
MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED
THETA DIVISORS

MIHNEA POPA

1. Lecture II: Moduli spaces and generalized theta divisors

1.1. The moduli space. Back to the boundedness problem: we want to see that semistable
bundles do the job. First a technical point.

Lemma 1.1. Let E be a semistable bundle on X.

(a) If µ(E) > 2g − 2, then h1E = 0.

(b) If µ(E) > 2g − 1, then E is globally generated.

Proof. Homework. �

Proposition 1.2. The set S(r, d) of isomorphism classes of semistable bundles of rank r and
degree d is bounded.

Proof. Fix OX(1) a polarization on the curve. By the Lemma, there exists a fixed m >> 0
such that for all F in S(r, d) we have h1F (m) = 0 and F (m) is globally generated. Let q :=
h0F (m) = χ(F (m)), which is constant by Riemann-Roch. The global generation of F (m) means
that we have a quotient

O⊕q
X (−m)

β−→ F −→ 0.

These all belong to the Quot scheme Quotr,d(O
⊕q
X (−m)), which is a bounded family. �

The quotient β can be realized in many ways: fix a vector space V ∼= kq, and choose an
isomorphism V ∼= H0F (m). On Quotr,d(V ⊗OX(−m)) ∼= Quotr,d(O

⊕q
X (−m)) we have a natural

GL(V )-action, namely each g ∈ GL(V ) induces a diagram

V ⊗OX(−m) //

g⊗id

��

Q

V ⊗OX(−m)

99sssssssssss

The scalar matrices act trivially on these quotients, so in fact we have a PGL(V )-action.

Proposition 1.3. Let Ω ⊂ Quotr,d(V ⊗ OX(−m)) be the set of quotients Q such that Q is
semistable and V ∼= H0Q(m). Then Ω is invariant under the PGL(V )-action, and we have a
bijection

Ω/PGL(V ) −→ S(r, d).
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Proof. The set Ω is clearly invariant, and the points in the same orbit give isomorphic quotient
bundles, so we have a natural map Ω/PGL(V ) −→ S(r, d). Since m >> 0, by global generation
the map is surjective. Suppose now that we have two different quotients inducing an isomorphism
φ:

V ⊗OX(−m) // Q

φ ∼=
��

V ⊗OX(−m) // Q

This induces an isomorphism H0Q(m)
H0φ(m)−→ H0Q(m), which corresponds to an element g ∈

GL(V ). This is uniquely determined up to scalars, so we can in fact consider it in PGL(V ). �

Although we will not have time to get into this during the lectures, the main point of
Geometric Invariant Theory (GIT) in this context is essentially to show that in fact this quotient
has the structure of a projective algebraic variety1. The GIT machinery constructs the space
UX(r, d) – an algebraic variety replacement of Sr,d – the moduli space of S-equivalence classes of
semistable vector bundles of rank r and degree d on X. We denote by U s

X(r, d) the open subset
corresponding to isomorphism classes of stable bundles. These spaces have the following basic
properties:

(1) UX(r, d) is a projective variety (i.e irreducible), of dimension r2(g − 1) + 1.

(2) UX(r, d) is in general only a coarse moduli space (i.e. there is no universal family). In fact
one can show that UX(r, d) is fine if and only if (r, d) = 1.

Remark 1.4. By twisting with an arbitrary line bundle of degree e ∈ Z we see that there is an
isomorphism

UX(r, d) ∼= UX(r, d + re),

which means that in many arguments we can consider that d >> 0.

We consider also a variant of UX(r, d) when the determinant of the vector bundles is fixed.
More precisely, for any L ∈ Picd(X), we denote by SUX(r, L) the moduli space of (S-equivalence
classes of) semistable bundles of rank r and fixed determinant L. These are the fibers of the
natural determinant map

det : UX(r, d) −→ Picd(X).

Here are more consequences which are derived from the GIT construction:

(3) UX(r, d) and SUX(r, L) are normal, Gorenstein, with rational singularities.

