Übungen zur Analysis IV - Blatt 6 -

- 1. (a) Berechnen Sie $\log(1+i)$ und $\log((3-3i)^5)$.
 - (b) Geben Sie ein möglichst großes Gebiet an, auf dem sich $\log((1-z)^2)$ definieren läßt.
 - (c) Berechnen Sie $\frac{\partial}{\partial z}$ arg, $\frac{\partial}{\partial \overline{z}}$ arg.
- 2. Berechnen Sie die Laurentreihen von

(a)
$$f(z) = \frac{5}{(z+1)(z-3)}$$
 auf $U_{1,3}(0)$,

(b)
$$g(z) = \frac{1}{z(z-4)^2}$$
 auf $U_{1,2}(1)$,

(c)
$$h(z) = \left(\exp(\frac{1}{z})\right)^{-1}$$
 auf $U_{0,\infty}(0)$.

3. Sei
$$f \in \mathcal{O}(U_{r,R}(z_0))$$
.
Es gelte

$$f(z) = \sum_{\nu = -\infty}^{\infty} a_{\nu} (z - z_0)^{\nu} = \sum_{\nu = -\infty}^{\infty} b_{\nu} (z - z_0)^{\nu} \text{ fr alle } z \in U_{r,R}(z_0).$$

Zeigen Sie: $a_{\nu} = b_{\nu}$ für alle ν .

4. Klassifizieren Sie die isolierten Singularitäten folgender Funktionen, und geben Sie im Fall von Polen die Ordnung an:

(a)
$$\frac{z^4}{(z^4+16)^2}$$
,

(b)
$$\frac{z^2 - \pi^2}{\sin^2 z}$$
,

(c)
$$\frac{1}{e^z - 1} - \frac{1}{z - 2\pi i}$$

(d)
$$(\cos \frac{1}{z})^{-1}$$
.

5. Sei z_0 eine nicht-hebbare Singularität von f. Zeigen Sie: e^f hat eine wesentliche Singularität in z_0 .

Abgabe: Montag, den 10.6.2002, 10.13 Uhr