
MODULI OF VECTOR BUNDLES ON CURVES AND GENERALIZED
THETA DIVISORS

MIHNEA POPA

These are rough notes for my lectures and the afternoon sessions at the Cologne Summer
School, August 7-11. The main omission for now is that I haven’t (at least yet) included
references in the text. The bibliography however contains books and references that I rely on
for the general theory.

1. Lecture I: Bounded families, semistable bundles, examples

1.1. Arbitrary vector bundles. Let X be a smooth projective curve of genus g over an
algebrically closed field k. Later we will need to assume that the characteristic is 0, but for now
we can work in full generality. We will identify freely vector bundles with locally free sheaves.

Definition 1.1. Let E be a vector bundle on X, of rank r. The determinant of E is the line
bundle detE := ∧rE. The degree of E is the degree d of detE1. The slope of E is the rational
number µ(E) = d

r .

The Riemann-Roch formula for vector bundles on curves says:

χ(E) = h0E − h1E = d+ r(1− g).
An important example is the following: χ(E) = 0 ⇐⇒ µ(E) = g − 1.

From the moduli point of view, the initial idea would be to construct an algebraic variety
(or scheme) parametrizing the isomorphism classes of all vector bundles with fixed invariants,
i.e. rank r and degree d. Note that fixing these invariants is the same as fixing the Hilbert
polynomial of E.

Definition 1.2. Let B be a set of isomorphism classes of vector bundles. We say that B is
bounded if there exists a scheme of finite type S over k and a vector bundle F on S ×X such
that all the elements of B are represented by some Fs := F|{s}×X with s ∈ S.

We find easily that the initial idea above is too naive.

Lemma 1.3. The set of isomorphism classes of vector bundles of rank r and degree d on X is
not bounded.

Proof. Assuming that the family is bounded, use the notation in Definition 1.2. The projection
to S is flat, while F is locally free, so F is flat over S. By the semicontinuity theorem, this
implies that there are only a finite number of possible hiFs for i = 0, 1.

Date: August 6, 2006.
1This is the same as the first Chern class c1(E).
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Fix now a point x ∈ X and define for each k ∈ N the vector bundle

Ek := OX(−kx)⊕OX((k + d)x)⊕O⊕r−2
X .

They all clearly have rank r and degree d. On the other hand, when k → ∞ we see that h0Ek

and h1Ek also go to ∞, which gives a contradiction. �

There exists however a well-known bounded moduli problem in this context, which pro-
duces the Quot scheme. Let E be a vector bundle of rank r and degree e on X, and fix integers
0 ≤ k ≤ r and d. We would like to parametrize all the quotients

E −→ Q −→ 0

with Q a coherent sheaf of rank k and degree d on X.2 We consider the Quot functor :

QuotE
k,d

: Algebraic varieties/k → Sets

associating to each S the set of coherent quotients of ES := p∗XE which are flat over S and have

rank k and degree d over each s ∈ S. This is a contravariant functor associating to T
f→ S the

map taking a quotient ES → Q to the quotient ET = (f × id)∗ES → (f × id)∗Q.

Theorem 1.4 (Grothendieck). There exists a projective scheme Quotk,d(E) of finite type over
k, which represents the functor QuotE

k,d
.

This means the following: there exists a “universal quotient” EQuotk,d(E) → Q on

Quotk,d(E)×X, which induces for each variety S an isomorphism

Hom(S,Quotk,d(E)) ∼= QuotE
k,d

(S)

given by

(S
f→ Quotk,d(E))→ (ES → (f × id)∗Q).

The terminology is: the Quot functor (scheme) is a fine moduli functor (space). We will discuss
more about Quot schemes in the afternoon sessions. Let me just mention here the following
basic fact, which is a standard consequence of formal smoothness.

Proposition 1.5. Let E be a vector bundle of rank r and degree e, and

q : [0→ G→ E → F → 0]

a point in Quotk,d(E). Then:

(1) There is a natural isomorphism TqQuotk,d(E) ∼= Hom(G,F )(∼= H0(G∨ ⊗ F )).

(2) If Ext1(G,F )(∼= H1(G∨ ⊗ F )) = 0, then Quotk,d(E) is smooth at q.

(3) We have
h0(G∨ ⊗ F ) ≥ dimqQuotk,d(E) ≥ h0(G∨ ⊗ F )− h1(G∨ ⊗ F ).

The last quantity is χ(G∨ ⊗ F ) = rd− ke− k(r − k)(g − 1) (by Riemann-Roch).

2Cf. the homework for the notions of rank and degree for an arbitrary coherent sheaf on X.
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1.2. Semistable vector bundles. To remedy the problem explained in the previous subsec-
tion, one introduces the following notion.

Definition 1.6. Let E be a vector bundle on X of rank r and degree d. It is called semistable
(respectively stable) if for any subbundle 0 6= F ↪→ E, we have µ(F ) ≤ µ(E) (respectively
µ(F ) < µ(E)). It can be checked that in the definition we can replace subbundles with arbitrary
coherent subsheaves (cf. the homework).

