r
1 0, 1, 2 ta3,r+1

1 = ta3,r
1 TA3

1

3. TAσ
2A

e,r
1 0, 1 aσ

2a
2,r+1
1 = aσ

2a
2,r
1 Aσ

2A
2
1

4. Aσ,+,+
2 taσ

2a
e,0
1 = taσ

2a
e,1
1 TAσ

2A
e
1

Aσ,−,−
2 taσ

2a
h,0
1 = taσ

2a
h,1
1 TAσ

2A
h
1

5. Ae
3 a+

3 a
0
1 = a−3 a

1
1

a+
3 a

1
1 = a−3 a

0
1

6. A+,+
4 a+

3 a
0
1 = a+

3 a
1
1 A3A1

7. A2,e,+,−
2 2a+

2 a
2
1 = 2a−2 a

2
1 A2A

2
1 over Z

As usual, here σ is either plus or minus.

5.1.2. Cubic bifurcations. The A
e/h
3 singularities have normal forms (x, y, z) �→ (x4 ±

y2x2 + zx, y, z). Writing y3 instead of ±y2, we obtain a codimension 2 uni-germ, with a
versal deformation given by (· · · + (y3 + λ1y + λ2)x2 + · · · ). Its discriminant is a semi-cubical
parabola 4λ3

1 + 27λ2
2 = 0, and yields coincidence of the increments across its half-branches. Sim-

ilarly replacing quadratic configurations by cubic in some other codimension 1 bifurcations S,
we obtain a list like in the previous subsection:

S Equations Big stratum

8. Ae
3 ae

3 = ah
3 A

e/h
3 = Ae

3 +Ah
3

9. Aσ,+,±
2 aσ,+,+

2 = aσ,+,−
2 = aσ,−,−

2 Aσ,q
2 = Aσ,+,+

2 +Aσ,+,−
2 +Aσ,−,−

2

10. TAσ
2A

e
1 taσ

2a
e
1 = taσ

2a
h
1 TAσ

2A1 = TAσ
2A

e
1 + TAσ

2A
h
1

11. TA2,e,r
1 , TA2,h,r

1 ta2,e,2
1 = −ta2,e,0

1 = ta2,h,0
1 TA2,opp

1 = TA2,e,2
1 − TA2,e,0

1 + TA2,h,0
1

ta2,e,1
1 = [ta2,h,1

1 ] TA2,dir
1 = TA2,e,1

1 + TA2,h,1
1

To avoid confusion with other singularities, the notation of the majority of big strata here
has not been obtained by simple omission of the indices. We are using indices q for quadratic,
dir = direct for tangency of two smooth sheets with coinciding co-orientations, and opp for
similar tangency with opposite co-orientations.

5.2. Particular multi-germ families

So far we have halved the number of unknown increments to 26, out of which four may be
non-trivial only in the mod2 case.

5.2.1. Non-transversal interaction with a cuspidal edge. Figure 9 illustrates three codimen-
sion 2 events when the plane tangent to the critical point set at its edge point is in a special
position with other local components of C:

the plane coincides with the plane tangent to a smooth A1 sheet;
the plane contains the tangent direction of the line of intersection of two A1 sheets;
the plane contains the tangent direction of another cuspidal edge.
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s

σ

s

σ

σ

s

TA1
3

A1A2
s 2

A1A2
s 2

TA1
3 A1A2

σT

A2
2,e,s, A1A2

σT

A2
2,h,s,s

T A1A2
s

T A1A2
s

TA1
2,h,1

TA1
2,e,2

Figure 9. Codimension 2 degenerations due to special positions with respect to the tangent
plane at an edge point.

s

σ

σ

s
σ

2

A3 A1

A3 A1

A1A2
2σ sA2

2,h,−s,

A2
2,e,s,A3 A1A3 A1

A3 A1 A3 A1

A4
1

A1A−
2

2A1A+ 2

A3 A1

A3
1T

A3 A1

A1TA−
2

A+
2 A1T

Figure 10. Codimension 2 degenerations involving swallowtails.

Respectively, we obtain new equations for the increments:

12. ta2,opp
1 = [ta2,dir

1 ]
13. 2ta3

1 = 2a+
2 a

2
1

= 2a−2 a
+
1

14. 2ta+
2 a1 = a2,e,+,+

2 + [a2,h,+,+
2 ]

= a2,e,+,−
2 + a2,h,+,−

2

2ta−2 a1 = a2,e,+,−
2 − a2,h,+,−

2

= a2,e,−,−
2 + [a2,h,−,−

2 ].

Equation 12 allows us to unite all codimension 1 strata corresponding to self-tangencies of
regular sheets and introduce a big stratum TA2

1 = TA2,dir
1 + TA2,opp

1 , which may appear in
mod2 invariants only.

