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CHAPTER 0

Einleitung

Algebraische Kurven erschuf der liebe Gott,
algebraische Flächen der Teufel.
Max Noether

Das ließ wenig Raum für algebraische Dreifaltigkeiten.
János Kollár

0.1. Die Klassifikation algebraischer Varietäten

Historisch begann die Algebraische Geometrie mit dem Studium von algebraischen Kur-
ven, zuerst in der Antike die Kegelschnitte, dann in der Neuzeit, beginnend mit Newton,
ebene algebraische Kurven von höherem Grad (speziell ihrer Singularitäten), und im
19. Jahrhundert auch Raumkurven. Riemann schließlich gelang mit analytischen und
topologischen Methoden eine befriedigende Strukturtheorie algebraischer Kurven.
Die italienische Schule um Castelnuovo, Enriques und Severi konnte dann Anfang des
20. Jahrhunderts algebraische Flächen zufriedenstellend klassifizieren. Da ihrer Arbeit
aber die Hilbertsche Strenge fehlte und ihre Schüler oftmals falsche Ergebnisse über
algebraische Dreifaltigkeiten präsentierten, geriet das ganze Gebiet in Verruf.
Van der Waerden und danach Zariski und Weil stellten die Algebraische Geometrie
mit den Methoden der kommutativen Algebra wieder auf eine solide Grundlage, und
Grothendieck vereinigte in seinem unvollendeten opus magnum “Éléments de géométrie
algébrique” die Kommutative Algebra und die Algebraische Zahlentheorie mit der Al-
gebraischen Geometrie.
Nachdem diese Grundlagenarbeit Ende der 1960er (fast) zum Abschluß gebracht worden
war, wandte man sich wieder den klassischen Problemen zu und erneuerte und vervoll-
ständigte zuerst die Theorie der Kurven und Flächen. Iitaka stellte 1972 gewagte, aber
hochinteressante Vermutungen über höherdimensionale Varietäten auf, und Ueno bewies
1977 das erste Strukturtheorem für Dreifaltigkeiten. Trotzdem war klar, daß ihr Ansatz
für eine umfassende Strukturtheorie von höherdimensionale Varietäten nicht ausreichte
— vor allem fehlte ein Analogon zu den minimalen Modellen algebraischer Flächen.
Um 1980 kam dann ein entscheidender Durchbruch: Mori bewies mit Hilfe ver-
schiedener neuer Ideen den ersten großen Schritt für die Existenz von minimalen
Modellen höherdimensionaler Varietäten. Gleichzeitig definierte Reid, was minimale
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6 0. EINLEITUNG

Modelle von höherdimensionalen Varietäten überhaupt sein sollen und untersuchte,
wozu man sie benutzen könnte, wenn sie denn existieren. Für Dreifaltigkeiten wurde
das so sich abzeichnende Programm Ende der 80er von Mori und Kollár erfolgreich
abgeschlossen und damit verschiedene tiefe Strukturtheoreme für Dreifaltigkeiten be-
wiesen, darunter die Abundance-Vermutung und die endliche Erzeugtheit des kanoni-
schen Rings.
Beide Vermutungen (in Dimension≥ 4) bzw. Theoreme (in Dimension3) beschreiben
Eigenschaften des kanonischen GeradenbündelsKX , also der höchsten äußeren Potenz
des KotangentialbündelsΩ1

X = T ∗X einer (glatten) algebraischen VarietätX. Die
Wichtigkeit des BündelsKX rührt von zwei Beobachtungen:
Erstens definieren globale Schnitte von (holomorphen) Geradenbündeln rationale Abbil-
dungen in andere algebraische Varietäten (z.B. projektive RäumeCPn), und das kanon-
ische Bündel existiert auf jeder algebraischen Varietät.
Zweitens hat das kanonische Bündel gute funktorielle Eigenschaften unter birationalen
Abbildungen, also solchen rationalen Abbildungenf : X 99K Y , die auf einer offenen
TeilmengeU ⊂ X Isomorphismen sind:f induziert einen Isomorphismen zwischen
den globalen Schnitten vonKX undKY . Das trifft auch für alle PotenzenK⊗m

X , aber
nicht für das zum kanonischen Bündel duale antikanonische BündelK−1

X (und seine
Potenzen) zu.
Die Funktorialität bzgl. birationaler Abbildungen ist wichtig bei einer sehr allgemeinen
Strategie, Strukturtheoreme algebraischer Varietäten zu erhalten. Diese Strategie wurde
schon von der italienischen Schule zur Klassifikation der Flächen benutzt:

Schritt 1: Man definiert zuerst eine Äquivalenzrelation auf der Menge aller alge-
braischen Varietäten, bei der zwei algebraische Varietäten als äquivalent gel-
ten, wenn sie zueinander birational sind. Man versucht außerdem zu verste-
hen, wie verschiedene Varietäten in einer Äquivalenzklasse zusammenhängen.
Z.B. hätte man gerne einige einfache Typen von Operationen, so dass man
durch die Ausführung einer endlichen Anzahl dieser Operationen von einer
Varietät zur anderen gelangt.

Schritt 2: Dann sucht man sich in jeder Äquivalenzklasse einen ausgezeichneten
Repräsentanten, einminimales Modell.

Schritt 3: Die Eigenschaften dieser minimalen Modelle werden dann verwendet,
um einen Überblick über alle Äquivalenzklassen zu bekommen.

Die “einfachen Operationen”, die von einer algebraischen Fläche zu einer birational
äquivalenten führen, sind Auf- und Niederblasungen von rationalen(−1)-Kurven, also
Kurven∼= CP1 mit Selbstschnitt−1. Die minimalen Modelle sind Flächen, auf denen
sich keine(−1)-Kurve zum Niederblasen findet. Die Äquivalenzklassen werden dann
seit Kodaira zuerst grob nach einer Invarianten sortiert, die durch die von den globalen
Schnitte vonK⊗m

X erzeugten rationalen Abbildungenfm : X 99K CP bestimmt wird:
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Die Kodaira-Dimensionist definiert als

κ(X) := max
m

dim fm(X)

bzw. −∞, fallsH0(X,K⊗m
X ) = 0 für allem ∈ N. Wegen der Funktorialität vonKX

istκ(X) konstant in einer Äquivalenzklasse, und sie ist immer≤ der Dimension vonX.
Die minimalen Modelle in den Äquivalenzklassen mitκ(X) = −∞ sind CP2 und
Regelflächen, also FlächenX mit einem Morphismusf : X → E auf eine Kurve
E, dessen Fasern alle∼= CP1 sind. Für Flächen mitκ(X) = 0, 1 gibt es ebenfalls voll-
ständige Listen von Äquivalenzklassen, während fürκ(X) = 2 (sogenannteFlächen
vom allgemeinen Typ) wenigstens einige Beziehungen zwischen weiteren Invarianten
bekannt sind.
Iitakas Arbeiten nutzen weitere Eigenschaften der plurikanonischen BündelK⊗m

X , die
auch in Dimension≥ 3 gelten (fallsκ(X) ≥ 0): Die BildvarietätenX(m) := fm(X)
werden für genügend große und teilbarem birational, also wächstdimH0(X,K⊗m

X )
wiemκ(X), und derkanonische Ring

R(X) := ⊕∞m=0H
0(X,K⊗m

X )

hat Transzendenzgradκ(X) + 1 überC. Die birationale Äquivalenzklasse derX(m)

heißt leicht mißbräuchlichIitaka-VarietätI(X) vonX. Iitaka zeigte, dass es zu jedem
X einen birationalen Morphismusπ : X̃ → X und einen Morphismusf : X̃ → I(X)
gibt, so dass die Fasern vonf über einer dichten offenen Teilmenge vonI(X) Kodaira-
Dimension0 haben. f heißt Kodaira-Iitaka-Faserung, und nach Konstruktion gilt
dim I(X) = κ(X), aber nicht unbedingt

κ(I(X)) = dim I(X) = κ(X).

Dies zeigen einfache Gegenbeispiele von elliptischen Faserungen überP1 mit multiplen
Fasern. Campana konnte aber 2001I(X) zusammen mit der Kodaira-Iitaka-Faserung
als “Orbifold” vom allgemeinen Typ (also mit maximal möglicher Kodaira-Dimension)
interpretieren.
Iitaka stellte außerdem die Frage, ob dieX(m) irgendwann (für genügend große und
teilbarem) isomorph werden. Dies ist richtig, falls der kanonische Ring endlich erzeugt
ist.
Auf Dreifaltigkeiten wurde die endliche Erzeugtheit des kanonischen Rings mit den Mit-
teln der Mori-Theorie gezeigt. Moris entscheidende Idee war, dass die Geometriepro-
jektiver algebraischer Varietäten von den auf ihnen liegenden Kurven, besonders den
rationalen, kontrolliert wird. Dazu führte er den Kegel der Kurven aufX,

NE(X) ⊂ H2(X,R)

ein, der aus den positiven Linearkombinationen der Homologieklassen von algebrais-
chen Kurven aufX besteht. Weiter definierte er zu einem Morphismusf : X → Y
(mit zusammenhängenden Fasern) zwischenprojektiven normalenVarietäten einen Un-
terkegelNE(f), der von allen KurvenC ⊂ X erzeugt wird mitf(C) = Punkt. Die



8 0. EINLEITUNG

erste fundamentale, aber triviale Beobachtung des Mori-Programms ist, dassNE(f) den
Morphismusf eindeutig bestimmt. Außerdem istNE(f) ein extremaler Unterkegel von
NE(X), also eine Facette des Randes.
Das erste große Resultat von Mori war nun, dass umgekehrt jeder extremale Strahl von
NE(X), dessen Homologieklassenc1(KX) negativ schneiden, zu einem Morphismus
f : X → Y gehört, der entweder

• eineFano-Kontraktionauf eine VarietätY mit dimY < dimX ist,
• einedivisorielle Kontraktioneinesexzeptionellen OrtesE von codimE = 1

ist mit dim f(E) < dimE undf ein Isomorphismus aufX − E, oder
• einekleine Kontraktionist, bei derf immer noch ismorph aufX −E ist, aber

codimE ≥ 2.

Zum Beispiel können bei Flächen die Morphismenf : X → C von einer Regelfläche
auf die BasiskurveC als Fano-Kontraktionen und die Niederblasung einer(−1)-Kurve
E als divisorielle Kontraktion vonE gesehen werden, da die Einschränkung vonKX

auf die Fasern vonf bzw. aufE negativ ist. Kleine Kontraktionen kommen auf Flächen
nicht vor. Wenn man mit einer glatten projektiven Fläche startet, kommt man nach
endlich vielen divisoriellen Kontraktionen entweder zu einer FlächeX mit einer Fano-
Kontraktion, oder es gibt keinen extremalen Strahl mehr.KX heißt in letzterem Fallnef.
Solche Flächen sind genau die oben beschriebenen minimalen Modelle.
Wenn man minimale Modelle in höheren Dimensionen genauso definieren will, stößt
man auf große technische Schwierigkeiten: Sowohl divisorielle als auch kleine Kontrak-
tionen können zusingulärenVarietäten führen. Während sich die möglichen Singula-
ritäten bei divisoriellen Kontraktionen noch gut kontrollieren lassen, existiert auf dem
Bild einer kleinen Kontraktion nicht einmal mehr ein kanonisches Bündel - man kann
also keine geeigneten Extremalstrahlen definieren. Stattdessen wurden von Reid und
anderen Flips und Flops eingeführt, die den exzeptionellen OrtE einer kleinen Kontrak-
tion mit Hilfe einer Chirurgie durch einen anderen exzeptionellen OrtE′ ersetzen. Auf
Dreifaltigkeiten konnten dann Kollár und Mori (und viele andere) zeigen, dass

• eine endliche Anzahl von divisoriellen Kontraktionen und Flips von einer
(glatten) projektiven Dreifaltigkeit zu einem (möglicherweise singulären) mi-
nimalen Modell im obigen Sinne führt und

• zwei dieser minimalen Modelle, falls sie birational zueinander sind, durch
endlich viele Flops miteinander verbunden werden können.

Damit ist für Dreifaltigkeiten eine befriedigende Definition von minimalen Modellen
gefunden.
In beliebigen Dimensionen verschafft das Studium rationaler Kurven auf einer pro-
jektiven VarietätX einen ersten Überblick über die birationalen Äquivalenzklassen.
Zunächst folgt aus der Mori-Theorie die Verallgemeinerung der Beobachtung, dass die
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bei Flächen vorkommenden Kontraktionen rationale Kurven kontrahieren: Der exzep-
tionelle Ort einer divisoriellen Kontraktion bzw. die Fasern einer Fano-Kontraktion wer-
den auch in beliebigen Dimensionen von rationalen Kurven überdeckt. FallsX eine
Fano-Kontraktion zuläßt, wird damit ganzX von rationalen Kurven überdeckt — eine
solche Varietät heißtunigeregelt. Umgekehrt wird jede unigeregelte Varietät von ra-
tionalen Kurven überdeckt, deren (gemeinsame) Homologieklasse die Chern-Klasse
c1(KX) negativ schneidet. Insbesondere können deshalbKX und auch jede Potenz
K⊗m
X keinen globalen Schnitt haben, da dieser Schnitt eine der überdeckenden ratio-

nalen Kurven nichtnegativ schneiden müsste. Die Kodaira-Dimension vonX ist also
−∞.
Eine wichtige Vermutung besagt, dass dies eine vollständige geometrische Charakte-
risierung ist:

κ(X) = −∞ ⇔ X unigeregelt.

Für Dreifaltigkeiten zeigte Miyaoka 1988 diese Vermutung, indem er zuerst von einer
nicht unigeregelten Varietät zu einem minimalen Modell überging, auf demKX nef ist.
Die Behauptung erhielt er dann aus Verschwindungssätzen für nef Geradenbündel und
einigen Klassifizierungsresultaten für Dreifaltigkeiten.
Die Vermutung kann als nullter Fall einer allgemeineren Vermutung gelten: Einem nef
GeradenbündelL kann einenumerische Dimension

ν(X,L) := max{k : c1(L)k > 0}
zugeordnet werden. DieAbundance-Vermutungstellt dann fest: Für nicht unigeregelte
Varietäten mit nef kanonischem Bündel (etwa auf minimalen Modellen) ist

κ(X) = ν(X,KX) = ν(X).

Die Wichtigkeit der Abundance-Vermutung liegt in dem Zusammenhang, den sie zwi-
schen der komplexen Geometrie des kanonischen Bündels und seiner Potenzen und der
topologischen Invarianteν(X) herstellt.
Ein großer Fortschritt in der Klassifikationstheorie kam durch die Einführung der ra-
tional zusammenhängenden Varietäten durch Kollár, Miyaoka und Mori 1992. Dabei
geht es um Varietäten, bei denen zwei allgemeine Punkte durch (eine Kette von) ratio-
nale(n) Kurven verbunden werden können. Graber, Harris und Starr zeigten Ende der
90er, dass jede unigeregelte Varietät eine rationale Abbildungf : X 99K Y auf eine
nicht unigeregelteVarietätY besitzt, so dassf über einer offenen Teilmenge vonY ein
Morphismus ist und die Fasern vonf dort maximale rational zusammenhängende Unter-
varietäten vonX sind.f heißt dann der maximale rational zusammenhängende Quotient
oder kurz MRC-Quotient vonX.

Alle diese Theoreme und Vermutungen zusammengenommen, ergibt sich folgendes Bild
einer ersten groben Klassifikation von birationalen Äquivalenzklassen projektiver Vari-
etäten:
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• Falls X eine unigeregelte Varietät ist, also von rationalen Kurven überdeckt
wird, gibt es einen MRC-Quotienten

f : X 99K Y

auf eine nicht unigeregelte VarietätY .
• FallsX nicht unigeregelt ist, istκ(X) ≥ 0, und die Kodaira-Faserung

f : X 99K Y

bildetX auf eine VarietätY von allgemeinem Typ ab (zumindest in Campanas
“Orbifold”-Sinn). Die (allgemeinen) Fasern vonf haben Kodaira-Dimension
κ(F ) = 0. Die Dimension der BasisY ist dabei schon durch die topologisch
invariante numerische Dimensionν(X) gegeben, fallsKX nef ist.

Die “Bausteine” von projektiven Varietäten wären demnach (falls alle Vermutungen
richtig sind) rational-zusammenhängende Varietäten, Varietäten mit Kodaira-Dimension
0 und solche vom allgemeinen Typ.

0.2. Numerisch triviale Faserungen und Blätterungen

In dieser Habilitationsschrift werden nun Arbeiten zusammengefasst, die sich mit neuen
Ansätzen zur Lösung der Abundance-Vermutung befassen. Einerseits werden Ergeb-
nisse und Methoden von Boucksom, Demailly, Paun und Peternell ausgebaut, die 2004
zeigten, wie man die Abundance-Vermutung auch ohne die bis jetzt nur vermutete Exi-
stenz von minimalen Modellen formulieren kann. Dazu betrachten sie pseudo-effektive
Geradenbündel, die als Limes von effektiven Geradenbündeln einer schwachen Positi-
vität genügen und die nef und effektiven Geradenbündel umfassen.
Da z.B. das zum exzeptionellen DivisorE der Aufblasung vonP2 in einem Punkt
gehörige Geradenbündel negativen Selbstschnitt hat, lässt sich die Definition der nu-
merischen Dimension nicht so einfach auf pseudo-effektive Geradenbündel übertragen.
Boucksom, Demailly, Paun und Peternell führen dazu ein neues Schnittprodukt auf den
Kohomologieklassen der pseudo-effektiven Geradenbündel ein, das duch Weglassen der
für die Geradenbündel exzeptionellen Orte im klassischen Schnittprodukt immer≥ 0
bleibt. Die technische Schwierigkeit liegt darin, dass der exzeptionelle Ort nicht immer
wie E in der Aufblasung vonP2 Kodimension1 haben muss. Boucksom, Demailly,
Paun und Peternell beheben dieses Problem auf analytische Weise durch Betrachten be-
liebiger (fast) positiver Metriken auf dem Geradenbündel; algebraisch entspricht diesem
Ansatz der Rückzug in beliebige Aufblasungen. Das neue Schnittprodukt stimmt für nef
Geradenbündel mit dem klassischen Schnittprodukt überein.
Boucksom, Demailly, Paun und Peternell definieren dann die numerische Dimension
eines pseudo-effektiven GeradenbündelsL als

ν(X,L) := max{k : (c1(L)k)≥0 > 0},
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wobei (c1(L)k)≥0 das neue Schnittprodukt bezeichne. Schließlich beweisen sie, dass
KX auf nicht-unigeregelten glatten Varietäten immer pseudo-effektiv ist und können
dann die Abundance-Vermutung auch für solche Varietäten formulieren.
Der zweite Ansatz, der von den in dieser Schrift zusammengefaßten Arbeiten entwickelt
wird, wurde zunächst von Tsuji 1999 studiert und lässt sich am besten differentialge-
ometrisch motivieren: Falls es eine hermitesche Metrik mit semipositiver Krümmung
auf einem pseudo-effektiven GeradenbündelL gibt, sind die Fasern der Iitaka-Faserung
tangential an die Nullrichtungen der Krümmung. Umgekehrt kann man unabhängig von
der Iitaka-Faserung fragen, ob sich alle oder wenigstens einige der Nullrichtungen der
Krümmung einer Metrik auf einem pseudo-effektiven Geradenbündel als Tangential-
richtungen an eine Faserung auffassen lassen.
Diese Idee kann algebraisch oder analytisch entfaltet werden:

• Im algebraischen Sinn werden Nullrichtungen der Krümmung zu Kurven, auf
denen das Geradenbündel numerisch trivial wird. Dies ermöglicht für nef Ge-
radenbündel die Konstruktion der sogenannten Nef-Faserung, die in Kapitel1
beschrieben wird.

• Für beliebige pseudo-effektive Geradenbündel ergeben sich technische
Schwierigkeiten aus der Tatsache, dass positive hermitesche Metriken aufL
singulär sein können. In Kapitel2 wird geklärt, was numerische Trivialität von
Geradenbündeln auf Kurven oder auch Untervarietäten höherer Dimension
bzgl. solche singulären Metriken bedeutet. Die eleganteste Charakterisierung
in Theorem3.8 sagt, dass der Rückzug des Krümmungsstroms auf die Un-
tervarietät eine Summe von Integrationsströmen von Divisoren sein muß. In
Kapitel 3 wird dann eine Faserung mit maximal-dimensionalen numerisch
trivialen Fasern konstruiert, die pseudo-effektive Reduktionsabbildung.

Es stellt sich heraus, dass die Iitaka-Faserung eines GeradenbündelsL die pseudo-
effektive Reduktionsabbildung zu der Metrikhm ist, die von den Schnitten einer genü-
gend hohen PotenzL⊗m erzeugt wird. Da diese Metrik aber so eng mit der Existenz von
Schnitten verknüpft ist, sagt diese Identität von Faserungen wenig über das Abundance-
Problem für das GeradenbündelL aus.
Die Nef-Faserung hingegen, die unabhängig von speziellen Metriken aufL definiert ist,
ist manchmal feiner als die Iitaka-Faserung vonL. Insbesondere Beispiel7.1 legt nahe,
wie dieser Unterschied erklärt werden kann: Die numerisch trivialen Richtungen sind
hier nicht tangential an eine Faserung, sondern an eine Blätterung.
Der Begriff einer numerisch trivialen Blätterung für pseudo-effektive Klassen auf
einer kompakten Kähler-Mannigfaltigkeit wird in Abschnitt6.1 definiert und eine ma-
ximale numerisch triviale Blätterung konstruiert. Die Notwendigkeit der technisch
anspruchsvollen Definition wird am Beispiel7.2 klar: Anstelle der einzig möglichen
positiven Metrik auf dem dort betrachteten Geradenbündel muß man eine appro-
ximierende Sequenz von fast positiven Metriken heranziehen, da die positive Metrik zu
wenig Informationen trägt. Diese Berücksichtigung von vielen fast positiven Metriken
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auf einmal steht im Einklang mit den Methoden, die Boucksom et al. bei der Einführung
des positiven Schnittprodukts entwickelt haben. Sie werden im Kapitel4 ausführlich
erläutert.
In den Abschnitten6.3 und 6.4 wird gezeigt, dass die Iitaka-Faserung die numerisch
triviale Blätterung und diese wiederum die Nef-Faserung eines nef GeradenbündelsL
enthält. Wir erhalten so ein hinreichendes Kriterium für das Auseinanderfallen von
Iitaka-Faserung und Nef-Faserung: Die maximale numerischL-triviale Blätterung ist
keineFaserung.
Die Abundance-Vermutung sagt nun, dass dies für das kanonische Bündel auf nicht-
unigeregelten Varietäten nicht passiert. Außerdem behauptet sie, dass die Kodimension
der Blätter einer numerischKX -trivialen Blätterung gleich der numerischen Kodimen-
sion dim(X) − ν(X) der VarietätX ist. Die oben geschilderte Intuition hinter dem
Begriff der numerisch trivialen Blätterung legt nahe, dass die numerische Kodimension
zumindest größer oder gleich der Blätterdimension sein sollte: Die Potenzenc1(L)k er-
rechnen sich als äußeres Produkt der Krümmungsform einer Metrik aufL. Wenn also
diese Metrik semipositiv ist und ihre Nullrichtung die Blätter enthalten, ergibt sich die
gewünschte Schranke.
Diese Schranke wird in Abschnitt6.2 auch bewiesen, allerdings unter einer Zusatzan-
nahme an die Singularitäten der Blätterung: sie sollen isoliert sein. Die Beseiti-
gung dieser Annahme erfordert ein genaues Studium des Verhaltens der fast positiven
Metriken aufL in der Umgebung von Blätterungssingularitäten. Dies ist bis jetzt nicht
geschehen und scheint wegen der ungeklärten Beschreibung von Blätterungssingula-
ritäten auch sehr schwierig zu sein.
Beispiel 7.3 zeigt schließlich, dass die Ungleichung strikt sein kann. Dies muss als
weiterer Beleg für die sehr komplexe Geometrie aufP2 aufgeblasen in9 Punkten gese-
hen werden. Die Abundance-Vermutung sagt wiederum, dass derartige Phänomene bei
kanonischen Bündeln auf nicht-unigeregelten Varietäten nicht auftreten können.

0.3. Frühere Veröffentlichungen

Die meisten Ergebnisse dieser Schrift sind schon in früheren Arbeiten publiziert worden.
Die Nef-Faserung aus Kapitel1 wurde in [1] konstruiert, während die Überlegungen zu
Tsujis numerisch trivialen Faserungen in den Kapiteln2 und3 aus [22] stammen. Die
Definition, Konstruktion und Eigenschaften numerisch-trivialer Blätterungen in Kapi-
tel 6 finden sich in [21], ebenso wie die Einführung in die Resultate von Boucksom et
al. in Kapitel4 und die Beispiele in Kapitel7.
Die Resultate aus Kapitel5 sind neu; sie entstanden als genauere Ausführungen einiger
Argumente in [21].
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CHAPTER 0

Introduction

Algebraic curves were created by God,
algebraic surfaces by the devil.
Max Noether

This left little room for algebraic threefolds.
János Kollár

0.1. Classification of algebraic varieties

Classic algebraic geometry started with studying algebraic curves, first in the ancient
world the conic sections, then in modern times, starting with Newton, plane algebraic
curves of higher degree (especially their singularities), and in the 19th century also space
curves. Finally Riemann gave a quite satisfactory structure theory of algebraic curves,
using analytic and topological methods.
At the turn of the 20th century the Italian school of Castelnuovo, Enriques and Severi
achieved a satisfactory structure theory for algebraic surfaces. Their work, however,
lacked the Hilbertian rigor, and after their students presented frequently false results on
algebraic threefolds the whole subject started to fall into disrepute.
Systematically using methods from commutative algebra Van der Waerden and af-
terwards Zariski and Weil placed algebraic geometry on solid foundations again,
and Grothendieck united in his unfinished magnum opus “Éléments de géométrie al-
gébrique” commutative algebra and algebraic number theory with algebraic geometry.
By the end of the sixties, the foundational work was mostly done and attention turned
towards the classical problems. First the theory of curves and surfaces was redone and
completed. In 1972 Iitaka proposed some bold and interesting conjectures concerning
higher-dimensional varieties, and Ueno proved in 1977 the first structure theorem about
threefolds along this path. It was clear, however, that the scope of their approach was
limited. Above all an analog of the minimal models of surfaces was missing.
The major breakthrough came in 1980: Using several new ideas Mori accomplished the
first major step towards proving the existence of minimal models for higher-dimensional
varieties. At the same time Reid defined what such minimal models should be after all
and pointed out several ways to use them if they exist. For threefolds, the emerging
program was successfully finished by Mori and Kollár by the end of the eighties, and

15
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several deep structure theorems for threefolds were proven, among them the abundance
conjecture and the finite generatedness of the canonical ring.
Both conjectures (in dimension≥ 4) resp. theorems (in dimension3) describe properties
of the canonical line bundleKX that is the top exterior power of the cotangent bundle
Ω1
X = T ∗X on a smooth algebraic variety. The bundleKX is so important because of the

following two observations:
First, global sections of holomorphic line bundles define rational maps into other alge-
braic varieties, e.g. the projective spacesCPn, and the canonical bundle exists on every
smooth algebraic variety.
Second, the canonical bundle has good functorial properties under birational maps that
are rational mapsf : X 99K Y being isomorphisms on an open subsetU ⊂ X: the map
f induces an isomorphism between the global sections ofKX andKY . This is also true
for all powersK⊗m

X , but does not hold e.g. for the anticanonical bundleK−1
X and its

powers.
The functoriality w.r.t. birational maps is essential in a very general strategy for obtaining
structure theorems of algebraic varieties. This strategy was already used by the Italian
school to classify algebraic surfaces:

Step 1: First define an equivalence relation on all algebraic varieties by declaring
two algebraic varieties as equivalent if they are birational. Try to understand
how two equivalent varieties are connected. In particular one would like to
have some “simple” types of operations leading in finitely many steps from
one variety to the other.