Here are some basic properties which will be useful in the sequel:

Proposition 1.7. If E and F are stable vector bundles and µ(E) = µ(F ), then every non-zero
homomorphism φ : E → F is an isomorphism. In particular Hom(E,E) ∼= k (i.e. E is simple).

Proof. Say G = Im(φ). Then by definition we must have µ(E) ≤ µ(G) ≤ µ(F ) and wherever
we have equality the bundles themselves must be equal. Since µ(E) = µ(F ), we have equality
everywhere, which implies easily that φ must be an isomorphism. Now if φ ∈ Hom(E,E), by
the above we see that k[φ] is an finite field extension of k. Since this is algebraically closed, we
deduce that φ = λ · Id, with λ ∈ k∗. �

Proposition 1.8. Fix a slope µ ∈ Q, and let SS(µ) be the category of semistable bundles of
slope µ. Then SS(µ) is an abelian category.

Proof. Homework. �

Definition 1.9. Let E ∈ SS(µ). A Jordan-Hölder filtration of E is filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ep = E

such that each quotient Ei+1/Ei is stable of slope µ.

Proposition 1.10. Jordan-Hölder filtrations exist. Any two have the same length and, upon
reordering, isomorphic stable factors.

Proof. Since the rank decreases, there is a G ⊂ E stable of slope µ. This implies that E/G is
semistable of slope µ and we repeat the process with E/G instead of E. The rest is a well-known
general algebra argument. �

Definition 1.11. (1) For any Jordan-Hölder filtration E• of E, we define

gr(E) := gr(E•) =
⊕

i

Ei+1/Ei.

This is called the graded object associated to E (well-defined by the above).

(2) A vector bundle E is called polystable if it is a direct sum of stable bundles of the same slope.
(So for E semistable gr(E) is polystable.)

(3) Two bundles E,F ∈ SS(µ) are called S-equivalent if gr(E) ∼= gr(F ).

Sometimes we can reduce the study of arbitrary bundles to that of semistable ones via the
following:
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Proposition 1.12. Let E be a vector bundle on X. Then there exists an increasing filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ep = E

such that

(1) Each quotient Ei+1/Ei is semistable.
(2) We have µ(Ei/Ei−1) > µ(Ei+1/Ei) for all i.

The filtration is unique; it is called the Harder-Narasimhan filtration of E.

Proof. Homework. �

Example 1.1: (1) All line bundles are stable. Any extension of vector bundles in SS(µ) is
also in SS(µ).

(2) If (r, d) = 1, then stable is equivalent to semistable.

(3) If X = P1, by Grothendieck’s theorem we know that every vector bundle splits as E ∼=
O(a1)⊕ . . .⊕O(ar), so it is semistable iff all ai are equal.

(4) We will study some very interesting examples below. Until then, here’s the first type of
example which requires a little argument. Say L1 and L2 are line bundles on X, with degL1 = d
and degL2 = d+ 1. Consider extensions of the form

0 −→ L1 −→ E −→ L2 −→ 0.

These are parametrized by Ext1(L2, L1) ∼= H1(L1 ⊗L−1
2 ). By Riemann-Roch this is isomorphic

to kg−2, so as soon as g ≥ 3 we can choose the extension to be non-split. For such a choice E
is stable: first note that µ(E) = d + 1/2. Consider any line subbundle M of E. If degM ≤ d
everything is fine. If not, the induced map M → L2 must be non-zero (otherwise M would factor
through L1, of too low degree). This immediately implies that it must be an isomorphism, which
is a contradiction since the extension is non-split.

For later reference, let me also mention the following important:

Theorem 1.13. Assume that char(k) = 0. If E and F are semistable bundles, then E ⊗ F is
also semistable3. In particular, for any k, SkE and ∧kE are also semistable.

Proof. The second assertion follows from the first, since in characteristic 0 symmetric and exte-
rior powers are direct summands of tensor powers. I will sketch a proof of the first statement,
due to Gieseker, in the afternoon session. �

1.3. Example: Lazarsfeld’s bundles. Here’s the more interesting example promised above.
It is based on a construction considered by Lazarsfeld in the study of syzygies of curves.

Consider a line bundle L on X of degree d ≥ 2g + 1. Denote by ML the kernel of the
evaluation map:

0 −→ML −→ H0(L)⊗OX
ev−→ L −→ 0

3It is also true that if E and F are actually stable, then E ⊗ F is polystable.
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and let QL = M∨
L . Note that rk QL = h0L − 1 = d − g and deg L = d, so µ(QL) = d

d−g . The
main property of QL is the following:

Proposition 1.14. If x1, . . . , xd are the points of a generic hyperplane section of X ⊂ P(H0(L)),
then QL sits in an extension:

0 −→
d−g−1⊕

i=1

OX(xi) −→ QL −→ OX(xd−g + . . .+ xd) −→ 0.