(4) Sing(UX(r, d)) = UX(r, d) − U s
X(r, d), unless g = 2, r = 2 and d = even, when UX(r, d) is

smooth. Same for SUX(r, L). Moreover, if h = (r, d) and we denote r0 := r/h and d0 := d/h,
then the dimension of Sing(UX(r, d)) is r2

2 (g− 1) + 2 if h is even and r2+r2
0

2 (g− 1) + 2 if h is odd
(homework).

(5) If E is stable, then TE UX(r, d) ∼= H1(E∨ ⊗ E) ∼= Ext1(E,E).

1This is literally true if we consider S-equivalence classes of semistable bundles instead of isomorphism classes.
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Problem 1.5. A general good description of the tangent space (cone) to the moduli space at a
singular (equivalently, semistable) point is not known, except in a few special cases – this is an
important problem.

2. Generalized theta divisors

Consider first the following situation: on Picd(X) we have, for each L ∈ Picg−1−d, a theta
divisor

ΘL := {M | h0(M ⊗ L) 6= 0},
which is a “translate” of the principal polarization Θ on the Jacobian J(X) ∼= Pic0(X) (or of
Wg−1 = {N | h0N 6= 0} ⊂ Picg−1(X)). Note that the numerical choice is such that χ(M⊗L) = 0.

Now fix E ∈ UX(r, d)2. When can we have a vector bundle F such that χ(E ⊗ F ) = 0?
By Riemann-Roch we need µ(E ⊗ F ) = g − 1, in other words

µ(F ) = g − 1− µ(E).

Using the notation h = (r, d), r0 = r/h and d0 = d/h, we see that the only possibilities are
rk F = kr0 and deg F = k(r0(g − 1)− d0), with k ≥ 1. Fix such an F .

Claim: If there exists E ∈ UX(r, d) such that H0(E ⊗ F ) = 0, then

ΘF := {E | h0(E ⊗ F ) 6= 0} ⊂ UX(r, d)

is a divisor with a natural scheme structure (a generalized theta divisor). The same is true on
SUX(r, L).

Proof. I will explain here only the case (r, d) = 1, when there exists a universal family, and discuss
more the other case in the afternoon3. It is a general example of a determinantal construction:
let E be the universal bundle on X×UX(r, d) and D an effective divisor on X with deg D >> 0.
We can consider the following natural sequence obtained by pushing forward to UX(r, d):

0 → pU ∗(E⊗p∗XF ) → pU ∗(E⊗p∗XF (D)) → pU ∗((E⊗p∗XF (D))|D×UX(r,d)) → R1pU ∗(E⊗p∗XF ) → 0,

Note that the 0 on the right is obtained by base change, since for any E ∈ UX(r, d) we have that
h1(E ⊗ F (D)) = 0, as D has sufficiently large degree and the family of E’s is bounded. Let’s
redenote this sequence

0 → K → G
α→ H → C → 0.

In fact we have K = 0 (exercise). In any case, by base change and Riemann-Roch, G and H
are vector bundles on UX(r, d) of the same rank r · rk(F ) · deg(D). Where we can apply base
change, fiberwise we have

H0(E ⊗ F (D)) → H0(E ⊗ F (D)D) → H1(E ⊗ F ).

We see immediately that the degeneracy locus of α is set-theoretically precisely ΘF . This
means that ΘF has a determinantal scheme structure and since rk G = rk H we have that

2I will always use somewhat abusively vector bundle notation instead of S-equivalence class notation for
simplicity. For anything we are interested in, it can be checked easily using Jordan-Hölder filtrations that the
statement is independent of the choice in the S-equivalence class.

3In any case, the bottom line is that for this problem we can in fact pretend that there’s always a universal
family.
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codim ΘF ≤ 1. But since there exists E such that h0(E ⊗ F ) = 0, i.e E 6∈ ΘF , we have that
codim ΘF ≤ 1. �

In fact the requirement above is satisfied for general F , so we always have enough gener-
alized theta divisors. I will skip the proof of this, which is not hard but appeals to things that
we have not discussed. Note however that, by semicontinuity, it is obvious for example on the
moduli spaces that contain direct sums of line bundles, for instance UX(k, k(g − 1)).

