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CHAPTER O

Einleitung

Algebraische Kurven erschuf der liebe Gott,
algebraische Flachen der Teufel.
Max Noether

Das lie wenig Raum fir algebraische Dreifaltigkeiten.
Janos Kollar

0.1. Die Klassifikation algebraischer Varietaten

Historisch begann die Algebraische Geometrie mit dem Studium von algebraischen Kur-
ven, zuerst in der Antike die Kegelschnitte, dann in der Neuzeit, beginnend mit Newton,
ebene algebraische Kurven von héherem Grad (speziell ihrer Singularitaten), und im
19. Jahrhundert auch Raumkurven. Riemann schlieRlich gelang mit analytischen und
topologischen Methoden eine befriedigende Strukturtheorie algebraischer Kurven.

Die italienische Schule um Castelnuovo, Enrigues und Severi konnte dann Anfang des
20. Jahrhunderts algebraische Flachen zufriedenstellend klassifizieren. Da ihrer Arbeit
aber die Hilbertsche Strenge fehlte und ihre Schiler oftmals falsche Ergebnisse tber
algebraische Dreifaltigkeiten prasentierten, geriet das ganze Gebiet in Verruf.

Van der Waerden und danach Zariski und Weil stellten die Algebraische Geometrie
mit den Methoden der kommutativen Algebra wieder auf eine solide Grundlage, und
Grothendieck vereinigte in seinem unvollendeten opus magriiértients de géométrie
algébriqué die Kommutative Algebra und die Algebraische Zahlentheorie mit der Al-
gebraischen Geometrie.

Nachdem diese Grundlagenarbeit Ende der 1960er (fast) zum Abschluf3 gebracht worden
war, wandte man sich wieder den klassischen Problemen zu und erneuerte und vervoll-
stéandigte zuerst die Theorie der Kurven und Flachen. litaka stellte 1972 gewagte, aber
hochinteressante Vermutungen tGiber héherdimensionale Varietaten auf, und Ueno bewies
1977 das erste Strukturtheorem fur Dreifaltigkeiten. Trotzdem war klar, daf ihr Ansatz
fur eine umfassende Strukturtheorie von héherdimensionale Varietaten nicht ausreichte
— vor allem fehlte ein Analogon zu den minimalen Modellen algebraischer Flachen.

Um 1980 kam dann ein entscheidender Durchbruch: Mori bewies mit Hilfe ver-
schiedener neuer Ideen den ersten grofRen Schritt fir die Existenz von minimalen
Modellen hoherdimensionaler Varietaten. Gleichzeitig definierte Reid, was minimale
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6 0. EINLEITUNG

Modelle von héherdimensionalen Varietaten Uberhaupt sein sollen und untersuchte,
wozu man sie benutzen kdnnte, wenn sie denn existieren. Fur Dreifaltigkeiten wurde
das so sich abzeichnende Programm Ende der 80er von Mori und Kollar erfolgreich
abgeschlossen und damit verschiedene tiefe Strukturtheoreme fir Dreifaltigkeiten be-
wiesen, darunter die Abundance-Vermutung und die endliche Erzeugtheit des kanoni-
schen Rings.

Beide Vermutungen (in Dimension 4) bzw. Theoreme (in Dimensio3) beschreiben
Eigenschaften des kanonischen Geradenburkiglsalso der hdchsten auf3eren Potenz
des Kotangentialbindel®}, = T3 einer (glatten) algebraischen Varietdt Die
Wichtigkeit des Biindeld x ruhrt von zwei Beobachtungen:

Erstens definieren globale Schnitte von (holomorphen) Geradenbiindeln rationale Abbil-
dungen in andere algebraische Varietaten (z.B. projektive R&i#fi¢ und das kanon-
ische Bundel existiert auf jeder algebraischen Varietat.

Zweitens hat das kanonische Biindel gute funktorielle Eigenschaften unter birationalen
Abbildungen, also solchen rationalen Abbildungén X --» Y, die auf einer offenen
TeilmengeU < X Isomorphismen sind;f induziert einen Isomorphismen zwischen
den globalen Schnitten vaR x und Ky. Das trifft auch fur alle Potenzeﬁ??m, aber

nicht fir das zum kanonischen Biindel duale antikanonische Bigél (und seine
Potenzen) zu.

Die Funktorialitat bzgl. birationaler Abbildungen ist wichtig bei einer sehr allgemeinen
Strategie, Strukturtheoreme algebraischer Varietaten zu erhalten. Diese Strategie wurde
schon von der italienischen Schule zur Klassifikation der Flachen benutzt:

Schritt 1: Man definiert zuerst eine Aquivalenzrelation auf der Menge aller alge-
braischen Varietéaten, bei der zwei algebraische Varietéaten als aquivalent gel-
ten, wenn sie zueinander birational sind. Man versucht au3erdem zu verste-
hen, wie verschiedene Varietéten in einer Aquivalenzklasse zusammenhéngen.
Z.B. hatte man gerne einige einfache Typen von Operationen, so dass man
durch die Ausfihrung einer endlichen Anzahl dieser Operationen von einer
Varietat zur anderen gelangt.

Schritt 2: Dann sucht man sich in jeder Aquivalenzklasse einen ausgezeichneten
Reprasentanten, eminimales Modell

Schritt 3: Die Eigenschaften dieser minimalen Modelle werden dann verwendet,
um einen Uberblick tiber alle Aquivalenzklassen zu bekommen.

Die “einfachen Operationen”, die von einer algebraischen Flache zu einer birational
aquivalenten fuhren, sind Auf- und Niederblasungen von rationglan-Kurven, also
Kurven= CP' mit Selbstschnitt-1. Die minimalen Modelle sind Flachen, auf denen
sich keine(—1)-Kurve zum Niederblasen findet. Die Aquivalenzklassen werden dann
seit Kodaira zuerst grob nach einer Invarianten sortiert, die durch die von den globalen
Schnitte vonK;‘?m erzeugten rationalen Abbildunggh, : X --» CP bestimmt wird:
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Die Kodaira-Dimensiorist definiert als
k(X) := maxdim f,,(X)

bzw. —oo, falls H°(X, K¢™) = 0 fur allem € N. Wegen der Funktorialitat voR x
ist x(X) konstant in einer Aquivalenzklasse, und sie ist imrieter Dimension vonX .
Die minimalen Modelle in den Aquivalenzklassen mitX) = —oo sind CP? und
Regelflachen, also Flachek mit einem Morphismusf : X — E auf eine Kurve
E, dessen Fasern alte CP' sind. Fur Flachen mit(X) = 0, 1 gibt es ebenfalls voll-
standige Listen von Aquivalenzklassen, wahrend+{(ik) = 2 (sogenannté&lachen
vom allgemeinen Typwvenigstens einige Beziehungen zwischen weiteren Invarianten
bekannt sind.

litakas Arbeiten nutzen weitere Eigenschaften der plurikanonischen Biigiél, die
auch in Dimensior> 3 gelten (fallsk(X) > 0): Die BildvarietatenX ™ := f,,(X)
werden fur geniigend groRe und teilbatebirational, also wachstim H°(X, K{™)
wie m“(X) und derkanonische Ring

R(X) = o35 HO(X, K§™)

hat Transzendenzgrad X) + 1 GiberC. Die birationale Aquivalenzklasse daf(™)
heiR3t leicht miBbrauchlichitaka-Varietat(X) von X. litaka zeigte, dass es zu jedem
X einen birationalen Morphismus: X — X und einen Morphismug : X — I(X)
gibt, so dass die Fasern vgriber einer dichten offenen Teilmenge vbiX ) Kodaira-
Dimension0 haben. f heilt Kodaira-litaka-Faserung, und nach Konstruktion gilt
dim I(X) = k(X), aber nicht unbedingt

k(I(X)) =dimI(X) = x(X).
Dies zeigen einfache Gegenbeispiele von elliptischen FaserungeR'titmérmultiplen
Fasern. Campana konnte aber 200X ) zusammen mit der Kodaira-litaka-Faserung
als “Orbifold” vom allgemeinen Typ (also mit maximal méglicher Kodaira-Dimension)
interpretieren.
litaka stellte auBerdem die Frage, ob dié™ irgendwann (fiir geniigend groRe und
teilbarem) isomorph werden. Dies ist richtig, falls der kanonische Ring endlich erzeugt
ist.
Auf Dreifaltigkeiten wurde die endliche Erzeugtheit des kanonischen Rings mit den Mit-
teln der Mori-Theorie gezeigt. Moris entscheidende Idee war, dass die Geopretrie
jektiver algebraischer Varietaten von den auf ihnen liegenden Kurven, besonders den
rationalen, kontrolliert wird. Dazu fihrte er den Kegel der Kurven_guf

NE(X) C Hy(X,R)

ein, der aus den positiven Linearkombinationen der Homologieklassen von algebrais-
chen Kurven aufX besteht. Weiter definierte er zu einem Morphisnfus X — Y

(mit zusammenhangenden Fasern) zwisgbreiektiven normalevarietéaten einen Un-
terkegelNE(f), der von allen KurverC' C X erzeugt wird mitf(C) = Punkt. Die
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erste fundamentale, aber triviale Beobachtung des Mori-Programms isty @g9 den
Morphismusf eindeutig bestimmt. AuRerdem BtE( f) ein extremaler Unterkegel von
NE(X), also eine Facette des Randes.

Das erste grof3e Resultat von Mori war nun, dass umgekehrt jeder extremale Strahl von
NE(X), dessen Homologieklassen(K x) negativ schneiden, zu einem Morphismus

f:+ X — Y gehort, der entweder

¢ eineFano-Kontraktionauf eine Varietalt” mit dimY < dim X ist,

e einedivisorielle Kontraktioneinesexzeptionellen Orte® voncodim F = 1
ist mitdim f(F) < dim F und f ein Isomorphismus auX — E, oder

¢ einekleine Kontraktiorist, bei derf immer noch ismorph auk — E ist, aber
codim F > 2.

Zum Beispiel kdnnen bei Flachen die Morphismeén X — C von einer Regelflache

auf die Basiskurve® als Fano-Kontraktionen und die Niederblasung eiret)-Kurve

E als divisorielle Kontraktion vorfe gesehen werden, da die Einschrankung %o

auf die Fasern vorfi bzw. aufE negativ ist. Kleine Kontraktionen kommen auf Flachen
nicht vor. Wenn man mit einer glatten projektiven Flache startet, kommt man nach
endlich vielen divisoriellen Kontraktionen entweder zu einer FlaEhmit einer Fano-
Kontraktion, oder es gibt keinen extremalen Strahl méhg. heil3t in letzterem Fatef
Solche Flachen sind genau die oben beschriebenen minimalen Modelle.

Wenn man minimale Modelle in héheren Dimensionen genauso definieren will, st6f3t
man auf grol3e technische Schwierigkeiten: Sowohl divisorielle als auch kleine Kontrak-
tionen kdénnen zsingularenVarietaten fihren. Wéahrend sich die méglichen Singula-
ritaten bei divisoriellen Kontraktionen noch gut kontrollieren lassen, existiert auf dem
Bild einer kleinen Kontraktion nicht einmal mehr ein kanonisches Biindel - man kann
also keine geeigneten Extremalstrahlen definieren. Stattdessen wurden von Reid und
anderen Flips und Flops eingeflihrt, die den exzeptionelle@iter kleinen Kontrak-

tion mit Hilfe einer Chirurgie durch einen anderen exzeptionellenfDrtrsetzen. Auf
Dreifaltigkeiten konnten dann Kollar und Mori (und viele andere) zeigen, dass

e eine endliche Anzahl von divisoriellen Kontraktionen und Flips von einer
(glatten) projektiven Dreifaltigkeit zu einem (mdéglicherweise singularen) mi-
nimalen Modell im obigen Sinne fihrt und

e zwei dieser minimalen Modelle, falls sie birational zueinander sind, durch
endlich viele Flops miteinander verbunden werden kénnen.