5.2.2. Interaction with a swallowtail. Figure 10 shows the events involving swallowtails.
In the first case, at the most degenerate moment, the direction of the self-intersection curve at
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the swallowtail point is tangent to the incoming smooth sheet. The two other cases are clear.
The bifurcations provide the following equations:

15. 2a3a1 = ta+
2 a1 + ta−2 a1 + ta3

1

16. a+
2 a

2
1 = a−2 a

2
1 + [a4

1]
17. 2a3a1 = a+

2 a
2
1 + a2,e,+,+

2 − a2,h,+,−
2

= a+
2 a

2
1 + a2,e,+,−

2 + [a2,h,+,+
2 ]

= a−2 a
2
1 + a2,e,+,−

2 + [a2,h,−,−
2 ]

= a−2 a
2
1 + a2,e,−,−

2 + a2,h,+,−
2 .

5.3. Uni-germs of codimension 2

A map germ f : (R3, 0) → (R3, 0) may be treated as induced by a map from the target (R3, 0)
to the base Bf0 of a contact versal deformation of the complete intersection f0 : {f = 0}. For
example, the degenerate maps in the A±,±

4 families are induced by generic maps from (R3, 0)
to (BA4 , 0).

Figure 11 shows normal forms and discriminants of map germs (R3, 0) → (R3, 0) induced by:

a generic map (R3, 0) → (BA5 , 0);
a generic codimension 1 map in the set of all maps (R3, 0) → (BA4 , 0);
a generic codimension 2 map (R3, 0) → (BA3 , 0);
a generic codimension 1 map (R3, 0) → (B(x2,y2), 0);
a generic map (R3, 0) → (B(x2+y3,xy), 0).

In the first and fifth cases, the maps are uni-modular. The other three normal forms are taken
from [4]. The order of the signs in a diagram label is the same in which they appear in the
corresponding normal form.

Figure 11 gives the following equations:

18. a2,h,+−
2 = a+,+

4 − a−,+
4

= a+,−
4 − a−,−

4

19. 2ae/h
3 = a+,+

4 + a+,−
4 − 2ta+

2 a1

= a−,+
4 + a−,−

4 − 2ta−2 a1

20. a+,q
2 − a−,q

2 = [ta2
1]

21. a+,q
2 − a−,q

2 = d+,+
4 − d+,−

4

22. d+,+
4 − d−,+

4 = a+,+
4 − a+,−

4

d+,−
4 − d−,−

4 = a−,+
4 − a−,−

4 .

Equation 20 makes up a big stratum Aq
2 = A+,q

2 +A−,q
2 over Z.

5.4. Proofs of the classification results in the oriented case

We have now obtained enough relations between the increments to prove the classification
claims made in Sections 2.3 (apart from what has already been proved in Section 3.3) and 4.1.

The equations obtained earlier in this section reflect the fact that the intersection index with
the codimension 1 trivial cycle in Ω(M,N), dual to a local invariant, vanishes on contractible
loops. Therefore, the equations may be sufficient if, for example, N = R

3. Let ν be the rank
of the invariant space for Ω(M,R3). For general N , the fundamental group of the space of
maps (or of its particular connected component) may be non-trivial, which may add further
vanishing conditions to our system of equations and thus force the rank of the invariant space
to drop below ν.
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2
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3
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+,−
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3

D4
+,+D4

+,−

A−,q
2

D4
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A3
e/h

A3
e/h

D4
+,+

A+,−
4

A+,+
4

A−,−
4

A−,+
4

D4
−,−

A3
e/h

A3
e/h

D4
+,−

A+,q
2
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2
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3
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3

A2,e,1
1T

A+,q
2

A−,q
2

Ae/h
3
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3
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1T
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2
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2
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3
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3
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3

Ae/h
3
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Figure 11. Discriminants of the families.

(x6 + (λ1 ± y + αz)x4 + λ2x
3 + σyx2 + zx, y, z), σ = ±, α ∈ R;

(σx5 + yx3 + (±y2 + λ1y + λ2)x
2 + zx, y, z), σ = ±;

(x4 + yx2 + (±y2 + λ1y + λ2 ± z2)x, y, z);

(x2 + yz, y2 + (±z2 + λ1z + λ2 ± (x2 + yz))x, z);

(σx2 + y3 + (±z2 + αxy + λ1)y
2 + λ2x + zy, xy, z), σ = ±, α ∈ R.

On the other hand, the solution space of the complete system of equations on the increments
must contain the duals of all integral invariants of maps from M to N . Let μ be the rank of
the space spanned by such duals.

Thus, we have the following obvious estimates.