Step 2: Next look for a distinguished representative, theminimal model, in every
equivalence class.

Step 3: Finally use the properties of these minimal models to get a survey over
all equivalence classes.

The “simple operations” leading from an algebraic surface to birationally equivalent
surfaces are blow ups and blow downs of rational(−1)-curves that are curves∼= CP1

with self-intersection−1. The minimal models are surfaces on which there are no(−1)-
curves for blowing down. Following Kodaira the equivalence classes will be roughly
classified according to an invariant given by the rational mapsfm : X 99K CPN induced
by the global sections ofK⊗m

X , theKodaira dimension. It is defined as

κ(X) := max
m

dim fm

resp.−∞ if H0(X,K⊗m
X ) = 0 for allm ∈ N. The Kodaira dimensionκ(X) is constant

in an equivalence class because of the functoriality ofKX , and it always is≤ dimX.
The minimal models in the equivalence classes withκ(X) = −∞ areCP2 and ruled
surfaces that are surfacesX with a morphismf : X → E onto a curveE whose fibers
are all∼= CP1. There are also complete lists for equivalence classes of surfaces with
κ(X) = 0, 1, whereas for surfacesX with κ(X) = 2 (so-calledsurfaces of general
type), at least some relations between other invariants are known.
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Iitaka’s works use further properties of the pluricanonical bundlesK⊗m
X , which also hold

in dimension≥ 3: If κ(X) ≥ 0 the image varietiesX(m) := fm(X) become birational
to each other form sufficiently large and divisible. ConsequentlydimH0(X,K⊗m

X )
grows likemκ(X) and thecanonical ring

R(X) := ⊕∞m=0H
0(X,K⊗m

X )

has transcendental degreeκ(X) + 1 overC. By abuse of notation the birational equiva-
lence class of theX(m) is calledIitaka varietyI(X) of X. Iitaka proved that for every
X there exists a birational morphismπ : X̃ → X and a morphismf : X̃ → I(X)
such that the fibers off have Kodaira dimension0 over a dense open subset ofI(X).
Thenf is calledKodaira-Iitaka fibration, and by constructiondim I(X) = κ(X), but
not necessarily

κ(I(X)) = dim I(X) = κ(X).
Simple counter examples are elliptic fibrations overP1 with multiple fibers. In 2001
Campana was able to interpretI(X) together with the Kodaira-Iitaka fibration as an
“orbifold” of general type, i.e. having maximal Kodaira dimension.
In addition Iitaka asked if theX(m) get at some point isomorphic, form sufficiently
large and divisible. This is true if the canonical ring is finitely generated.
On threefolds the finite generatedness of the canonical ring was shown by using Mori
theory. Mori’s landmark idea was that the geometry of projective algebraic varieties is
controlled by the curves lying on them, especially the rational curves. To demonstrate
this he introduced the cone of curves onX,

NE(X) ⊂ H2(X,R)

that consists of all positive linear combinations of the homology classes of algebraic
curves onX. To every morphismf : X → Y with connected fibers between pro-
jective normal varieties he associated a subconeNE(f) generated by all curves with
f(C) = point. The first fundamental but trivial observation of the Mori program is that
NE(f) determinesf uniquely. Furthermore,NE(f) is an extremal subcone ofNE(X)
hence a face on the boundary.
The first fundamental result of Mori was the converse of this statement: every extremal
ray ofNE(X) whose homology class intersectsc1(KX) negatively is associated to a
morphismf : X → Y of one of the following three types:

• aFano contractiononto a varietyY with dimY < dimX,
• a divisorial contractionof an exceptional locusE of codimE = 1 with

dim f(E) < dimE, andf is an isomorphism onX − E, or
• a small contractionfor which f is still an isomorphism onX − E, but

codimE ≥ 2.

The morphismsf : X → C from a ruled surfaceX to the base curveC, for exam-
ple, are Fano contractions, and the blow down of a(−1)-curveE on a surface is the
divisorial contraction ofE because the restriction ofKX to a fiber off resp. toE are
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negative. Small contractions do not occur on surfaces. Starting with a smooth projective
surface a finite number of divisorial contractions either leads to a surfaceX with a Fano
contraction, or there will be no extremal ray inNE(X) intersectingKX negatively. In
this caseKX is callednef, and such surfaces are exactly the minimal models described
above.
Defining minimal models in the same way in higher dimensions causes major technical
problems: Both divisorial and small contractions can lead tosingularvarieties. Whereas
possible singularities of divisorial contractions may be controlled rather well, there even
does not exist a canonical bundle on the image of a small contraction – hence it is not
possible to define suitable extremal rays to continue the contractions. Instead Reid and
others introduced flips and flops replacing the exceptional locusE of a small contraction
with another exceptional locusE′, via a surgery. On threefolds Kollár and Mori (and
many others) were able to show that

• a finite number of divisorial contractions and flips leads from a smooth pro-
jective threefold to a possibly singular minimal model in the sense described
above and

• two of these minimal models are birational to each other iff they can be con-
nected by a finite number of flops.

Thus a satisfactory definition of minimal models was found.
In arbitrary dimensions the study of rational curves on a projective varietyX allows a
first survey over the birational equivalence classes. First, Mori theory implies the gen-
eralization of the observation that on surfaces contractions contract rational curves: In
arbitrary dimensions the exceptional locus of a divisorial or Fano contraction is covered
by rational curves, too. Consequently, if there exists a Fano contraction onX, the vari-
ety is covered by rational curves – such varieties are calleduniruled. Conversely, every
uniruled variety is covered by rational curves whose common homology class intersects
the Chern classc1(KX) negatively. In particular,KX and any powerK⊗m

X cannot have
global sections, since such a section would positively intersect one of the covering ratio-
nal curves. Hence the Kodaira dimension ofX is−∞.
An important conjecture predicts that this is a complete geometric characterization:

κ(X) = −∞ ⇔ X uniruled.

For threefolds Miyaoka proved this conjecture by passing from a general non-uniruled
variety to a minimal model with nefKX . Then he obtained the claim from vanishing
theorems for nef line bundles and results classifying threefolds.
The conjecture can be interpreted as case zero of a more general conjecture: A nef line
bundleL has anumerical dimension

ν(X,L) := max{k : c1(L)k > 0},
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and theabundance conjectureclaims that for non-uniruled varieties with nef canonical
bundle (e.g. on minmal models)

κ(X) = ν(X,KX) = ν(X).

The abundance conjecture is important because it establishes a connection between the
complex geometry of the canonical bundle and its powers and the topological invariant
ν(X).
Substantial progress in classification theory was achieved when in 1992 Kollár, Miyaoka
and Mori introduced the notion of rationally connected varieties. They are defined as
varieties where two general points can be connected by a (chain of) rational curve(s).
Around 2000 Graber, Harris and Starr proved that every uniruled variety allows a rational
mapf : X 99K Y on a non-uniruled varietyY such thatf is a morphism over an open
subset ofY and the fibers off are maximal rationally connected subvarieties ofX. Then
f is called the maximal rationally connected quotient, for short MRC-quotient ofX.

From all these theorems and conjectures emerges a first picture of a rough classification
of birational equivalence classes of projective varieties:

• If X is a uniruled varieties i.e. covered by rational curves, there exists an MRC
quotient

f : X 99K Y
on a non-uniruled varietyY .

• If X is non-uniruled thenκ(X) ≥ 0, and the Kodaira fibration

f : X 99K Y
mapsX onto a variety of general type (at least in Campana’s “orbifold” sense),
and the (general) fibersF of f have Kodaira dimensionκ(F ) = 0. The dimen-
sion of the basisY is given by the topological invariant numerical dimension
ν(X) if KX is nef.

All conjectures holding true the “building blocks” of projective varieties would be
rationally connected varieties, varieties with Kodaira dimension0 and varieties of gen-
eral type.

0.2. Numerically trivial fibrations and foliations

In this Habilitationschrift several works are bundled dealing with new approaches to
the abundance conjecture. On the one hand, these works further develop results and
methods of Boucksom, Demailly, Paun and Peternell. They showed in 2004 how to state
the abundance conjecture without using the existence of minimal models, which is only
conjectural up to now. To this purpose they considered pseudo-effective line bundles,
which satisfy a weak positivity property as the limit of effective line bundles and which
contain nef and effective line bundles.
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Since e.g. the line bundle associated to the exceptional divisorE of the blow up of
P2 in a point has negative self intersection the definition of the numerical dimension
cannot be immediately transfered to pseudo-effective line bundles. Instead, Boucksom
et al. introduced a new intersection product on the cohomology classes of the pseudo-
effective line bundles, which always stays≥ 0 by removing the exceptional loci of the
line bundle in the classical intersection product. The technical difficulty lies in the fact
that these exceptional loci need not always be of codimension1, asE in the blow up of
P2. Boucksom et al. solved this problem in an analytic manner via considering arbitrary
(almost) positive metrics on line bundles; algebraically this approach corresponds to
pulling back to arbitrary blow ups. The new intersection product is the same as the
classical one on nef line bundles.
Next, Boucksom et al. defined the numerical dimension of a pseudo-effective line bundle
as

ν(X,L) := max{k : (c1(L)k)≥0 > 0},
where(c1(L)k)≥0 denotes the new intersection product. Finally they prove thatKX

is always pseudo-effective on a non-uniruled smooth variety and are able to state the
abundance conjecture for such varieties.
The second approach developped by the papers bundled in this Schrift was first studied
by Tsuji in 1999 and is most suitably motivated in a differential-geometric way: If there
exists a hermitian metric with semi-positive curvature on a pseudo-effective line bundle
L then the fibers of the Iitaka fibration are tangential to the null directions of the metric
curvature. Vice versa one may ask independently from the Iitaka fibration whether all or
at least some of the null directions belonging to the semi-positive curvature of a metric on
a pseudo-effective line bundle can be interpreted as the tangent directions of a fibration.
This idea can be unfolded algebraically or analytically:

• Algebraically null directions of the curvature are translated as curves on which
the line bundle is numerically trivial. For nef line bundles this allows to con-
struct the so called nef fibration which will be described in Chapter1.

• For arbitrary pseudo-effective line bundles technical difficulties result from
the fact that positive hermitian metrics onL may be singular. In Chapter2
the notion of numerical triviality of line bundles on curves or also higher-
dimensional subvarieties w.r.t. such singular metrics will be clarified. The
most elegant characterization in Theorem3.8 states that the pull back of the
curvature current onto the subvariety must be the sum of integration currents
of divisors. In Chapter3 a fibration with maximal-dimensional numerically
trivial fibers is constructed, the pseudo-effective reduction map.

It turns out that the Iitaka fibration of a line bundleL is the pseudo-effective reduction
map w.r.t. a metrichm generated by the sections of a sufficiently high powerL⊗m. Since
this metric is so closely related to the existence of sections the identity of fibrations
doesn’t tell too much on the abundance problem for the line bundleL.
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The nef fibration, however, is defined independently of special metrics onL, but some-
times it is finer than the Iitaka fibration ofL. Especially Example7.1 suggests how to
explain this difference: here, the numerically trivial directions are not tangential to a
fibration but to a foliation.
The notion of a numerically trivial foliation for pseudo-effective line bundles on a com-
pact Kähler manifold will be defined in Section6.1, and a maximal numerically trivial
foliation will be constructed. The necessity of the technically demanding definition will
be illustrated by Example7.2: Instead of the unique positive but very singular metric
on the considered line bundle one has to look at approximating sequences of almost
positive metrics, since the positive metric carries not enough information. Taking into
account many almost positive metrics at the same time fits with the methods introduced
by Boucksom et al. for defining the positive intersection product. They will be outlined
in detail in Chapter4.
In Sections6.3and6.4it will be proven that the Iitaka fibration contains the numerically
trivial foliation, which in turn contains the nef fibration of a nef line bundleL. Thus we
obtain a sufficient criterion for the split between Iitaka and nef fibration: The maximal
numericallyL-trivial foliation is not a fibration.
Now, the abundance conjecture states that this cannot happen for the canonical bundle
on a non-uniruled variety. Furthermore it claims that the codimension of the leaves of
a numericallyKX -trivial foliation equals the numerical dimensionν(X). The intuition
behind the notion of numerical triviality described above suggests that the numerical
dimension is at least a lower bound for the codimension of the foliation leaves: The
powersc1(L)k are computed as the exterior power of the curvature form of a metric on
L. Hence if this metric is semi-positive and its null directions contain the leaves, the
desired bound is correct.
This bound will be proven in Section6.2, but under an additional assumption on the
singularities of the foliation: they must be isolated. To remove this assumption one
carefully has to study the behaviour of almost positive metrics around singularities of
foliations. This is not done up to now and seems to be very difficult because of the
unknown description of foliation singularities.
Finally, Example7.3 shows that the inequality can be strict. This should be seen as
another hint to the extremely intricate geometry ofP2 blown up in9 points. On the other
hand, the abundance conjecture tells once more that such phenomenons cannot occur on
non-uniruled varieties.

0.3. Previous publications

Most of the results of this Schrift have been published earlier.
The nef fibration in Chapter1 was constructed in [1] whereas the investigations on
Tsuji’s numerically trivial fibrations in Chapters2 und 3 originally come from [22].
The definition, construction and properties of numerically trivial foliations in Chapter6
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will be found in [21] as will be the introduction to the results of Boucksom et al. in
Chapter4 and the examples in Chapter7.
The results from Chapter5 are new. They emerged as a more detailed explanation of
some arguments in [21].
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CHAPTER 1

The nef fibration

From the algebraic-geometric point of view, the most natural way of defining numerical
triviality for subvarieties with respect to a given line bundle is to use the standard inter-
section numbers of the line bundle with curves on the subvariety. Relevant definitions
are given now.

DEFINITION 1.1. LetX be an irreducible reduced projective complex space (pro-
jective variety, for short). A line bundleL onX is numerically trivial, iffL.C = 0 for
all irreducible curvesC ⊂ X. The line bundle is nef iffL.C ≥ 0 for all curvesC.

Let f : Y → X be a surjective map from a projective varietyY . Then clearlyL is
numerically trivial (nef) if and only iff∗L is.

DEFINITION 1.2. LetX andY be normal projective varieties andf : X 99K Y
a rational map and letX◦ ⊂ X be the maximal open subset wheref is holomorphic.
The mapf is said to be almost holomorphic if some fibers of the restrictionf |X◦ are
compact.

In this chapter we want to prove the following structure theorem for nef line bundles on
a projective variety.

THEOREM 1.3. LetL be a nef line bundle on a normal projective varietyX. Then
there exists an almost holomorphic, dominant rational mapf : X 99K Y with connected
fibers, called a “reduction map” such that

(i) L is numerically trivial on all compact fibersF of f with
dimF = dimX − dimY

(ii) for every general pointx ∈ X and every irreducible curveC passing through
x with dim f(C) > 0, we haveL.C > 0.

The mapf is unique up to birational equivalence ofY .

This theorem was stated without complete proof in Tsuji’s paper [37].

1.1. Construction of the reduction map

1.1.1. A criterion for numerical triviality. In order to prove Theorem1.3 and
construct the reduction map, we will employ the following criterion for a line bundle to
be numerically trivial:

23
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THEOREM 1.4. LetX be an irreducible projective variety which is not necessarily
normal. LetL be a nef line bundles onX. ThenL is numerically trivial if and only if
any two points inX can be joined by a connected chainC of curves such thatL.C = 0.

In the remaining part of the present section we will prove Theorem1.4. The proof will
be performed by a reduction to the surface case. The argumentation is then based on the
following statement which in the smooth case is a simple corollary to the Hodge Index
Theorem.

PROPOSITION1.5. Let S be an irreducible projective surface which is not neces-
sarily normal and letq : S → T be a morphism with connected fibers onto a curve.
Assume thatL ∈ Pic(S) is a nef line bundle and there exists a curveC ⊂ S such that
q(C) = T and

L.F = L.C = 0

holds whereF is a generalq-fiber. ThenL is numerically trivial.

PROOF. If S is smooth setD = C + nF wheren is a large positive integer. Then
we haveD2 > 0. By the Hodge Index Theorem it follows that

(L.D)2 ≥ L2.D2

henceL2 = 0 since by our assumptionsL.D = 0. So equality holds in the Index
Theorem and thereforeL andD are proportional:L ≡ kD for some rational numberk.
Since0 = L2 = k2D2 andD2 > 0 we conclude thatk = 0. That ends the proof in the
smooth case.
If S is singular letδ : S̃ → S be a desingularization ofS andC̃ ⊂ S̃ a component of
δ−1(C) which maps surjectively ontoC. Note that the fiber ofq ◦ δ need no longer be
connected and consider the Stein factorization

S̃
δ

desing.

eq

S

q

T̃ finite
T.

It follows immediately from the construction thatq̃(C̃) = T̃ , thatδ∗(L) has degree0 on
C̃ and on the general fiber of̃q. The argumentation above therefore yields thatδ∗(L) is
trivial on S̃. The claim follows. ¤

1.1.2. Proof of Theorem1.4. If L is numerically trivial the assertion of Theo-
rem1.4is clear. We will therefore assume that any two points can be connected by a not
necessarily irreducible curve which intersectsL with multiplicity 0 and we will show
thatL is numerically trivial. To this end choose an arbitrary irreducible curveB ⊂ X.
We are finished if we show thatL.B = 0.
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Let a ∈ X be an arbitrary point which is not contained inB. For anyb ∈ B we can find
by assumption a connected, not necessarily irreducible curveZb containinga andb such
thatL.Zb = 0. Since the Chow variety has compact components and only a countable
number of components we find a family(Zt)t∈T of curves parametrized by a compact
irreducible curveT ⊂ Chow(X) such that for every pointb ∈ B there exists a point
t ∈ T such that the curveZt contains botha andb. We consider the universal family
S ⊂ X × T overT together with the projection morphisms

S
p

q

X

T

CLAIM 1. There exists an irreducible componentS0 ⊂ S such thatp∗(L) is nu-
merically trivial onS0.

PROOF OFCLAIM 1. As all curvesZt contain the pointa the surfaceS contains
the curve{a} × T . Let S0 ⊂ S be a component which contains the curve{a} × T .
Since{a}× T intersects all fibers of the natural projection morphismq and sincep∗(L)
is trivial on{a} × T an application of Proposition1.5yields the claim. ¤

CLAIM 2. The bundlep∗(L) is numerically trivial onS.

PROOF OFCLAIM 2. We argue by contradiction and assume that there are compo-
nentsSj ⊂ S wherep∗(L) is not numerically trivial. We can therefore subdivide the set
I of irreducible componentsSi of S into two subvarieties as follows:

Itriv := {i ∈ I : p∗(L)|Si
is numerically trivial},

Intriv := {i ∈ I : p∗(L)|Si
is not numerically trivial}.

SetStriv :=
⋃
i∈Itriv Si andSntriv :=

⋃
i∈Intriv

Si. By assumption and Claim 1 both
varieties are not empty. SinceS is the universal family over a curve inChow(X) the
morphismq is equidimensional. In particular, since all componentsSi ⊂ S are two-
dimensional every irreducible componentSi maps surjectively ontoT . Thus if t ∈ T is
a general point the connected fiberq−1(t) intersects bothStriv andSntriv. It is therefore
possible to find a curveD ⊂ Striv ∩ Sntriv which dominatesT .
That however contradicts Proposition1.5: On one hand sinceD ⊂ Striv, the degree of
p∗(L)|D is 0. On the other hand we can find an irreducible componentSj ⊂ Sntriv ⊂ S
which containsD. But becausep∗(L)|D has degree0 on the fibers ofq|Sj

Proposition1.5
asserts thatp∗(L) is numerically trivial onSj contrary to our assumption. This ends the
proof of Claim 2. ¤
We apply Claim 2 as follows: IfB′ ⊂ S is any component of the preimagep−1(B) then
p∗(L).B′ = 0. That shows thatL.B = 0 and the proof of Theorem1.4 is done. ¤
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1.1.3. Proof of Theorem1.3. In order to derive Theorem1.3 from Theorem1.4
we introduce an equivalence relation onX with settingx ∼ y if x andy can be joined
by a connected connected curveC such thatL.C = 0. Then by [11] or [12, Appendix]
there exists an almost holomorphic mapf : X 99K Y with connected fibers to a normal
projective varietyY such that two general pointsx andy satisfyx ∼ y if and only if
f(x) = f(y). This mapf gives the fibration we are looking for.
If F is a general fiber thenL|F ≡ 0 by Theorem1.4.
We still need to verify thatL.C = 0 for all curvesC contained in anarbitrary compact
fiber F0 of dimensiondimF0 = dimX − dimY . To do that letH be an ample line
bundle onX and pick

D1, . . . , Dk ∈ |mH|
for m large such that

D1. . . . .Dk.F0 = C + C ′

with an effective curveC ′. Then

L.(C + C ′) = L.D1. . . . .Dk.F

with a general fiberF of f henceL.(C+C ′) = 0. SinceL is nef we concludeL.C = 0.
¤

1.2. Nef cohomology classes

In Theorems1.3 and1.4 we never really used the fact thatL is a line bundle; only the
property thatc1(L) is a nef class is important and even rationality of the class does not
play any role. Hence our results directly generalize to nef cohomology classes of type
(1, 1). To be precise we fix a projective manifold (we stick to the smooth case for sakes
of simplicity) and we say that a classα ∈ H1,1(X,R) is nef if it is in the closure of the
cone generated by the Kähler classes. Moreoverα is numerically trivial ifα.C = 0 for
all curvesC ⊂ X.
If Z ⊂ X is a possibly singular subspace then we say thatα is numerically trivial onZ if
for some (and hence for all, see [34]) desingularisation̂Z → Z the induced formf∗(α)
is numerically trivial onẐ i.e. f∗(α).C = 0 for all curvesC ⊂ Ẑ. Heref : Ẑ → X
denotes the canonical map. Similarly we defineα to be nef onZ. If Z is smooth this
is the same as to say thatα|Z is a nef cohomology class in the sense thatα|Z is in the
closure of the Kähler cone ofZ.

THEOREM 1.6. Let α be a nef cohomology class on a smooth projective variety
X. Then there exists an almost holomorphic dominant rational mapf : X 99K Y with
connected fibers such that

(i) α is numerically trivial on all compact fibersF of f with
dimF = dimX − dimY .

(ii) for every general pointx ∈ X and every irreducible curveC passing through
x with dim f(C) > 0 we haveα.C > 0.
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The mapf is unique up to birational equivalence ofY .
In particular if two general points ofX can be joined by a chainC of curves such that
α.C = 0 thenα ≡ 0.

1.3. The nef dimension

SinceY is unique up to a birational map its dimensiondimY is an invariant ofL which
we compare to the other known invariants.

DEFINITION 1.7. The dimensiondimY is called the nef dimension ofL. We write

n(L) := dimY.

As usual we letν(L) be the numerical dimension ofL, i.e. the maximal numberk such
thatLk.Hn−k 6= 0.

PROPOSITION1.8. The nef dimension is never smaller than the numerical dimen-
sion:

ν(L) ≤ n(L).

PROOF. Fix a very ample line bundleH ∈ Pic(X) and setν := ν(L). Let Z be
a general member cut out byn − ν elements of|H|. The dimension ofZ will thus be
dimZ = ν and sinceLν .Hn−ν > 0 the restrictionL|Z is big (and nef). Consequently
dim f(Z) = ν since otherwiseZ would be covered by curvesC which are contained in
general fibers off so thatL.C = 0 contradicting the bigness ofL|Z . In particular we
havedimY ≥ dim f(Z) = ν and our claim is shown. ¤

COROLLARY 1.9. The nef dimension is never smaller than the Kodaira dimension:

κ(L) ≤ n(L).

PROOF. This follows fromκ(L) ≤ ν(L) (see [14, (6.10)]). ¤
REMARK 1.10. As mentioned in the Introduction the abundance conjecture predicts

κ(L) = ν(L)

which impliesκ(L) = n(L).
On the other hand there exist varietiesX and nef line bundlesL 6= KX such that

κ(L) < ν(L) < n(L).

Such examples will be discussed in Chapter7. Their thorough analysis was the starting
point of the construction of numericallyL-trivial foliations.





CHAPTER 2

Tsuji’s intersection numbers

In [37], H. Tsuji stated assertions on the structure of pseudo-effective line bundlesL on
a projective manifoldX similar to the nef reduction of the last chapter. In particular
he postulated the existence of a meromorphic “reduction map”, which essentially says
that through the general point ofX there is a maximal irreducible subvariety which
is flat w.r.t. a positive possibly singular hermitian metrich on L. The purpose of this
chapter is to clarify and define this meaning of “numerical trivial” via the introduction
of intersection numbers ofL with curves depending onh.
We study three such definitions which are contained in Tsuji’s arguments and solve the
subtle question when they are equivalent. We need all three to construct the reduction
map in the next chapter. The first is

DEFINITION 2.1. LetX be a smooth projective complex manifold, letL be a holo-
morphic line bundle onX with positive singular hermitian metrich. If C ⊂ X is an
irreducible curve with normalizationπ : C̃ → C such thath is well defined onC, i.e.
h|C 6≡ +∞, then define the intersection number

(L, h).C := lim sup
m→∞

1
m
h0(C̃,OC̃(mπ∗L)⊗ I((π∗h)m)).

Here,I((π∗h)m) denotes the multiplier ideal sheaf of the pulled back metric(π∗h)m

on C̃.