Damit ist fur Dreifaltigkeiten eine befriedigende Definition von minimalen Modellen
gefunden.

In beliebigen Dimensionen verschafft das Studium rationaler Kurven auf einer pro-
jektiven VarietatX einen ersten Uberblick tiber die birationalen Aquivalenzklassen.
Zundachst folgt aus der Mori-Theorie die Verallgemeinerung der Beobachtung, dass die
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bei Flachen vorkommenden Kontraktionen rationale Kurven kontrahieren: Der exzep-
tionelle Ort einer divisoriellen Kontraktion bzw. die Fasern einer Fano-Kontraktion wer-
den auch in beliebigen Dimensionen von rationalen Kurven tberdeckt. ¥adime
Fano-Kontraktion zulaf3t, wird damit gad¥ von rationalen Kurven tberdeckt — eine
solche Varietat heildtinigeregelt Umgekehrt wird jede unigeregelte Varietéat von ra-
tionalen Kurven Uberdeckt, deren (gemeinsame) Homologieklasse die Chern-Klasse
¢1(Kx) negativ schneidet. Insbesondere kénnen deshajbund auch jede Potenz
K™ keinen globalen Schnitt haben, da dieser Schnitt eine der tberdeckenden ratio-
nalen Kurven nichtnegativ schneiden misste. Die Kodaira-DimensionXv@st also
—0OQ.
Eine wichtige Vermutung besagt, dass dies eine vollstandige geometrische Charakte-
risierung ist:

k(X) = —oc0 < X unigeregelt.

Fur Dreifaltigkeiten zeigte Miyaoka 1988 diese Vermutung, indem er zuerst von einer
nicht unigeregelten Varietat zu einem minimalen Modell Uberging, auf Hgmmef ist.

Die Behauptung erhielt er dann aus Verschwindungssétzen fir nef Geradenbiindel und
einigen Klassifizierungsresultaten fur Dreifaltigkeiten.

Die Vermutung kann als nullter Fall einer allgemeineren Vermutung gelten: Einem nef
Geradenbiinddl kann einenumerische Dimension

v(X, L) :=max{k : ¢;(L)* > 0}

zugeordnet werden. Digbundance-Vermuturgellt dann fest: Fir nicht unigeregelte
Varietaten mit nef kanonischem Blindel (etwa auf minimalen Modellen) ist

k(X)) =v(X,Kx)=rv(X).

Die Wichtigkeit der Abundance-Vermutung liegt in dem Zusammenhang, den sie zwi-
schen der komplexen Geometrie des kanonischen Biindels und seiner Potenzen und der
topologischen Invariante(X) herstellt.

Ein groR3er Fortschritt in der Klassifikationstheorie kam durch die Einfihrung der ra-
tional zusammenhangenden Varietaten durch Kollar, Miyaoka und Mori 1992. Dabei
geht es um Varietaten, bei denen zwei allgemeine Punkte durch (eine Kette von) ratio-
nale(n) Kurven verbunden werden kdnnen. Graber, Harris und Starr zeigten Ende der
90er, dass jede unigeregelte Varietat eine rationale AbbildungX --» Y auf eine

nicht unigeregeltd/arietatY” besitzt, so dasg tber einer offenen Teilmenge vanein
Morphismus ist und die Fasern vgrdort maximale rational zusammenhéangende Unter-
varietaten vorX sind. f hei3t dann der maximale rational zusammenhéangende Quotient
oder kurz MRC-Quotient vorx .

Alle diese Theoreme und Vermutungen zusammengenommen, ergibt sich folgendes Bild
einer ersten groben Klassifikation von birationalen Aquivalenzklassen projektiver Vari-
etaten:
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e Falls X eine unigeregelte Varietét ist, also von rationalen Kurven Uberdeckt
wird, gibt es einen MRC-Quotienten

f:X--»Y

auf eine nicht unigeregelte Variet#t
e Falls X nicht unigeregelt ist, ist(X) > 0, und die Kodaira-Faserung

f:X--Y

bildet X auf eine Varietdl” von allgemeinem Typ ab (zumindest in Campanas
“Orbifold”-Sinn). Die (allgemeinen) Fasern vghhaben Kodaira-Dimension
k(F) = 0. Die Dimension der Basi¥’ ist dabei schon durch die topologisch
invariante numerische Dimensiofi X ) gegeben, falld(x nef ist.

Die “Bausteine” von projektiven Varietaten waren demnach (falls alle Vermutungen
richtig sind) rational-zusammenhéngende Varietaten, Varietaten mit Kodaira-Dimension
0 und solche vom allgemeinen Typ.

0.2. Numerisch triviale Faserungen und Blatterungen

In dieser Habilitationsschrift werden nun Arbeiten zusammengefasst, die sich mit neuen
Ansatzen zur Losung der Abundance-Vermutung befassen. Einerseits werden Ergeb-
nisse und Methoden von Boucksom, Demailly, Paun und Peternell ausgebaut, die 2004
zeigten, wie man die Abundance-Vermutung auch ohne die bis jetzt nur vermutete Exi-
stenz von minimalen Modellen formulieren kann. Dazu betrachten sie pseudo-effektive
Geradenbuindel, die als Limes von effektiven Geradenbiindeln einer schwachen Positi-
vitat gentigen und die nef und effektiven Geradenbiindel umfassen.

Da z.B. das zum exzeptionellen Divis@ der Aufblasung vorP? in einem Punkt
gehdrige Geradenbiindel negativen Selbstschnitt hat, lasst sich die Definition der nu-
merischen Dimension nicht so einfach auf pseudo-effektive Geradenbiindel Ubertragen.
Boucksom, Demailly, Paun und Peternell fihren dazu ein neues Schnittprodukt auf den
Kohomologieklassen der pseudo-effektiven Geradenbiindel ein, das duch Weglassen der
fur die Geradenbundel exzeptionellen Orte im klassischen Schnittprodukt ipander
bleibt. Die technische Schwierigkeit liegt darin, dass der exzeptionelle Ort nicht immer
wie E in der Aufblasung vorP? Kodimensionl haben muss. Boucksom, Demailly,
Paun und Peternell beheben dieses Problem auf analytische Weise durch Betrachten be-
liebiger (fast) positiver Metriken auf dem Geradenbiindel; algebraisch entspricht diesem
Ansatz der Riickzug in beliebige Aufblasungen. Das neue Schnittprodukt stimmt fiir nef
Geradenbundel mit dem klassischen Schnittprodukt tberein.

Boucksom, Demailly, Paun und Peternell definieren dann die numerische Dimension
eines pseudo-effektiven Geradenbindekds

v(X, L) :=max{k : (c1(L)¥)>o > 0},
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wobei (c1(L)*)>( das neue Schnittprodukt bezeichne. SchlieRlich beweisen sie, dass
K x auf nicht-unigeregelten glatten Varietaten immer pseudo-effektiv ist und kdnnen
dann die Abundance-Vermutung auch fir solche Varietaten formulieren.

Der zweite Ansatz, der von den in dieser Schrift zusammengefalRten Arbeiten entwickelt
wird, wurde zunachst von Tsuji 1999 studiert und lasst sich am besten differentialge-
ometrisch motivieren: Falls es eine hermitesche Metrik mit semipositiver Krimmung
auf einem pseudo-effektiven Geradenblindeiibt, sind die Fasern der litaka-Faserung
tangential an die Nullrichtungen der Krimmung. Umgekehrt kann man unabhé&ngig von
der litaka-Faserung fragen, ob sich alle oder wenigstens einige der Nullrichtungen der
Krimmung einer Metrik auf einem pseudo-effektiven Geradenbiindel als Tangential-
richtungen an eine Faserung auffassen lassen.

Diese Idee kann algebraisch oder analytisch entfaltet werden:

e Im algebraischen Sinn werden Nullrichtungen der Krimmung zu Kurven, auf
denen das Geradenbiindel numerisch trivial wird. Dies ermdglicht fur nef Ge-
radenbiindel die Konstruktion der sogenannten Nef-Faserung, die in Khpitel
beschrieben wird.

e Fir beliebige pseudo-effektive Geradenbiindel ergeben sich technische
Schwierigkeiten aus der Tatsache, dass positive hermitesche Metrikdn auf
singular sein kdnnen. In Kapitlwird geklart, was numerische Trivialitat von
Geradenbindeln auf Kurven oder auch Untervarietdten hdherer Dimension
bzgl. solche singuldren Metriken bedeutet. Die eleganteste Charakterisierung
in Theorem3.8 sagt, dass der Riuckzug des Krimmungsstroms auf die Un-
tervarietat eine Summe von Integrationsstromen von Divisoren sein muf3. In
Kapitel 3 wird dann eine Faserung mit maximal-dimensionalen numerisch
trivialen Fasern konstruiert, die pseudo-effektive Reduktionsabbildung.

Es stellt sich heraus, dass die litaka-Faserung eines Geradenbiindespseudo-
effektive Reduktionsabbildung zu der Metrik, ist, die von den Schnitten einer genu-
gend hohen Potenz®™ erzeugt wird. Da diese Metrik aber so eng mit der Existenz von
Schnitten verknupft ist, sagt diese Identitat von Faserungen wenig Uber das Abundance-
Problem fiir das Geradenbiindehus.

Die Nef-Faserung hingegen, die unabhangig von speziellen Metrikeh definiert ist,

ist manchmal feiner als die litaka-Faserung Vaninsbesondere Beispig&lllegt nahe,

wie dieser Unterschied erklart werden kann: Die numerisch trivialen Richtungen sind
hier nicht tangential an eine Faserung, sondern an eine Blatterung.

Der Begriff einer numerisch trivialen Blatterung fir pseudo-effektive Klassen auf
einer kompakten Kahler-Mannigfaltigkeit wird in Abschriittl definiert und eine ma-
ximale numerisch triviale Blatterung konstruiert. Die Notwendigkeit der technisch
anspruchsvollen Definition wird am Beispiél2 klar: Anstelle der einzig mdglichen
positiven Metrik auf dem dort betrachteten Geradenbindel muf? man eine appro-
ximierende Sequenz von fast positiven Metriken heranziehen, da die positive Metrik zu
wenig Informationen tragt. Diese Beriicksichtigung von vielen fast positiven Metriken
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auf einmal steht im Einklang mit den Methoden, die Boucksom et al. bei der Einfihrung
des positiven Schnittprodukts entwickelt haben. Sie werden im Kapigeisfihrlich
erlautert.

In den Abschnitter6.3 und 6.4 wird gezeigt, dass die litaka-Faserung die numerisch
triviale Blatterung und diese wiederum die Nef-Faserung eines nef Geradenbiindels
enthalt. Wir erhalten so ein hinreichendes Kriterium fur das Auseinanderfallen von
litaka-Faserung und Nef-Faserung: Die maximale numeristtiviale Blatterung ist

keine Faserung.

Die Abundance-Vermutung sagt nun, dass dies fir das kanonische Bundel auf nicht-
unigeregelten Varietaten nicht passiert. Aulerdem behauptet sie, dass die Kodimension
der Blatter einer numeriscR x-trivialen Blatterung gleich der numerischen Kodimen-
siondim(X) — v(X) der VarietdtX ist. Die oben geschilderte Intuition hinter dem
Begriff der numerisch trivialen Blatterung legt nahe, dass die numerische Kodimension
zumindest groRer oder gleich der Blatterdimension sein sollte: Die Potepe)t er-
rechnen sich als auBeres Produkt der Krimmungsform einer Metrik.aufenn also

diese Metrik semipositiv ist und ihre Nullrichtung die Blatter enthalten, ergibt sich die
gewulinschte Schranke.

Diese Schranke wird in Abschni&2 auch bewiesen, allerdings unter einer Zusatzan-
nahme an die Singularitaten der Bléatterung: sie sollen isoliert sein. Die Beseiti-
gung dieser Annahme erfordert ein genaues Studium des Verhaltens der fast positiven
Metriken aufL in der Umgebung von Blatterungssingularitaten. Dies ist bis jetzt nicht
geschehen und scheint wegen der ungeklarten Beschreibung von Blatterungssingula-
ritdten auch sehr schwierig zu sein.