Proposition 5.1. Within the notation introduced, the rank of the space of local invariants
of maps between manifolds M and N is at least μ, and at most ν.
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Of course, we assume here that the orientation settings for the source and target manifolds
are fixed, along with the value ring of the invariants. Also, the whole space of maps from M
to N may be replaced in the context by its connected component.

Proof of Theorem 2.1, part (a). In the integer case, after joining elementary strata into the
bigger ones, we now have 11 strata

TA3
1, A2A

2
1, A2,e,+,+

2 , A2,e,+,−
2 , A2,e,−,−

2 , A2,h,+,−
2 ,

A3A1, TA+
2 A1, TA−

2 A1, Aq
2, A

e/h
3 ,

along with a further 8 corresponding to the variety of sign choices in A±,±
4 and D±,±

4 .
On the other hand, 12 equations

13,14(1),14(2),17(1),17(2),18(1),18(2),19(1),19(2),21,22(1),22(2)

are linearly independent. Therefore, the rank of the space of all integer local invariants is at
most seven. However, we have already observed by the end of Section 3.3 that the duals of
the seven invariants mentioned in part (b) of the theorem are linearly independent. Moreover,
all these seven invariants are integral. Hence, in the notation of Proposition 5.1 we must have
ν = μ = 7, and the proposition implies part (a) of Theorem 2.1.

Proof of Theorem 4.1. Over Z2, equations 14, 19 and 22 join the elementary strata in pairs
to provide 7 big strata

A
2,e/h,+,+
2 , A

2,e/h,+,−
2 , A

2,e/h,−,−
2 , A+,±

4 , A−,±
4 , D±,+

4 , D±,−
4 .

Besides these, we have another 11 strata:

A4
1, TA3

1, TA2
1, A+

2 A
2
1, A−

2 A
2
1, A3A1, TA+

2 A1, TA−
2 A1, A+,q

2 , A−,q
2 , A

e/h
3 .

Seven equations

15, 16, 17(1), 17(3), 18(1), 20, 21 (1)

are independent, and a basis of their solution space is formed by the 11 invariants given in
Theorem 4.1. It is not so difficult to show that none of the codimension 2 singularities we have
not considered so far (for example, quintuple points of C, or a smooth sheet passing through a
D±,±

4 point) adds to the rank of the mod2 system (1).

Proof of Corollary 4.2. Owing to Proposition 5.1, the upper bound for the rank of the space
of mod2 invariants for an arbitrary target manifold N is provided by the similar rank ν = 11
which was obtained in Theorem 4.1 for N = R

3.

Remarks. (1) At the moment, we are not in a position to raise the lower bound μ = 7
stated in Corollary 4.2 since we are lacking integral interpretations for the invariants I8, I9
and I10, and the way we integrated I11 in Section 4.2 is based on the target being R

3 (or, for
example, S3).

(2) There is no prohibition for the rank in the corollary to depend on a choice of a particular
connected component of Ω(M,N).
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6. Non-oriented settings

As an easy corollary of our codimension 2 study in the oriented case, we are going to obtain
similar classification results, both over Z and Z2, assuming that at least one of the 3-manifolds
M and N is either non-oriented or non-orientable. The notation Is and Ic will now be used
for the total numbers of swallowtail and A2A1 points of the critical value set. There will also
appear a new mod2 invariant IΣ1,1,1,1 , the linking number of the image of the k-jet extension
of a map with the stratum Σ1,1,1,1 in Jk(M,N), k � 5. Its definition is absolutely similar to
the pathwise definition of IΣ2 in Section 2.1.

6.1. Non-oriented source

Theorem 6.1. Assume that the source manifold M is not oriented. Then the rank of the
space of local invariants is 4 over the integers, while it is at least 4 and at most 6 over Z2.

An integer basis is formed by the invariants Is/2, Ic/2, It and Iχ.
The mod2 upper bound is achieved for connected components of Ω(M,N) with trivial

fundamental groups. In such a case, IΣ2 and IΣ1,1,1,1 should be added to the above four
invariants to complete a mod2 basis.

Like earlier, we are not considering here the question of whether some of our invariants may
be half-integers, but we emphasize that their increments are integer.