This definition leads directly to the birational invariance of the intersection numbers, i.e.
for a birational morphism we havef : X̃ → X

(f∗L, f∗h).C̄ = (L, h).C

whereC̄ is the strict transform (s. section2.3).
The next definition is contained in

PROPOSITION2.2. If C is smooth,

(L, h).C = L.C −
∑

x∈C
ν(Θh|C , x),

whereν(Θh|C , x) is the Lelong number of the curvature currentΘh restricted toC in
x ∈ C.

29
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This equality gives a more geometric interpretation of the intersection numbers (espe-
cially in the case of analytic singularities, s. Proposition2.17) and is an important step
towards a last equality. This is the most subtle one, and to formulate it properly, one has
to remember two facts:

• The sets where plurisubharmonic functions are equal to−∞ arepluripolar
sets, whose structure is difficult to describe. They are more complicated than
countable unions of algebraic sets, but at least they are still of Lebesgue mea-
sure 0, cf. [25].

• For a positive currentΘ, the level sets of the Lelong numbers
Ec(Θ) = {x ∈ X|ν(Θ, x) ≥ c} are analytic subsets ofX ([35],[14, (2.10)]).

So it is useful to introduce the following notion:

DEFINITION 2.3. Let X,L, h be as in the previous definition. A smooth curve
C ⊂ X will be called(L, h)−general iffh|C is a well defined singular metric onC and

(i) C intersects no codim-2-component in any of theEc(h),
(ii) C intersects every prime divisorD ⊂ Ec(h) in the regular locusDreg

of this divisor, C does not intersect the intersection of two such prime
divisors, and every intersection pointx has the minimal Lelong number
ν(h, x) = ν(h,D) := minz∈D ν(h, z),

(iii) for all x ∈ C, the Lelong numbers

ν(h|C , x) = ν(h, x).

Using methods of [31] it is possible to show that in families of curves coveringX (e.g.
appropriate components of the Chow variety) every curve outside a pluripolar set is
(L, h)−general, see Theorem2.5. We can even prove the stability of this notion under
certain blow ups, see Lemma2.7. The main reason for introducing this notion lies in the
equality

I(hm) · OC = I(hm)|C = I(hm|C),

which is true for(L, h)−general curves. From this one easily gets the announced last
equality

THEOREM 2.4. For (L, h)−general smooth curvesC ⊂ X,

(L, h).C = lim sup
m→∞

1
m
h0(C,OC(mL)⊗ I(hm) · OC),

whereI(hm) · OC is the image ofI(hm)⊗OC in OC .

This equality is needed in order to be able to interchange restriction (to curvesC) with
taking global sections (of the sheafOX(mL) ⊗ I(hm)) as in the proof of the Key
Lemma3.4 in the next chapter. There are explicit counterexamples for arbitrary curves,
s. section2.1.3. On the other hand the equality is true in general in case of analytic
singularities, s. Proposition2.15.
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2.1. (L, h)-general curves

We start with properties of(L, h)-general curves.

2.1.1. Slices of positive currents.The aim is to prove the following

THEOREM 2.5. Letπ : X → B be a smooth familyX of smooth projective curves
over a smooth quasiprojective baseB. LetL be a pseudo-effective line bundle onX
andh a positive singular hermitian metric onL. Then there is a pluripolar setNB ⊂ B
such that fora ∈ B −NB , every fibreπ−1(a) is an(L, h)−general curve.

This Theorem is essentially a consequence of Ben Messaoud’s

THEOREM 2.6. Let M , G be two complex varieties of dimensionn and k, let φ
be a plurisubharmonic function onM and letf : M → G be a submersion admitting
a holomorphic sections. Then there exists a pluripolar setE ⊂ G such that for all
a ∈ G \ E, the restricted plurisubharmonic functionφ|f−1(a) 6≡ −∞ and

ν(φ, s(a)) = ν(φ|f−1(a), s(a)).

PROOF. S. [31, Cor. 5.4]. ¤

PROOF OF THEOREM 2.5. Take an open subsetU ⊂ X such that
π : U ∼= ∆k ×∆ → ∆k with ∆ ⊂ C the unit disk. Apply Theorem2.6 to the family

U ×∆ π×id∆−→ ∆k ×∆, the pulled back plurisubharmonic function and the section

s : ∆k ×∆ → U ×∆, (b, t) 7→ (b, t, t).

Since the projection ofs(∆k × ∆) on U is an isomorphism there is pluripolar set
EU ⊂ U such that for allx ∈ U \ EU

ν(φ, x) = ν(φ|π−1(π(x)), x),

for any plurisubharmonic functionφ onU ×∆. Setting

φ := pr∗U (φh),

the pull back of the plurisubharmonic weightφh of h in U , it is also true that

ν(φh, x) = ν(φ|π−1(π(x)), x).

Since the countable union of pluripolar sets is again pluripolar the same is true for a
pluripolar setE ⊂ X. The other two requirements of Definition2.3 for an (L, h)−
general curve also show that these curves must be fibres outside the countable union of
analytic subsets, which is a pluripolar set. This shows the Theorem. ¤
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2.1.2. Birational invariance of(L, h)−generality.

LEMMA 2.7. LetC be a smooth(L, h)−general curve onX, and letZ ⊂ X be a
smooth subvariety withC 6⊂ Z, letπ : X̂ → X be the blowup ofX with centreZ. Then
the strict transformĈ ofC is still (π∗L, π∗h)−general.

PROOF. The assertion is clear as long asZ ∩ C = ∅. Otherwise, letx ∈ Z ∩ C be
a point such thatν(h|C , x) = 0. Then fory the unique preimage ofx in Ĉ,

0 = ν(π∗h, y) ≤ ν(π∗h| bC , y) = ν(h|C , x) = 0.

If x ∈ Z ∩ C is a point such thatν(h|C , x) > 0 thenC will intersect transversally a
prime divisorD of someEc(h). Consider two cases:

(a) Z is a point. Then the intersection of the strict transformsĈ ∩ D̂ = ∅, and
C intersects the smooth exceptional divisorE transversally in a unique point
y ∈ E with π(y) = x. Furthermore,

ν(π∗h,E) ≥ ν(h,D) = ν(h, x) = ν(h|C , x) = ν(π∗h| bC , y),

henceν(π∗h,E) = ν(π∗h| bC , y).

(b) dimZ ≥ 1. Then the preimage of̂C ∩ D̂ overx consists of one pointy, and
by the same argument as in (a), replacingE by D̂, it follows

ν(π∗h, D̂) = ν(π∗h| bC , y).

D̂ cannot be singular iny since thenν(π∗h| bC , y) ≥ ν(π∗h, y) > ν(π∗h, D̂).

¤

2.1.3. A counterexample for non-(L, h)−general curves.First, one constructs a
convex functionχ : R → R with slow growth at−∞ (i.e. the derivation tends to0)
such thatχ(−∞) = −∞. For example, take

χ(x) =
{
x for x ≥ −1
−∑n

k=1
1
k + (x+ n) 1

n+1 for − n− 1 ≤ x ≤ −n
Then one considers the plurisubharmonic functionψ = max(log |z1|, χ(log |z2|)) on
C2. The Lelong numbersν(ψ, x) are0 everywhere because of the slow growth ofχ at
−∞, but the restriction ofψ ontoC = {z2 = 0} has Lelong numberν(ψ|C , x) = 1 for
all pointsx ∈ C.
The induced metrich may be extended to a metric of the relatively ample line bundle
O(1) on theP1−bundleC× P1 which yields the counterexample.

2.2. Intersection numbers

The aim of this section is to prove Proposition2.2and Theorem2.4.



2.2. INTERSECTION NUMBERS 33

2.2.1. Proof of Proposition2.2. The first step is to compare the sum of the re-
stricted Lelong numbers on arbitrary smooth curvesC ∈ X with h|C 6≡ ∞ to the
ordinary intersection number ofC with L:

LEMMA 2.8. ∑

x∈C
ν(h|C , x) ≤ L.C.

PROOF. Sinceh|C is positive, the curvature currentiΘh|C ≥ 0, too. By a theorem
of Siu, the Lelong level setsEc(φ) = {x ∈ X : ν(φ, x) ≥ c} are analytic [14, (2.10)].
But then there are only countably many points(xi)i∈N onC with ν(h|C , xi) 6= 0. By

Siu’s decomposition formula [14, (2.18)] the currentiΘh|C − ∑N
i=1 ν(h|C , xi)[xi] is

still positive for arbitraryN (where [xi] is the integration current of the divisorxi).
Consequently the first Chern class of the (R−) divisorL|C −

∑N
i=1 ν(h|C , xi)xi is≥ 0,

henceL.C −∑N
i=1 ν(h|C , xi) ≥ 0, and the claim follows. ¤

LEMMA 2.9. LetC be a smooth curve andh a positive singular hermitian metric
onC. Then:

lim sup
m→∞

1
m

degC I(hm) =
∑

x∈C
ν(h, x).

PROOF. I(hm) is a torsion free subsheaf ofOC , hence it corresponds to a divisor
onC, sayI(hm) = O(−Dm), whereDm is an effective divisor onC. We show that

multxDm ≤ ν(hm, x) < multxDm + 1 .(2.2.1)

This is true for arbitrary positive metricsh: Choose a sufficiently small neighborhoodU
of x such thatν(h, y) < 1 for all y ∈ U \ {x}. Letφh andΘh be the plurisubharmonic
function and(1, 1)−current corresponding toh in U . As explained in the proof of the
previous lemma the currentΘ = Θh − ν(h, x)[x] is still positive, withν(Θ, x) = 0,
ν(Θ, y) < 1 for all y ∈ U \ {x}. Letψ be a plurisubharmonic function withddcψ = Θ.
Thenφh = ψ + ν(h, x) log |z − x|, hencemultxI(h) ≥ bν(h, x)c.
On the other hande−2(ψ+(ν(h,x)−bν(h,x)c) log |z−x|) is locally integrable aroundx
since the Lelong number inx is < 1, by Skoda’s lemma [14, (5.6)]. This proves
I(h)x = ((z − x)bν(h,x)c), hence (2.2.1).
Now we conclude:

lim sup
m→∞

1
m

degC Dm
(2.2.1)

= lim sup
m→∞

1
m

∑

x∈C
bν(hm, x)c ≤ lim sup

m→∞
1
m

∑

x∈C
ν(hm, x)

=
∑

x∈C
ν(h, x) <∞.

On the other hand, (2.2.1) implies

lim
m→∞

1
m

multxDm = ν(h, x).
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Hence for everym0 ∈ N:

lim sup
m→∞

1
m

degC Dm = lim sup
m→∞

1
m

∑

x∈C
multxDm

= lim sup
m→∞

1
m




∑

ν(h,x)≥ 1
m0

multxDm +
∑

ν(h,x)< 1
m0

multxDm




(∗)
= lim

m→∞

∑

ν(h,x)≥ 1
m0

multxDm + lim sup
m→∞

1
m

∑

ν(h,x)< 1
m0

multxDm

≥
∑

ν(h,x)≥ 1
m0

ν(h, x).

where the equality(∗) follows from the fact that{x ∈ C : ν(h, x) ≥ 1
m0
} is a finite set.

Since
∑
x∈C ν(h, x) <∞ implies

∑
ν(h,x)< 1

m

m→∞−→ 0 the lemma follows. ¤

Proposition2.2follows from

lim sup
m→∞

1
m
h0(C,OC(mL)⊗OC(−Dm)) = lim sup

m→∞
1
m

degC(mL−Dm)(2.2.2)

PROOF. By Lemma2.8, degC Dm ≤ ∑
x∈C ν(h

m
|C , x) ≤ mL.C. Consequently,

degC(mL−Dm) ≥ 0.

Let g(C) be the genus of the curveC. If degC(mL−Dm) ≤ 2g(C)−2 andmL−Dm

is not effective,H0(C,O(mL − Dm)) = 0. If degC(mL − Dm) ≤ 2g(C) − 2 and
mL−Dm is effective,

H0(C,O(mL−Dm)) ≤ degC(mL−Dm) + 1 ≤ 2g(C)− 1.

If degC(mL − Dm) > 2g(C) − 2, thenH1(C,O(mL − Dm)) = 0, and (2.2.2) will
follow by Riemann-Roch. ¤

2.2.2. Proof of Theorem2.4. One main ingredient of the proof, which is useful in
many circumstances, is

EXTENSION THEOREM 2.10 (Ohsawa-Takegoshi). Let Ω ⊂ Cn be a bounded
open pseudoconvex set,L = {zi = . . . zn = 0}, 1 ≤ i ≤ n, a linear subspace,
andψ ∈ Psh(Ω) withψ|L 6= −∞.
Then there is a constantC > 0, only depending onn, such that for all holomorphic func-
tionsf onL with

∫
L∩Ω

|f |2e−2ψdλL < ∞, there is anF ∈ O(Ω) such thatF|L = f
and ∫

Ω

|F |2e−2ψdλΩ ≤ C ·
∫

L∩Ω

|f |2e−2ψdλL

PROOF. S. [14, (12.9)]. ¤
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Now let C be a smooth(L, h)− general curve in the smooth projective varietyX.
Let Dm, D

′
m be the effective divisors corresponding to the ideal sheavesI(hm|C) and

I(hm)|C , as explained in subsection2.2.1. The Extension Theorem implies a natural
inclusion

I(hm|C) ⊂ I(hm)|C ,

hencedegC D′m ≤ degC Dm, and we can prove

lim sup
m→∞

1
m
h0(C,OC(mL)⊗OC(−D′m)) = lim sup

m→∞
1
m

degC(mL−D′m)(2.2.3)

similarly to (2.2.2).
The(L, h)−generality implies

I(hm|C) = I(hm)|C .

PROOF. By Skoda’s Lemma [14, (5.6)], I(hm|C)x = I(hm)|C,x = OC,x for all
pointsx ∈ C with ν(h, x) = ν(h|C , x) = 0.
Let x ∈ C be a point withν = ν(h, x) = ν(h|C , x) > 0. By definition of (L, h)-
generality there exists a divisorD throughx locally defined byg ∈ OX,x, x ∈ Dreg and
ν = ν(h, x) = ν(h,D). As explained before it follows that

I(hm)x = (gbmνc) ⊂ OX,x.
Similarly we show

I(hm|C)x = (gbmνc|C ) ⊂ OC,x.
¤

2.3. Birational invariance

Since the intersection numbers(L, h).C are computed by pulling back to the nor-
malizationĈ it is obvious that the intersection number(π∗L, π∗h).C̄ whereC̄ is the
strict transform ofC via the birational mapπ does not change. The aim of this section
is to generalize this observation. In the next section we apply it in the case of analytic
singularities, thus obtaining a more algebraic definition of the intersection numbers.

LEMMA 2.11. Let µ : C ′ → C be a finite morphism between smooth curves. Let
(L, h) be a pseudo-effective line bundle onC with iΘh ≥ 0. Then

(µ∗L, µ∗h).C ′ = deg µ · (L, h).C.
PROOF. It is enough to consider the following situation: Letµ : ∆ → ∆, z 7→ zn

be a finite morphism on the unit disc∆ and letψ ∈ Psh(∆) be a plurisubharmonic
function on∆. Then

ν(ψ, 0) = lim inf
|z|→0

ψ(z)
log |z| = lim inf

|z|→0

ψ(zn)
log |zn| =

1
n

lim inf
|z|→0

ψ(zn)
log |z| =

1
n
ν(ψ ◦ µ, 0).

Now the lemma follows by Proposition2.2. ¤
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PROPOSITION2.12. Letf : Y → X be a surjective morphism between smooth and
projective varietiesX andY . Let (L, h) be a pseudo-effective line bundle onX with
iΘh ≥ 0. Then:

(L, h) numerically trivial on X ⇐⇒ (f∗L, f∗h) numerically trivial on Y.

PROOF. Assume first that(L, h) is numerically trivial onX. Let C ⊂ Y be an
irreducible curve onY with f∗h|C 6≡ ∞. Whenf(C) is a point, this point will lie in the
smooth part ofh, and there won’t be any singularity ofh onC. Consequently,

(f∗L, f∗h).C = f∗L.C = L.f∗C = 0.

Whenf(C) is another irreducible curveC ′ then one can lift the morphismf|C to the

smooth normalizationŝC, Ĉ ′, and the above equality follows by the lemma.
Similarly, assume that(f∗L, f∗h) is numerically trivial onY . LetC be an irreducible
curve onX with h|C 6≡ ∞. Then there exists an irreducible curveC ′ ⊂ Y not lying in
the singularity locus off∗h such thatf(C ′) = C, and the argument is as above. ¤

2.4. Metrics with analytic singularities

The (L, h)− intersection numbers are much easier to handle if the plurisubharmonic
weight of the metrich has only analytic singularities:

DEFINITION 2.13. φ ∈ Psh(Ω), Ω ⊂ Cn open, is said to haveanalytic singulari-
ties, if locally, φ can be written as

φ =
α

2
log(

∑
|fi|2) + v, α ∈ R+,

wherev is locally bounded, and thefi are (germs of) holomorphic functions.

For example, in this case Theorem2.4 is true for arbitrary smooth curves. Furthermore
it is easier to compute(L, h)− intersection numbers on log resolutions.

2.4.1. Properties of metrics with analytic singularities.By defini-
tion, the corresponding plurisubharmonic weight may locally be written as
φh = α

2 log(
∑ |fi|2) + O(1). Define J (h/α) as the ideal sheaf of germs of

holomorphic functionsf such that

|f | ≤ C · (
∑

|fi|).
One can easily prove thatJ (h/α)x is the integral closure of the ideal generated by the
germsfi (cf. [14, (1.11)]). Consequently,J (h/α) is coherent. Furthermore,

J (h/α)x = (g1, . . . , gM ) =⇒ φ =
α

2
log(

∑
|gi|2) +O(1).

There exists log resolutionsµ : X ′ → X of J (h/α) with X ′ non-singular, i.e.

(a) µ is proper birational,
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(b) µ−1J (h/α) = J (h/α) · OX′ = OX′(−F ) whereF is an effective divisor
onX ′ such thatF + Exc(µ) has simple normal crossing support.

An existence proof is contained in the Hironaka package, cf. [3].
The main tool when dealing with metrics with analytic singularities is the following
theorem which may be seen as an algebraic definition of multiplier ideals:

THEOREM 2.14. I(h) = µ∗(KΩ̄/Ω − [αF ]).

PROOF. See [14, (5.9)]. ¤
2.4.2. Intersection numbers of metrics with analytic singularities.

PROPOSITION2.15. LetX be a projective manifold,L a pseudo-effective line bun-
dle andh a positive hermitian metric onL having only analytic singularities. Then for
every smooth curveC ⊂ X,

(L, h).C = lim sup
m→∞

1
m
h0(C,OC(mL)⊗ I(hm) · OC),

whereI(hm) · OC is the image ofI(hm)⊗OC in OC .

PROOF. Let Dm, D
′
m be effective divisors corresponding to the torsion free ideal

sheavesI(hm|C), I(hm) · OC = I(hm)|C . By (2.2.2),(2.2.3) it is enough to show that

lim inf
m→∞

1
m

degC Dm = lim inf
m→∞

1
m

degC D
′
m(2.4.1)

Let (xi)i∈N be the countably many points onC such thatmultxDm 6= 0 or
multxD′m 6= 0 for somem ∈ N. SinceC is smooth there is an open subsetU ⊂ X
containing all thexi such thatC = H2 ∩ . . . ∩ Hn is a complete intersection of very
ample smooth hypersurfacesHi ⊂ U . It is enough to prove (2.4.1) onU .
Locally, let the weightφ of h be of the form

α

2
log(

∑
|fi|2) +O(1).

Construct a log resolutionµ : U ′ → U for J (h/α)|U as above such that furthermore,

(c) the support ofF contains the support ofExc(µ),
(d) the strict transformsH ′

i of theHi are smooth,
∑
Hi + F has simple normal

crossing support andµ∗Hn = H ′
n +

∑
bjEj where theEj are prime compo-

nents ofExc(µ).
One has

THEOREM 2.16 (Local vanishing). Let a ⊂ OX be an ideal sheaf on a smooth
quasiprojective complex varietyX, and letµ : X ′ → X be a log resolution ofa with
a · OX′ = OX′(−F ). Then for any rationalc > 0:

Rjµ∗OX′(KX′/X − [c · F ]) = 0 for j > 0.

PROOF. See [29, Thm.9.4.1]. ¤
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This theorem is used to prove the following inclusions of ideal sheaves onHn: There is
a c ∈ N independent ofm such that

I(hm+c)|Hn
⊂ I(hm|Hn

) ⊂ I(hm)|Hn
.

Equation (2.4.1) follows by induction andlim supm→∞
1
mdm+c = lim supm→∞

1
mdm

for sequences(dm)m∈N ⊂ R+.
The proof of the inclusions is modelled on the proof of the Restriction Theo-
rem [29, Thm.9.5.1]. First of all,µ|Hn

: H ′
n → Hn is a log resolution of

J (h/α)|Hn
= J (h/α) · OHn by property (d) ofµ. Property(c) implies that there

exists ac ∈ N independent ofm such that

KU ′/U − [mαF ]− cαF ⊂ KU ′/U − [mαF ]−
∑

bjEj =: B,

and consequently

I(hm+c)|Hn
= µ∗(KU ′/X − [(m+ c)αF ])|Hn

⊂ µ∗OU ′(B)|Hn
.

Now, B − H ′
n = KU ′/U − [mαF ] − µ∗Hn. Local vanishing applied on

J (h/mα) · O(−Hn) implies

R1µ∗OU ′(B −H ′
n) = 0.

Then
µ∗OU ′(B)|Hn

= (µ|Hn
)∗(OH′n(B|H′n))

follows by taking direct images in the exact sequence

0 → OU ′(B −H ′
n)

·H′n→ OU ′(B) → OH′n(B|H′n) → 0.

SinceKH′n/Hn
= (KU ′/U −

∑
bjEj)|H′n , it follows

(µ|Hn
)∗(OH′n(B|H′n)) = (µ|Hn

)∗(KH′n/Hn
− [mαF|H′n ]) = I(hm|Hn

),

hence the first inclusion.
The second inclusion follows by the Ohsawa-Takegoshi Extension Theorem. ¤

2.4.3. Computation of intersection numbers.This subsection shows how to
compute the(L, h)− intersection numbers for metrics with analytic singularities on a
log resolution of the ideal sheaf of the singularities:

PROPOSITION2.17. LetX be a smooth projective variety, let(L, h) be a pseudo-
effective line bundleL onX with a singular hermitian metrich such thatiΘh ≥ 0 and
h has analytic singularities. LetJ (h/α) be the ideal sheaf ot these singularities, let
µ : X̃ → X be a log resolution ofX with µ∗J (h/α) = O(−F ). LetC ⊂ X be an
irreducible curve. Then

(L, h).C = µ∗L.C̄ − F.C̄,

whereC̄ is the strict transform ofC.
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PROOF. By birational invariance,

(L, h).C = (µ∗L, µ∗h).C̄.

But the pull back ofh is just the metric given byF by definition of analytic singularities
and log resolutions (s. [14, (3.13)]). This implies the proposition. ¤





CHAPTER 3

Tsuji’s numerically trivial fibrations

In this chapter we prove the existence of a reduction map with respect to the pair(L, h)
of a pseudo-effective line bundleL and a possibly singular positive hermitian metrich
onL. The aim is to get a reduction map with numerically trivial fibers where numerical
triviality is defined by the intersection numbers which we thoroughly discussed in the
last chapter:

DEFINITION 3.1. Let X be a smooth projective complex manifold, letL be a
pseudo-effective holomorphic line bundle onX with positive singular hermitian met-
ric h. Then a subvarietyY ⊂ X is called numerically trivial (with respect to(L, h)) if
each curveC ⊂ Y such thath|C 6≡ ∞ has intersection number(L, h).C = 0.

Now we adjust Tsuji’s assertions about the reduction map:

REDUCTION MAP THEOREM3.2. LetX be a smooth projective complex manifold,
letL be a pseudo-effective holomorphic line bundle onX with positive singular hermit-
ian metrich. Then there exists a dominant rational mapf : X 99K Y with connected
fibres such that:

(i) (L, h) is numerically trivial on fibres over points inY lying in the complement
of a pluripolar set.

(ii) For all x ∈ X outside a pluripolar set, every curveC through x with
dim f(C) > 0 has intersection number(L, h).C > 0.

Here, fibres off are fibres of the graphΓf ⊂ X × Y → Y interpreted as subschemes
ofX.
Finally, f is uniquely determined up to birational equivalence ofY .

There are two main differences to [37]. First, the reduction map need not be almost
holomorphic. A counter example will be given in section3.4. Second, Tsuji completely
ignores the fact that the singularities of arbitrary positive singular hermitian metrics lie
in pluripolar sets. This means for example, that the restriction of the singular metric may
be well defined only on fibres over points lying in the complement of a pluripolar set.
But this is not so bad: for example, the Zariski closure of the union of these fibres is
always the whole variety.
After these adjustments it is possible to apply Tsuji’s ideas in proving the Reduction
Map Theorem:

41
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(a) For each ample divisorH and each pair(L, h) of a line bundle with a positive
singular hermitian metric one can define avolume

µh(X,H +mL) := (dimX)! lim sup
l→∞

l− dimXh0(X,OX(l(H +mL))⊗ I(hml))

and we have the following

LEMMA 3.3.

(L, h) numerically not trivial ⇒ lim sup
m→∞

µh(X,H +mL) = ∞.

(b) The lemma implies that for allN there exists anm0 such that for arbitrarily
largelÀ 0 there exist sections

0 6≡ σl ∈ H0(X,OX(l(H +m0L))⊗ I(hm0l)⊗mNl
x )

for a sufficiently general pointx ∈ X.
(c) This is used for

KEY LEMMA 3.4. Let f : M → B be a projective surjective morphism
from a smooth varietyM to a smooth curveB. Let(L, h) be a pseudo-effective
line bundleL with positive singular hermitian metrich. Suppose that(L, h) is
numerically trivial on all fibresF off over a setB′ ⊂ B not of Lebesgue mea-
sure0. If furthermore there is an(L, h)−general curveW with f(W ) = B,
(L, h) is numerically trivial onW , then(L, h) will be numerically trivial on
M .

The proof is done by contradiction: Anyσl as above must be0.
(d) Finally the theorem is derived from the Key Lemma with methods similar to

those in [1].

The intersection number equality in Theorem2.4 is needed essentially in proving the
Key Lemma3.4, while the definition of the intersection number is used several times for
switching to birationally equivalent varieties.
In the last section we prove a criterion for numerical triviality of a variety w.r.t. a pseudo-
effective line bundle and a hermitian metric.