Beispiel 7.3 zeigt schliel3lich, dass die Ungleichung strikt sein kann. Dies muss als
weiterer Beleg fur die sehr komplexe Geometrie Btiiufgeblasen i9 Punkten gese-

hen werden. Die Abundance-Vermutung sagt wiederum, dass derartige Phanomene bei
kanonischen Bindeln auf nicht-unigeregelten Varietaten nicht auftreten kénnen.

0.3. Frihere Veroffentlichungen

Die meisten Ergebnisse dieser Schrift sind schon in friheren Arbeiten publiziert worden.
Die Nef-Faserung aus Kapit&lwurde in [1] konstruiert, wahrend die Uberlegungen zu
Tsujis numerisch trivialen Faserungen in den Kapitebnd 3 aus p2] stammen. Die
Definition, Konstruktion und Eigenschaften numerisch-trivialer Blatterungen in Kapi-
tel 6 finden sich in R1], ebenso wie die Einfliihrung in die Resultate von Boucksom et
al. in Kapitel4 und die Beispiele in Kapitéef.

Die Resultate aus Kapitélsind neu; sie entstanden als genauere Ausfihrungen einiger
Argumente in 1].
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CHAPTER O

Introduction

Algebraic curves were created by God,
algebraic surfaces by the devil.
Max Noether

This left little room for algebraic threefolds.
Janos Kollér

0.1. Classification of algebraic varieties

Classic algebraic geometry started with studying algebraic curves, first in the ancient
world the conic sections, then in modern times, starting with Newton, plane algebraic
curves of higher degree (especially their singularities), and in the 19th century also space
curves. Finally Riemann gave a quite satisfactory structure theory of algebraic curves,
using analytic and topological methods.

At the turn of the 20th century the Italian school of Castelnuovo, Enriques and Severi
achieved a satisfactory structure theory for algebraic surfaces. Their work, however,
lacked the Hilbertian rigor, and after their students presented frequently false results on
algebraic threefolds the whole subject started to fall into disrepute.

Systematically using methods from commutative algebra Van der Waerden and af-
terwards Zariski and Weil placed algebraic geometry on solid foundations again,
and Grothendieck united in his unfinished magnum opus “Eléments de géométrie al-
gébrique” commutative algebra and algebraic number theory with algebraic geometry.
By the end of the sixties, the foundational work was mostly done and attention turned
towards the classical problems. First the theory of curves and surfaces was redone and
completed. In 1972 litaka proposed some bold and interesting conjectures concerning
higher-dimensional varieties, and Ueno proved in 1977 the first structure theorem about
threefolds along this path. It was clear, however, that the scope of their approach was
limited. Above all an analog of the minimal models of surfaces was missing.

The major breakthrough came in 1980: Using several new ideas Mori accomplished the
first major step towards proving the existence of minimal models for higher-dimensional
varieties. At the same time Reid defined what such minimal models should be after all
and pointed out several ways to use them if they exist. For threefolds, the emerging
program was successfully finished by Mori and Kollar by the end of the eighties, and

15



16 0. INTRODUCTION

several deep structure theorems for threefolds were proven, among them the abundance
conjecture and the finite generatedness of the canonical ring.

Both conjectures (in dimension 4) resp. theorems (in dimensig@hdescribe properties

of the canonical line bundl& x that is the top exterior power of the cotangent bundle
QL = T% on a smooth algebraic variety. The bundlg is so important because of the
following two observations:

First, global sections of holomorphic line bundles define rational maps into other alge-
braic varieties, e.g. the projective spa€®®”, and the canonical bundle exists on every
smooth algebraic variety.

Second, the canonical bundle has good functorial properties under birational maps that
are rational mapg : X --» Y being isomorphisms on an open subSet X: the map

f induces an isomorphism between the global sectiorfs pfand Ky-. This is also true

for all powersK$™, but does not hold e.g. for the anticanonical bunillg' and its
powers.

The functoriality w.r.t. birational maps is essential in a very general strategy for obtaining
structure theorems of algebraic varieties. This strategy was already used by the Italian
school to classify algebraic surfaces:

Step 1: First define an equivalence relation on all algebraic varieties by declaring
two algebraic varieties as equivalent if they are birational. Try to understand
how two equivalent varieties are connected. In particular one would like to
have some “simple” types of operations leading in finitely many steps from
one variety to the other.

Step 2: Next look for a distinguished representative, thimimal modelin every
equivalence class.

Step 3: Finally use the properties of these minimal models to get a survey over
all equivalence classes.

The “simple operations” leading from an algebraic surface to birationally equivalent
surfaces are blow ups and blow downs of ratiofal )-curves that are curves CP*

with self-intersection-1. The minimal models are surfaces on which there are+ig-
curves for blowing down. Following Kodaira the equivalence classes will be roughly
classified according to an invariant given by the rational mfaps X --» CP" induced

by the global sections d[(;‘?m, theKodaira dimensionlt is defined as

K(X) := maxdim f,,

resp.—oo if HO(X, K¢™) = 0for all m € N. The Kodaira dimensior(X) is constant

in an equivalence class because of the functorialiti{gf, and it always is< dim X.

The minimal models in the equivalence classes witl{) = —oco areCP? and ruled
surfaces that are surfac&swith a morphismf : X — E onto a curvel whose fibers

are all= CP'. There are also complete lists for equivalence classes of surfaces with
k(X) = 0,1, whereas for surface’¥ with x(X) = 2 (so-calledsurfaces of general
type), at least some relations between other invariants are known.
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litaka’s works use further properties of the pluricanonical bunéi€s*, which also hold
in dimension> 3: If x(X) > 0 the image varietiex (™) := f,,(X) become birational
to each other forn sufficiently large and divisible. Consequentlym H(X, K{™)
grows likem*(X) and thecanonical ring

R(X) = @5 HO(X, KZ™)

has transcendental degregX ) + 1 overC. By abuse of notation the birational equiva-
lence class of th& (™) is calledlitaka variety I(X) of X. litaka proved that for every
X there exists a birational morphism: X — X and a morphisny : X — I(X)
such that the fibers of have Kodaira dimensiof over a dense open subsetgfX).
Then f is calledKodaira-litaka fibration and by constructiodim I(X) = «(X), but
not necessarily

k(I(X)) =dim I(X) = x(X).
Simple counter examples are elliptic fibrations oférwith multiple fibers. In 2001
Campana was able to interprBtX) together with the Kodaira-litaka fibration as an
“orbifold” of general type, i.e. having maximal Kodaira dimension.
In addition litaka asked if thex (™) get at some point isomorphic, fer sufficiently
large and divisible. This is true if the canonical ring is finitely generated.
On threefolds the finite generatedness of the canonical ring was shown by using Mori
theory. Mori's landmark idea was that the geometry of projective algebraic varieties is
controlled by the curves lying on them, especially the rational curves. To demonstrate
this he introduced the cone of curves &n

NE(X) C Hy(X,R)

that consists of all positive linear combinations of the homology classes of algebraic
curves onX. To every morphismf : X — Y with connected fibers between pro-
jective normal varieties he associated a subcdife(f) generated by all curves with
f(C) = point. The first fundamental but trivial observation of the Mori program is that
NE(f) determineg uniquely. Furthermorey E( f) is an extremal subcone 8f E(X)

hence a face on the boundary.

The first fundamental result of Mori was the converse of this statement: every extremal
ray of NE(X) whose homology class interseetg K x ) negatively is associated to a
morphismf : X — Y of one of the following three types:

e aFano contractioronto a varietyy” with dimY < dim X,
e a divisorial contractionof an exceptional locustl of codim £ = 1 with
dim f(F) < dim E, andf is an isomorphism oX — E, or
e a small contractionfor which f is still an isomorphism onX — F, but
codim F > 2.
The morphismsf : X — C from a ruled surfaceX to the base curv€’, for exam-
ple, are Fano contractions, and the blow down ¢fd)-curve E on a surface is the
divisorial contraction off because the restriction éf x to a fiber of f resp. toE are
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negative. Small contractions do not occur on surfaces. Starting with a smooth projective
surface a finite number of divisorial contractions either leads to a suifaséh a Fano
contraction, or there will be no extremal ray ME (X)) intersectingK x negatively. In

this caseK x is callednef and such surfaces are exactly the minimal models described
above.

Defining minimal models in the same way in higher dimensions causes major technical
problems: Both divisorial and small contractions can leagingularvarieties. Whereas
possible singularities of divisorial contractions may be controlled rather well, there even
does not exist a canonical bundle on the image of a small contraction — hence it is not
possible to define suitable extremal rays to continue the contractions. Instead Reid and
others introduced flips and flops replacing the exceptional Iétoka small contraction

with another exceptional locug’, via a surgery. On threefolds Kollar and Mori (and
many others) were able to show that

¢ a finite number of divisorial contractions and flips leads from a smooth pro-
jective threefold to a possibly singular minimal model in the sense described
above and

¢ two of these minimal models are birational to each other iff they can be con-
nected by a finite number of flops.

Thus a satisfactory definition of minimal models was found.

In arbitrary dimensions the study of rational curves on a projective vaXegajlows a

first survey over the birational equivalence classes. First, Mori theory implies the gen-
eralization of the observation that on surfaces contractions contract rational curves: In
arbitrary dimensions the exceptional locus of a divisorial or Fano contraction is covered
by rational curves, too. Consequently, if there exists a Fano contracticf tme vari-

ety is covered by rational curves — such varieties are calt@diled Conversely, every
uniruled variety is covered by rational curves whose common homology class intersects
the Chern clasg; (K x) negatively. In particularK x and any powefs ™ cannot have
global sections, since such a section would positively intersect one of the covering ratio-
nal curves. Hence the Kodaira dimension¥fs —oco.

An important conjecture predicts that this is a complete geometric characterization:

k(X) = —00 < X uniruled.

For threefolds Miyaoka proved this conjecture by passing from a general non-uniruled
variety to a minimal model with neK'x. Then he obtained the claim from vanishing
theorems for nef line bundles and results classifying threefolds.

The conjecture can be interpreted as case zero of a more general conjecture: A nef line
bundleL has anumerical dimension

v(X, L) :=max{k : ¢;(L)* > 0},
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and theabundance conjecturdaims that for non-uniruled varieties with nef canonical
bundle (e.g. on minmal models)

k(X)) =v(X,Kx)=rv(X).

The abundance conjecture is important because it establishes a connection between the
complex geometry of the canonical bundle and its powers and the topological invariant
v(X).

Substantial progress in classification theory was achieved when in 1992 Kollar, Miyaoka
and Mori introduced the notion of rationally connected varieties. They are defined as
varieties where two general points can be connected by a (chain of) rational curve(s).
Around 2000 Graber, Harris and Starr proved that every uniruled variety allows a rational
map f : X --» Y on a non-uniruled variety” such thatf is a morphism over an open
subset of” and the fibers of are maximal rationally connected subvarietieXofThen

f is called the maximal rationally connected quotient, for short MRC-quotieAt.of

From all these theorems and conjectures emerges a first picture of a rough classification
of birational equivalence classes of projective varieties:

e If X is auniruled varieties i.e. covered by rational curves, there exists an MRC
guotient
f:X--Y
on a non-uniruled variety .
e If X is non-uniruled them(X') > 0, and the Kodaira fibration

f:X--»Y

mapsX onto a variety of general type (at least in Campana’s “orbifold” sense),
and the (general) fibeis of f have Kodaira dimensiof(F') = 0. The dimen-
sion of the basi¥” is given by the topological invariant numerical dimension
v(X) if Ky is nef.
All conjectures holding true the “building blocks” of projective varieties would be
rationally connected varieties, varieties with Kodaira dimensiamd varieties of gen-
eral type.