Proposition 2.1. If F ∈ UX(kr0, k(r0(g − 1)− d0)) and E ∈ UX(r, d) are general, then

H0(E ⊗ F ) = H1(E ⊗ F ) = 0.

One of the most important facts that has been proved about the moduli spaces of vector
bundles, again using the GIT description, is the following:

Theorem 2.2. (Drezet-Narasimhan) (1) UX(r, d) and SUX(r, L) are locally factorial.

(2) For any F ∈ UX(kr0, k(r0(g− 1)− d0)) such that ΘF is a divisor, the line bundle O(ΘF ) on
SUX(r, L) does not depend on the choice of F . The Picard group of SUX(r, L) is isomorphic to
Z, generated by an ample line bundle L (called the determinant line bundle), and ΘF ∈ |Lk|.

(3) The inclusions Pic(Picd(X)) ⊂ Pic(UX(r, d)) (given by the determinant morphism) and
Z · O(ΘF ) ⊂ Pic(UX(r, d)), with k = 1, induce an isomorphism

Pic(UX(r, d)) ∼= Pic(Picd(X))⊕ Z.

We have the following transformation formula: if F, F ′ ∈ UX(kr0, k(r0(g − 1)− d0)), then

O(ΘF ) ∼= O(ΘF ′)⊗ det∗(det(F )⊗ det(F ′)−1).

(4) ωSUX(r,L)
∼= L−2h, where h = (r, d) (in particular, SUX(r, L) are Fano varieties).

2.1. Verlinde formula. The theorem above tells us that the only line bundles on the moduli
space SUX(r, L) are the powers of the determinant line bundle L. The Verlinde formula tells us
the dimension sr,k of the space of global sections H0(SUX(r, L),Lk), for all k ≥ 1. For simplicity,
from now on I will restrict to the case when L = OX , and denote SUX(r) := SUX(r,OX); there
are analogous but technically more complicated results for any L. The Verlinde formula, in a
form due to Zagier, reads

sr,k =
( r

r + k

)g ·
∑

S∪T={1,...,r+k}
|S|=r,|T |=k

∏
s∈S
t∈T

∣∣2 · sin π
s− t

r + k

∣∣g−1
.

Example 2.1: Note that s1,k = 1, while sr,1 = rg. This last number is the same as the
dimension of the space of classical theta functions of level r, i.e. h0(J(X),OJ(rΘ))! We’ll see
in a second that this is not a coincidence.

Remark 2.3. By Kodaira vanishing (which works on varieties with rational singularities –
why?) we have

H i(SUX(r),Lk) = 0, for all i > 0 and k > 0.
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This implies that

h0(SUX(r),Lk) = χ(Lk) =
L(r2−1)(g−1)

(r2 − 1)(g − 1)!
· k(r2−1)(g−1) + l.o.t.

This is a polynomial in k, with integral output, neither of which seems to be obvious from the
formula!

What about UX(r, 0)? Note that we have a natural morphism obtained by taking tensor
product with line bundles:

τ : SUX(r)× Picg−1(X) ⊗−→ UX(r, r(g − 1)).

One can check the following facts (all in the homework). First, τ is étale Galois, with Galois
group X[r], the group of r-torsion points in Pic0(X), which has order r2g. Second, if we denote
the canonical polarization

Θ = Θcan := {E | h0E 6= 0} ⊂ UX(r, r(g − 1)),

we have that
τ∗OU (Θ) ∼= L�OPic(rΘ).

The Künneth formula gives then for any k ≥ 1 an isomorphism

H0(τ∗OU (kΘ)) ∼= H0(SUX(r),Lk)⊗H0(Picg−1(X),O(rΘ)).

Putting these facts together, we obtain that

h0(UX(r, r(g − 1),OU (kΘ)) = sr,k ·
kg

rg
.

Corollary 2.4.
h0(UX(k, k(g − 1),OU (rΘ)) = sr,k = h0(SUX(r),Lk).

Proof. Stare at the Verlinde formula until you see that the expression sr,k · r−g is symmetric in
r and k. �

Corollary 2.5.
h0(UX(k, k(g − 1),OU (Θ)) = 1, for all k ≥ 1.
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