3.1. The volumeµh and numerical triviality

The aim of this section is to prove Lemma3.3 and the existence of a sectionσλ as in
step (b) of the introduction.
The proof is by induction ondimX. If X = C is a smooth curve, the volume will be

µh(C,H +mL) = lim sup
l→∞

1
l
H0(C,OC(l(H +mL))⊗ I(hml)) =

= lim sup
l→∞

1
l

degC(OC(l(H +mL))⊗ I(hml)) =

= degC H + (L⊗m, h⊗m).C = degC H +m · (L, h).C,
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where the second and the third equality follow by equation (2.2.2), while the fourth is a
consequence of the homogenity of Lelong numbers.
If dimX = n, then for everyn1 À 0 there will be a hyperplane pencil in|n1H| with
smooth centerZ ⊂ X such that the general elementF of the pencil is smooth, and for
sufficiently generalF , the restricted metrich|F 6≡ ∞.
Step 1.(L, h) is not numerically trivial on a sufficiently generalF .
LetC ∈ X be an irreducible, not necessarily smooth curve such that(L, h).C > 0.

CLAIM 1. For arbitrary ni À 0, there exists a complete intersection

H1 ∩ . . . ∩Hn−1 = C ∪
⋃

k

Ck, Hi ∈ |niH|,

such that theCi are irreducible smooth curves withh|Ci
6≡ ∞.

PROOF. If n = 2, the curveC is a divisor, and form À 0, the linear system
|mH − C| is very ample. Hence a general elementC ′ ∈ |mH − C| is irreducible, and
h|C′ 6≡ ∞.
Forn > 2, the curveC is contained in an irreducible hypersurfaceH ′ with h|H′ 6≡ ∞.
For somemÀ 0 the linear system|mH −H ′| is very ample. Hence a general element
H ′′ ∈ |mH−H ′| is irreducible, andh|H′′ 6≡ ∞. Use induction onH1 = H ′∪H ′′. ¤

CLAIM 2. For every irreducible curveC ⊂ X, the following inequality is true:

(L, h).C ≤ L.C −
∑

j

ν(Θh, Dj)C.Dj .(3.1.1)

where the sum is taken over all irreducible divisorsDj ofX.

PROOF. Let π : Ĉ → C be the normalization ofC. By the decomposition theorem
of Siu [14, (2.18)],

iΘh =
∑

j

ν(Θh, Dj)[Dj ] +R, R ≥ 0,

whereR is a positive residual(1, 1)−current. Letφj , φR be plurisubharmonic functions
such that (locally)ddcφj = [Dj ] andddcφR = R. Then

Θπ∗h =
∑

j

ν(Θh, Dj)ddc(φj ◦ π) + ddc(φR ◦ π) ≥
∑

j

ν(Θh, Dj)[π∗Dj ].

Sincelim infz→x
∑
fj(z) ≥

∑
j lim infz→x fj(z) for arbitrary functionsfj , it follows

ν(Θπ∗h, x) ≥
∑

j

ν(Θh, Dj)ν([π∗Dj ], x) =
∑

j

ν(Θh, Dj) ·multxπ∗Dj ∀x ∈ Ĉ.
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But then

(L, h).C = L.C −
∑

x∈ bC
ν(Θπ∗h, x) ≤ L.C −

∑

x∈ bC
(
∑

j

ν(Θh, Dj) ·multxπ∗Dj) =

= L.C −
∑

j

ν(Θh, Dj)C.Dj .

¤

By Theorem2.5, on a sufficiently general fibreF , there is a smooth irreducible curve

CF = H ′
1 ∩ . . .H ′

n−1, H
′
i ∈ |niH|,

which is(L, h)−general. Consequently,

(L, h).CF = L.CF −
∑

j

ν(Θh, Dj)CF .Dj .

But this implies together with (3.1.1)

(L, h).CF ≥ (L, h).(C +
∑

Ci) > 0,

becauseL.CF = L.(C +
∑
Ci). HenceF is not numerically trivial.

Step 2. Let µ : X̃ → X be the blow up ofX in the centerZ of the pencil, with
exceptional divisorE. Then

lim sup
m→∞

µµ∗h(X̃, µ∗(H +mL)) = ∞ =⇒ lim sup
m→∞

µh(X,H +mL) = ∞.

PROOF. First, K eX = µ∗KX + E. By the functorial property of multi-
plier ideal sheaves [14, (5.8)] this impliesI(h) = µ∗(O(E) ⊗ I(µ∗h)). Since
I(µ∗h) ⊂ O(E)⊗ I(µ∗h) ⊂ K eX (the sheaf of total quotient rings), it follows

µ∗I((µ∗h)ml) ⊂ I(hml).

By the projection formula,

µ∗(µ∗OX(l(H +mL))⊗ I((µ∗h)ml)) = OX(l(H +mL))⊗ µ∗I((µ∗h)ml).

Consequently,

h0(X̃, µ∗OX(l(H +mL))⊗ I((µ∗h)ml)) ≤ h0(X,OX(l(H +mL))⊗ I(hml)),

which implies the claim. ¤

Step 3.lim supm→∞ µµ∗h(X̃, µ∗(H +mL)) = ∞.
For l0 À 0 the line bundlel0µ∗H − E is ample onX̃. It is enough to show that

lim sup
m→∞

µµ∗h(X̃, l0µ∗(H +mL)− E) = ∞.
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Let p : X̃ → P1 be the projection on P1. Now, the sheaf
O eX(ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0) is torsion free. Sincep is flat,

p∗(O eX(ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0)) ∼= Em,l ∼=
r⊕

i=1

O(ai)

is also torsion free, hence a locally free sheaf onP1. Here, theai = ai(m, l) and
r = r(m, l) depend onm, l.
By upper semicontinuity and the Ohsawa-Takegoshi Extension Theorem, for a general
fibreF

r(m, l) = h0(F,OF (ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0)|F )

≥ h0(F,OF (ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0|F )).

Since(l0µ∗(H +mL)−E)|F is ample and(Ll0|F , h
l0
|F ) is not numerically trivial by step

2, the induction hypothesis onF implies

lim sup
m→∞

(lim sup
l→∞

l−(n−1)r(m, l)) = ∞.(3.1.2)

Let h0 be aC∞ hermitian metric on the ample line bundleO eX(l0µ∗H − E) with
Θh0 > 0, let h1 be anyC∞ metric onOP1(1). Then there exists ac ∈ Q>0 such
thatΘh0 − cp∗Θh1 is a positive Kähler form oñX.

Claim. Em,l ⊗OP1(−lc+ 1) is globally generated for alll ∈ N with lc ∈ N, lÀ 0.

PROOF. By looking at the short exact sequence

0 → Em,l ⊗OP1(−cl) → Em,l ⊗OP1(−cl + 1) → Em,l ⊗OP1/mx → 0,

one sees that the vector bundleEm,l ⊗ OP1(−cl + 1) is globally generated if
H1(P1, Em,l ⊗OP1(−cl)) = 0. But this cohomology group is contained in

H0(P1, R1p∗(O eX(ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0))⊗ p∗OP1(−cl)).
This higher direct image sheaf is0 by Nadel vanishing [14, (5.11)], applied
on preimages inX̃ of open affine subsets ofP1 and the big line bundle
ll0µ

∗(H+mL)−lE+p∗OP1(−cl) equipped with the positive singular hermitian metric
hl0 ⊗ (p∗h1)cl ⊗ (µ∗h)mll0 . ¤

The claim implieslim supl→∞ l−1(mini ai) ≥ c, hence

l−n · h0(X̃,O eX(ll0µ∗(H +mL)− lE)⊗ I((µ∗h)mll0)) =

= l−n · h0(P1, Em,l) ≥ l−(n−1)r(m, l)l−1(min
i
ai) ≥ c · l−(n−1)r(m, l)

(3.1.2) implies step 3, and Lemma3.3 is proven.
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LEMMA 3.5. LetX be a complex projective variety, let(L, h) be a pseudo-effective
line bundle with positive singular hermitian metrich. Assume that(L, h) is not numeri-
cally trivial. Letx ∈ X be a sufficiently general point such thatI(hm)x ∼= OX,x. Then,
for any ample line bundleH, for all N ∈ N there existsm0 ∈ N such that forl À 0
arbitrarily large there is a section

0 6≡ σl ∈ H0(X,OX(l(H +m0L))⊗ I(hm0l)⊗mNl
X,x).

PROOF. By Lemma 3.3 there exists an m0 such that the volume
µh(X,H +m0L) > NdimX + 1. Consequently, forlÀ 0 arbitrarily large,

h0(X,OX(l(H +m0L))⊗ I(hm0l)) ≥ NdimX + 1
(dimX)!

ldimX + o(ldimX).

SetF := OX(l(H + m0L)) ⊗ I(hm0l). SinceI(hm)x ∼= OX,x, it is true that

h0(X,F ⊗OX/mNl
x ) = Ndim X

(dimX)! l
dimX + o(ldimX). Using the sequence

0 → H0(X,F ⊗mNl
x ) → H0(X,F) → H0(X,F ⊗OX/mNl

x )

one gets the lemma. ¤

3.2. The Key Lemma

The proof of the Key Lemma3.4starts with the blow upπ : M̂ →M inW . Then a very
general curveR in the smooth exceptional divisor̂W ⊂ M̂ is (π∗L, π∗h)−general: If
D is a prime divisor in someEc(h) with D ∩W 6= ∅, then the strict transform̂D of D
will have minimal Lelong numberν(π∗h, D̂) ≥ ν(h,D). Now choose a very general
curveR ⊂ Ŵ such that the branching locusπ|R : R → W does not contain any of the

countably many pointsy ∈W with ν(h|W , y) > 0. Then forx ∈ D̂,

ν(π∗h|R, x) = ν(h|W , π(x)) = ν(h, y) = ν(h,D) ≤ ν(π∗h, D̂) ≤ ν(π∗h, x),

henceν(π∗h|R, x) = ν(π∗h, x). For allx ∈ R not lying on the strict transform̂D of
one of the countably many divisorsD as above, the Lelong numberν(π∗h|R, x) is 0,
hence

0 = ν(π∗h, x) ≤ ν(π∗h|R, x) = 0.

Now assume that(L, h) is not numerically trivial onM . By birational invariance,
(π∗L, π∗h) is not numerically trivial onM̂ (this is an application of the definition of
(L, h)− intersection numbers). For an ample line bundleH onM̂ , it follows

lim sup
m→∞

µh(M̂,H +mπ∗L) = ∞

by Lemma 3.3. Let x0 ∈ Ŵ be a sufficiently general point such that
I(π∗hm)x0

∼= OcM,x0
for all integersm. By Lemma3.5, for all N there exists an
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m0 such that for arbitrarily largelÀ 0 there is a non-vanishing section

σl ∈ H0(M̂,OcM (l(H +m0π
∗L))⊗ I(π∗hm0l)⊗mNl

x0
)− {0}.

Let R be a family of smooth intersection curves ofn − 2 divisors in |kH|cW | (with k

sufficiently large) throughx0 which coverŴ . Choosed0 À 0 such that for general
fibresF of f̂ ,

Hn−2 · F · (H − d0Ŵ ) < 0.

Claim. There exists anA0 > 0 independent ofm0 such that for very general curves
R ∈ R with h|R 6≡ ∞ and all0 ≤ s ≤ d0l

dimH0(R,OR(l(H +m0π
∗L)− sŴ )⊗ I(π∗hm0l)|R) ≤ A0 · l + o(l).(3.2.1)

PROOF. Since(π∗L, π∗h) is numerically trivial on̂W ,

(π∗L, π∗h).R = lim sup
m→∞

1
m

degR(OR(mπ∗L)⊗ I(π∗hm)|R) = 0.

(This is the application of Theorem2.4, i.e. the(L, h)−generality ofR.) Consequently,

degR(OR(l(H +m0π
∗L)− sŴ )⊗ I(π∗hm0l)|R) =

= degR(OR(lH − sŴ )) + degR(OR(lm0π
∗L)⊗ I(π∗hm0l)|R)

≤ A0 · l + o(l)

for someA0 > 0, if 0 ≤ s ≤ d0l.
If Ŵ .R ≤ 0 the ampleness ofH will imply that

H1(R,OR(l(H +m0π
∗L)− sŴ )⊗ I(π∗hm0l)|R) = 0

and hence the claim follows from Riemann-Roch .
If Ŵ .R > 0 there will exist ana0 such that for alls ≥ a0 the cohomology group
H0(R,OR(sŴ )) 6= 0. Therefore,

h0(R,OR(l(H +m0π
∗L)− sŴ )⊗ I(π∗hm0l)|R) ≤

h0(R,OR(l(H +m0π
∗L))⊗ I(π∗hm0l)|R),

and this gives the claim fora0 ≤ s ≤ d0l. For s ≤ a0 one can argue as above withH
ample and Riemann-Roch. ¤

Now chooseN > A0 + d0. Then

degR σl|R ≥ N · l
for the corresponding section

σl|R ∈ H0(R,OR(l(H +m0π
∗L))⊗ I(π∗hm0l)|R ⊗mNl

R,x0
).
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Becauses = 0 the estimate (3.2.1) implies thatσl|R ≡ 0 for lÀ 0 depending onR. But

sinceσl vanishes on a Zariski closed subset and the curves inR coverŴ , there exists
arbitrarily largelÀ 0 such thatσ

l|cW ≡ 0 and

σl ∈ H0(M̂,OcM (l(H +m0π
∗L)− Ŵ )⊗ I(π∗hm0l)⊗mNl−1

x0
).

Repeating this argument for0 < s ≤ d0l one finally gets

σl ∈ H0(M̂,OcM (l(H +m0π
∗L)− d0lŴ )⊗ I(π∗hm0l)).

LetF be sufficiently general,π∗h|F 6≡ ∞ and(π∗L, π∗h) numerically trivial onF . Let
SF be a family of smooth intersection curves ofn− 2 divisors in|H|F | coveringF . Let
S ∈ SF be such a curve, withπ∗h|S 6≡ ∞. Since(π∗L, π∗h) is numerically trivial on
F ,

(π∗L, π∗h).S = lim sup
m→∞

1
m

degS(OS(mπ∗L)⊗ I(π∗hm)|S) = 0.

Furthermore, by assumption

S.(H − d0Ŵ ) = HdimF−1.F.(H − d0Ŵ ) < 0,

hence
degS(OS(l(H +mπ∗L)− d0lŴ )⊗ I(π∗hm0l)|S) < 0

for somelÀ 0, and as above one concludesσl|F ≡ 0, σl ≡ 0 which is a contradiction.

3.3. Proof of the pseudo-effective Reduction Map Theorem

The main construction used in this proof is described by the following

LEMMA 3.6. LetX be a complex projective variety, letM be a set of subvarieties
Fm ⊂ X,m ∈M , such that the union

⋃
m∈M Fm ⊂ X is not contained in a pluripolar

set inX. Then there is a familyF ⊂ X ×B of subschemes ofX, covering the whole of
X, and a setB′ ⊂ B not contained in a pluripolar set ofB, parametrizing subvarieties
Fm,m ∈M .

PROOF. M may be interpreted as a subset ofChow(X). There are only count-
ably many components ofChow(X). Hence there must be at least one compo-
nent C ⊂ Chow(X) such that the subschemes parametrized by the Zariski closure
Z = C ∩M cover the whole ofX, andC ∩M is not a pluripolar set inZ. Otherwise,
the subvarietiesFm,m ∈M , are contained in a pluripolar set ofX, contradiction. ¤
Consider familiesf : X → N with the following properties:

(i) X ⊂ X×N , whereX,N are quasi-projective and irreducible, and the general
fibres off are subvarieties ofX;

(ii) the projectionp : X → X is generically finite;

(iii) (L, h) is defined and numerically trivial on sufficiently general fibres off , that
is on a set of fibresM⊂ N which is not contained in a pluripolar set;
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(iv) the fibres are generically unique, i.e. ifU ⊂ N is an open subset such thatf|U
is flat then the induced mapU → Hilb(X) will be generically injective.

The identity mapid : X → X is such a family, hence there is one with minimal base
dimensiondimN .

Claim. The projectionp : X → X is birational on such a minimal familyf : X → N .

PROOF. Assume thatp is not birational.
Then, for a general fibreF of f and a general pointx ∈ F there is another fibreF ′

containingx, hence a curveC ′ with x ∈ C ′ ⊂ F ′ andC ′ 6⊂ F . Consequently, one gets
a family of curvesg : C →M with C ⊂ X×M giving a generically finite covering of
X such that thef−projection of the generalg−fibre curveC is also a curve inN . By
blowing up and base change one can assume the following situation:

X X
p

f

C̃
π

ef

eg
M̃

N Ñ
whereC̃, M̃ andÑ are smooth, the general fibres ofg̃ are smooth curves and the fibres
of f̃ map onto fibres off in X. Furthermore, the mapsp andπ are generically finite.
Let (L̃, h̃) be the pulled back(L, h) on C̃. Take an(L̃, h̃)−general̃g−fibre curveC in
C̃ such that the general̃f−fibre through points ofC is smooth. Look at the subvariety
GC = f̃−1(f̃(C)) ⊂ C̃. It may be not smooth, but by the smoothness of the general
f̃−fibre, the singular locus does not containC. Hence using Lemma2.7, an embedded
resolution ofGC in C̃ gives a smooth subvarietŷGC in the blow upĈ such that the strict
transformĈ of C is still (µ∗L̃, µ∗h̃)−general in̂C. By the following lemma,Ĉ is also
(µ∗L̃, µ∗h̃)−general inĜC , and one can apply the Key Lemma:̂GC is (µ∗L̃, µ∗h̃)−
numerically trivial. By birational invariance this is true for the image of̂GC in X, too.
But dim ĜC = dimF + 1. Since all curves in a family are(L, h)−general outside a
pluripolar set, the construction in Lemma3.6gives a new family

g : Y → N ′

satisfying conditions (i) - (iv), and

dimN ′ = dimN − 1.

This is a contradiction to the minimality ofdimN . ¤

LEMMA 3.7. Let Y ⊂ X be a smooth subvariety in a projective complex variety
X with a pseudo-effective line bundleL and a positive singular hermitian metrich on
L such thath|Y 6≡ ∞. Then an(L, h)− general curve onX is also an(L|Y , h|Y )−
general curve onY .
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PROOF. ν(h|C , x) = 0 implies 0 = ν(h|Y , x) ≤ ν(h|C , x) = 0, hence
ν(h|Y , x) = ν(h|C , x).
ν(h|C , x) > 0 implies thatx ∈ D for some prime divisorD on someEc(h). The
restricted divisorD|Y may be singular but not inx: In that case,

ν(h|Y , x) > ν(h|Y , D|Y ) ≥ ν(h,D) = ν(h|C , x),

contradiction. ¤
In the same way we show
Claim. Let g̃ : X̃ → Ñ be another family satisfying the conditions (i) - (iv). Then there
is a commutative diagram of rational maps

X X

ef

X̃

eg

N Ñ
such that the general fibre ofg̃ is contained in a fibre of̃f . ¤
On the one hand, this claim implies the birational uniqueness off̃ . On the other hand
one can prove claim (ii) in the pseudo-effective Reduction Map Theorem3.2: If (ii) is
not satisfied there will be a set of pointsN ⊂ X which is not contained in a pluripolar
set such that

∀ x ∈ N ∃ Cx 3 x irreducible curve, dim f̃(Cx) = 1 : (L, h).Cx = 0.

By Lemma3.6 one gets a family of curves satisfying conditions (i)-(iv). The claim
implies that the general fibre of this family is contained in a fibre off̃ , hence also some
of the curvesCx: contradiction.
Finally it is possible to prove that in part (i) of the Reduction Map Theorem, all fibres
outside a pluripolar set are(L, h)−numerically trivial: This pluripolar set is just the set
of fibresF such thath|F ≡ ∞. Because assume to the contrary thatC ⊂ F is a curve on
a fibreF such thath|C 6≡ ∞, henceh|F 6≡ ∞, andC is not(L, h)−numerically trivial.
Then, as in step 1 of subsection3.1, (L, h) is not numerically trivial on sufficiently
general fibresF , contradiction !

3.4. Characterization of numerically trivial varieties

If X itself is numerically trivial one can prove the following consequence for the curva-
ture current:

THEOREM3.8. LetX be a smooth projective complex manifold, letL be a pseudo-
effective line bundle onX with positive singular hermitian metrich such thatX is
(L, h)−numerically trivial. Then the curvature currentΘh may be decomposed as

Θh =
∑

i

ai[Di]
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where theDi form a countable set of prime divisors onX and theai > 0.

PROOF. We start with the Siu decomposition of the curvature current [14, (2.18)]

Θh =
∑

i

ai[Di] +R

where theDi are the (countably many) prime divisors in the Lelong number level sets
Ec(h) and theai = minx∈Di

ν(Θh, x).
Next, take a very ample divisorH. By Theorem2.5 there is a smooth complete inter-
section curveC = H1 ∩ . . . ∩ Hn−1, Hi ∈ |H| which is (L, h)− general. Now by
Proposition2.2

0 = (L, h).C = L.C −
∑

x∈C
ν(

∑

i

ai[Di]|C , x)−
∑

x∈C
ν(R|C , x).

SinceC is (L, h)- general the only pointsx ∈ C whereν(Θh, x) > 0 are the intersection
points with the regular part of theDi’s where furthermoreν(Θh, x) = ν(Θh, Di) = ai.
Consequently

0 = (L, h).C = L.C −
∑

i

aiDi.C.

But this implies

0 = R.C =
∫

X

R ∧ (ωH)n−1

whereωH is the strictly positiveC∞−metric belonging to the very ample divisorH.
SinceR is a positive current it follows

R = 0.

¤

We can use this characterization to give a counterexample to almost holomorphy of the
reduction map: TakeX = P2 with homogeneous coordinates(Z0 : Z1 : Z2),H = O(1)
and let the metrich onH be induced by the incomplete linear system of lines passing
through(1 : 0 : 0). The weight ofh around(1 : 0 : 0) is then

φh =
1
2

log(|z1|2 + |z2|2)

wherez1 = Z1
Z0
, z2 = Z2

Z0
are local coordinates around(1 : 0 : 0). The weightφh and

hence the curvature currentΘh of h have an isolated pole in(1 : 0 : 0).
Let L = {aZ1 + bZ2 = 0} be a line through(1 : 0 : 0). If w.l.o.g. b 6= 0 the weight of
the metrich restricted toL is

φh|L =
1
2

log(|z1|2 + | − a

b
z1|2) = log |z1|+ 1

2
log(1 +

a2

b2
).

Hence
J (hm|L) = J (mφh|L) = ImP
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whereIP ⊂ OL is the ideal sheaf ofP = (1 : 0 : 0) ∈ L and

(H,h).L = lim sup
m→∞

h0(L,OL(mH)⊗ J (hm|L))

m

= lim sup
m→∞

h0(L,OL)
m

= 0.

Consequently the lines through(1 : 0 : 0) must be contained in fibers of the numerically
trivial fibration w.r.t.(L, h). On the other hand, by the characterization of numerically
trivial varieties above, this fibration cannot be the projection to a point sinceΘh is not
the integration current of a divisor. Hence the numerically trivial fibration w.r.t.(L, h)
is the composition of the blow up ofP2 in (1 : 0 : 0) and the natural projection from this
blow up toP1 which certainly is not almost holomorphic.

3.5. The Iitaka fibration

LetX be a projective complex manifold andL a line bundle with non-negative Kodaira-
Iitaka dimensionκ(X,L) ≥ 0. In this section we construct a metrich for L onX such
that the(L, h)-numerical trivial fibration is the Iitaka fibrationf : X 99K Y of L onX.
To this purpose we use a result of Takayama [36]:
The asymptotic multiplier idealJ (||mL||) is defined to be the unique maximal ele-
ment among all multiplier idealsJ ( 1

pm0
· |pm0mL|) wherem0 is chosen such that

|m0mL| 6= ∅ ([27],[28]). With this ideal Takayama defined intersection numbers re-
flecting properties of the linear sytems|mL|:

||L,C|| := lim
m→∞

m−1 degC (mL⊗ J (||mL||)) ,
whereC is an irreducible curve not contained in the stable base locus

SBs(L) :=
⋂

m∈N
Bs(|mL|)

of L. Then he showed that such a curveC is mapped to a point byf if and only if
||L,C|| = 0.
Now we consider the setN(L) of all m ∈ N such that the linear systems|mL| 6= ∅. Let
m0 be the greatest common divisor of the numbers inN(L). Then there is a positive
integerm(L) such that|mm0L| 6= ∅ for all positive integersm ≥ m(L). Choose gen-
erating setsf1, . . . , fkm for the linear systems|mm0L| 6= ∅ and lethm be the (possibly
singular) hermitian metric onL with plurisubharmonic weight (on the baseΩ ⊂ Cn of
a local trivializationL ∼= Ω× C)

φm =
1

2mm0
log(

km∑

i=1

|fi|2)

and curvature currentΘm = i∂∂φm (on Ω). Let hL be a smooth hermitian metric on
L with weightφL on Ω and smooth curvature formΘL. Write Θm = ΘL + i∂∂φ′m
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and normalize theφ′m by subtracting (if necessary) a positive constantCm such that
supφ′m ≤ 0 (this is possible becauseφ′m is defined on the compact manifoldX hence
bounded from above). Then take the upper semicontinuous upper envelopeφ′ of theφ′m
and callh the (singular) hermitian metric onL given by the plurisubharmonic weight
φ = φL + φ′. By construction,φ′ has the singularities exactly at the stable base locus
SBs(L) of L.
To prove that the Iitaka fibration is (up to birational equivalence) the same as the nu-
merically trivial fibration w.r.t.(L, h) first compare Tsuji’s and Takayama’s intersection
numbers:

LEMMA 3.9. WithL, h as above,

(L, h).C ≤ ||L,C||
for smooth irreducible curvesC not contained in a set of Lebesgue measure zero.

PROOF. To begin with, one has to relate the multiplier idealsJ (c · |mm0L|) of the
linear system|mm0L| and the positive rational numberc with the (analytic) multiplier
idealsJ (φm). The idealJ (c · |mm0L|) is defined via a log resolution, but sinceφm is
a plurisubharmonic function with analytic singularities defined by generating elements
of |mm0L|, it follows that

J (c ·mm0φm) = J (c · |mm0L|)
by [14, (5.9)]. Consequently,

||L,C|| = L.C + lim
m→∞

m−1 max
p∈N

degC J (
1

m0p
|m0pmL|) =(3.5.1)

= L.C + lim
m→∞

m−1 lim
p→∞

degC J (mφmp)

= L.C + lim
m→∞

m−1 lim
n→∞

degC J (mφn).