Proof. Afternoon session. �

This implies the stability of QL – the proof below is due to Ein-Lazarsfeld.

Proposition 1.15. Under the assumptions above QL is a stable bundle.

Proof. Let’s see that the dual ML is stable. One can actually prove a bit more: ML is cohomo-
logically stable, i.e. for any line bundle A of degree a and any t < rkML = d− g:

(1) H0(
t∧
ML ⊗A−1) = 0 if a ≥ t · µ(ML) = − td

d− g
.

This implies the stability of ML: indeed, if F ↪→ ML is a subbundle of degree a and rank t,
then we have an inclusion A :=

∧t F ↪→
∧tML, which implies that H0(

∧tML ⊗ A−1) 6= 0. By
cohomological stability we must have µ(F ) = a

t < µ(ML), so ML is stable.

Let’s prove (1). Take exterior powers in the dual of the sequence in Proposition 1.14 to
obtain

0→ OX(−xd−g − . . .− xd)⊗
t−1∧

(
d−g−1⊕

i=1

OX(−xi))→
t∧
ML →

t∧
(
d−g−1⊕

i=1

OX(−xi))→ 0.

In other words we have an exact sequence

0→
⊕

1≤i1<...<it−1≤d−g−1

OX(−xi1 − . . .− xit−1 − xd−g . . .− xd))→
t∧
ML

→
⊕

1≤j1<...<jt≤d−g−1

OX(−xj1 − . . .− xjt))→ 0.

We tensor this sequence by A−1. It can be checked easily that on both extremes H0 is zero, as
the points xi are general. This implies what we want. �

Corollary 1.16. If char(k) = 0, then for all p the bundle
∧pQL is semistable.

1.4. Example: Raynaud’s bundles. Let X ↪→ J(X) be an Abel-Jacobi embedding. Denote
A = J(X). Then A has a principal polarization Θ, which induces an isomorphism A ∼= Â =
Pic0(A). Denote by P a Poincaré bundle on A × Â. For any m ≥ 1, we consider what’s called
the Fourier-Mukai transform of O

bA
(−mΘ), namely:

F := ̂OA(−mΘ) := RgpA∗(p
∗
bA
O(−mΘ)⊗ P).



6 Mihnea Popa

By base change, this is a vector bundle with fiber over x ∈ A isomorphic to

Hg(Â,O
bA
(−mΘ)⊗ P|{x}× bA

) ∼= H0(J(X),OJ(X)(mΘ)⊗ Px)∨,

where Px is the line bundle in Pic0(J(X))) corresponding to x ∈ J(X). (Note that as x varies
with J(X), Px varies with Pic0(J(X))).) Hence F is a vector bundle of rank mg. Define the
vector bundle E := F|X on X.

The claim is that this is a semistable bundle. Indeed, consider the multiplication by m
map φm : A→ A. By a result of Mukai (cf. afternoon session) we have that

φ∗mF
∼= H0O

bA
(mΘ)⊗O

bA
(mΘ) ∼=

⊕
mg

O
bA
(mΘ).

We consider the étale base change ψ : Y → X, where Y = φ−1
m (X). The decomposition of F via

pull-back by φm implies that ψ∗E is semistable on Y . Applying the Lemma below, we deduce
that E is semistable.

Let’s also compute the slope of E. Note that deg ψ∗E = deg φm · deg E = m2g · deg E.
This gives

deg E =
mg ·m · (θ · [Y ])

m2g
=
θ · [Y ]
mg−1

.

But since Y = φ−1
m (X), φ∗mθ ≡ m2 · θ and θ · [X] = g, we have that m2 · (θ · [Y ]) = g · m2g.

Putting everything together we finally obtain

deg E = g ·mg−1, i.e. µ(E) =
g

m
.

Lemma 1.17. Let f : Y → X be a finite morphism of smooth projective curves, and E a vector
bundle on X. Then E is semistable if and only if f∗E is semistable.

Proof. Afternoon session. �

Example 1.2: I will only mention in passing one more idea, which has to do with moduli
of curves and Farkas’ lectures. The point is that certain types of stable bundles can exist only
on special curves, just like in the usual Brill-Noether theory for line bundles. One can look for
vector bundles with “many” sections, i.e. wonder whether for a given k there exist semistable
bundles E on X of rank r and degree d (or fixed determinant L), which have k independent
sections.

For instance, if g(X) = 10, one can see that the condition that there exist a semistable
bundle of rank 2 and determinant ωX with at least 7 sections is codimension 1 in M10, i.e. such
bundles exist only on curves filling up a divisor in M10. The closure of this divisor in M10 is a
very interesting divisor, the first divisor shown to be of “slope” smaller than expected. However,
strictly speaking these vector bundles are of the same kind as the Lazarsfeld examples above.
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