0.2. Numerically trivial fibrations and foliations

In this Habilitationschrift several works are bundled dealing with new approaches to
the abundance conjecture. On the one hand, these works further develop results and
methods of Boucksom, Demailly, Paun and Peternell. They showed in 2004 how to state
the abundance conjecture without using the existence of minimal models, which is only
conjectural up to now. To this purpose they considered pseudo-effective line bundles,
which satisfy a weak positivity property as the limit of effective line bundles and which
contain nef and effective line bundles.
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Since e.g. the line bundle associated to the exceptional diisof the blow up of

P2 in a point has negative self intersection the definition of the numerical dimension
cannot be immediately transfered to pseudo-effective line bundles. Instead, Boucksom
et al. introduced a new intersection product on the cohomology classes of the pseudo-
effective line bundles, which always stays0 by removing the exceptional loci of the

line bundle in the classical intersection product. The technical difficulty lies in the fact
that these exceptional loci need not always be of codimensiaaF in the blow up of

IP2. Boucksom et al. solved this problem in an analytic manner via considering arbitrary
(almost) positive metrics on line bundles; algebraically this approach corresponds to
pulling back to arbitrary blow ups. The new intersection product is the same as the
classical one on nef line bundles.

Next, Boucksom et al. defined the numerical dimension of a pseudo-effective line bundle
as

v(X, L) :=max{k : (c;(L)¥)>o > 0},

where (¢1(L)¥)>o denotes the new intersection product. Finally they prove #at

is always pseudo-effective on a non-uniruled smooth variety and are able to state the
abundance conjecture for such varieties.

The second approach developped by the papers bundled in this Schrift was first studied
by Tsujiin 1999 and is most suitably motivated in a differential-geometric way: If there
exists a hermitian metric with semi-positive curvature on a pseudo-effective line bundle
L then the fibers of the litaka fibration are tangential to the null directions of the metric
curvature. Vice versa one may ask independently from the litaka fibration whether all or
atleast some of the null directions belonging to the semi-positive curvature of a metric on
a pseudo-effective line bundle can be interpreted as the tangent directions of a fibration.
This idea can be unfolded algebraically or analytically:

e Algebraically null directions of the curvature are translated as curves on which
the line bundle is numerically trivial. For nef line bundles this allows to con-
struct the so called nef fibration which will be described in Chapter

e For arbitrary pseudo-effective line bundles technical difficulties result from
the fact that positive hermitian metrics dnmay be singular. In Chapt&
the notion of numerical triviality of line bundles on curves or also higher-
dimensional subvarieties w.r.t. such singular metrics will be clarified. The
most elegant characterization in Theor88 states that the pull back of the
curvature current onto the subvariety must be the sum of integration currents
of divisors. In ChapteB a fibration with maximal-dimensional numerically
trivial fibers is constructed, the pseudo-effective reduction map.

It turns out that the litaka fibration of a line bundleis the pseudo-effective reduction
map w.r.t. a metrid.,, generated by the sections of a sufficiently high pol/&f*. Since

this metric is so closely related to the existence of sections the identity of fibrations
doesn't tell too much on the abundance problem for the line buhdle
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The nef fibration, however, is defined independently of special metrids bnt some-
times it is finer than the litaka fibration df. Especially Exampl&.1 suggests how to
explain this difference: here, the numerically trivial directions are not tangential to a
fibration but to a foliation.

The notion of a numerically trivial foliation for pseudo-effective line bundles on a com-
pact Kéhler manifold will be defined in Secti@l, and a maximal numerically trivial
foliation will be constructed. The necessity of the technically demanding definition will
be illustrated by Exampl&.2 Instead of the unique positive but very singular metric

on the considered line bundle one has to look at approximating sequences of almost
positive metrics, since the positive metric carries not enough information. Taking into
account many almost positive metrics at the same time fits with the methods introduced
by Boucksom et al. for defining the positive intersection product. They will be outlined
in detail in Chapted.

In Sectionss.3and6.4it will be proven that the litaka fibration contains the numerically
trivial foliation, which in turn contains the nef fibration of a nef line bundleThus we
obtain a sufficient criterion for the split between litaka and nef fibration: The maximal
numerically L-trivial foliation is not a fibration.

Now, the abundance conjecture states that this cannot happen for the canonical bundle
on a non-uniruled variety. Furthermore it claims that the codimension of the leaves of
a numericallyK x -trivial foliation equals the numerical dimensiofX'). The intuition
behind the notion of numerical triviality described above suggests that the numerical
dimension is at least a lower bound for the codimension of the foliation leaves: The
powersc; (L)* are computed as the exterior power of the curvature form of a metric on
L. Hence if this metric is semi-positive and its null directions contain the leaves, the
desired bound is correct.

This bound will be proven in Sectiod.2, but under an additional assumption on the
singularities of the foliation: they must be isolated. To remove this assumption one
carefully has to study the behaviour of almost positive metrics around singularities of
foliations. This is not done up to now and seems to be very difficult because of the
unknown description of foliation singularities.

Finally, Example7.3 shows that the inequality can be strict. This should be seen as
another hint to the extremely intricate geometrydfblown up in9 points. On the other
hand, the abundance conjecture tells once more that such phenomenons cannot occur on
non-uniruled varieties.

0.3. Previous publications

Most of the results of this Schrift have been published earlier.

The nef fibration in Chaptel was constructed inl] whereas the investigations on
Tsuji's numerically trivial fibrations in Chapter und 3 originally come from 22].
The definition, construction and properties of numerically trivial foliations in Chapter
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will be found in [21] as will be the introduction to the results of Boucksom et al. in
Chapterd and the examples in Chaptér

The results from Chaptes are new. They emerged as a more detailed explanation of
some arguments ir2[].
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CHAPTER 1

The nef fibration

From the algebraic-geometric point of view, the most natural way of defining numerical
triviality for subvarieties with respect to a given line bundle is to use the standard inter-
section numbers of the line bundle with curves on the subvariety. Relevant definitions
are given now.

DEFINITION 1.1. Let X be an irreducible reduced projective complex space (pro-
jective variety, for short). A line bundlg on X is numerically trivial, iff L.C' = 0 for
all irreducible curvesC C X. The line bundle is nef iff.C > 0 for all curvesC.

Let f : Y — X be a surjective map from a projective variéty Then clearlyL is
numerically trivial (nef) if and only iff* L is.

DEFINITION 1.2 Let X andY be normal projective varieties anfl: X --» Y
a rational map and letX° C X be the maximal open subset wherés holomorphic.
The mapf is said to be almost holomorphic if some fibers of the restricfipg. are
compact.

In this chapter we want to prove the following structure theorem for nef line bundles on
a projective variety.

THEOREM 1.3, Let L be a nef line bundle on a normal projective variéfy Then
there exists an almost holomorphic, dominant rational nfiapX --+ Y with connected
fibers, called a “reduction map” such that

(i) L is numerically trivial on all compact fibersF of f with
dim F =dim X —dimY

(i) for every general point € X and every irreducible curvé' passing through
2 with dim f(C) > 0, we havel.C > 0.

The mapf is unique up to birational equivalence bf.
This theorem was stated without complete proof in Tsuji's papdr [

1.1. Construction of the reduction map

1.1.1. A criterion for numerical triviality. In order to prove Theorer.3 and
construct the reduction map, we will employ the following criterion for a line bundle to
be numerically trivial:

23
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THEOREM1.4. Let X be an irreducible projective variety which is not necessarily
normal. LetL be a nef line bundles oX. ThenL is numerically trivial if and only if
any two points inX can be joined by a connected chaihof curves such thakt.C' = 0.

In the remaining part of the present section we will prove TheaotetnThe proof will

be performed by a reduction to the surface case. The argumentation is then based on the
following statement which in the smooth case is a simple corollary to the Hodge Index
Theorem.

PROPOSITIONL.5. LetS be an irreducible projective surface which is not neces-
sarily normal and lety : S — T be a morphism with connected fibers onto a curve.
Assume thal € Pic(S) is a nef line bundle and there exists a cutWeC S such that
q(C) =T and

LF=LC=0

holds whereF' is a generaly-fiber. ThenL is numerically trivial.

PrROOF If S is smooth seD = C + nF wheren is a large positive integer. Then
we haveD? > 0. By the Hodge Index Theorem it follows that

(L.D)*> > L*>.D?

henceL? = 0 since by our assumptions.D = 0. So equality holds in the Index
Theorem and therefork and D are proportionalZ = kD for some rational numbeé.
Since0 = L? = k2D? andD? > 0 we conclude that = 0. That ends the proof in the
smooth case. B L

If Sis singularlety : S — S be a desingularization &f andC' c S a component of
§~1(C) which maps surjectively ont6'. Note that the fiber of o 6 need no longer be
connected and consider the Stein factorization

~ 6

desing.
q q

T finite

It follows immediately from the construction th@C') = T', thaté* (L) has degreé on
C and on the general fiber gf The argumentation above therefore yields #1df) is
trivial on S. The claim follows. O

1.1.2. Proof of Theorem1.4. If L is numerically trivial the assertion of Theo-
rem1.4is clear. We will therefore assume that any two points can be connected by a not
necessarily irreducible curve which interseétsvith multiplicity 0 and we will show
that L is numerically trivial. To this end choose an arbitrary irreducible cusve X.

We are finished if we show thdt B = 0.
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Leta € X be an arbitrary point which is not containedih For anyb € B we can find

by assumption a connected, not necessarily irreducible cyreentaininga andb such

that L.Z, = 0. Since the Chow variety has compact components and only a countable
number of components we find a famil{; ).cr of curves parametrized by a compact
irreducible curvel' C Chow(X) such that for every poirti € B there exists a point

t € T such that the curve; contains bothu andb. We consider the universal family

S C X x T overT together with the projection morphisms

s " x

q
T

CLAIM 1. There exists an irreducible compone$g C S such thatp*(L) is nu-
merically trivial on Sj.

PrROOF OFCLAIM 1. As all curvesZ; contain the point the surfaceS contains
the curve{a} x T. LetS; C S be a component which contains the cufvg x T.
Since{a} x T intersects all fibers of the natural projection morphigemd sincep* (L)
is trivial on {a} x T an application of Propositioh.5yields the claim. O

CLAIM 2. The bundle*(L) is numerically trivial onS.

PROOF OFCLAIM 2. We argue by contradiction and assume that there are compo-
nentsS; C S wherep* (L) is not numerically trivial. We can therefore subdivide the set
I of irreducible componentS; of S into two subvarieties as follows:

Ly = {i€l:p*(L)s, is numerically trivial},
Liwiv = {i€l:p"(L)s, is not numerically trivial}.

Set Sy iy = UieImv S; and Sy = Uz'ezm,»iv S;. By assumption and Claim 1 both
varieties are not empty. Sinceis the universal family over a curve ihow(X) the
morphismyg is equidimensional. In particular, since all compone$itsc S are two-
dimensional every irreducible componefitmaps surjectively ont@'. Thus ift € T'is

a general point the connected filer! (¢) intersects bott$;,;, andS,.i.. It is therefore
possible to find a curv® C S,y N Sueriv Which dominated'.

That however contradicts Propositiérb: On one hand sinc® C Si.iy, the degree of
p*(L)|p is 0. On the other hand we can find an irreducible composgnt Syiv C S
which containgD. But becausg* (L) p has degree on the fibers of; s, Propositiori.5
asserts that*(L) is numerically trivial onS; contrary to our assumption. This ends the
proof of Claim 2. O

We apply Claim 2 as follows: I3’ S is any component of the preimage!(B) then
p*(L).B' = 0. That shows that.B = 0 and the proof of Theorerh.4is done. O
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1.1.3. Proof of Theoreml1.3. In order to derive Theorerh.3 from Theoreml.4
we introduce an equivalence relation &nwith settingz ~ y if  andy can be joined
by a connected connected cuesuch thatL..C' = 0. Then by [L1] or [12, AppendiX]
there exists an almost holomorphic map X --» Y with connected fibers to a normal
projective varietyY” such that two general pointsandy satisfyz ~ y if and only if
f(z) = f(y). This mapf gives the fibration we are looking for.