The last equality is true becauseJ (mφn) ⊂ J (mφn+1) for all n: The multiplier ideals
do not depend on the generating set used to defineφn. By multiplying the generators
definingφn with a section inH0(X,m0L) and completing this set to a generating set of
H0(X, (n+ 1)m0L) it is possible to chooseφn ≤ φn+1, hence the inclusion.
Next, Tsuji’s intersection number may be expressed as

(L, hn).C = L.C + lim sup
m→∞

m−1 degC J (mφn),

by (2.2.3) and the fact thathn is a metric with analytic singularities, hence restriction to
C and taking the multiplier ideal in thelim sup above may be interchanged on smooth
curves (Prop.2.15). The inclusionJ (mφn) ⊂ J (mφn+1) shows that

lim
n→∞

(L, hn).C = L.C + lim
n→∞

lim sup
m→∞

m−1 degC J (mφn)

≤ L.C + lim
m→∞

m−1 lim
n→∞

degC J (mφn) = ||L;C||.
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On the other hand,(L, hn).C = L.C − ∑
x∈C ν(hn|C , x) by 2.2. Since the upper

semicontinuous upper envelopeφ′ of theφ′m equalssupm φ′m outside a set of Lebesgue
measure zero ([30]), the envelope of the restrictionsφ′m|C equals almost everywhere the
restriction(φ′m)|C on all curves outside a Lebesgue zero set. For these curves the lemma
follows from the next statement, using the definition of Lelong numbers via integrals
([14, (2.7)]). ¤

LEMMA 3.10. Let C ⊂ X be a smooth curve not contained in
{x ∈ X : supm φ′m(x) < φ′(x)}. Then for allx ∈ C

lim
n→∞

ν(hn|C , x) ≥ ν(h|C , x).

PROOF. By definition of Lelong numbers,ν(φ, x) ≥ ν(ψ, x) if φ ≤ ψ. Conse-
quently, by the same construction as for the inclusionJ (mφn) ⊂ J (mφn+1), the Le-
long numbersν(hn|C , x) of theφn form a decreasing sequence of non-negative numbers
in every pointx ∈ C whose limit is≥ ν(h|C , x). It remains to show the equality:
If z is a local parameter ofC centered inx, the functionφ′n may locally onC be written
as

φ′n(z) = φn(z)−φL(z)−Cn = ν(hn|C , 0) log |z|+dn log(1+
∞∑

i=0

ai|z|i)−φL(z)−Cn

for some real numberdn. For everyε > 0 and a sufficiently small neighborhood of0 it
is true that

dn log(1 +
∞∑

i=0

ai|z|i)− φL(z)− Cn ≤ −ε log |z|,

henceφ′n(z) ≤ (ν(hn|C , 0)− ε) log |z|, which implies

φ′(z) ≤ ( lim
n→∞

ν(hn|C , 0)− ε) log |z|

for almost allz around0. Consequently,ν(φ′, 0) ≥ limn→∞ ν(hn|C , 0)−ε for all ε > 0,
and the equality follows. ¤

This already implies that the Iitaka fibration ofL is contained in Tsuji’s numerically
trivial fibration for (L, h): Take a birational morphismµ : X ′ → X from a smooth
projective varietyX ′ such that the Iitaka fibration induced by the linear system|mµ∗L|
is a morphismf : X → Y on another smooth varietyY . The general fiber of this
fibration is smooth. Smooth varieties are numerically trivial w.r.t.(L, h) iff (L, h).C = 0
for all sufficiently general smooth curves in this variety, by the Reduction map3.2.
Hence by the above inequality the numerically trivial fibration w.r.t.(µ∗L, µ∗h) contains
the Iitaka fibration. By birational equivalence of intersection numbers (Prop.2.12), the
numerically trivial fibration w.r.t. (µ∗L, µ∗h) is birationally equivalent to that onX
w.r.t. (L, h).
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Next note that there is a positive integerm such that the Iitaka fibration ofL is induced
by the linear system|mL| [26, 10.3]. This mapφ|mL| induced by|mL| is also the nu-
merically trivial fibration of the metrichm: The linear system|mL| has no base points
on a curveC not contained in the indefinite locus ofφ|mL| hence the restriction ofhm on
C is smooth and strictly positive. By the Lelong number inequalities in Lemma3.10we
conclude that numerical triviality of a sufficiently general curve w.r.t.h implies numeri-
cal triviality w.r.t.hm. In particular the numerically trivial fibration w.r.t.h is contained
in that w.r.t.hm and we are finished.





CHAPTER 4

Moving intersection numbers

Tsuji’s numerically trivial fibrations depend not only on the pseudo-effective line bundle
L but also on a positive possibly singular hermitian metrich on L. But since posi-
tive metrics onL might be rather rare this sometimes leads to undesirable effects. For
example there are nef line bundlesL such that for no choice of a positiveh the(L, h)-
numerically trivial fibration is equal to the nef fibration (see section7.2).
In this chapter we describe Boucksom’s concept of moving intersection numbers which
lead to a solution of this problem. His idea was to look at many metrics at the same time
and even allow small negative curvature which should tend to 0 in a limit process. In this
manner he was able to define non-negative intersection numbers for pseudo-effective
line bundles and also a notion of volume for big line bundles having nice properties.
Furthermore Boucksom introduced a useful divisorial Zariski decomposition.
We give a short survey on this circle of ideas in its natural setting of Kähler manifolds
and(1, 1)-classes, without claiming any originality or completeness. Our main source
will be Boucksom’s thesis [8] where also most of the proofs may be found. The second
section proves an approximation theorem for currents of minimal singularities which
will be useful later on.

4.1. Moving intersection numbers of pseudo-effective classes

Starting with Fujita’s approximate Zariski decomposition ([24],[15]) Boucksom devel-
opped a notion of volume for arbitrary pseudo-effective classes ([7]) on compact Kähler
manifolds. The construction leading to the volume was then generalized (with small
modifications) to a “moving intersection product” of pseudo-effective classes. This in
turn allows the definition of a numerical dimension for pseudo-effective classes.
Logically one has to start with defining the “moving intersection numbers”:

DEFINITION 4.1. LetX be a compact Kähler manifold with Kähler formω. Let
α1, . . . , αp ∈ H1,1(X,R) be pseudo-effective classes and letΘ be a closed positive
current of bidimension(p, p). Then the moving intersection number(α1 · . . . ·αp ·Θ)≥0

of theαi andΘ is defined to be the limit whenε > 0 goes to0 of

sup
∫

X−F
(T1 + εω) ∧ . . . ∧ (Tp + εω) ∧Θ

57
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where theTi’s run through all currents with analytic singularities inαi[−εω], andF is
the union of theSing(Ti).

It is not difficult to justify the existence of the limit above: First, onX − F the currents
Ti + εω may locally be written asTi + εω = ddcui for some bounded plurisubharmonic
function ui. By results of Bedford-Taylor [2] this implies the existence of the inte-
gral. In addition Boucksom [7] showed that these integrals are bounded by a constant
only depending on the cohomological classes{Ti} and{Θ} (this is where the Kähler
assumption comes in). Hence the supremum always exists, and is increasing with in-
creasingε. This implies the existence of the limit. Finally it is easy to see that this limit
does not depend on the choice of the Kähler formω.
The(α1 · . . . ·αp ·Θ)≥0 are symmetric in theαi and concave and homogeneous in every
variable separately. For nef classesαi ∈ H1,1(X,R) the moving intersection number
equals the normal cohomological intersection number(α1 · . . . · αp · {Θ}) [8]. If some
of the pseudo-effective classes coincide one has

LEMMA 4.2. For pseudo-effective classesα, αp+1, . . . , αn the moving intersection
number(αp · αp+1 · . . . · αn)≥0 is the limit forε→ 0 of

sup
∫

X−F
(T + εω)p ∧ (Tp+1 + εω) ∧ . . . ∧ (Tn + εω)

whereT ∈ α[−εω] andTi ∈ αi[−εω] have analytic singularities.

PROOF. See Lemma 3.2.7 in [8]. ¤

DEFINITION 4.3. LetX be a compact Kähler manifold. Then the numerical dimen-
sionν(α) of a pseudo-effective classα ∈ H1,1(X,R) is defined as

max{k ∈ {0, . . . , n} : (αk · ωn−k)≥0 > 0}
for some (and hence all) Kähler classesω.

Now the volume of a pseudo-effective classα ∈ H1,1(X,R) on a compact Kähler
manifold may be defined as a special case of the moving intersection product:

vol(α) = (αn)≥0.

But there are other useful possibilities to define it: First remember that Fujita considered
projectiven−dimensional algebraic varietiesX and line bundlesL overX, and defined
the volume ofL by

vol(L) := lim sup
k→+∞

n!
kn
h0(X, kL).

If L is nef, the volume ofL is the self-intersectionLn, by Riemann-Roch
and hq(X, kL) ∼ O(kn−q) ([14, (6.7)]). For arbitrary pseudo-effective classes
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α ∈ H1,1(X,R) on compact Kähler manifoldsX Boucksom generalized this volume
by defining

vol(α) = sup
∫

X

Tnac

where the supremum is taken over all closed positive(1, 1)−currentsT with {T} = α
andTac is the absolute continuous part of the Lebesgue decompositionT = Tac + Tsg.
Again, the Kähler assumption is necessary to guarantee thatTnac is locally integrable.
By using singular Morse inequalities and the Calabi-Yau theorem Boucksom proved
thatvol(L) = vol(c1(L)) and thatvol(L) > 0 iff L is a big line bundle, i.e. iff there is
a closed strictly positive current representingc1(L).
Note that it is not necessary to look at all closed positive(1, 1)−currents for taking the
supremum. This is a consequence of an approximation theorem of Demailly:

THEOREM 4.4 ([19]). Let T = θ + ddcφ be a closed almost positive(1, 1)−cur-
rent on a complex manifoldX with hermitian metricω such thatθ is a smooth form.
Suppose thatT ≥ γ for some realC∞− form γ. Then there exists a decreasing se-
quenceφk of almost plurisubharmonic functions with analytic singularities such that
theTk := θ + ddcφk verify

(i) Theφk converge pointwise andL1
loc againstφ, hence theTk converge weakly

againstT .
(ii) Tk ≥ γ − εkω for some sequence of positive numbersεk → 0.

(iii) The Lelong numbersν(Tk, x) converge uniformly againstν(T, x) w.r.t.
x ∈ X.

Using another approximation theorem ([13]) Boucksom slightly modified this statement
([7]):

THEOREM 4.5. Let the assumptions and notations be the same as in the theorem
before. Then there exists a decreasing sequenceφk of almost plurisubharmonic functions
with analytic singularities such that theTk := θ + ddcφk verify

(i) TheTk converge weakly againstT , andTk,ac → Tac almost everywhere.
(ii) Tk ≥ γ − εkω for some sequence of positive numbersεk → 0.

(iii) The Lelong numbersν(Tk, x) converge uniformly againstν(T, x) w.r.t.
x ∈ X.

So one may define instead

vol(α) = lim
ε→0+

sup
∫

X

Tnac

where theT ’s run through all closed(1, 1)− currents with analytic singularities in
α[−εω], that is{T} = α andT ≥ −εω for some hermitian metricω onX.



60 4. MOVING INTERSECTION NUMBERS

Here, closed(1, 1)− currents with analytic singularities are currents whose almost
plurisubharmonic potentials locally look like

α

2
log(|f1|2 + . . .+ |fp|2)

with f1, . . . , fn holomorphic, up to a boundedC∞− function. Such currentsT are par-
ticularly useful because their absolut continuous part is the same as the residual partR
in the Siu-decompositionT =

∑
i ai[Di] +R. Consequently, one may compute

∫
X
Tnac

by blowing up the (integral closure) of the ideal of singularities locally generated by the
fi and integrating the smooth form given by the pull back ofT minus the integration
currents of the exceptional divisors as they occur in the inverse image of the singularity
ideal. In Fujita’s setting this corresponds to blowing up the base locus of the multiples
mL and decomposing the pull back ofL into an effective partEm and a free partDm,
and Fujita’s theorem [14, (14.6)] tells us that

vol(L) = lim
m→∞

Dn
m.

Finally, the last definition ofvol(α) is equivalent to the first one, with moving intersec-
tion numbers, by Lemma4.2.

4.2. Currents with minimal singularities

In the notions of moving intersection numbers etc. introduced above it is necessary to
take limits over all currents≥ −εω in a pseudo-effective classα. Often it is enough
to take limits over currents with minimal singularities or sequences of currents approxi-
mating them.

DEFINITION 4.6. Let φ1 andφ2 be two almost plurisubharmonic functions on a
complex manifoldX. Thenφ1 is said to be less singular thanφ2 in x ∈ X iff

φ2 ≤ φ1 +O(1)

in a neighborhood ofX. The fact thatφ1 is less singular thanφ2 in every point is
denoted byφ1 ¹ φ2.

Now letX be compact Kähler andα ∈ H1,1(X,R). Let θ be a smooth(1, 1)− form
representingα. Then every current inα may be written asT = θ + ddcφ for some
almost plurisubharmonic functionφ and

T1 ¹ T2

shall denote the fact thatφ1 ¹ φ2.

PROPOSITION4.7. Letγ be a smooth(1, 1)− form onX. Every non-empty subset
of α[γ] admits a lower bound inα[γ] w.r.t.¹.
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PROOF. The proof is almost trivial and of course contained in [18] but is repeated
for emphasizing a certain uniqueness property.
Let (Ti)i∈I be the given subset ofα[γ]. Write Ti = θ + ddcφi whereφi is almost
plurisubharmonic andddcφi ≥ γ − θ. SinceX is compact, all almost plurisubharmonic
functions are bounded from above hence one may suppose thatφi ≤ 0 by subtracting a
constant. If one choose this constant such thatsupx∈X φi(x) = 0 theφi will be unique:
An almost plurisubharmonic functionφ with ddcφ = 0 is a holomorphic function.
Theφi have an almost plurisubharmonic upper envelopeφ such thatθ + ddcφ ∈ α[γ].
The currentT = θ+ddcφ is obviously a lower bound for the(Ti)i∈I , with the following
property: IfS ¹ Ti for all I, thenS ¹ T . ¤

Remark. The construction above shows that this lower boundT = Tmin is unique only
up toL∞. On the other hand, given the smooth(1, 1)− form θ in α, the construction
leads to a well defined currentTmin = θ + ddcφmin via the upper envelope. Here, the
almost plurisubharmonic functionφmin satisfiesφi ≤ φmin where theφi are chosen as
above.
This current will be used in the following.

The currents with minimal singularities may be used to define minimal multiplicities
of pseudo-effective classes, having a look at Boucksom’s construction of higher dimen-
sional Zariski decompositions [9]. In this paper, he interpreted the Lelong numbers of a
currentTmin,ε with minimal singularities inα[−εω] as the obstructions to reach smooth
currents inα[−εω]. This led him to

DEFINITION 4.8. The minimal multiplicity of a pseudo-effective class
α ∈ H1,1(X,R) in x ∈ X is defined as

ν(α, x) := sup
ε>0

ν(Tmin,ε, x).

The generic minimal multiplicity on a prime divisorD ⊂ X is defined as

ν(α,D) := inf
x∈D

ν(α, x).

Denoting byTmin a current with minimal singularities inα[0] one has always

ν(α, x) ≤ ν(Tmin, x), ν(α,D) ≤ ν(Tmin, D).

There are examples whereν(α,D) < ν(Tmin, D), see section7.2.

The following approximation ofTmin will be useful later on:

THEOREM 4.9. Let X be a compact Kähler manifold with Kähler formω, let
α ∈ H1,1(X,R) be a pseudo-effective class. Then there exists a sequence of closed
(1, 1)−currentsTk with analytic singularities inα[−εkω] for some sequence(εk) → 0
of positive real numbers such that

(i) theTk converge weakly against a closed positive(1, 1)−currentT which has
minimal singularities inα[0],
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(ii) ν(Tk, x) → ν(α, x) for every pointx ∈ X,
(iii) for all i

∫

X−Sing(Tk)

(Tk + εkω)p ∧ ωn−p → (αp.ωn−p)≥0.

PROOF. To compute(αp.ωn−p)≥0 it is enough to determine the limit of the

sε := sup
T

∫

X−Sing(T )

(T + εω)p ∧ ωn−p

whereT ∈ α[−εω] has analytic singularities, by Lemma4.2. Consequently, for eachp
there are two sequencesεk ↓ 0, δk → 0 of real numbers and a sequence of closed(1, 1)−
currents(T (p)

k )k∈N with analytic singularities such thatT (p)
k ∈ α[−εkω] and

sεk − δk ≤
∫

X−Sing(T (p)
k )

(T (p)
k + εkω)p ∧ ωn−p ≤ sεk =: sk.

Now letθ be a smooth(1, 1)− form onX representingα. LetTmin,k = θ + ddcφmin,k
be the current with minimal singularities inα[−εkω] associated toθ, as described in the
remark above. SinceT (p)

k = θ + ddcφ
(p)
k ∈ α[−εkω] this impliesφ(p)

k ≤ φmin,k ≤ 0.
Furthermore theTmin,k converge weakly against a currentTmin with minimal singular-
ities inα[0].
By Demailly’s Approximation Theorem4.4there exists a decreasing sequence of almost
plurisubharmonic functionsφk,l with analytic singularities converging pointwise and
L1
loc againstφmin,k such thatTk,l = θ + ddcφk,l ∈ α[−εk,lω] for some sequence

(εk,l)l∈N
>→ εk of positive real numbers. Furthermoreν(Tk,l, x)

<→ ν(Tmin,k, x) for
every pointx ∈ X.
Let µ : Y → X be a common resolution of the singularities ofTk,l and theT (p)

k . Then

µ∗T (p)
k = R

(p)
k + [D(p)

k ], µ∗Tk,l = Rk,l + [Dk,l]

whereR(p)
k , Rk,l are smooth andD(p)

k , Dk,l are effectiveR− divisors. Since theφk,l
form a decreasing sequence,φ

(p)
k ≤ φk,l andTk,l is less singular thanT (p)

k . In particular

Dk,l ≤ D
(p)
k , hence theclass{Rk,l − R

(i)
k } = {D(i)

k − Dk,l} is pseudo-effective.
Consequently,
∫

Y

(Rk,l+εk,lµ∗ω)∧(R(p)
k +εk,lµ∗ω)p−1∧µ∗ωn−p ≥

∫

Y

(R(p)
k +εk,lµ∗ω)p∧µ∗ωn−p,

since the integrals over the compact manifoldY only depend on the cohomology classes,
and all factors besidesRk,l + εk,lµ

∗ω andR(p)
k + εk,lµ

∗ω are smooth. Iterating gives
∫

Y

(Rk,l + εk,lµ
∗ω)p ∧ µ∗ωn−p ≥

∫

Y

(R(p)
k + εk,lµ

∗ω)p ∧ µ∗ωn−p.
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Noting that∫

Y

(Rk,l + εk,lµ
∗ω)p ∧ µ∗ωn−p =

∫

X−Sing(Tk,l)

(Tk,l + εk,lω)p ∧ ωn−p

and similarly forR(p)
k andT (p)

k one finally gets
∫

X−Sing(T (p)
k )

(T (p)
k + εk,lω)p ∧ ωn−p ≤

∫

X−Sing(Tk,l)

(Tk,l + εk,lω)p ∧ ωn−p.

Sinceεk,l → εk the same line of arguments shows∫

X−Sing(T (p)
k )

(T (p)
k + εk,lω)p ∧ ωn−p →

∫

X−Sing(T (p)
k )

(T (p)
k + εkω)p ∧ ωn−p.

For l big enough (depending onk) this gives

sk − δk ≤
∫

X−Sing(Tk,l)

(Tk,l + εk,lω)p ∧ ωn−p ≤ sk+1.

Combining all these facts one gets a sequence of closed positive(1, 1)− currents
Tk = Tk,l(k) with analytic singularities inα[−εk+1ω] such that theTk converge weakly
againstTmin, and conditions (ii) and (iii) of the theorem are also satisfied. ¤

Remark. As long asTk,min → Tmin weakly fork →∞, in the construction above it is
not necessary that theTk,min are computed w.r.t. the same smooth(1, 1)−form onα.

The approximation may be used e.g. to prove

LEMMA 4.10. LetX be a compact Kähler manifold andα ∈ H1,1(X,R) a pseudo-
effective class. Let∆n ∼= U ⊂ X be an open subset, and letp : ∆n → ∆n−1 be the
projection onto the lastn − 1 coordinates. Then there is a pluripolar setE ⊂ ∆n−1

such that for all fibers∆ over points in∆n−1 \ E
lim
ε↓0

inf
T
ν(T|∆, x) = ν(α, x) for all x ∈ ∆,

where theT ’s run through all currents inα[−εω] with analytic singularities, for which
the restriction to∆ is well-defined.

PROOF. The proof is an application of the theory of(L, h)- general curves gener-
alized to almost positive(1, 1)- currentsT onX. As in Chapter2, a smooth curveC
(compact or not) will be calledT - general iff the restriction ofT onC is well-defined
and

(i) C intersects no codim-2-component in any of the Lelong number level sets
Ec(T ),

(ii) C intersects every prime divisorD ⊂ Ec(T ) in the regular locusDreg

of this divisor, C does not intersect the intersection of two such prime
divisors, and every intersection pointx has the minimal Lelong number
ν(T, x) = ν(T,D) := minz∈D ν(T, z),
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(iii) for all x ∈ C, the Lelong numbers

ν(T|∆, x) = ν(T, x).

Then Theorem2.5 can be reformulated in this setting and states that in a family of
curves over a smooth base there is a pluripolar subset in the base such that every curve
over points outside this pluripolar set isT - general. In particular, this is true for currents
Tk approximatingTmin as in the theorem above. Since the union of countably many
pluripolar sets is again pluripolar, this proves the lemma. ¤



CHAPTER 5

Foliations and Fibrations

In this chapter we want to introduce several constructions on possibly singular holomor-
phic foliations and describe the connection to fibrations. The facts gathered here will be
used in the next chapters.

5.1. Operations on Foliations

Holomorphic foliations on complex manifolds are usually defined as involutive subbun-
dles of the tangent bundle. Then the classical theorem of Frobenius asserts that through
every point there is a unique integral complex submanifold [32]. Singular foliations
may be defined as involutive coherent subsheaves of the tangent bundle which are fur-
thermore saturated, that is their quotient with the tangent bundle is torsion free. In points
where the rank is maximal one may use again the Frobenius theorem to get leaves.
Later on we use the following notation:

DEFINITION 5.1. LetX be a complex manifold andF ⊂ TX a saturated involutive
subsheaf. Then the analytic subset

{x ∈ X : F/mX,xF → TX,x is not injective}
is called the singular locus ofF and is denoted bySing F . The dimension ofF/mX,xF
in a pointx ∈ X − Sing F is called rank ofF and denoted byrk(F).

BecauseF is saturated we havecodim Sing F ≥ 2. The existence of leaves means
that around every pointx ∈ X − Sing F there is an (analytically) open subset
U ⊂ X − Sing F with coordinatesz1, . . . zn, n = dimX, such that the leaves of
F are the fibers of the projection onto the coordinateszk+1, . . . , zn wherek = rk(F).
In particular the leaves have dimensionrk(F).
To construct numerically trivial foliations we need a local description of several opera-
tions applied on two foliations. We start with the easiest configuration:

PROPOSITION 5.2. Let G ⊂ F be two foliations on a complex manifoldX,
rk(F) = k, rk(G) = l, l < k. Then for allx ∈ X − (Sing F ∪ Sing G) there is
an open neighborhoodU ⊂ X − (Sing F ∪ Sing G) with coordinatesz1, . . . , zn such
that the leaves ofF are the fibers of the projection onto the lastn − k coordinates and
the leaves ofG are the fibers of the projection onto the lastn− l coordinates.

65
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PROOF. Let z1, . . . , zn be local coordinates aroundx such that the leaves ofG
are the fibers of the projection onto the lastn − l coordinates. Letz′1, . . . , z

′
n be local

coordinates aroundx such that the leaves ofF are the fibers of the projection onto the last
n − k coordinates.G ⊂ F implies that the coordinateszl+1, . . . , zn fix the coordinates
z′k+1, . . . , z

′
n which consequently do not depend onz1, . . . , zl. This implies that (after

possibly reorderingzl+1, . . . , zn) the matrix
(
∂z′i
∂zj

)
i,j≥k+1

is invertible. The theorem

on implicitely defined functions shows then that

(z1, . . . , zn) 7→ (z1, . . . , zk, z′k+1, . . . , z
′
n)

is an invertible map in a neighborhoodU of x. The new coordinates
(z1, . . . , zk, z′k+1, . . . , z

′
n) have the required properties sincez′k+1, . . . , z

′
n only depend

onzl+1, . . . , zn. ¤
Note that neitherSing G need to be contained inSing F nor vice versa.

DEFINITION 5.3. LetF andG be two foliations on a complex manifoldX. Then
F ∩ G ⊂ TX is called the intersection foliation ofF andG.

Note thatF ∩ G is certainly involutive but may be not saturated: the rank ofF ∩ G can
even jump incodim 1 subsets. To get a better picture in local coordinates we neverthe-
less think of it as a foliation and denote bySing (F ∩ G) the analytic locus where the
rank jumps.