Proof. (1) We assume for the start that the target is oriented R
3, and the invariants are

integer.
Loss of the source orientation erases the signs of cuspidal edges and swallowtails of the

critical value set C. However, C stays co-oriented as before.
The list of codimension 1 bifurcations becomes shorter. All multi-germs lose all signs in their

notation, and the corresponding strata are now the sums of the former strata along the whole
range of the lost signs. As for the uni-germs, we now have to operate from the start with
the stratum A±,+,+

2 = A+,+,+
2 +A−,+,+

2 (we keep the ± for the moment for convenience), and
similar strata A±,+,−

2 and A±,−,−
2 . The target orientation allows us to pair up the elementary

strata we had before and obtain

A+,+
4 +A−,−

4 , A+,−
4 +A−,+

4 , D+,+
4 −D+,−

4 , D−,+
4 −D−,−

4 . (2)

The A4 sums here are distinguished by the local writhe of the edge; see Figure 3. The reason
for taking the last difference is clear from the lower half of Figure 4. The first difference has
a geometric co-orientation: when looking into the purse, so that its plane of symmetry is
horizontal, we see the upper swallowtail moving left during a positive crossing of D+,+

4 −D+,−
4

while the lower one is moving right.
The appearance of the D4 differences indicates that IΣ2 is no longer an integer invariant,

which is consistent with the fact that the 4-film we used to define this linking number (see
Sections 2.1 and 3.3) is now either non-orientable or non-oriented.

A straightforward adjustment, to the case of a non-oriented source, of the study of codimesion
2 singularities done in Section 5 reduces us to integer linear combinations of 11 strata:

TA3
1, A2A

2
1, A2,e

2 , A3A1, TA2A1, Aq
2, A

e/h
3 , and (2).

The modified versions of 7 increment equations

13, 14(1), 15, 18(1), 19(1), 21, 22(1) (3)
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are independent. An integer basis of their solution space is provided by the linear combinations
of the codimension 1 strata dual to the invariants Is/2, Ic/2, It and Iχ (see Lemma 3.1). This
proves Theorem 6.1 over the integers in the case of the trivial fundamental groups.

(2) For an arbitrary oriented target N , the integer version of the theorem follows from
Proposition 5.1. According to what has just been shown, we should now take in it the upper
bound ν = 4, while the lower bound μ is also 4, since all four integer invariants mentioned in
the theorem are integral.

(3) We are now left with the mod2 setting.
We first take R

3 as the target. Over Z2, the consideration reduces to linear combinations of
11 strata:

A4
1, TA3

1, TA2
2, A2A

2
1, A

2,e/h
2 , A3A1, TA2A1, Aq

2, A
e/h
3 , A±,±

4 , D±,±
4 .

Equations 15, 16(1), 17(1), 18(1) and 20(1) show that the increments across the first 5
strata vanish. No other equations impose additional constraints. Therefore, an arbitrary linear
combination of the other 6 strata corresponds to a mod2 local invariant. The invariants Is/2,
Ic/2, It, Iχ, IΣ2 and IΣ1,1,1,1 are dual to, respectively,

A
e/h
3 +A±,±

4 , A3A1 + TA2A1 +A±,±
4 , A3A1, Aq

2, D±,±
4 and A±,±

4 ,

which are linearly independent over Z2. The result does not depend on whether an orientation
of R

3 is fixed or not. This proves the theorem for connected components of Ω(M,N) with
trivial fundamental groups.

(4) In the general setting over Z2, the estimates of the theorem are once again coming from
Proposition 5.1. The actual rank of the mod2 invariant space for arbitrary N depends on
vanishing or non-vanishing of the total increments of linear combinations of the invariants IΣ2

and IΣ1,1,1,1 on non-trivial loops in a particular connected component of Ω(M,N).

6.2. Non-oriented target

Theorem 6.2. Assume that the source manifold M is oriented and the target N is not.
Then the rank of the space of local invariants is either 4 or 5 over the integers, while it is at
least 4 and at most 6 over Z2.

Both upper bounds are achieved for connected components of Ω(M,N) with trivial
fundamental groups. In such a case an integer basis is formed by Is/2, Ic/2, It, Iχ, IΣ2 , to
which IΣ1,1,1,1 should be added to complete a mod2 basis.

Proof. Consider the integer situation. The only difference with the orientation setting
considered in part (1) of the proof in the previous subsection is that we now have sums

A±,+
4 = A+,+

4 +A−,+
4 , A±,−

4 = A+,−
4 +A−,−

4 ,

D+,±
4 = D+,+

4 +D+,−
4 , D−,±

4 = D−,+
4 +D−,−

4

instead of (2). This takes equation 21 off the list (3), implying that the invariant IΣ2 survives
over Z if its total increment along any generic loop in a chosen connected component of
Ω(M,N) vanishes. (This is again consistent with the way the integer invariant IΣ2 was defined
in Sections 2.1 and 3.3, which needed an orientation of M .) However, the lack of an integral
interpretation for IΣ2 when at least one of the participating 3-manifolds is non-orientable
disallows us to state that IΣ2 indeed survives in the general setting of the theorem. Hence we
are left with the two options for the rank of the invariant space over the integers.

Over Z2, the result follows from Proposition 5.1.
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