If F'is a general fiber theh » = 0 by Theoreml.4.
We still need to verify thal..C' = 0 for all curvesC' contained in am@rbitrary compact
fiber Fyy of dimensiondim Fy = dim X — dimY. To do that letd be an ample line
bundle onX and pick
Dy,...,Dy € /mH|
for m large such that
Dq..... D Fy=C+ '

with an effective curve®’. Then
L(C+C')Y=L.D,.....Dy.F

with a general fibeF’ of f henceL.(C'+C’) = 0. SinceL is nef we concludé..C' = 0.
U

1.2. Nef cohomology classes

In Theoremsl.3and 1.4 we never really used the fact thatis a line bundle; only the
property that; (L) is a nef class is important and even rationality of the class does not
play any role. Hence our results directly generalize to nef cohomology classes of type
(1,1). To be precise we fix a projective manifold (we stick to the smooth case for sakes
of simplicity) and we say that a classe H'''(X,R) is nefif it is in the closure of the
cone generated by the Kahler classes. Moreavisrnumerically trivial ifo.C' = 0 for

all curvesC C X.

If Z C X is apossibly singular subspace then we saydhamumerically trivial onZ if

for some (and hence for all, se#]) desmgulansater — Z the induced formf (@)

is numerically trivial onZ i.e. f* (a).C = 0 for all curvesC' C Z. Heref:Z — X
denotes the canonical map. Similarly we defineo be nef onZ. If Z is smooth this

is the same as to say that; is a nef cohomology class in the sense gt is in the
closure of the Kahler cone df.

THEOREM 1.6. Let a be a nef cohomology class on a smooth projective variety
X. Then there exists an almost holomorphic dominant rational thapl --» Y with
connected fibers such that
(i) « is numerically trivial on all compact fibersF® of f with
dimF =dim X —dimY.
(ii) for every general point € X and every irreducible curvé' passing through
2 with dim f(C) > 0 we haven.C > 0.
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The mapf is unique up to birational equivalence bf.
In particular if two general points oX can be joined by a chait' of curves such that
a.C = 0thena = 0.

1.3. The nef dimension

SinceY is unique up to a birational map its dimensidim Y is an invariant ofZ. which
we compare to the other known invariants.
DEFINITION 1.7. The dimensionim Y is called the nef dimension éf We write
n(L) := dimY.
As usual we lei/(L) be the numerical dimension &f, i.e. the maximal number such
thatLF. H™= % £ 0.
PrROPOSITION1.8. The nef dimension is never smaller than the numerical dimen-
sion:
v(L) < n(L).
PrRoOOF. Fix a very ample line bundlé/ € Pic(X) and setv := v(L). Let Z be
a general member cut out by— v elements of H|. The dimension ofZ will thus be
dim Z = v and sincel.”.H"~" > 0 the restrictionL, ; is big (and nef). Consequently
dim f(Z) = v since otherwis& would be covered by curves which are contained in
general fibers off so thatL.C' = 0 contradicting the bigness df| ;. In particular we
havedimY > dim f(Z) = v and our claim is shown. O
COROLLARY 1.9. The nef dimension is never smaller than the Kodaira dimension:
k(L) < n(L).
PrRoOFE This follows fromk (L) < v(L) (see L4, (6.10)]). O

REMARK 1.10. As mentioned in the Introduction the abundance conjecture predicts
k(L) =v(L)
which impliesk (L) = n(L).
On the other hand there exist varieti€sand nef line bundle # Kx such that
k(L) <v(L) < n(L).
Such examples will be discussed in ChapteTheir thorough analysis was the starting
point of the construction of numerically-trivial foliations.






CHAPTER 2

Tsuji's intersection numbers

In [37], H. Tsuji stated assertions on the structure of pseudo-effective line buhdles

a projective manifoldX similar to the nef reduction of the last chapter. In particular

he postulated the existence of a meromorphic “reduction map”, which essentially says
that through the general point df there is a maximal irreducible subvariety which

is flat w.r.t. a positive possibly singular hermitian metiion L. The purpose of this
chapter is to clarify and define this meaning of “numerical trivial” via the introduction

of intersection numbers df with curves depending oh.

We study three such definitions which are contained in Tsuji’s arguments and solve the
subtle question when they are equivalent. We need all three to construct the reduction
map in the next chapter. The first is

DEFINITION 2.1 Let X be a smooth projective complex manifold, lebe a holo-
morphic line bundle onX with positive singular hermitian metrig. If C C X is an
irreducible curve with normalizatiom : C' — C' such thath is well defined orC, i.e.
h|c # +o0o, then define the intersection number

(L).C i= limsup —%(C, Opma” L) © T((xh)™)).

m—00 m

Here, Z((n*h)™) denotes the multiplier ideal sheaf of the pulled back mettith)™
onC.

This definition leads directly to the birational invariance of the intersection numbers, i.e.
for a birational morphism we havg: X — X
(f*L, f*h).C = (L,h).C

whereC is the strict transform (s. sectich3).
The next definition is contained in

ProprPosITION2.2. If C is smooth,
(L,h).C = L.C = v(Oyc, ),
zeC

wherev (0 ¢, x) is the Lelong number of the curvature curredy restricted toC' in
zeC.

29
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This equality gives a more geometric interpretation of the intersection numbers (espe-
cially in the case of analytic singularities, s. Propositiboh7) and is an important step
towards a last equality. This is the most subtle one, and to formulate it properly, one has
to remember two facts:

e The sets where plurisubharmonic functions are equaldo are pluripolar
sets, whose structure is difficult to describe. They are more complicated than
countable unions of algebraic sets, but at least they are still of Lebesgue mea-
sure 0, cf. p5).

e For a positive current®, the level sets of the Lelong numbers
E.(©) ={x € X|v(0,z) > ¢} are analytic subsets df ([35],[14, (2.10)]).

So it is useful to introduce the following notion:

DEFINITION 2.3. Let X, L, h be as in the previous definition. A smooth curve
C C X will'be called(L, h)—general iffh ¢ is a well defined singular metric afi and

(i) C intersects no codim-2-component in any of Bigh),
(i) C intersects every prime divisaP C E.(h) in the regular locusD;,
of this divisor, C does not intersect the intersection of two such prime
divisors, and every intersection point has the minimal Lelong number
v(h,z) = v(h,D) := min,ecp v(h, 2),
(i) forall x € C, the Lelong numbers

v(hic,x) =v(h, ).

Using methods of31] it is possible to show that in families of curves coverilig(e.g.
appropriate components of the Chow variety) every curve outside a pluripolar set is
(L, h)—general, see Theoreth5. We can even prove the stability of this notion under
certain blow ups, see Lemn2a7. The main reason for introducing this notion lies in the
equality

Z(h™) - Oc =Z(h")|c = Z(hjg,),

which is true for(L, h)— general curves. From this one easily gets the announced last
equality

THEOREM2.4. For (L, h)—general smooth curves C X,

1
(L, h).C = limsup EhO(C, Oc(mL)@Z(h™) - O¢),

m—00

whereZ(h™) - O¢ is the image of (h™) @ O¢ in O¢.

This equality is needed in order to be able to interchange restriction (to cijwegth
taking global sections (of the sheéfx(mL) ® Z(h™)) as in the proof of the Key
Lemma3.4in the next chapter. There are explicit counterexamples for arbitrary curves,
s. section2.1.3 On the other hand the equality is true in general in case of analytic
singularities, s. Propositio2.15
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2.1. (L, h)-general curves

We start with properties dfZ, h)-general curves.

2.1.1. Slices of positive currents.The aim is to prove the following

THEOREM2.5. Letw : X — B be a smooth familyX’ of smooth projective curves
over a smooth quasiprojective bage Let L be a pseudo-effective line bundle an
andh a positive singular hermitian metric ab. Then there is a pluripolar se¥z C B
such that fora € B — N, every fibrer—!(a) is an(L, h)—general curve.

This Theorem is essentially a consequence of Ben Messaoud’s

THEOREM 2.6. Let M, G be two complex varieties of dimensiorand k, let ¢
be a plurisubharmonic function o/ and letf : M — G be a submersion admitting
a holomorphic sectios. Then there exists a pluripolar sét C G such that for all
a € G'\ E, the restricted plurisubharmonic functiaf; -1,y # —oo and

v(9,s(a)) = v(df-1(a), s(a)).
PrROOF S.[31, Cor. 5.4]. O

PROOF OF THEOREM 2.5. Take an open subseU' <C X such that
7 :U = AF x A — AF with A c C the unit disk. Apply Theorer.6to the family

U x A9 ARy A, the pulled back plurisubharmonic function and the section
s:AF X AU XA, (bt)— (bt,t).

Since the projection of(A* x A) on U is an isomorphism there is pluripolar set
Ey c Usuchthatforalk e U\ Ey

v(9,2) = V(jx—1(x(2)), T)s

for any plurisubharmonic functiogp onU x A. Setting

¢ = prir(dn),

the pull back of the plurisubharmonic weighy of h in U, it is also true that

v(Ph, ) = V(P|r—1(x(z)), T)-

Since the countable union of pluripolar sets is again pluripolar the same is true for a
pluripolar setE C X. The other two requirements of Definitich3 for an (L, h)—
general curve also show that these curves must be fibres outside the countable union of
analytic subsets, which is a pluripolar set. This shows the Theorem. O
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2.1.2. Birational invariance of (L, h)—generality.

LEMMA 2.7. LetC be a smooti{Z, h)—general curve orX, and letZ C X be a
smooth subvariety with' ¢ 7, letw : X — X be the blowup o with centreZ. Then
the strict transfornC of C'is still (7* L, 7*h)—general.

PROOF. The assertion is clear as long ds) C' = (). Otherwise, letr € Z N C be
a point such that(h|c, z) = 0. Then fory the unique preimage afin C,

0=v(r*h,y) < v(t*hg,y) = v(hic,z) = 0.
If x € Z N Cis apoint such that(hjc, =) > 0 thenC will intersect transversally a
prime divisorD of someE.(h). Consider two cases:

(a) Z is a point. Then the intersection of the strict transfoxths) D = (), and
C intersects the smooth exceptional dividotransversally in a unique point
y € E with 7(y) = . Furthermore,

v(r*h, E) > v(h,D) = v(h,z) = v(hc,z) = v(m g, y),

hencev(n*h, E) = v(7*h z,y).
(b) dim Z > 1. Then the preimage af N D overz consists of one poing, and
by the same argument as in (a), replaciipy D, it follows

v(r*h, D) = v(x*h 5, y).

D cannot be singular ip since then(r*h &, ) > v(r*h,y) > v(7*h, D).
(I

2.1.3. A counterexample for non¢L, h)—general curves. First, one constructs a
convex functiony : R — R with slow growth at—oco (i.e. the derivation tends @)
such thaty(—oo) = —oco. For example, take

I forx > —1
x(z) = *ZZ=1%+(39+”)%+1 for —n—-1<z<-n

Then one considers the plurisubharmonic functiopr= max(log|z1], x(log|22])) on

C2. The Lelong numbers(t, z) are0 everywhere because of the slow growthyoht
—o0, but the restriction of ontoC' = {2, = 0} has Lelong number(¢c, z) = 1 for

all pointsx € C.

The induced metrié. may be extended to a metric of the relatively ample line bundle
O(1) on theP! —bundleC x P! which yields the counterexample.