PROPOSITION5.4. LetF andG be two foliations on a complex manifoldX with
rk(F) = k, rk(G) = m andrk(F ∩ G) = l. Letx ∈ X be a point which is not singular
for F , G andF ∩ G. Then there exists an open neighborhood

U ⊂ X − (Sing F ∪ Sing G ∪ Sing (F ∩ G))

of x with coordinatesz1, . . . , zn such that

(i) the leaves ofF in U are the fibers of the projection onzk+1, . . . , zn,
(ii) the leaves ofF ∩ G in U are the fibers of the projection onzl+1, . . . , zn and

(iii) the leaves of G in U are the fibers of the projection on
zl+1, . . . , zk, z

′
m+k−l+1, . . . , z

′
n where thez′m+k−l+j ’s are analytic functions

with z′m+k−l+j|Ux
= zk+j on

Ux = {z ∈ U : zl+1(z) = zl+1(x), . . . , zk(z) = zk(x)}.
PROOF. Again this results from applying the theorem on implicitely defined func-

tions several times. The geometric essence of the situation may be taken from the figure
below.
To start the proof, choose coordinatesz1, . . . , zn for F andF ∩ G in a neighborhood

V ⊂ X − (Sing F ∪ Sing G ∪ Sing (F ∩ G))

of x as in Prop.5.2. Since the leaves ofG contain the leaves ofF ∩ G we can de-
scribe the leaves ofG in V (possibly restricted) as the fibers of the projection given by
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analytic functionsz′m+1, . . . , z
′
n only depending onzl+1, . . . , zn. By construction, the

differential of the map

(z1, . . . , zn) 7→ (z′m+1, . . . , z
′
n, zk+1, . . . , zn)

has the kernelTF∩G,x in x. Hence the rank of the differential inx is n − l, and after
possibly reordering thez′m+1, . . . , z

′
n the differential of

(z1, . . . , zn) 7→ (z1, . . . , zl, z′m+1, . . . , z
′
m+k−l, zk+1, . . . , zn)

has full rank inx and is invertible. Consequently,

z1, . . . , zl, z
′
m+1, . . . , z

′
m+k−l, zk+1, . . . , zn

are coordinates in V (possibly restricted).
By construction the fibers of the projection ontozk+1, . . . , zn are the leaves ofF and
the fibers of the projection ontoz′m+1, . . . , z

′
n are the leaves ofG. Since the differentials

of
(z1, . . . , zn) 7→ (z′m+1, . . . , z

′
n, zk+1, . . . , zn)

and
(z1, . . . , zn) 7→ (z′m+1, . . . , z

′
m+k−l, zk+1, . . . , zn)

have the same rank their kernel in pointsy ∈ V is in both casesTF∩G,y. Consequently
the fibers of the projection ontoz′m+1, . . . , z

′
m+k−l, zk+1, . . . , zn and the leaves ofF∩G

have the same tangent space in every pointy ∈ V , hence are equal inV .
After possibly reorderingzk+1, . . . , zn a similar argument as above shows that

z1, . . . , zl, z
′
m+1, . . . , z

′
n, zn−m−l+1, . . . , zn

are coordinates inV (possibly restricted). Let

am+1 := z′m+1(x), . . . , am+k−l := z′m+k−l.

Since the differentials of

(z1, . . . , zn) 7→ (z1, . . . , zl, z′m+1, . . . , z
′
n, zn−m−l+1, . . . , zn)

and

(z1, . . . , zn) 7→
(z1, . . . , zl, z′m+1, . . . , z

′
m+k−l,

z′m+k−l+1(am+1, . . . , am+k−l), . . . , z′n(am+1, . . . , am+k−l), zn−m−l+1, . . . , zn)

are equal inx, they are both invertible and

z1, . . . , zl, z
′
m+1, . . . , z

′
m+k−l,

z′m+k−l+1(am+1, . . . , am+k−l), . . . , z′n(am+1, . . . , am+k−l), zn−m−l+1, . . . , zn

are coordinates inV (possibly restricted).
Sincez′m+k−l+1(am+1, . . . , am+k−l), . . . , z′n(am+1, . . . , am+k−l), zn−m−l+1, . . . , zn
and z′m+k−l+1, . . . , z

′
n, zn−m−l+1, . . . , zn both do not depend on
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z1, . . . , zl, z
′
m+1, . . . , z

′
m+k−l their respective values are fixed by each other. Hence the

fibers of the projection onto the two sets of coordinates are equal, and the same is true
for the fibers of the two projections onto

z′m+1, . . . , z
′
m+k−l, z

′
m+k−l+1(am+1, . . . , am+k−l), . . . , z′n(am+1, . . . , am+k−l),

zn−m−l+1, . . . , zn

resp.
z′m+1, . . . , z

′
n, zn−m−l+1, . . . , zn.

Hence the coordinates
z1, . . . , zl, z

′
m+1, . . . , z

′
m+k−l,

z′m+k−l+1(am+1, . . . , am+k−l), . . . , z′n(am+1, . . . , am+k−l), zn−m−l+1, . . . , zn

satisfy all the required properties. ¤

For our purposes the most important operation on two holomorphic foliationsF and
G on a complex manifoldX is theunionF t G. We define it as the foliation given
by the smallest saturated involutive subsheaf ofTX containing bothF andG. Such a
sheaf exists because saturated foliations contained in each other have different ranks, the
intersection of two foliations is again a foliation andTX is involutive.
Besides this pure existence statement there is an inductive algebraic construction of
F t G: ForH ⊂ TX , let [H,H] be the subsheaf ofTX generated by all Lie brack-
ets of vector fields inH. Then construct

H1 := saturation of F + G
H2 := saturation of H1 + [H1,H1]

...

and so on untilHm = Hm+1 which means[Hm,Hm] ⊂ Hm. ThenHm = F tG. This
is a local construction hence for open subsetsU ⊂ X we have

F|U t G|U = (F t G)|U .

We want to describe an inductive geometric construction ofF t G on open subsets

U ⊂ X − (Sing F ∪ Sing G ∪ Sing (F ∩ G))− Z

whereZ is an analytic subset ofX − (Sing F ∪ Sing G ∪ Sing (F ∩G)). Following the
inductive steps of this construction we will construct the maximal numericallyα-trivial
foliation in Theorem6.5.
Start with a neighborhoodU of a pointx ∈ X − (Sing F ∪ Sing G ∪ Sing (F ∩ G))
having coordinatesz1, . . . , zn as in Prop.5.4. Define a foliationG′ onU whose leaves
are the fibers of the projection onzl+1, . . . , zn−m+l. The figure below illustrates that in
generalF+G′ 6= F tG (take the fibers of the vertical projection as leaves ofF whereas
the leaves ofG are the horizontal lines twisted around in vertical direction):
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Denoting the projection onzk+1, . . . , zn by πF we examine insteadr-tuples of points
x1, . . . , xr in fibersπ−1

F (y) of pointsy ∈ πF (U) ⊂ Cn−k. If TG(xi) ⊂ TX,xi indicates
the space of directions tangent toG in xi we have a sequence of inclusions

0 ⊂ dπF (TG(x1)) ⊂ dπF (TG(x1))+dπF (TG(x2)) ⊂ · · · ⊂
r∑

i=1

dπF (TG(xi)) ⊂ TCn−k,y.

There is anr ∈ N and a Zariski open subset of ther-fold product

π−1
F (y)× · · · × π−1

F (y)

such that

(i) all inclusions in the above sequence are strict and
(ii) dπF (TG(x′)) ⊂ ∑r

i=1 dπF (TG(xi)) for every pointx′ ∈ π−1
F (y).

Varyingy ∈ πF (U) may change the numberr and the dimensions of the vector spaces
s∑

i=1

dπF (TG(xi)), s = 1, . . . , r.

But again there is an analytic subsetZU ⊂ πF (U) such that fory ∈ V := πF (U)−ZU
the dimensions andr remain constant. Since everything is defined intrinsically the sets
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π−1
F (ZU ) glue together to an analytic subsetZ ofX−(Sing F∪Sing G∪Sing (F∩G)).

Furthermore for everyV we can find a covering ofV with open subsetsV ′ ⊂ V andr
sectionsσi : V ′ → U of πF for everyV ′ such that

(i) the points xi := σi(y) produce a sequence of tangent subspaces∑s
i=1 dπF (TG(xi)), s = 1, . . . , r, as above, and

(ii) if π : U → Ck−l is the projection ontozl+1, . . . , zk, the mapπ◦σi is constant.

To get the announced inductive construction ofF tG onπ−1
F (V ′) we need another little

observation: Since the holomorphic functionsz′j definingπG do not depend onz1, . . . , zl
(see proof of Prop.5.4) the tangent space

dπF (TG(x))

does not change for differentx in the intersection of a fixedπF - and aπ-fiber. Further-
more the fibers ofπ consist of leaves ofG.
Now we construct inductively foliationsFi, i = 0, . . . , r, onπ−1

F (V ′). We start with

F0 := F ∩ π−1
F (V ′).

Because of the observation above the leaves ofG in π−1(π(x1)) map onto the leaves of
a smooth foliationG1 onV ′ which is induced by a projectionπG1 . Put

F1 := π−1
F (G1)

and letπF1 := πG1 ◦ πF be the projection whose fibers are the leaves ofF1.
The observation and the properties of thex1, . . . , xr imply that TG|π−1(π(x2)) maps
onto an involutivesubbundle of TπF1 (π−1

F (V ′)) and consequently the leaves ofG in

π−1(π(x2)) also map onto leaves of a smooth foliationG2 onπF1(π
−1
F (V ′)). Define

F2 := π−1
F1

(G2)

and continue inductively setting

Fi := π−1
Fi−1

(Gi)
whereGi is the image of the leaves ofG in π−1(π(xi) onπFi−1(π

−1
F (V ′)).

By construction these foliationsFs have as tangent space in a pointx ∈ π−1
F (V ′)

dπF (x)−1(
s∑

i=1

dπF (TG(xi))

whereπF (xi) = πF (x) for all i. In additionFr contains all leaves ofF andG in
π−1
F (V ′): otherwise there is a pointy ∈ V ′ and a pointx ∈ π−1

F (y) such that

dπF (TG(x)) 6⊂
r∑

i=1

dπF (TG(xi)),

πF (xi) = πF (x) for all i.
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On the other handTFtG(x) must contain every tangent subspace

dπF (x)−1(TG(x′))

of pointsx′ with πF (x′) = πF (x) sinceπ−1
F πF (π−1

G πG(x′)) is contained in a leaf of
F t G. Consequently,dπF (x)−1(

∑r
i=1 dπF (TG(xi)) ⊂ TFtG(x) and onπ−1

F (V ′) we
have

F t G = Fr.

5.2. Foliations induced by Fibrations

An important type of foliations are those induced in a unique way by birational maps
f : X 99K Y from a projective complex manifoldX to another projective complex
manifoldY . We need some preparations to describe this construction.

LEMMA 5.5. LetF ,G ⊂ TX be two foliations on a projective complex manifoldX
andU ⊂ X a Zariski open subset inX. If F|U = G|U ⊂ TU thenF = G.

PROOF. This statement is already true for saturated subsheavesF ,G ⊂ E in a
locally free sheafE of rankn onX. It is a local statement, so we can prove it on affine
open subsetsSpec(R) ∼= V ⊂ X such thatR is an integral domain,E is free onV and
F ,G are the sheafifications of theR-modulesF,G ⊂ Rn. Furthermore we can assume
thatU ∼= Spec(Rf ) is a principal open subset ofV w.r.t. some non-zero elementf ∈ R.
Then the assumptions of the lemma tell us thatFf = Gf ⊂ (Rf )n.
Let (r1, . . . , rn) ∈ F . Because ofFf = Gf there is a(r′1, . . . , r

′
n) ∈ G and ak ∈ N

such that
1
fk

(r′1, . . . , r
′
n) = (r1, . . . , rn).

This implies
r′i = fk · ri, i = 1, . . . , rn.

If the minimal possiblek in these considerations is≥ 1 we conclude(r1, . . . , rn) 6∈ G
butfk · (r1, . . . , rn) ∈ G. Consequently, the residue class of(r1, . . . , rn) in Rn/G is a
torsion class. This contradictsG ⊂ Rn saturated.
In the same way we concludeG ⊂ F , and the statement follows. ¤

LEMMA 5.6. LetX be a projective complex manifold andU ⊂ X a Zariski open
subset. Then for any foliationFU ⊂ TU onU there exists a unique foliationF ⊂ TX
such thatF|U = FU .

PROOF. SinceTX is torsion free the Lie bracket of two vector fields is completely
determined on Zariski open subsets. Hence a saturated subsheafF ⊂ TX that is involu-
tive on a Zariski open subsetU is a foliation onX. Consequently it is enough to show:
If FU ⊂ TU is a saturated subsheaf there exists a unique saturated extensionF ⊂ TX
such thatF|U = FU .
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As in the proof of the previous lemma we can reduce the problem to extending a module
FRf

saturated inRnf , f ∈ R andR an integral domain. SetF := FRf
∩ Rn. ThenF

is a saturated submodule ofRn: If g · m ∈ F for some0 6= g ∈ R, m ∈ Rn, then
g
1 · m1 ∈ FRf

. Hencem1 ∈ FRf
sinceFRf

is saturated inRnf , and consequentlym ∈ F .
Finally, Ff = FRf

⊂ Rnf : If m
fk ∈ Ff for somem ∈ F ⊂ FRf

then m
fk ∈ FRf

.
Conversely, ifm

fk ∈ FRf
then

fk

1
· m
fk

=
m

1
∈ FRf

∩R = F.

¤
Now we can define the foliation induced by a rational mapf : X 99K Y whereX,Y are
projective complex manifolds: LetU ⊂ X be a Zariski open subset wheref is regular
and smooth. Then the relative tangent bundleTU/Y ⊂ TU defines a foliation onU .

DEFINITION 5.7. The foliationF induced byf : X 99K Y is the extension ofTU/Y
to a foliation onX.

This foliation exists by Lemma5.6and is unique by Lemma5.5.
Since the properties definingU above are local the Stein factorizationX 99K Y ′ 99K Y
does not change the induced foliation. Note furthermore that the general fibers off are
irreducible if they are already connected: These fibers are isomorphic to the fibers of the
projectionπf : Γf → Y from the irreducible graphΓf ⊂ X × Y of f to Y . If Γ̃f is the
desingularization ofΓf the general fibers of̃Γf → Y are smooth by [4] and birational
to the general fiber ofπf . Consequently the general fibers ofπf are irreducible if they
are already connected.

PROPOSITION5.8. LetX be a projective complex manifold andf : X 99K Y1,
g : X 99K Y2 two rational surjective maps with induced foliationsF andG onX. Then
F t G is also induced by a rational maph : X 99K Z.

This proposition is a consequence of the following more general construction:

DEFINITION 5.9. LetX be a compact Kähler manifold. A covering family(Ct)t∈T
of closed complex subspaces inX parametrized by a compact complex base spaceT is
called generically connecting iff for any analytic subsetZ ⊂ X two general points are
connected by a finite sequence of elements in(Ct) such that two subsequent elements do
not intersect inZ.
A meromorphic mapf : X 99K Y is called the generic reduction map with respect to
a covering family(Ct)t∈T of closed complex subspaces inX iff the general fibers are
genericallyCt-connected and every element of(Ct) is contained in a fiber. Here, fibers
of f are defined via the graph off .

THEOREM 5.10. Let (Ct)t∈T be a covering family of closed complex subspaces
in a compact Kähler manifoldX given by a closed complex subspaceC ⊂ T × X
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over a compact complex base spaceT . Suppose that the irreducible components ofC
correspond bijectively to the connected components ofT and project surjectively onX
and the associated connected component ofT . Suppose furthermore that the general
fiberCt is irreducible.
Then there exists a generic reduction mapf : X 99K Y for (Ct)t∈T .

PROOF. Starting withC(0) := C andT (0) := T we will inductively construct a
complex spaceT (k) and a subspaceC(k) ⊂ T (k)×X fromC(k−1) andT (k−1) such that
C(k) andT (k) satisfy the same assumptions asC andT , there exists a finite surjective
mapπk : T (k) → T (k−1) and, denoting the fiber overt ∈ T with C(k)

t ,

(i) C
(k)
t ⊃ Ck−1

πk(t) for a general pointt ∈ T (k).

(ii) C
(k)
t = C

(k−1)
πk(t) for general pointst in all connected components ofT (k) im-

plies that all fibersC(k)
t through a general pointx ∈ X are isomorphic.

(iii) If Z ⊂ X is a complex subspace (possibly empty) then for generalt ∈ T (k),
x′, x′′ ∈ C

(k)
t there existt′, t′′ ∈ T (k−1), x′ ∈ C

(k−1)
t′ ∩ C

(k−1)
πk(t) and

x′′ ∈ C(k−1)
πk(t) ∩ C

(k−1)
t′′ such that

x′ ∈ C(k−1)
t′ , x′′ ∈ C(k−1)

t′′ and x′, x′′ 6∈ Z.
Then properties(i) and(ii) imply that afterk ≤ dimX steps,C(k) defines a meromor-
phic mapf : X 99K Y with the same general fibers asC(k): Let T ◦ ⊂ T the open
locus where the familyC(k) → T is flat. TakeY as the closure and desingularisation of
the image ofT ◦ under the map to the Douady space ofX. The meromorphic mapf is
induced by the projection from the universal family. Finally(iii) shows that the fibers of
f are generically(C(k)

t )-connected and hence by induction generically(Ct)-connected.
To start the construction, denote the projection ofT ×X to T by p : T ×X → T and
the projection fromT ×X toX by q : T ×X → X. Denote the restrictions ofp andq
to C by pC andqC . Then thepC-fiber overt ∈ T is justCt ∈ X. EveryqC-fiber over
some pointsx ∈ X decomposes into not necessarily connected components

q−1
C (x) ∩ p−1(Ti),

whereTi is any connected component ofT . For everyTi there exists anni ∈ N such
that for general pointsx ∈ X the setq−1

C (U) ∩ p−1(Ti) decomposes intoni irreducible
components. Finally, theTi are irreducible because by assumption theTi are images of
irreducible spaces.
To constructC(1), consider the productT ×X×X×T and its projectionsp1, p2, p3, p4

onto the subsequent factors. A point(t1, x1, x2, t2) of the intersection

S := (p1 × p2)−1(C) ∩ (p2 × p3 × p4)−1(C ×T C) ⊂ T ×X ×X × T

satisfiesx1 ∈ Ct1 , x1, x2 ∈ Ct2 .
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Next, fix a general pointx ∈ X, an irreducible componentTi ⊂ T and enumerate the
irreducible componentsTi,x,k of q−1

C (x) ∩ p−1(Ti), k = 1, . . . , ni. It is possible to
extend this enumeration to the irreducible componentsTi,x′,k of q−1

C (x′) ∩ p−1(Ti) for
pointsx′ in a Zariski open subsetUi ⊂ X in such a way that theTi,x′,k, x′ ∈ Ui, form
an irreducible analytic subset ofC. Furthermore, the Zariski closure of this subset must
beC ∩ p−1(Ti), since this is an irreducible component ofC.

CLAIM 1. Each tripel (Ti, Ti,x,k, Tj) of two connected componentsTi, Tj ⊂ T

and an irreducible componentTi,x,k, 1 ≤ k ≤ ni, of q−1
C (x) ∩ p−1(Ti) determines

exactly one irreducible componentSijk ⊂ S such thatp2(Sij) = X, p1(Sij) = Ti,
p4(Sij) = Tj , and the fiber over every point(x′, x2, t2) ∈ (p2 × p3 × p4)(S), x′ ∈ Ui,
contains an irreducible component isomorphic toTi,x′,k.

PROOF. The assumptions imply that over any irreducible componentRj of

(p2 × p3 × p4)(S) ⊂ X ×X × T

such thatp2(Rj) = X andp4(Rj) = Tj there exists exactly one irreducible component
Sijk with the required properties.
By the properties ofC we have for suchRj ’s that

(p2 × p4)(Rj) = C ∩ p−1(Tj) ⊂ C,

and the fiber over(x1, t2) ∈ (p2 × p4)(Rj) in Rj is the irreducible subsetCt2 ⊂ X if
t2 ∈ Tj is general. Consequently,Rj is uniquely determined byTj and henceSijk is
uniquely determined byTi, Tj . ¤
Set

T (1) :=
•⋃

i,j,k

Ti,

which contains a copy ofTi for every irreducible componentSijk as above. Set

C(1) :=
•⋃

i,j,k

(p1 × p3)(Sijk) ⊂ T (1) ×X.

By construction, the irreducible components ofC(1) correspond bijectively to the con-
nected components ofT (1) and project surjectively onX and the associated connected
component ofT (1). Furthermore there exists a natural finite mapπ1 : T (1) → T (0) = T .

CLAIM 2. For a general pointt ∈ T (1) we haveC(1)
t ⊃ Cπ1(t).

PROOF. Suppose thatt lies in the connected componentT (1)
ij of T (1) correspond-

ing to Sijk. Thenπ1(t) ∈ Ti. For a general pointx ∈ Cπ1(t) choose a general
t′ ∈ q−1

C (x) ∩ p−1(Tj). Sincet, t′ and x are general,(π1(t), x, x, t′) ∈ Sijk, by

construction. Consequently(π1(t), x) ∈ (p1 × p3)(Sij) andx ∈ C(1)
t . SinceC(1)

t and
Cπ1(t) are irreducible this implies the claimed inclusion. ¤
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Claim 2 implies property(i) for C(1). Property(ii) follows from

CLAIM 3. If C(1)
t = Cπ1(t) for general pointst ∈ T (1)

ijk then

Ct′ ⊃ Ct′′

for general pointsx ∈ X and all pointst′ ∈ p(Ti,x,k) andt′′ ∈ p(q−1
C (x) ∩ p−1(Tj)).

PROOF. Sinceπ1 is an isomorphism onT (1)
ijk and the component ofC(1) overT (1)

ijk

is irreducible,C(1)
t = Cπ1(t) holds for allt ∈ T (1)

ijk . By construction and assumption,

(p1 × p3)(Sijk) ∩ p−1(π1(t)) = C
(1)
t ⊂ Cπ1(t).

Then for all(π1(t), x, x2, t
′′) ∈ Sijk it is true thatx2 ∈ Cπ1(t). But the fiber ofSijk over

(π1(t), x, t′′) is Ct′′ for general pointsx ∈ X, as the construction ofSijk in Claim 1
shows. Consequently,Ct′′ ⊂ Ct′ . ¤

Finally we show property(iii) for C(1): For t ∈ T
(1)
ijk andx′, x′′ ∈ C

(1)
t there exist

points

(π1(t), x′, x′, t′), (π1(t), x′′, x′′, t′′) ∈ Sijk ⊂ S.

Consequently we only have to assure that for generalt, x′, x′′ the pointsx′, x′′ ∈ X can
be chosen outsideZ. But if the fiber of the projectionp1 × p3 in Sijk over (π1(t), x′)
is always contained inZ × Tj thenSijk ⊂ T × Z × X × T , and this contradicts
p2(Sijk) = X.
Since the construction ofC(1) andT (1) and the proof of properties(i), (ii), (iii) do not
rely on properties(i), (ii), (iii) for C andT it is possible to constructC(k) andT (k)

fromC(k−1) andT (k−1) and prove properties(i), (ii), (iii) in the same way as forC(1)

andT (1). ¤

EXAMPLE 5.11. To illustrate the construction of the generic reduction map consider
the family of lines{lt}t∈P1 in P2 through a pointp ∈ P2. ThenT ∼= P1 has only
one irreducible component, andS ⊂ P1 × P2 × P2 × P1 consists of two irreducible
components: the closureS′ of

{(t, x1, x2, t) : x1 6= p, x1, x2 ∈ lt}
and

S′′ = {(t1, p, x2, t2) : x2 ∈ lt2}.
The construction above singles outS′ becausep2(S′′) = {p}. Hence the generic reduc-
tion is already induced by the family of lines{lt}, i.e. it is the projection ofP2 from p to
P1. The reduction map isgenericsince the connection of the lines throughp is not taken
into account.
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REMARK 5.12. This construction closely resembles that of Campana’s reduction
map [11, 12]. The difference is that in the above construction for any given analytic
subsetZ ⊂ X two general points lie in the same fiber iff they can be connected without
touchingZ. In the example above the two reduction maps fall apart.
Another difference between the generic and Campana’s reduction map is the stability un-
der modifications: LetX be a compact complex manifold and(Ct)t∈T a covering family
of complex subspaces ofX. Let f : X 99K Y be the generic quotient andg : X 99K Z
Campana’s quotient with respect to(Ct). If π : X̂ → X is a modification of compact
Kähler manifolds then the generic quotient ofX̂ w.r.t. the strict or total transforms of
(Ct) is described byf ◦ π whereas in general Campana’s quotient is described byg ◦ π
only w.r.t. the total transforms of(Ct): Consider again the pencil of lines through a point
p ∈ P2 and its strict transform in the blow up ofP2 in p.

PROOF OFPROPOSITION5.8. Let Γf ⊂ Y1 ×X, Γg ⊂ X × Y2 be the graphs of
f andg. ThenΓf t Γg ⊂ X × (Y1 t Y2) is a covering family of complex subspaces in
X. Hence we can apply Theorem5.10and get a generic reduction maph : X 99K Y .
In particular, two general pointsx, x′ ∈ X can be connected by a sequence off - and
g-fibers such that two subsequent fibers do also intersect outside

Z = Sing(F t G) ∪ {indeterminacy loci of f and g}.
Such pointsx, x′ must lie in the same leaf ofF t G. On the other hand, thef - and
g-fibers through a general pointx ∈ X must be contained in theh-fiber of x, by the
properties ofh.
Consequentlyh inducesF t G. ¤



CHAPTER 6

The numerically trivial foliation of a pseudo-effective
class

In this chapter we introduce the notion of numerically trivial foliations with respect to
pseudo-effective classesα on compact Kähler manifoldsX. Our first goal will be the
construction of a maximal numericallyα-trivial foliation, and as for the nef reduction
map in Chapter1 and Tsuji’s numerically trivial fibrations in Chapter3 the main tool will
be a Key Lemma. This time it is local, according to the nice local structure of foliations.
In section6.2 we show that the leaf dimension of a numericallyα-trivial foliation is
bounded from above by the numerical codimensiondimX − ν(α) of α if the foliation
has only isolated singularities. Of course this is a very restrictive assumption, which is
in addition difficult to check. To generalize the bound to arbitrary numerically trivial
foliations the structure of these foliations around singularities must be analysed much
closer. In any case, the philosophy behind the notion of numerical triviality and also the
examples in Chapter7 make the bound plausible.
In section6.3 we generalize the notion of numerical triviality w.r.t. a pseudo-effective
class toα-admissible systems of currents inα[−εω]. The most interesting examples are
the systems induced by a closed positive(1, 1)-currentΘ representingα, giving rise to
numericalΘ-triviality. This notion can be characterized by the Siu decomposition ofΘ,
as in Theorem3.8. We also show that the Iitaka fibration of a line bundleL induces the
numerically trivial foliation w.r.t. a metric generated by the sections ofmL, formÀ 0
appropriately chosen.
In the last section we identify Tsuji’s numerically trivial fibrations w.r.t. a pseudo-
effective line bundleL and a possibly singular hermitian metrich onL with the pseudo-
effective fibration associated to the curvature currentΘh that is the maximal rational
mapf : X 99K Y inducing a numericallyΘh-trivial foliation. Finally the nef reduction
map of a nef classα also fits into the picture, as the pseudo-effective fibration ofα.
These facts yield a sufficient criterion for the Iitaka fibration and the nef reduction map
of a nef line bundleL falling apart: The maximal numericallyc1(L)-trivial foliation is
not a rational fibration. Examples for this phenomenon will be studied in Chapter7.

6.1. Numerical triviality for pseudo-effective classes

77
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DEFINITION 6.1. LetX be a compact Kähler manifold with Kähler formω and
pseudo-effective classα ∈ H1,1(X,R). A submanifoldY ⊂ X (closed or not) is
numericallyα-trivial iff for every immersed disk∆ ⊂ Y ,

lim
ε↓0

sup
T

∫

∆′−Sing T

(T + εω) = 0,

where theT ’s run through all currents with analytic singularities inα[−εω] and
∆′ = {t : |t| < 1− δ} is any smaller disk contained in∆ = {t : |t| < 1}.
As a convention set

∫
∆−Sing T

(T + εω) = 0 if ∆ − Sing T = ∅. Furthermore note
that the restriction to disks∆′ may be replaced by the assumption that it is possible to
continue the immersion∆ ⊂ Y holomorphically.

DEFINITION 6.2. Let X be ann-dimensional compact Kähler manifold with a
pseudo-effective classα ∈ H1,1(X,R). A foliationF of rankk is numericallyα-trivial
iff for any open subset∆n ∼= U ⊂ X − Sing(F) such that the leaves ofF are the fibers
of the projectionp : U → ∆n−k onto the lastn− k coordinates the following holds:

(i) Every fiber ofp is numericallyα-trivial,
(ii) and if ι : ∆n ↪→ U is an extendable immersion with relatively compact image

such that the projectionp ◦ ι : ∆n ↪→ U → ∆n−k factors through the projec-
tion q : ∆n → ∆n−1 onto the lastn − 1 coordinates, then for any sequence
of currentsTk ∈ α[−εkω], εk → 0, the integrals

∫
q−1(a)−Sing Tk

(Tk + εkω)
are uniformly bounded from above ina ∈ ∆n−1 andk ∈ N.

Note that no exceptional fibers are allowed: if the fibers are completely contained in the
common singularity locus of theT ∈ α[−εω], then they are numerically trivial by the
convention above, otherwise the limit in definition6.1 is supposed to be0. The uniform
boundedness is essential for the proof of the Local Key Lemma below.
To construct a maximal numerical trivial foliation w.r.t. this notion, we first need to
prove an analog for the Key Lemma3.4used for constructing Tsuji’s numerically trivial
fibrations:

LEMMA 6.3 (Local Key Lemma for pseudo-effective classes). LetX be a com-
pact Kähler manifold with a pseudo-effective classα ∈ H1,1(X,R). LetW ∼= ∆n be
an open subset ofX with a projectionp : W → ∆k onto the lastk factors, and let
V = {z1 = . . . = zn−k = 0} be a complex submanifold ofW . If every fiber ofp and
alsoV are numericallyα-trivial thenW will also be numericallyα-trivial.

The proof of this Local Key Lemma for pseudo-effective classes is rather technical but
becomes more transparent when looking at the characterization of numerical triviality
w.r.t. a single closed positive(1, 1)−current in Section6.3: In this case, the numerical
triviality of the fibers of the projection implies that the residue current of the Siu de-
composition is a pull back of a current on the base (see the Pullback Lemma6.12). Of
course, the Pullback Lemma is not true for pseudo-effective classes. But it is enough to
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prove that the restriction onto different horizontal sections are almost the same, hence
the numerical triviality ofV implies the numerical triviality of all horizontal sections,
hence that ofW . This argument is made exact by

PROPOSITION 6.4. Let X be a compact Kähler manifold with Kähler formω,
and let Tk = T ′k + εkω, εk → 0, be a sequence of closed positive(1, 1)- cur-
rents with analytic singularities onX such that theT ′k represent the same cohomology
class. Let∆2 ↪→ X be an immersion (with coordinatesz1, z2). Let ∆′ ⊂⊂ ∆ be
a disk, and consider the functionsfk : ∆′ → R+, a 7→ ∫

({z1=a}∩∆′)−Sing Tk
Tk and

gk : ∆′ → R+, b 7→ ∫
({z2=b}∩∆′)−Sing Tk

Tk. Suppose thatlimk→∞ fk(a) = 0 for
all a ∈ ∆, and that thefk are uniformly (ina) bounded from above. Suppose further-
more thatlimk→∞ gk(0) = 0. Thenlimk→∞ gk(b) = 0 for all b ∈ ∆′, and thegk are
uniformly (inb) bounded from above.

PROOF. Since the integrals are always evaluated outside the singularities ofTk,
and since the mass of the integration current of a divisor is always concentrated in the
divisor, one can assume without loss of generality that the Siu decomposition ofTk does
not contain any integration currents of divisors. Consequently,Tk has only finitely many
isolated singularities on any compact subset ofp−1

1 (∆′) where∆′ ⊂⊂ ∆ is any disk
andp1 : ∆2 → ∆ is the projection onto the first coordinate, andTk may be written on
p−1
1 (∆′) as

Tk = θk11idz1 ∧ dz1 + θk12idz1 ∧ dz2 + θk21idz2 ∧ dz1 + θk22idz2 ∧ dz2,

where theθkij are smooth functions outside these singularities, and integrable on∆2.

The currentTk being real impliesθkij = θkji.
To prove the proposition it is enough to show that

lim
k→∞

|
∫

∆′b−Sing Tk

Tk −
∫

∆′0−Sing Tk

Tk| = 0.

where∆′
b = {z2 = b} ∩∆′. Now, choose a pathγ ∈ ∆ from 0 to b. Then,

| ∫
∆′b−Sing Tk

Tk −
∫
∆′0−Sing Tk

Tk| = | ∫
∆′(θ

k
11(z1, b)− θk11(z1, 0))idz1 ∧ dz1|

equals (by Stokes and Fubini)

| ∫
∆′(

∫
γ
dθk11)idz1 ∧ dz1| = | ∫

∆′×γ d(θ
k
11idz1 ∧ dz1)|.

Since the closedness ofT implies

d(θk11idz1 ∧ dz1) = −d(θk12idz1 ∧ dz2 + θk21idz2 ∧ dz1 + θk22idz2 ∧ dz2),

this integral equals by Stokes

|
∫

∂(∆′×γ)
(θk12idz1 ∧ dz2 + θk21idz2 ∧ dz1 + θk22idz2 ∧ dz2)|,
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and sincez2 is constant on∆′ × ∂γ, this simplifies to

|
∫

(∂∆′)×γ
(θk12idz1 ∧ dz2 + θk21idz2 ∧ dz1 + θk22idz2 ∧ dz2)|.

Observe that these integrals do not depend on the chosen pathγ. Consequently, cover
the disk∆0,b with center inb/2 and radius|b|/2 with a family of pathsγa from 0 to b.
Then to provelimk→∞ |

∫
∆′b
Tk −

∫
∆′0
Tk| = 0 it is enough to show that

lim
k→∞

∫

a

|
∫

(∂∆′)×γa

(θk12idz1 ∧ dz2 + θk21idz2 ∧ dz1 + θk22idz2 ∧ dz2))|da = 0.

The term withθk22 vanishes sinceidz2∧dz2 is pulled back to0 in any chart of(∂∆′)×γa.
Sinceθk12 = θk21 the remaining integral may be bounded from above by

C ·
∫

∂∆′×∆0,b

|θk12|dV,

whereC is independent ofb andk, anddV is a volume element on∂∆′ ×∆0,b.
Now interpretTk as a semipositive hermitian form〈. , .〉 on every tangent spaceTX,x
(whereT has no singularities). Then the Schwarz inequality implies that

|θk12| = |〈 ∂
∂z1

,
∂

∂z2
〉| ≤ |〈 ∂

∂z1
,
∂

∂z1
〉| 12 · |〈 ∂

∂z2
,
∂

∂z2
〉| 12 = |θk11|

1
2 · |θk22|

1
2 .

Hence the integral above is≤ the square root of the product
∫

∂∆′×∆0,b

|θk11|dV ·
∫

∂∆′×∆0,b

|θk22|dV,

again by the Schwarz inequality.
Claim. There exists a boundM ′ > 0 such that for allk there is a disk∆′

k ⊂⊂ ∆
containing∆′ with ∫

∂∆′k×∆′
|θk11|dV < M ′.

PROOF. Suppose that∆′ ⊂⊂ ∆′′ ⊂⊂ ∆, and look at the(1, 1)- form
η = idz2 ∧ dz2. There exists aC > 0, such thatη ≤ C · ω on∆′′ ×∆′. Hence,

∫

(∆′′−∆′)×∆′
|θk11|dV =

∫

(∆′′−∆′)×∆′
(T ′k + εkω) ∧ η ≤ C ·

∫

X

(T ′k + εkω) ∧ ω,

and the last integral only depends on the cohomology class ofT ′k (andω). By Fubini
one gets a disk∆′

k as above. ¤

For the second term note that the assumptions on the functionsfk imply
limk→∞

∫
∆′ fkida ∧ da = 0, by Lebesgue’s dominated convergence, and the measure

of the sets{a : fk(a) > δ} tends to0, too, fork →∞.
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Hence, as above, for a givenε > 0 it is possible to bound the measure of{a : fk(a) > δ}
small enough such that for allk big enough there is a disk∆′′

k ⊂⊂ ∆ containing∆′ with
∫

∂∆′′k×∆′
|θk22|dV < ε.

Choosingδ small enough andM ′ big enough (but both independent ofk!) one can
assume that the two disks∆′

k and∆′′
k coincide (at least fork big enough). SinceM ′ is

independent ofε, the difference
∫
∆k,b

Tk−
∫
∆k,0

Tk tends to0 for k →∞, and uniformly

in b. Since
∫
∆k,0

Tk
k→∞−→ 0, this is also true for

∫
∆′b
Tk −

∫
∆′0
Tk. Consequently,

limk→∞ gk(a) = 0, and the uniformity inb implies the uniform boundedness of the
gk. ¤

Proof of the Local Key Lemma for pseudo-effective classes.If ∆ is a disk immersed in
W such thatp projects it on a point in∆k, there is nothing to prove.
If ∆ is a disk immersed inW not intersectingY which is projected biholomorphically
onto∆k, then a coordinate change and further cutting down leads to the configuration
described in the proposition. Note that it is sufficient to check on any disk∆′ ⊂⊂ ∆
that

lim
k→∞

∫

∆′−SingTk

Tk +
1
k
ω = 0

for arbitrary sequencesTk of currents with analytic singularities inα[− 1
kω]. The as-

sumptions of the Local Key Lemma imply that

lim
k→∞

∫

{z1=a}−SingTk

Tk +
1
k
ω = lim

k→∞
fk(a) = 0

for all a and limk→∞
∫
{z2=0}−SingTk

Tk + 1
kω = 0. The definition of a numerically

trivial foliation implies the uniform boundedness of thefk, so it is possible to apply the
proposition.
If ∆ is a disk immersed inW not satisfying one of the two conditions above, then for any
∆′ ⊂⊂ ∆ there are disks∆′′

i ⊂⊂ ∆′
i ⊂ ∆ such that

⋃
∆′′
i ⊃ ∆′ (hence it is enough

to consider finitely many of these disks), and there are projectionspi : W → ∆n−k

(possibly different fromp) such that the restriction onto∆′
i is a submersion. Since the

fibers and sections of thesepi are composed of disks already shown to be numerically
trivial, it is possible to apply again the proposition on∆′′

i ⊂⊂ ∆′
i (by possibly further

cutting down and a coordinate change). Since there are only finitely manyi’s, ∆′ is also
numerically trivial.
Finally, the uniform boundedness property of the foliation follows directly from the
uniform boundedness shown in the proposition. ¤
Now we construct themaximalnumericallyα-trivial foliation:
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THEOREM6.5. LetX be a projective complex manifold with Kähler formω, and let
α ∈ H1,1(X,R) be a pseudo-effective class. Then there exists a numericallyα-trivial
foliationF ⊂ TX onX such thatF ′ ⊂ F for all numericallyα-trivial foliationsF ′.

PROOF. It is enough to prove that for two numericallyα-trivial foliations
F ,G ⊂ TX the unionF t G is also numericallyα-trivial. But this follows immedi-
ately from the Local Key Lemma6.3since it can be applied on the inductive steps of the
construction ofF t G in Section5.1. ¤

6.2. The leaf dimension of numerically trivial foliations

Numerically trivial foliations w.r.t. a pseudo-effective classα have leaves with codimen-
sion bounded from below by the numerical dimension ofα, provided that the singulari-
ties of the foliation are nice enough:

THEOREM 6.6. Let X be a compact Kähler manifold with Kähler formω and
α ∈ H1,1(X,R) a pseudo-effective class. LetF be the numerically trivial foliation
w.r.t. α and suppose that the singularities ofF are isolated points. Then the numerical
dimensionν(α) is less or equal to the codimension of the leaves ofF .

PROOF. Applying theorem4.9 , one gets a sequence of closed(1, 1)- currentsTk
with analytic singularities inα[−εkω] such that

lim
k→∞

∫

X−Sing Tk

(Tk + εkω)p ∧ ωn−p = (αp.ωn−p)≥0

for all p = 1, . . . , n. In these integrals, theTk ’s may be replaced by the residue currents

Rk = Tk −
∑

ν(Tk, D)[D]

of the Siu decomposition of theTk.
Now the proof consists of two steps: first, let∆n ∼= U ⊂ X be an open set such that the
projectionq : U ∼= ∆n → ∆l on the lastl coordinates describes the numerical trivial
foliation w.r.t. α locally in U . Then use as in proposition6.4 that theRk ’s get close to
pulled back currents from the base∆l to show

Claim 1.For l < p ≤ n and an open subsetU ′ ⊂⊂ U ,∫

U ′
(Rk + εkω)p ∧ ωn−p → 0.

PROOF. EveryRk + εkω may be written as a sum
∑
i,j θ

k
ijdzi ∧ dzj . Then ev-

ery coefficient of(Rk + εkω)p w.r.t. the basedzI ∧ dzJ (I, J multi-indices of length
|I| = |J | = p) is a product ofp of theseθkij . If p > l, then one of theseθkij has index
i ≤ n− l or j ≤ n− l.
As in proposition6.4one can argue with the Schwarz inequality that

|θkij | ≤ |θkii|
1
2 · |θkjj |

1
2 .
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Furthermore, letFi be a sufficiently general fiber of the projection∆n → ∆n−1 onto all
but the ith coordinate,i = 1, . . . , n− l. SinceRk is a current with analytic singularities
only in codimension2, a sufficiently generalFi does not hit the singularities ofRk. Then
θkii|Fi∩U ′ is smooth and positive, and numerical triviality applied on the 1-dimensional
fibersFi which are leaves ofq implies that∫

Fi∩U ′
|θkii|dzi ∧ dzi =

∫

Fi∩U ′
θkiidzi ∧ dzi k→∞−→ 0.

This leads to the following chain of inequalities: LetI = (i1, . . . , ip) and
J = (j1, . . . , jp) be two multi-indices of lengthp such that (without loss of general-
ity) i1 ≤ n− l. Then

∫
U ′ |θki1j1 · · · θkipjp |dVω ≤ ∫

U ′ |θki1i1 · · · θkipip |
1
2 |θkj1j1 · · · θkjpjp |

1
2 dVω

≤ (
∫
U ′ |θki1i1 |dVω)

1
2 · (∫

U ′ |θki2i2 · · · θkipip ||θkj1j1 · · · θkjpjp |dVω)
1
2 .

The second integral of the last term remains bounded fork →∞ because theRk + εkω
(weakly) converge against some current according to theorem4.9. The first integral may
be computed via Fubini as∫

U ′
|θki1i1 |dVω =

∫

∆n−1
(
∫

Fi1

|θki1i1 |dzi1 ∧ dzi1)dV∆n−1 ,

hence tends to0 for k → ∞ since the integrals
∫
Fi1

|θki1i1 |dzi1 ∧ dzi1 are uniformly
bounded from above by definition of numerically trivial foliations. Consequently,∫
U ′ |θki1j1 · · · θkipjp |dVω

k→∞−→ 0 and the claim follows. ¤

The second step is to give an estimate of the considered integrals around the isolated
singularities of the foliation by using the uniform boundedness of the Lelong numbers
of (almost) positive currents in the same cohomology class.

Claim 2. There is a sequence of compact setsKi ⊂ X exhaustingX − Sing F and a
constantC > 0 such that for all1 ≤ p ≤ n∫

X−Ki

(Rk + εkω)p ∧ ωn−p ≤ δi,

andlimi→∞ δi = 0.

PROOF. This is just an expanded version of Boucksom’s argument in [8, Lem
3.1.11]. Choose a finite covering ofX by open chartsUi isomorphic to the unity ball
B ⊂ Cn, such that the balls with half of the diameter still coverX. If z(i) denote
coordinates onUi one may find two constantsC1, C2 > 0 such that

C1ω ≤ i

2
∂∂|z(i)|2 ≤ C2ω

in Ui, for all i.
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If x ∈ X lies inUi, the Lelong numberν((Rk + εω)p, x) is by definition the decreasing
limit for r → 0 of

ν((Rk + εω)p, x, r) :=
1

(πr2)n−p

∫

|z(i)−x|<r
(Rk + εω)p ∧ (

i

2
∂∂|z(i)|2)p.

On the one hand, forr ≤ r0 one has

ν((Rk + εω)p, x, r) ≤ ν((Rk + εω)p, x, r0) ≤ C2

(πr20)n−p

∫

X

(Rk + εω)p ∧ ωn−p.

But
∫
X

(Rk + εω)p ∧ωn−p ≤ ∫
X

(Tk + εω)p ∧ωn−p, and the last integral depends only
on the cohomology class ofTk, sinceω is closed.
On the other hand,

(πr2)n−pν((Tk + εkω)p, x, r) ≥ C1

∫
|z(i)−x|<r(Tk + εkω)p ∧ ωn−p

≥ C1

∫
|z(i)−x|<r(Rk + εkω)p ∧ ωn−p.

For p < n the claim follows sinceSing F is compact, hence consists of only finitely
many points. Forp < n there is nothing to argue, sinceν(α) = n implies thatα is
big ([8, Thm. 3.1.31]). Hence the numerically trivial foliation coincides with the Iitaka
fibration w.r.t.α, because it is the identity map. ¤

Both claims together show the theorem. ¤

6.3. Variants of numerically trivial foliations

It is remarkable that the definitions of numerically trivial submanifolds and foliations and
the construction of maximal numerically trivial foliations also work when the currents
T do not run over all currents with analytic singularities inα[−εω]:

DEFINITION 6.7. LetX be a compact Kähler manifold with Kähler formω, and
let α ∈ H1,1(X,R) be a pseudo-effective class. Anα-admissible system of currents
(Cε ⊂ α[−εω])ε∈R+ is a system of setsCε ⊂ α[−εω] such thatCε ⊂ Cε′ for every pair
ε ≤ ε′.
A submanifoldY ⊂ X (closed or not) isnumerically (Cε)-trivial iff for every immersed
disk∆ ⊂ Y ,

lim
ε↓0

sup
T

∫

∆′−Sing T

(T + εω) = 0,

where the T ’s run through all currents with analytic singularities inCε and
∆′ = {t : |t| < 1− δ} is any smaller disk contained in∆ = {t : |t| < 1}.
A foliation F of rank k is numerically (Cε)-trivial iff for any open subset
∆n ∼= U ⊂ X − Sing(F) such that the leaves ofF are the fibers of the projection
p : U → ∆n−k onto the lastn− k coordinates the following holds:

(i) Every fiber ofp is numerically(Cε)-trivial,
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(ii) and if ι : ∆n ↪→ U is an extendable immersion with relatively compact image
such that the projectionp ◦ ι : ∆n ↪→ U → ∆n−k factors through the projec-
tion q : ∆n → ∆n−1 onto the lastn − 1 coordinates, then for any sequence
of currentsTk ∈ Cεk , εk → 0, the integrals

∫
q−1(a)−Sing Tk

(Tk + εkω) are

uniformly bounded from above ina ∈ ∆n−1 andk ∈ N.

THEOREM 6.8. LetX be a projective complex manifold with Kähler formω, let
α ∈ H1,1(X,R) be a pseudo-effective class and(Cε ⊂ α[−εω])ε∈R+ anα-admissible
system. Then there exists a numerically(Cε)-trivial foliation F ⊂ TX onX such that
F ′ ⊂ F for all numerically(Cε)-trivial foliationsF ′. ¤

As an immediate consequence of the definition we obtain

PROPOSITION6.9. Let (Cε ⊂ α[−εω])ε, (C′ε ⊂ α[−εω])ε be twoα-admissible sys-
tems such thatCε ⊂ C′ε for eachε > 0. Then every numerically(C′ε)-trivial submanifold
or foliation is also numerically(Cε)-trivial. ¤

These generalized notions of numerical triviality are especially interesting when applied
to a positive closed(1, 1)-currentΘ ∈ α[0].

DEFINITION 6.10. LetX be a projective complex manifold with Kähler formω,
let α ∈ H1,1(X,R) be a pseudo-effective class andΘ ∈ α[0] a positive closed
(1, 1)-current. For a sequence(Θk)k∈N of currents Θk ∈ α[−εkω], εk ↓ 0,
approximating Θ as in Theorem4.5 consider theα-admissible system of sets
Cε = {Θk : εk ≤ ε} ⊂ α[−εω]. Then a submanifoldY ⊂ X or a foliationF ⊂ TX is
callednumericallyΘ-trivial iff they are numerically(Cε)-trivial.

Obviously we have to show the independence of this definition from the approximating
sequence(Θk)k∈N. This is done by the following characterization of numericallyΘ-
trivial submanifolds which is a local analogue of Theorem3.8:

PROPOSITION6.11. With the notation as in the definition, a submanifoldY ⊂ X
is numerically(Cε)-trivial iff Θ|Y exists and

Θ|Y =
∑

ai[Di]

for countably many divisorsDi in Y and real numbersai > 0.

PROOF. By the properties of the approximation listed in Theorem4.5,

lim
k→∞

∫

∆′
(Θk)ac + εω =

∫

∆′
Θac

for every immersed disk∆′ ⊂⊂ ∆ ⊂ Y .
If Θ|Y =

∑
ai[Di], the absolute continuous part ofΘ|Y vanishes onY and hence on any

disk immersed inY . Consequently the above integral is always0, andY is numerically
(Cε)-trivial.
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On the other hand, ifY is numerically(Cε)-trivial, then
∫
∆′ Θac for every immersed disk

∆′ ⊂⊂ ∆ ⊂ Y . This can be used as follows:
Let Θ =

∑
i νi[Di] + R be the Siu decomposition ofΘ. Let ∆n ∼= U ⊂ X be an open

subset and letq : ∆n → ∆n−1 be the projection onto the firstn − 1 factors. Since the
Lelong number level setsEc(R) contain no codim 1 component, very general fibersF
of q do not intersect any of theEc(R). By the results of [31] there is a pluripolar set
N ⊂ ∆n−1 such that the level setsEc(R|F ) = ∅ for the restriction ofR to all fibersF
over points outside ofN . By assumptionR|F ∼= 0.
By the following lemma there exists a positive closed(1, 1)−currentS on ∆n−1 such
thatR = q∗S. LetD = ∆n−1 × {p} be a section ofq such thatR|D is well defined.
By inductionR|D ≡ 0. Since the projectionq : D → ∆n−1 is an isomorphismS ≡ 0
henceR ≡ 0. ¤

LEMMA 6.12. Let T be a positive closed(1, 1)− current on ∆n and let
q : ∆n → ∆n−1 be the projection onto all factors but the last one. IfT|q−1(x) ≡ 0
for all x outside a pluripolar setN ⊂ ∆n−1 then there will be a positive closed(1, 1)−
currentS on∆n−1 such thatT = q∗S.

PROOF. The positive currentT may be written as

T = i
∑

i,j

Θijdzi ∧ dzj

where theΘij are complex measures on∆n ([14, (1.15)]). ThatT is a real current
impliesΘij = Θji. SinceT is positive,

∑
λiλjΘij is a positive measure for all vectors

(λ1, . . . , λn) ∈ Cn. Hence

λiλiΘii + λiλnΘin + λnλiΘni + λnλnΘnn ≥ 0 ∀(λi, λn) ∈ C2.

Claim. As a(1, 1)−currentiΘnndzn ∧ dzn = 0.

PROOF. By definition one has to show that
∫

∆n

iΘnndzn ∧ dzn ∧ αidz1 ∧ dz1 ∧ . . . ∧ idzn−1 ∧ dzn−1 = 0

for all complex valued functionsα ∈ C∞c (∆n). SinceT|q−1(x) = iΘnndzn ∧ dzn
∫

∆n

iΘnndzn ∧ dzn ∧ αidz1 ∧ dz1 ∧ . . . ∧ idzn−1 ∧ dzn−1 =
∫

∆n

T ∧ αidz1 ∧ dz1 ∧ . . . ∧ idzn−1 ∧ dzn−1,

and the slicing formula [14, (1.22)] implies that this is equal to
∫

∆n−1

(∫

q−1(x′)
T|q−1(x′) ∧ α|q−1(x′)

)
idz1 ∧ dz1 ∧ . . . ∧ idzn−1 ∧ dzn−1.
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This is0 becauseT|q−1(x) ≡ 0 for all x outside a pluripolar setN ⊂ ∆n−1. ¤

Consequently,

Θii + λnΘin + λnΘni = Θii + λnΘni + λnΘni ≥ 0

for all λn ∈ C. Now suppose thatΘni 6= 0, i.e. there is a smooth real valued function
α ≥ 0 with compact support such thatΘni(α) 6= 0. Then there is aλn ∈ C such that

Θii(α) + λnΘni(α) + λnΘni(α) < 0.

This is a contradiction. HenceΘin = Θni = 0 for all i ≤ n− 1.
Next, the closedness ofT implies

∂

∂zn
Θij =

∂

∂zn
Θij = 0 ∀i, j ≤ n− 1.

Hence theΘij only depend onz1, . . . , zn−1. One finally gets

T = q∗S = i
∑

i,j≤n−1

Θijdzi ∧ dzj

andS is a closed positive(1, 1)−current on∆n−1. ¤

Now we can show that the Iitaka fibration of a line bundleL is the maximal numerically
trivial foliation w.r.t. a certain metric onL:

PROPOSITION6.13. LetL be a holomorphic line bundle on a projective complex
manifoldX such that|mL| is a non-empty linear system which induces a rational map
φ|mL| : X 99K Y . Thenφ|mL| is the numerically trivial foliation w.r.t.h|mL|.

PROOF. On every immersed diskι : ∆ ⊂⊂ X − Bs(|mL|) mapped to a point by
φ|mL| the pulled back curvature currentι∗Θ|mL| of h|mL| is ≡ 0. Consequently the
Iitaka fibration is numericallyΘ|mL|-trivial.
On the other hand for every immersed diskι : ∆ ⊂⊂ X − Bs(|mL|) not mapped to
a point byφ|mL| the disk∆ is not numerically trivial w.r.t.ι∗h|mL|: When |mL| has
no base points in the image of∆, the metricι∗h|mL| is a smooth metric with smooth
positive curvature form different from0. Consequently no foliation onX not contained
in the Iitaka fibration can be numericallyΘ|mL|-trivial. ¤

Note that there is a positive integerm such that the Iitaka fibration ofL is induced by
the linear system|mL| [26, 10.3].