2.2. Intersection numbers

The aim of this section is to prove Propositidr2 and Theoren2.4.
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2.2.1. Proof of Proposition2.2 The first step is to compare the sum of the re-
stricted Lelong numbers on arbitrary smooth cur¢esse X with hc # oo to the
ordinary intersection number ¢f with L:

LEMMA 2.8
Z v(hje,r) < L.C.
zeC
PROOF Sinceh,c is positive, the curvature curref@;”C > 0, too. By a theorem
of Siu, the Lelong level setB.(¢) = {x € X : v(¢,x) > ¢} are analytic 14, (2.10)].
But then there are only countably many poifits);eny on C with v(hic, z;) # 0. By
Siu's decomposition formulalf, (2.18)] the current®; ., — Zf;l v(hio,zi)[zs] is
still positive for arbitrary N (where[z;] is the integration current of the divisar;).
Consequently the first Chern class of tie divisor L, — ZiN:1 v(hic, i)z i8> 0,
henceL.C' — Zilil v(hic, ;) > 0, and the claim follows. O

LEMMA 2.9. LetC be a smooth curve antl a positive singular hermitian metric
onC. Then:
lim sup — deg Z(h™) = Z v(h,x).

mmee zeC

PROOF Z(h™) is a torsion free subsheaf 6f-, hence it corresponds to a divisor
onC, sayZ(h™) = O(—D,,), whereD,, is an effective divisor oi’. We show that

(2.2.1) mult, D, < v(h™, z) < mult,D,, + 1

This is true for arbitrary positive metriégs Choose a sufficiently small neighborhobd

of z such that(h,y) < 1forally € U\ {z}. Let ¢, and©,, be the plurisubharmonic

function and(1, 1)— current corresponding th in U. As explained in the proof of the

previous lemma the curre®@ = O, — v(h,x)[z] is still positive, withv(©,z) = 0,
v(0,y) < 1forally € U\ {z}. Lety be a plurisubharmonic function withi°y = ©.

Then¢y, = ¢ + v(h,x)log|z — x|, hencemult, Z(h) > |v(h,z)].

On the other hang:—2(#+ ¥ (ha)=v(hz)Dloglz—2]) g |ocally integrable around:

since the Lelong number im is < 1, by Skoda’s lemmall4, (5.6)]. This proves

Z(h)e = ((z — z)*(2)]), hence 2.2.7).

Now we conclude:

1 2.2. 1
hyfln—il)lop E degc D, ( = 1 lgljip E zezc |_V(h"rl7 J})J < h’;njgop E zezc V(hm’ l‘)
= Z v(h,z) < oo
zeC

On the other hand2(2.1) implies

1
lim —mult, D, = v(h,x).

m—oo M,
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Hence for everyny € N:

1 1
limsup — dego D,, = limsup — Z mult,D,,
m—oo 1M m—oo M
zeC
. 1
= hsln jgop o Z 1 mult, D,,, + Z mult,D,,
V(h,z)zm—o l/(h,z)<m%0

—
*
N>

. . 1
= mlgnoo . z); 1 mult, D,, + h;n :gop oo Z mult, D,,
v(h,x)>——

mq

Z v(h,x).

v(ha)>

mq

v(h,x)< -

mQ

%

where the equality«) follows from the fact tha{z € C : v(h,z) > m%,} is a finite set.

Since)", o v(h, ) < oo implies}>,, . .1 "= 0the lemma follows. O

™

Proposition2.2 follows from

1 1
(2.2.2)lim sup EhO(C'7 Oc(mL) ® Oc(—D,,)) = limsup - dego(mL — Dy,)

m— 00 m—0o0

PROOF. By Lemma2.8, degc Dy < 3,0
degc(mL — Dm) > 0.

Let g(C) be the genus of the cuné. If deg,(mL — D,,) < 2¢g(C)—2andmL — D,,
is not effective, H°(C, O(mL — D,,)) = 0. If deg.(mL — D,,) < 2¢g(C) — 2 and
mL — D,, is effective,

H°(C,0(mL — D,,)) < dego(mL — D,,) +1 < 2g(C) — 1.
If degi,(mL — D,,) > 29(C) — 2, thenH' (C,O(mL — D,,)) = 0, and @.2.2 will
follow by Riemann-Roch. O

v(hig, ) < mL.C. Consequently,

2.2.2. Proof of Theorem2.4. One main ingredient of the proof, which is useful in
many circumstances, is

EXTENSION THEOREM 2.10 (Ohsawa-Takegoshiy et Q2 C C™ be a bounded
open pseudoconvex sdt, = {z; = ...z, = 0}, 1 < i < n, a linear subspace,
andy € Psh(Q2) with ¢, # —oo.

Then there is a constant > 0, only depending on, such that for all holomorphic func-
tions f on L with [, |, [f|?e72¥d\ < oo, there is anF’ € O(2) such thatF|;, = f

and
/\F\Qe_wd/\g gc./ |f|2e™2YdNy
Q LNQ

PROOF S. [14, (12.9)]. O
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Now let C' be a smooth(L, h)— general curve in the smooth projective varieXy
Let Dy, Dy, be the effective divisors corresponding to the ideal shedVég:) and
Z(h™)|c, as explained in subsectiéh2.1 The Extension Theorem implies a natural
inclusion

Z(hie) € Z(h™)ic,

hencedeg D.,, < degq D.,, and we can prove

(2.2.3)lim sup ihO(C7 Oc(mL) @ Oc(—D),)) = limsup e deg(mL — D))
m m

similarly to 2.2.2.
The (L, h)—generality implies
Z(hi¢:) =Z(h")ic-

PROOF By Skoda’s Lemmal4, (5.6)],I(h"g)w = Z(h"™)c,e = Oc,, for all
pointsz € C with v(h,z) = v(h|c,x) = 0.
Letz € C be a point withv = v(h,z) = v(h|c,z) > 0. By definition of (L, h)-
generality there exists a divisér throughz locally defined byy € Ox ., « € D,z and
v =v(h,x) = v(h,D). As explained before it follows that

I(hm)fb = (ngl/J) C OX,x'

Similarly we show
I(hg)e = (9,0"") € Ocp.

2.3. Birational invariance

Since the intersection numbets, h).C' are computed by pulling back to the nor-
malizationC it is obvious that the intersection numbger* L, 7*h).C whereC is the
strict transform ofC' via the birational mapr does not change. The aim of this section
is to generalize this observation. In the next section we apply it in the case of analytic
singularities, thus obtaining a more algebraic definition of the intersection numbers.

LEMMA 2.11 Letu : C' — C be a finite morphism between smooth curves. Let
(L, h) be a pseudo-effective line bundle @rwith i©;, > 0. Then

(WL, p*h).C" =deg - (L, h).C.

PROOEF ltis enough to consider the following situation: Let A — A, z +— 2"
be a finite morphism on the unit digk and lety) € Psh(A) be a plurisubharmonic
function onA. Then

R e 1L )

1
v(¢,0) = liminf = =— = —v(¢opu,0).
(%,0) |z2|—0 log|z| lz2l—0 log|z™| n |z|—0 loglz] n ( )

Now the lemma follows by Propositidh 2 O
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PROPOSITION2.12 Letf : Y — X be a surjective morphism between smooth and
projective varietiesX andY. Let (L, h) be a pseudo-effective line bundle &nhwith
10y > 0. Then:

(L, h) numerically trivial on X <= (f*L, f*h) numerically trivial on Y.

PROOFR Assume first that L, h) is numerically trivial onX. LetC C Y be an
irreducible curve oY with f*h|c # co. Whenf(C) is a point, this point will lie in the
smooth part of, and there won't be any singularity bfon C. Consequently,

(f*L,f*h).C = f*L.C = L.f,.C = 0.
When f(C) is another irreducible curve€” then one can lift the morphisrfj to the
smooth normalizationé, C’, and the above equality follows by the lemma.
Similarly, assume thatf* L, f*h) is numerically trivial onY". Let C be an irreducible
curve onX with hjc # oo. Then there exists an irreducible cu@e C Y not lying in
the singularity locus of *h such thatf(C’) = C, and the argument is as above. O
2.4. Metrics with analytic singularities

The (L, h)— intersection numbers are much easier to handle if the plurisubharmonic
weight of the metridy has only analytic singularities:

DEFINITION 2.13 ¢ € Psh(Q), 2 € C™ open, is said to havanalytic singulari-
ties if locally, ¢ can be written as

_ @ 2 +
0= lg(Q_Ifil") +v, a eRT,
wherev is locally bounded, and thg are (germs of) holomorphic functions.

For example, in this case Theorélis true for arbitrary smooth curves. Furthermore
it is easier to computgL, h)—intersection numbers on log resolutions.

2.4.1. Properties of metrics with analytic singularities.By defini-
tion, the corresponding plurisubharmonic weight may locally be written as
¢on = Slog(X|fil>) + O(1). Define J(h/c) as the ideal sheaf of germs of
holomorphic functiong such that

if1<c- QA

One can easily prove thgt(h/«), is the integral closure of the ideal generated by the
germsf; (cf. [14, (1.11)]). Consequently/ (h/«) is coherent. Furthermore,

T(h/)s = (g1, 95) = & = 5 1og(}_|gil?) + O(1).

There exists log resolutions: X’ — X of 7(h/a) with X’ non-singular, i.e.
(a) p is proper birational,
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() prT(h/a) = T(h/a) - Ox, = Ox:/(—F) whereF is an effective divisor
on X’ such thatF" + Exc(u) has simple normal crossing support.
An existence proof is contained in the Hironaka package3gf. [
The main tool when dealing with metrics with analytic singularities is the following
theorem which may be seen as an algebraic definition of multiplier ideals:

THEOREM2.14 Z(h) = p.(Kq q — [aF]).
PROOF See [14, (5.9)]. O
2.4.2. Intersection numbers of metrics with analytic singularities.

PROPOSITION2.15 Let X be a projective manifold], a pseudo-effective line bun-
dle andh a positive hermitian metric ol having only analytic singularities. Then for
every smooth curv€ C X,

1
(L, h).C = limsup —h°(C, Oc(mL) @ Z(h™) - O¢),

m—00

whereZ(h™) - O¢ is the image of (h™) ® O¢ in O¢.

PrOOF Let D,,, D! be effective divisors corresponding to the torsion free ideal

m

sheaveg(hl"é),I(hm) -Oc¢ =Z(h™)|c- By (2.2.2,(2.2.3 itis enough to show that

1 1
(2.4.1) liminf — degy D,,, = liminf — degy D),

m—oo M m—oo M
Let (z;);eny be the countably many points off such thatmult,D,, # 0 or
mult, D], # 0 for somem € N. SinceC' is smooth there is an open subgétc X
containing all ther; such thatC = Ho N ... N H, is a complete intersection of very
ample smooth hypersurfacég C U. Itis enough to prove.4.]) onU.
Locally, let the weightp of h be of the form

o 2
S1og(3_ Ifi[%) +0(1).
Construct a log resolution : U" — U for 7 (h/a),y as above such that furthermore,

(c) the support of" contains the support dxc(u),

(d) the strict transformgZ; of the H; are smooth}y_ H; + F has simple normal
crossing support and* H,, = H], + > b; E; where theE; are prime compo-
nents ofExc(u).

One has

THEOREM 2.16 (Local vanishing) Leta € Ox be an ideal sheaf on a smooth
guasiprojective complex variety, and lety : X’ — X be a log resolution oft with
a-Ox = Ox/(—F). Then for any rationat > 0:

PROOF See P9, Thm.9.4.1]. O
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This theorem is used to prove the following inclusions of ideal sheavé$.orThere is
ac € N independent ofn such that

Z(h" )k, C Z( #,) CZ(h")\m, -

Equation 2.4.) follows by induction andim sup,,, o, = dp+c = limsup,, . ~d,

for sequence&d,,,)men C RT.