6.4. Pseudo-effective fibrations

In general it is not true that numerically trivial foliations are (rational) fibrations, see the
surface examples in chapter7. This motivates the following
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DEFINITION 6.14. LetX be a compact Kähler manifold andα ∈ H1,1(X,R) a
pseudo-effective(1, 1)-class. LetF be the numerically trivial foliation ofα. Then the
maximal meromorphic mapf : X 99K Y such that the induced foliation is contained in
F is called thepseudo-effective fibrationof α.

Prop.5.8shows that the definition makes sense: There is a maximal fibration contained
in a foliation.
If α is a nef class on a projective complex manifold the pseudo-effective fibration ofα
is given by the nef reduction map ofα from Chapter1:

PROPOSITION6.15. LetX be a projective complex manifold andL a nef line bun-
dle onX. Then the nef fibration ofL is the pseudo-effective fibration ofc1(L).

PROOF. We only have to show for every curveC ⊂ X that

C is numerically c1(L)−trivial ⇔ L.C = 0.

So let ω be a Kähler form onX. If ∆ ⊂⊂ X is an extendable immersion and
T ∈ c1(L)[−εω] then

0 ≤
∫

∆

Tac + εω ≤
∫

C

T + εω = L.C + εω.

So if L.C = 0 the integrals
∫
∆
Tac + εω tend to0 for ε ↓ 0. On the other hand, ifC is

numericallyc1(L)-trivial then choose a sequence of smooth formsTk ∈ c1(L)[−εkω],
εk ↓ 0, and a covering ofC with extendable immersions∆i ⊂⊂ C. Then

0 ≤ L.C ≤
∫

C

Tk + εkω ≤
∑

i

∫

∆i

Tk + εkω = 0.

¤
REMARK 6.16. Together with Propositions6.13 and6.9 this proposition gives a

sufficient criterion for the Iitaka fibration and the nef fibration of a nef line bundle being
different: The maximal numericallyL-trivial foliation is not a fibration.

The same definition for numerically trivial foliations w.r.t. a single positive current leads
to Tsuji’s numerically trivial fibrations from Chapter3:

PROPOSITION6.17. LetX be a smooth projective complex manifold andL a pseu-
doeffective holomorphic line bundle onX with positive singular hermitian metrich.
Then the pseudo-effective fibration w.r.t. the curvature currentΘh is Tsuji’s numerically
trivial fibration w.r.t. (L, h).

PROOF. By Definition 3.1, a subvarietyY ⊂ X is numerically(L, h)-trivial iff
(L, h).C = 0 for all irreducible curvesC ⊂ Y not contained in the singularity locus of
h. The analysis of these intersection numbers in Chapter2 shows that

(L, h).C = (π∗L, π∗h).C = π∗L.C −
∑

x∈C
ν(π∗h, x),
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whereπ : C → C is the normalization. In particular,(L, h).C = 0 iff the curvature
current ofπ∗h on C may be written as

∑
x∈C ν(π

∗h, x)[x]. Hence proposition6.11
shows that numericallyΘh-trivial subvarieties are also numerically(L, h)-trivial.
The converse is also true: By the birational invariance of numerical(L, h)-triviality the
normalization and desingularizationY of a numerically(L, h)-trivial subvarietyY is
also numerically(L, h)-trivial. Hence the curvature current of the pulled back metric
is of the form

∑
νi[Di], by Theorem3.8. But this implies numericalΘh-triviality of

Y , and since every holomorphic mapf : ∆ → Y may be lifted to a holomorphic map
f : ∆ → Y , the numericalΘh-triviality of Y follows. ¤





CHAPTER 7

Three surface examples

7.1. Mumford’s example

The first example is due to Mumford and has the property that the nef dimension is
bigger than the numerical dimension: Start with a smooth projective curveC of genus
≥ 2 with the unit circle∆ as universal covering and an irreducible unitary representation
ρ : π1(C) → GL(2,C) of the fundamental group ofC. This defines a rank 2 vector
bundleE = (∆ × C2)/π1(C) onC of degree 0 where the action ofπ1(C) is given by
covering transformations on∆ and the representationρ onC2.
Mumford proved that the nef line bundleL = OP(E)(1) on the projectivized bundle
P(E) is stable hence the restriction ofL to all curvesD ⊂ P(E) is positive. On the
other handdegE = 0 henceL.L = 0. Hence the numerical dimensionν(L) is 1, while
the nef reduction map is the identity, and the nef dimension is2.
It seems quite obvious how to explain this deviation: the ruled surfaceP(E) carries a
foliation induced by the images of the∆× l in P(E) (wherel is a line through the origin
in C2). Furthermore, locally the leaves of this foliation are mapped to points by the
morphism induced by|L|, which is a kind of numerical triviality.

This intuition is made exact by constructing a smooth closed positive(1, 1)−current
onL = OP1(1) whose maximal numerically trivial foliation is the one described above:
Take a measureω invariant w.r.t. the representation ofπ(C) in PGL(2). This gives a
measure on(∆×P1)/π(C) transversal to the foliation induced by the images of∆×{p}.
Averaging out the integration currents of the leaves with this transverse measure gives an
(even smooth) closed positive(1, 1)−current in the first Chern class ofL = OP(E)(1)
which vanishes on the leaves but not in any transverse direction.
We still have to discuss the existence of a measureω in c1(OP1(1)) invariant w.r.t. the
unitary representation ofπ(C) in GL(2) and the smoothness of the metric which results
from averaging out the integration currents of the leaves. But this is easy: Take the Haar
measureω on the Lie groupU(2) which is absolutely continuous ([20, Ch.14]). Since
U(2) operates transitively onP1 this measure induces aU(2)− invariant measure on the
homogeneous quotient spaceP1. SinceU(2) is compact it is possible to normalizeω
such thatP1 has measure1. Hence averaging over the integration currents of the leaves
w.r.t. ω gives a smooth positive(1, 1)− form which is still in the first Chern class of

91
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L = OP(E)(1). Since it is smooth it is a current with minimal singularities onL, and
obviously, this current is numerically trivial on the leaves.
On the other hand it is strictly positive on theP1-fibers, hence no submanifold transversal
to the leaves of the foliation can be numericallyc1(L)-trivial, and the foliation is the
maximal numericallyc1(L)-trivial foliation.

7.2. A nef line bundle without smooth semipositive metric

This example was already discussed in [16]: Let Γ = C/(Z + Zτ), Im τ > 0, be an
elliptic curve and letE be the rank 2 vector bundle overΓ defined by

E = C× C2/(Z+ Zτ)
where the action is given by the two automorphisms

g1(x, z1, z2) = (x+ 1, z1, z2)
gτ (x, z1, z2) = (x+ τ, z1 + z2, z2),

and where the projectionE → Γ is induced by the first projection(x, z1, z2) 7→ x.
ThenC × C × {0}/(Z + Zτ) is a trivial line subbundleO ↪→ E, and the quotient
E/O ∼= Γ× {0} ×C is also trivial. LetL be the line bundleL = OE(1) over the ruled
surfaceX = P(E). The exact sequence

0 → O → E → O → 0

shows thatL is nef overX.
Now, in [16] all hermitian metricsh (including singular metrics) are determined such that
the curvature currentΘh(L) is semi-positive (in the sense of currents): These metrics
have all the same curvature current

Θh(L) = [C],

whereC is the curve onX induced by{z2 = 0}. (This implies in particular that there
exists nosmoothpositive hermitian metric onL.) To exclude the possibility that there
exist positive currents inc1(L) which are not the curvature current of a metric onL one
proves the following

LEMMA 7.1. LetX be a projective complex manifold andL a holomorphic line
bundle onX. Then for every closed positive current inc1(L) there is a possibly singular
hermitian metrich onL such that the curvature current

Θh(L) = T.

PROOF. Let T be any positive current inc1(L). By [6] there exists a line bundle
L′ onX with a possibly singular hermitian metrich′ such thatΘh′(L′) = T . (This is
just the usual construction of a cycle inH1(X,O∗)). The line bundleN = (L′)−1 ⊗ L
is numerically trivial, hence nef. Consequently there exists a positive singular hemitian
metrichN onN such that the class of the curvature current

{ΘhN
(N)} = 0 ∈ H1,1(X,R).
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Now, all closed positive currents in0 ∈ H1,1(X,R) have the formddcφ for some
plurisubharmonic function onX. Sinceφ is upper semi-continuous it attains its supre-
mum. But then the maximum principle implies thatφ is a constant function. There-
fore the only closed positive current in0 ∈ H1,1(X,R) is the zero form. This implies
ΘhN

(N) = 0 (as a current).
Furthermore this gives the hermitian metrich = hN ⊗ h′ on L = N ⊗ L′ with
Θh(L) = T . ¤

So [C] really is a positive current with minimal singularities inc1(L). But thenX is
numerically trivial w.r.t.[C], and the associated numerical trivial foliation has only one
leafX with codimension0.
On the other hand,L is certainly not numerically trivial since it intersects a fiber of
X = P(E) with intersection number1. Consequently, the moving intersection number
(c1(L))≥0 = c1(L) is strictly positive, and(X, c1(L)) is a counter example to equality
of the numerically trivial foliation w.r.t. the positive closed(1, 1)- current with minimal
singularities and that w.r.t. the associated pseudo-effective cohomology class.
Now there is an obvious candidate for a numerically trivial foliation w.r.t.c1(L): its
leaves are the projection of the curvesC × {p} in PC(E). The strategy to show this
has two parts: first, one constructs a sequence of currentsTk ∈ c1(L)[−εkω] for some
Kähler formω onX and a sequenceεk of positive real numbers tending to0 such that
the foliation mentioned above is the numerically trivial foliation w.r.t. this sequence of
Tk ’s. Second, one uses that the restriction of theTk ’s to anyP1-fiber ofPC(E) is≥ c·ω,
for some fixed numberc > 0.
The construction of theTk requires a careful study of almost positive (singular) hermit-
ian metricsh onL: As the total space ofL−1 is equal toE∗ blown up along the zero
section, the function

φ(ζ) = log ‖ ζ ‖2h−1 , ζ ∈ L−1

associated to any hermitian metrich onL can also be seen as a function onE∗ satisfying
the log-homogeneity condition

φ(λζ) = log |λ|+ φ(ζ) for every λ ∈ C.
One has

i

2π
∂∂φ(ζ) = π∗L−1Θh(L), πL−1 : L−1 → X.

ThusΘh(L) is almost positive iffφ is almost plurisubharmonic onE∗.
The total space ofE∗ is the quotientE∗ = C× C2/(Z+ Zτ) by the dual action

g∗1(x,w1, w2) = (x+ 1, w1, w2)
g∗τ (x,w1, w2) = (x+ τ, w1, w1 + w2).

The functionφ gives rise to a functioñφ onC × C2 which is invariant byg∗1 , g
∗
τ and

log-homogeneous w.r.t.(w1, w2), andφ̃ is almost plurisubharmonic iffφ is almost psh.
Even more is true: InterpretX as the zero section of the total space ofL−1 and let
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ωX , ωL−1 be positive(1, 1)- forms onX,L−1. Then there are constantsC1, C2 > 0
such that

0 ≤ π∗L−1ωX ≤ C1ωL−1 , 0 ≤ ωL−1|X ≤ C2ωX .

Henceπ∗L−1Θh ≥ −εωL−1 implies Θh ≥ −εC2ωX , and Θh ≥ −εωX implies
π∗L−1Θh ≥ −εC1ωL−1 . Consequently, instead of constructing currentsTk ≥ −εkωX ,
εk → 0 on X, it suffices to construct currentsΘk ≥ −ε′kωL−1 , ε′k → 0, and func-
tions φ̃k on C × C2 such thati∂∂φ̃k = Θk and theφ̃k are invariant byg∗1 , g

∗
τ and

log-homogeneous w.r.t.(w1, w2).
This can be done by using a gluing procedure developed in [19]: Choosing an appropri-
ate partition of unity which isg∗1- andg∗τ - invariant and only depends on the imaginary
part ofx, one gets the desired almost plurisubharmonic functionsφ̃k from plurisubhar-
monic functions

kψ̃j =
k

2
log(|w1|2 + |jw1 + w2|2), k ∈ N, j ∈ Z,

defined on stripes of type

{(x,w1, w2) : (j − a)Im τ < Im x < (j − a+ 1)Im τ}, 0 ≤ a ≤ 1,

and the associated currentsTk have arbitrary small negative part fork →∞.
On the other hand, it follows from the construction that the restriction of the induced
currentsTk to theP1-fibers ofX = P(E) remain> εω for someε > 0.
Let T ′k ∈ α[−εkω] be another sequence of currents representingα. If ∆2 ∼= U ⊂ X is
an open subset with coordinatesz1, z2 such that the lines{z1 = a} belong toP1-fibers
and{z2 = b} are subsets of the leaves of the foliation one can write

Tk + εkω =
2∑

i,j=1

θ
(k)
ij idzi ∧ dzj , T ′k + εkω =

2∑

i,j=1

θ
′(k)
ij idzi ∧ dzj .

By the remark above,

(θ(k)22 )|{z1=a}idz2 ∧ dz2 > εω

for all a, and

θ̃(k) := θ
(k)
11 idz1 ∧ dz1 + θ

(k)
12 idz1 ∧ dz2 + θ

(k)
21 idz2 ∧ dz1

k→∞−→ 0

by the numerical triviality (use as before the Schwarz inequality for the terms
with θ(k)12 , θ

(k)
21 ).

Since the numerical dimension ofL is 1, one knows furthermore that

lim
k→∞

∫

X−Sing T ′k

(Tk + εkω) ∧ (T ′k + εkω) = 0.

But

(Tk + εkω) ∧ (T ′k + εkω) = θ̃(k) ∧ (T ′k + εkω) + θ
(k)
22 idz2 ∧ dz2 ∧ θ′(k)11 idz1 ∧ dz1,



7.2. A NEF LINE BUNDLE WITHOUT SMOOTH SEMIPOSITIVE METRIC 95

hence the vanishing of the limits above implies
∫

(∆′)2−Sing T ′k

θ
′(k)
11 idz1 ∧ dz1 ∧ idz2 ∧ dz2

k→∞−→ 0,

where∆′ ⊂⊂ ∆ is any open disk such that(∆′)2 ⊂ U ∼= ∆2.

Consequently,
∫
∆′b−Sing T ′k

(T ′k + εkω) k→∞−→ 0 for almost all b ∈ ∆′ (where

∆′
b = {b} × ∆′). The definition of the numerically trivial foliation requires that∫

∆′b−Sing T ′k
(T ′k + εkω) k→∞−→ 0 for all b ∈ ∆′. To prove this one can use the same

line of arguments as in the proof of the Local Key Lemma for pseudo-effective classes:
One tries to show that

lim
k→∞

|
∫

∆′b−Sing T ′k

(T ′k + εkω)−
∫

∆′0−Sing T ′k

(T ′k + εkω)| = 0.

Following the proof of proposition6.4one sees that it is enough to show that

lim
k→∞

∫

∂∆′×∆0,b

|θ′(k)11 |dV ·
∫

∂∆′×∆0,b

|θ′(k)22 |dV = 0,

where∆0,b is the disk with center inb/2 and radius|b/2|, anddV is a volume element
of ∂∆′ ×∆0,b.
As in the proof of proposition6.4 there is a boundM > 0 such that for allk there is a
disk∆′

k ⊂⊂ ∆ containing∆′ with
∫

∂∆′k×∆′
|θ′(k)22 |dV < M.

For the first term, look at the(1, 1)- form η = idz2 ∧ dz2 and take a disk
∆′ ⊂⊂ ∆′′ ⊂⊂ ∆. Then by the arguments above,

∫

(∆′′−∆′)×∆′
|θk11|dV =

∫

(∆′′−∆′)×∆′
(T ′k + εkω) ∧ η k→∞−→ 0.

By Fubini, one gets a disk∆′
k such that

∫

∂∆′k×∆′
|θk11|dV k→∞−→ 0,

and one concludes that the limit above is indeed0.

REMARK 7.2. The difference to the previous example is that the unitary group is
compact and consequently its Haar measure is finite. This is not the case for the group
of linear automorphisms generated by(z1, z2) 7→ (z1 + z2, z2).
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7.3. P2 blown up in nine points

Consider the following situation: LetC ⊂ P2 be a smooth elliptic curve and let
p1, . . . , p8 ∈ C be sufficiently general points. The aim is to study the numerically triv-
ial foliation w.r.t. the anticanonical bundle−KX on varietiesXp = P2(p1, . . . , p8, p)
blown up in pointsp ∈ C.
Let Ei = π−1(pi) be the exceptional divisor onX over pi. First of all,
−KX = OP2(3) +

∑
Ei is nef and−K2

X = 0. Next, the pencil of elliptic curves
on P2 throughp1, . . . , p8 has a base pointq. SoXq = P2(p1, . . . , p8, q) is an elliptic
fibrationπq : Xq → P1. The pull back of a smooth positive metric onOP1(1) gives a
smooth semi-positive hermitian metric on−KXq which is strictly positive in directions
transverse to the fibers. Hence by the same arguments as in the two examples above, the
fibration is the numerically trivial foliation w.r.t.−KXq .
For pointsp 6= q in C there is only one section in−KXp

, the strict transformC ′ of C.
But if one considers torsion points (w.r.t. toq) of orderm onC then a calculation in
[17] shows that−mKXp defines again an elliptic fibration overP1. This fibration yields
a smooth semi-positive hermitian metric on−mKXp , hence on−KXp , and again the
fibration is the numerically trivial foliation w.r.t.−mKXp

.
The question is: What happens if non-torsion pointsp ∈ C are blown up ? In particular:
Is there always a smooth semi-positive hermitian metric on−KXp

inducing a holomor-
phic foliation onXp, which may be seen as the limit of the fibrations ofXpk

where the
pk are torsion points ? (The last question was asked in [17].) A strategy to answer it is
to use the theory of holomorphic foliations on surfaces, as developed e.g. in [10].

DEFINITION 7.3. A (holomorphic) foliationF on a compact complex surfaceX is
a coherent analytic rank 1 subsheafTF of the tangent bundleTX (the tangent bundle of
the foliation) fitting into an exact sequence

0 → TF → TX → JZ ⊗NF → 0

for a suitable invertible sheafNF (the normal bundle of the foliation) and an ideal sheaf
JZ whose zero locus consists of isolated points called the singularitiesSing(F) ofF .

Furthermore, one can easily show thatT ∗F ⊗N∗
F = KX .

Numerically trivial foliations{F , (Ui, pi)} on surfacesX with F of rank 1 are such
foliations: If F is not a line bundle then replace it byF∗∗. As a reflexive sheaf on a
surface this is a line bundle [33, 1.1.10], and dualizing the inclusionF ⊂ TX twice
shows that it is still a subsheaf ofTX . Furthermore,F is locally integrable because it
has rank 1, hence the mapspi exist trivially.
LetX beP2(p1, . . . , p8)× C blown up in the diagonal

∆C×C ⊂ C × C ⊂ P2(p1, . . . , p8)× C.
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The fibers ofX overp ∈ C are just theXp for all p. If there is an algebraic family of
foliations on theXp such that over torsion points, the foliation coincides with the fibra-
tion described above, then (at least generically) the conormal line bundlesN∗

Fp
should

also fit into a family. But this is impossible, as the following computation shows:

LEMMA 7.4. LetC, q,Xp be as above, and letp be a torsion point w.r.t.q of order
m. LetNFp be the normal bundle of the foliation induced by the fibrationπp : Xp → P1.
Then

N∗
Fp
∼= (m+ 1)KXp

.

PROOF. LetD be an irreducible component of a fiber ofπ = πp with multiplicity
lD. If η is a local non-vanishing1- form onP1 thenπ∗(η) is a local section ofπ∗(KP1)
vanishing of orderlD − 1 onD. Hence,

N∗
Fp

= π∗(KP1)⊗OXp(
∑

(lD − 1)D).

The relative canonical bundle formula (for elliptic fibrations, see [23]) tells that

KXp
= π∗(KP1 ⊗ (R1π∗OXp

)∗)⊗OXp
(
∑

(lF − 1)F ),

where the sum is taken over all fibersF occuring with multiplicitylF in the fibration.
There are two differences between the two formulas: First, in the relative canonical
bundle formula occurs the term

L := (R1π∗OXp)∗.

Now, degL ≥ 0, anddegL = 0 would imply thatL is a torsion bundle onP1, hence it
is trivial, andXp = C × P1 – a contradiction. IfL is nontrivial, a short calculation with
spectral sequences shows that

0 = pg = degL− g(P1) + 1,

hencedegL = 1, andL = OP1(1) (see again [23, Ch.VII]). This shows

π∗(KP1 ⊗ L) = π∗OP1(−1) = mKXp ,

and together with the relative canonical bundle formula this shows thatmC is the only
multiple fiber.
The second difference is that some fibers may contain multiple components, but are not
multiple themselves. By the classification of singular fibers of elliptic fibrations this is
only possible if there are−2- curves ([23]). But onP2 blown up in9 points in general
position, there are no−2-curves. Hence

OXp(
∑

(lD − 1)D) = OXp(
∑

(lF − 1)F ),

and the claim of the lemma follows. ¤
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The threefoldX is also a counter example to equality of numerical dimension and codi-
mension of the leaves of the numerically trivial foliation w.r.t. some pseudo-effective
class: Set

L := −π∗(p∗1KP2(p1,...,p8))− E∆ + p∗2O(nr),

wherep1 is the projection ofP2(p1, . . . , p8)×C ontoP2(p1, . . . , p8), p2 is the projection
of X ontoC, r is any point onC andn > 0 an integer. The restriction ofL to any fiber
overp ∈ C is the anti-canonical bundleK∗

Xp
.

Forn sufficiently big,L is nef:L is effective, sinceD = C× (C+nXr) is contained in
|L|. Consequently, to prove the nefness ofL it suffices to show that all curvesE ⊂ C×C
have non-negative intersection number withL. To this purpose first get an overview
over all curves onC×C: According to the general theory of abelian surfaces the Picard
number ofC × C is 4 or 3 depending on whetherC has complex multiplication or not
([5, 2.7]. Hence it suffices to look at the fibers of the two projections ofC × C ontoC,
the diagonal, and if necessary, on some other curve constructed as the graph of complex
multiplication inC × C. Since it is a graph of an isomorphism, such a curve maps
isomorphically toC under both projections.
Now, one has to compute the degree of the restriction ofL to E. This restriction may
also be seen as the restriction of the divisorD|D to such anE. LetC ′ be a sufficiently
general curve in the pencil| −KP2(p1,...,p8)|. Then the strict transform ofC ′ × C is an
element of−π∗(p∗1KP2(p1,...,p8)) and intersectsC × C in {q} × C. Furthermore,E∆

intersectsC × C in the diagonal∆C×C . Therefore,

D|D ∼ {q} × C + n(C ′ × {r})−∆C×C + n(C × {r}),
whereEr is the exceptional divisor overr in Xr. AndL is nef if n is≥ the maximum
of 1 (this is the intersection number of fibersC × {p} with the diagonal) and the inter-
section number of the curve coming from complex multiplication (if existing) with the
diagonal. (The self intersection number of the diagonal is0 since the tangent bundles on
C ∼= ∆C×C andC × C are trivial.)

PROPOSITION7.5. LetX , L be as above. Then the numerical dimensionν(L) ofL
is 2, but the numerically trivial foliation w.r.t.c1(L) is the identy map.

PROOF. To proveL2 6= 0, observe thatL2 is represented by the cycles in the ex-
pression above forD|D. This is not≡ 0, since the intersection number with{q} × C is
positive forn ≥ 1.
The numerically trivial foliation w.r.t.c1(L) cannot be the trivial map onto a point, be-
cause in fibersXp over torsion pointsp there are curves which are not numerically
trivial. Since immersed disks which do not lie in a fiber of the projection ontoC are
not numerically trivial, the only possible numerically trivial foliation w.r.t.c1(L) with 2-
dimensional leaves is the fibration ontoC. But this is impossible by the same reason as
above. To exclude the possibility that the numerically trivial foliation has1-dimensional
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leaves, one notes first that over torsion pointsp, the fibers ofπp : Xp → P1 are numeri-
cally trivial: This is clear since these fibersF are projective, hence

∫
F
Tk only depends

on the cohomology class of theTk, and
∫
F
c1(L) is certainly0.

This can be used to show that the1-dimensional leaves of a numerically trivial foliation
must lie in the fibersXp of X : Otherwise, let∆3 ∼= U ⊂ X be any open subset with
coordinatesx, z1, z2 such that the projection ontoC is given by the projection onto
the first coordinate, and the foliation is described by the projection onto the two last
coordinates. Choosex such thatx = 0 corresponds to a torsion pointp0. Shrinking
U if necessary, one can suppose that the fibers ofπp0 are smooth inU . But then the
Local Key Lemma for pseudo-effective classes implies that there are2- dimensional
numerically trivial leaves, contradiction.
Next one shows that the1-dimensional leaves in fibersXp, wherep is a torsion point,
must be the fibers ofπp : Xp → P1: Take an ample line bundleA onX . SinceL is nef,
Lk ⊗A is also ample, and some multiple is very ample. The global sections of this very
ample line bundle generate a smooth metric onLk ⊗A whose strictly positive curvature
form may be written ask(Tk + 1

kωA), for some formTk ∈ c1(L)[− 1
kωA].

Let p ∈ C be any torsion point of orderm andπp : Xp → P1 the induced fibration. Let
T = i∂∂ log(|z1|2 + |z2|2) be a strictly positive curvature form inc1(O1

P(1)). Then

(Tk +
1
k
ωA)|Xp

≥ 1
m
π∗pT.

But this means in particular that for any disk∆ ⊂ Xp not immersed into a fiber ofπp,∫

∆

Tk +
1
k
ωA ≥ 1

m

∫

∆

π∗pT > 0.

Hence the leaves of the numerically trivial foliation w.r.t.c1(L) coincide with the fibers
of πp in Xp.
But this is impossible, as shown above. ¤

REMARK 7.6. This proposition does not exclude the possibility that (some of) the
Xp over non-torsion pointsp have a numerically trivial foliation with 1-dimensional
leaves.

Another result dealing with this type of foliations is

PROPOSITION7.7 (Brunella). LetF be a foliation on a compact algebraic surface
X and suppose thatF is tangent to a smooth elliptic curveE, free of singularities of
F . Then eitherE is a (multiple) fiber of an elliptic fibration or, up to ramified coverings
and birational maps,F is the suspension of a representationρ : π1(Ê) → Aut(CP1),
Ê an elliptic curve.
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