The proof of the inclusions is modelled on the proof of the Restriction Theo-
rem [29, Thm.9.5.1]. First of all,j, : H, — H, is a log resolution of
J(h/a) g, = J(h/a) - Oy, by property (d) ofu. Property(c) implies that there
exists ac € N independent ofn such that

Ky jy — [maF] — calF C Ky jy — [maF] — ijEj =: B,

and consequently

(W™ ), = e (Kyryx = [(m+ c)aF]), C 10:00/(B)m,,-
Now, B — H, = Ky, — [maF] — p*H,. Local vanishing applied on
J(h/ma) - O(—H,,) implies

R'Y11,.0y/(B — H.) = 0.
Then
1 Ov (B, = ()« (O, (Bymy))

follows by taking direct images in the exact sequence

0 — O/ (B — H.) % Oui(B) = Oy (By ) — 0.
SinceKHh/Hn = (KU’/U — Z bjEj)\H;La it follows

(11m,)«(Owy (Bia:)) = (Wm, )« (Kay ym, — [maFig,]) = Z(hy,),

hence the first inclusion.
The second inclusion follows by the Ohsawa-Takegoshi Extension Theorem. O

2.4.3. Computation of intersection numbers.This subsection shows how to
compute theg(L, h)— intersection numbers for metrics with analytic singularities on a
log resolution of the ideal sheaf of the singularities:

PROPOSITION2.17. Let X be a smooth projective variety, Iek, h) be a pseudo-
effective line bundld. on X with a singular hermitian metrié such that®,; > 0 and
h has analytic singularities. Ley/(h/«a) be the ideal sheaf ot these singularities, let
1 : X — X be alog resolution ofX with * 7 (h/a) = O(—F). LetC' C X be an
irreducible curve. Then
(L,h).C = p*L.C — F.C,
where( is the strict transform of.
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PROOF By birational invariance,
(L,h).C = (u*L,u*h).C.

But the pull back of: is just the metric given by’ by definition of analytic singularities
and log resolutions (s1f, (3.13)]). This implies the proposition. O






CHAPTER 3

Tsuji’'s numerically trivial fibrations

In this chapter we prove the existence of a reduction map with respect to th.pajr

of a pseudo-effective line bundle and a possibly singular positive hermitian metiic

on L. The aim is to get a reduction map with numerically trivial fibers where numerical
triviality is defined by the intersection numbers which we thoroughly discussed in the
last chapter:

DEFINITION 3.1 Let X be a smooth projective complex manifold, fetbe a
pseudo-effective holomorphic line bundle &nwith positive singular hermitian met-
ric h. Then a subvariety” C X is called numerically trivial (with respect taL, h)) if
each curvel’ C Y such thath ¢ # oo has intersection numbét., h).C' = 0.

Now we adjust Tsuji's assertions about the reduction map:

REDUCTIONMAP THEOREM3.2. Let X be a smooth projective complex manifold,
let I be a pseudo-effective holomorphic line bundleXowith positive singular hermit-
ian metrich. Then there exists a dominant rational mAp X --+ Y with connected
fibres such that:

(i) (L, h)is numerically trivial on fibres over points ifi lying in the complement
of a pluripolar set.
(i) For all x € X outside a pluripolar set, every curv€ through = with
dim f(C) > 0 has intersection numbégt, »).C' > 0.
Here, fibres off are fibres of the graplr'y ¢ X x Y — Y interpreted as subschemes
of X.
Finally, f is uniquely determined up to birational equivalenc&’of

There are two main differences t87). First, the reduction map need not be almost
holomorphic. A counter example will be given in sect®d. Second, Tsuji completely
ignores the fact that the singularities of arbitrary positive singular hermitian metrics lie
in pluripolar sets. This means for example, that the restriction of the singular metric may
be well defined only on fibres over points lying in the complement of a pluripolar set.
But this is not so bad: for example, the Zariski closure of the union of these fibres is
always the whole variety.

After these adjustments it is possible to apply Tsuji’s ideas in proving the Reduction
Map Theorem:

41
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(a) For each ample divisdi and each paifL, i) of a line bundle with a positive
singular hermitian metric one can defineadume

pn(X, H +mL) := (dim X)!'limsup !~ "™ * 1% (X, Ox (I(H + mL)) ® Z(h™))
l—o00
and we have the following

LEMMA 3.3
(L, h) numerically not trivial = limsup up(X, H +mL) = co.

m—0o0

(b) The lemma implies that for alV there exists amny such that for arbitrarily
largel > 0 there exist sections

0# 0, € H(X,Ox(I(H +moL)) @ Z(h™) @ mY?)

for a sufficiently general point € X.
(c) This is used for

KEY LEMMA 3.4. Letf : M — B be a projective surjective morphism
from a smooth variety/ to a smooth curvés. Let(L, k) be a pseudo-effective
line bundleL with positive singular hermitian metric. Suppose thatZ, ) is
numerically trivial on all fibrest” of f over a setB’ C B not of Lebesgue mea-
sure0. If furthermore there is afL, h)— general curvé? with f(W) = B,

(L, h) is numerically trivial onW, then(L, h) will be numerically trivial on
M.

The proof is done by contradiction: Ay as above must b@
(d) Finally the theorem is derived from the Key Lemma with methods similar to
those in [L].

The intersection number equality in Theor@+ is needed essentially in proving the
Key Lemma3.4, while the definition of the intersection number is used several times for
switching to birationally equivalent varieties.

In the last section we prove a criterion for numerical triviality of a variety w.r.t. a pseudo-
effective line bundle and a hermitian metric.

3.1. The volumey,;, and numerical triviality

The aim of this section is to prove Lemm3a3 and the existence of a sectien as in
step (b) of the introduction.
The proof is by induction odim X. If X = C'is a smooth curve, the volume will be

1
pn(C,H +mL) = 11msup7H0(C,oc(Z(H+mL))®I(hml)):

l—o00

= limsup % dego (Oc(I(H +mL)) @ T(h™)) =

l—o0

= dego H + (L®™ h®™).C = deg- H +m - (L, h).C,
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where the second and the third equality follow by equatib.@), while the fourth is a
consequence of the homogenity of Lelong numbers.

If dim X = n, then for everyn; > 0 there will be a hyperplane pencil in, H| with
smooth cente? C X such that the general elemefitof the pencil is smooth, and for
sufficiently generaF’, the restricted metrig| » # oco.

Step 1.(L, k) is not numerically trivial on a sufficiently general

LetC € X be anirreducible, not necessarily smooth curve such(thdt).C > 0.

CLaim 1. For arbitrary n; > 0, there exists a complete intersection
HiNn..NH,_1 :CUUOk, H; € \n,H|,
k
such that the”; are irreducible smooth curves with ¢, # oc.

PrROOF If n = 2, the curveC is a divisor, and forn > 0, the linear system
|mH — C| is very ample. Hence a general eleméfite |mH — C| is irreducible, and
h‘CI 5_'5 Q.

Forn > 2, the curveC is contained in an irreducible hypersurfaké with h g, # oo.

For somemn > 0 the linear systemynH — H'| is very ample. Hence a general element
H" € |mH — H'|is irreducible, anch ;;» # oo. Use induction orff; = H'UH"”. O

CLAIM 2. For every irreducible curve& C X, the following inequality is true:
(3.1.1) (L,h).C < L.C = v(O),D;)C.D;.
J
where the sum is taken over all irreducible divis@rs of X.

PROOF. Letr : C — C be the normalization of. By the decomposition theorem
of Siu [14, (2.18)],

iOn =Y v(04,D;)[D;] + R, R >0,
J
whereR is a positive residugll, 1)—current. Letp;, ¢r be plurisubharmonic functions
such that (locally)ld®¢; = [D;] anddd¢r = R. Then
Orepn = Y _v(Oh, D;)dd*(¢; 0m) + dd*(¢prom) = > v(On, D;j)[r*D;].
J J
Sinceliminf. ., > f;j(2) > >, liminf._.. f;() for arbitrary functionsf;, it follows

V(Opsp, ) > Zz/(@h,Dj)V([ﬂ*Dj],m) = ZV(@h,Dj) -mult,7m*D; Vo € C.
J

J
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But then
(L,h).C=LC =Y v(Opp,1) LC =Y (> v(On, D)) multyr*D;) =

zel zeC J

= LC-) v( D;)C.D
J

IN

O

By Theorem2.5, on a sufficiently general fibrg, there is a smooth irreducible curve
Cr=H,Nn...H |, H €|nH|,

n—1»

which is(L, h)—general. Consequently,
(L,h).Cr = L.Cp =Y v(O4,D;)Cp.D;.
J
But this implies together with3(1.1)
(L,h).Cr > (L, h).(C+ > Cy) >0,

becausd..Cr = L.(C + > C;). HenceF is not numerically trivial.
Step 2. Let 4 : X — X be the blow up ofX in the centerZ of the pencil, with
exceptional divisoz. Then

limsupuu*h()?,,u*(H—i—mL)) = 00 == limsup pp (X, H+mL) =

m—0o0 m—0o0

PROOF First, Ky = up*Kx + E. By the functorial property of multi-
plier ideal sheavesll, (5.8)] this impliesZ(h) = u.(O(F) ® Z(u*h)). Since
I(p*h) C O(E) ® Z(p*h) C K¢ (the sheaf of total quotient rings), it follows

M*I((M*h)ml) C I(hml).
By the projection formula,
(1 Ox (I(H +mL)) @ T((w*h)™)) = Ox (I(H + mL)) @ w.I((u*h)™).
Consequently,

WX, W Ox (I(H + mL)) @ Z((*h)™)) < h°(X, Ox (I(H +mL)) @ Z(h™)),
which implies the claim. O
Step 3.limsup,,,_, o, uu*h()N(, w*(H +mlL)) =
Forly > 0 the line bundléyu* H — FE is ample onX. It is enough to show that

1imsup,uu*h()z, lop*(H+mL) — E) = co.

m—00
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let p : X — P! be the projection onPl. Now, the sheaf
O (llop*(H +mL) — IE) @ Z((p*h)™!") is torsion free. Since is flat,

PO lop” (H + L) — 1B) © T(uW)™")) = &1 = P O(ay)

is also torsion free, hence a locally free sheaffdn Here, thea; = a;(m,l) and

r = r(m,l) depend onn, .

By upper semicontinuity and the Ohsawa-Takegoshi Extension Theorem, for a general
fibre I’

T(m,l) = hO(F, OF(ZZO,U*(H + mL) _ lE) ®I((N*h)m”0)|p)
> hO(F, OF(ZZOM*(H + mL) — lE) ®I<(N*h)i’;~”0))

Since(lop* (H +mL) — E) | is ample and L3, 19

7 |F) is not numerically trivial by step
2, the induction hypothesis afi implies

(3.1.2) limsup(limsupl*("*l)r(m,l)) = o0.

m— o0 l—o0

Let hy be aC> hermitian metric on the ample line bund®s (lop*H — E) with
Oy, > 0, let hy be anyC> metric on Opl(l); Then there exists a € Q- such
that©®,,, — cp*©y,, is a positive Kahler form orX .

Claim. &, ® Op1(—lc+ 1) is globally generated for alle N with [c € N, [ > 0.

PROOF By looking at the short exact sequence
0= Eni@0p(—cl) = En1@O0p(—cl+1) = &y @ Opr/my, — 0,

one sees that the vector bundfs,; ® Opi(—cl + 1) is globally generated if
HY(PY, &, ® Op1(—cl)) = 0. But this cohomology group is contained in

H(PY, R'p. (O (llop* (H +mL) — 1E) @ Z((1*h)™")) @ p* Op1 (—cl)).

This higher direct image sheaf i8 by Nadel vanishing 14, (5.11)], applied
on preimages inX of open affine subsets of! and the big line bundle
lop* (H+mL)—1E+p*Op (—cl) equipped with the positive singular hermitian metric
B @ (pha) ® ()™ O
The claim impliedim sup,_, . ! (min; a;) > ¢, hence
7" (X, O (lop™ (H + mL) — 1E) @ Z((w"h)™")) =
= T RO(PY Eny) > T Yr(m, 1)l Y (mina;) > ¢ 17 Yr(m, 1)

(3.1.2 implies step 3, and Lemnt&a3is proven.
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LEmMMA 3.5. LetX be a complex projective variety, ek, h) be a pseudo-effective
line bundle with positive singular hermitian metiic Assume thatZ, /) is not numeri-
cally trivial. Letz € X be a sufficiently general point such ti&th™), = Ox .. Then,
for any ample line bundlé/, for all N € N there existsny € N such that forl > 0
arbitrarily large there is a section

0# 0, € H'(X,0x(I(H +moL)) ® Z(h"™") @ mY",).
PROOE By Lemma 3.3 there exists anmgy such that the volume
pn(X, H+moL) > N4mX 4 1. Consequently, fof > 0 arbitrarily large,
NdimX +1
RO(X I(H L) @Z(hmoh)) > -~ dimX
(X, Ox(UH +moL)) @ T(0™1) = sy
SetF = Ox(I(H + moL)) ® Z(h™!). SinceZ(h™), = Ox., it is true that

NdlmX

WX, F @ Ox/m") = Gxyl®™~ + o(19™ X). Using the sequence

+ o(19mX),

0— H' X, Foml) - H'X,F) - H'(X,F ® Ox/m}

one gets the lemma. O

3.2. The Key Lemma

The proof of the Key Lemma.4 starts with the blow upr : M — MinW. Thena very
general curveR in the smooth exceptional divisd¥ M is (m*L,7*h)—general: If
D is a prime divisor in somé..(h) with D N W = (), then the strict transform of D
will have minimal Lelong number(7*h, f)) > v(h, D). Now choose a very general
curve R C W such that the branching locusy : R — W does not contain any of the
countably many pointg € W with v(hy,y) > 0. Then forz € D,

v(r*hig,x) = v(hyw,7(x)) = v(h,y) = v(h,D) < v(n*h, D) < v(r*h, z),

hencev(r*h|g,x) = v(n*h,z). For allz € R not lying on the strict transfornd of
one of the countably many divisoi3 as above, the Lelong numbe(n*h g, x) is 0,
hence

0=v(r*h,x) <v(r"hg,x) = 0.
Now assume thatL, h) is not numerically trivial onM. By birational invariance,
(m*L,7*h) is not numerically trivial onM (this is an application of the definition of
(L, h)—intersection numbers). For an ample line bundlen A, it follows

lim sup ,uh(Z/Vj,H +mna*L) =0

m—00

by Lemma 3.3 Let g € W be a sufficiently general point such that
Z(m*h™)e, = O, for all integersm. By Lemma3.5, for all NV there exists an
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mg such that for arbitrarily largé>> 0 there is a non-vanishing section
o€ HO(M, O (I(H + mor* L)) @ Z(x*h™") @ mM!) — {0}.
Let R be a family of smooth intersection curvessof- 2 divisors in \kH‘W| (with &
sufficientIyAIarge) throughry which coverlV. Choosed, > 0 such that for general
fibresF of f,
H" 2. F.(H - dyW) < 0.

Claim. There exists amy > 0 independent ofn such that for very general curves
R € R with hjr # oo and all0 < s < dol

(3.2.1) dim H(R, Or(I(H + mom*L) — sW) @ Z(x*h™) ) < Ag -1+ o(l).
PROOF Since(n*L,7*h) is numerically trivial onlV/,

1
(7*L,7*h).R = lim sup o degpr(Or(mm*L) @ I(7*h™)g) = 0.

m—00

(This is the application of Theoreg4, i.e. the(L, h)—generality ofR.) Consequently,
degr(Or(I(H +mor*L) — sW) @ I(r*h™) ) =
= degr(OR(IH — sW)) + degr(Or(Imor* L) @ (w*h™) )
< Ag-l+o(l)

for/§0mer >0,if0< s <dl.
If W.R < 0the ampleness aff will imply that

HY (R, Or(I(H + mom*L) — sW) @ Z(x*h™") z) = 0

and hence the claim follows from Riemann-Roch .
If W.R > 0 there will exist anag such that for alls > ay the cohomology group
HO(R,Og(sW)) # 0. Therefore,

hO(R, Or(I(H + mor*L) — sW) @ Z(r*h™) ) <
hY(R, Op(l(H + mom*L)) @ Z(7*h™") ),

and this gives the claim fary < s < dyl. Fors < ag one can argue as above with
ample and Riemann-Roch. O

Now chooseN > Ay + dg. Then
degpoyp > N -1
for the corresponding section
oyr € H(R, OR(I(H +mor*L)) @ Z(x*h™") g @ my, ).



48 3. TSUJI'S NUMERICALLY TRIVIAL FIBRATIONS

Because = 0 the estimate3.2.]) implies thato; z = 0 for [ >> 0 depending orRz. But

sinceo; vanishes on a Zariski closed subset and the curvés @overV, there exists

arbitrarily largel > 0 such thab”w =0and

o € I{O(]/\f\7 OM(Z(H + moﬂ'*L) _ /V[?) ®I(ﬂ.*hmol) ®le—1)_

)
Repeating this argument for< s < dyl one finally gets
o1 € H' (M, O(I(H + mor* L) — dolW) @ T(w*h™o)).
Let F be sufficiently generalr*h | # oo and(r* L, 7*h) numerically trivial onF". Let
Sr be a family of smooth intersection curvesiof- 2 divisors in|H| | coveringF'. Let
S € S be such a curve, with*h g # oo. Since(r* L, 7*h) is numerically trivial on
F,
1
(n*L,7*h).S = limsup — degg(Os(mn*L) @ Z(7*h"™)g) = 0.
m—oo M

Furthermore, by assumption
S.(H — dyW) = H¥™F-1 F(H — d,W) < 0,
hence e
degg(Os(I(H +mm*L) — dolW) @ Z(7*h"™")5) < 0
for somel > 0, and as above one concludgs- = 0, o; = 0 which is a contradiction.

3.3. Proof of the pseudo-effective Reduction Map Theorem
The main construction used in this proof is described by the following

LEMMA 3.6. Let X be a complex projective variety, |81 be a set of subvarieties
F,, c X, m € M, such that the uniohjmeM F,, C X is not contained in a pluripolar
setinX. Then there is a famil§ C X x B of subschemes df, covering the whole of
X, and a setB’ C B not contained in a pluripolar set dB, parametrizing subvarieties
F,,,me M.

PROOF M may be interpreted as a subset@iow(X). There are only count-
ably many components ofhow(X). Hence there must be at least one compo-
nentC C Chow(X) such that the subschemes parametrized by the Zariski closure
Z = C N M cover the whole ofX, andC N M is not a pluripolar set it¥/. Otherwise,
the subvarietie$’,,, m € M, are contained in a pluripolar set &f, contradiction. O

Consider familiesf : ¥ — N with the following properties:

(i) X ¢ X xN,whereX, N are quasi-projective and irreducible, and the general
fibres of f are subvarieties ok ;

(i) the projectionp : X — X is generically finite;
(i) (L, h)is defined and numerically trivial on sufficiently general fibreg aghat
is on a set of fiboreg\! € N which is not contained in a pluripolar set;
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(iv) the fibres are generically unique, i.elif C \V is an open subset such thag
is flat then the induced mdp — Hilb(X) will be generically injective.
The identity mapgd : X — X is such a family, hence there is one with minimal base
dimensiondim .

Claim. The projectiorp : X — X is birational on such a minimal family : X — N

PROOF Assume thap is not birational.
Then, for a general fibré' of f and a general point € F there is another fibré"”
containingz, hence a curv€” with z € ¢’ ¢ F/ andC’ ¢ F. Consequently, one gets
a family of curveyy : € — M with € C X x M giving a generically finite covering of
X such that thef — projection of the general—fibre curveC is also a curve inV. By
blowing up and base change one can assume the following situation:
p T ~ g —~

X x ¢ M

f 7

N N
where¢, M andA are smooth, the general fibresglre smooth curves and the fibres
of f map onto fibres of in X. Furthermore, the mapsandr are generically finite.
Let (L, h) be the pulled backL, 1) on ¢. Take an(L, h)—generalj—fibre curveC in
¢ such that the generﬁl fibre through points o€ is smooth. Look at the subvariety

Go = f (f( )) C ¢t may be not smooth, but by the smoothness of the general

f fibre, the smgular locus does not contain Hence using Lemma 7, an embedded
resolution och in¢ gives a smooth subvane(yc in the blow up@ such that the strict
transformC of C is still ( L u*h) general ing. By the foIIowmg IemmaC is also
(u*f,u*h) general inGc, and one can apply the Key Lemmé& is ( L /L*h)
numerically trivial. By birational invariance this is true for the |mage£b§ in X, too.

But dim G = dim F + 1. Since all curves in a family arel, h)— general outside a
pluripolar set, the construction in Lemr8g gives a new family

9:9 >N
satisfying conditions (i) - (iv), and
dim AN’ = dim N — 1.
This is a contradiction to the minimality afim V. O

LEMMA 3.7. LetY C X be a smooth subvariety in a projective complex variety
X with a pseudo-effective line bundieand a positive singular hermitian metricon
L such thathy # oo. Then an(L, h)—general curve onX is also an(Ly, hjy)—
general curve orY'.
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PROOF. v(h|c,z) = O implies0 = v(hy,z) < v(hje,z) = 0, hence
V(h‘y,l‘) = V(h’|Cax)'
v(hic,z) > 0 implies thatz € D for some prime divisoD on someE.(h). The
restricted divisotD|,- may be singular but not im: In that case,

V(h|y,x) > V(h‘y,DH/) >v(h,D) = V(h|c,x),
contradiction. O
In the same way we show

Claim. Let g : X — N be another family satisfying the conditions (i) - (iv). Then there
is a commutative diagram of rational maps

X X X
7 g
N N
such that the general fibre §fis contained in a fibre of. O

On the one hand, this claim implies the birational uniquenegg @n the other hand
one can prove claim (i) in the pseudo-effective Reduction Map The@&e@mif (i) is
not satisfied there will be a set of poim& C X which is not contained in a pluripolar
set such that

Vo € N 3C, 3 x irreducible curve, dim f(C,) =1: (L, h).C, = 0.

By Lemma3.6 one gets a family of curves satisfying conditions (i)-(iv). The claim
implies that the general fibre of this family is contained in a fibr¢ dfience also some

of the curveg’,.: contradiction.

Finally it is possible to prove that in part (i) of the Reduction Map Theorem, all fibres
outside a pluripolar set afd, h)—numerically trivial: This pluripolar set is just the set
of fibresF” such that » = co. Because assume to the contrary that ' is a curve on
afibre F such thath o # oo, hencehr # oo, andC'is not(L, h)—numerically trivial.
Then, as in step 1 of subsecti@l, (L, k) is not numerically trivial on sufficiently
general fibred”, contradiction !

3.4. Characterization of numerically trivial varieties

If X itself is numerically trivial one can prove the following consequence for the curva-
ture current:

THEOREM3.8. Let X be a smooth projective complex manifold,ldbe a pseudo-
effective line bundle oX with positive singular hermitian metrieé such thatX is
(L, h)—numerically trivial. Then the curvature curreft, may be decomposed as

@h = Z a; [Dz}
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where theD; form a countable set of prime divisors éhand thea; > 0.

PrROOF We start with the Siu decomposition of the curvature currédt (2.18)]
@h = Z a; [D

where theD; are the (countably many) prime divisors in the Lelong number level sets
E.(h) and thea; = mingep, v(Op, x).

Next, take a very ample divisdd. By Theorem2.5there is a smooth complete inter-
section curveC' = Hy N...N H,_1, H; € |H| which is (L, h)— general. Now by
Proposition2.2

0=(L,h).C=LC-Y v} alDic )~ Y v(Rc, ).

zeC 7 zeC
SinceC'is (L, h)- general the only points € C wherev(0;, x) > 0 are the intersection
points with the regular part of thB;’s where furthermore/ (0, z) = v(0y, D;) = a;.
Consequently

0= (L,h).C =L.C— ZaiDi.C.

But this implies
0=RC= / RA (wg)"!
X

wherewy is the strictly positiveC> — metric belonging to the very ample diviséf.
SinceR is a positive current it follows

R=0.
0

We can use this characterization to give a counterexample to almost holomorphy of the
reduction map: Tak& = P2 with homogeneous coordinates, : Z; : Z»), H = O(1)

and let the metrid: on H be induced by the incomplete linear system of lines passing
through(1 : 0 : 0). The weight ofh around(1 : 0 : 0) is then

1
o = 5 log((2f* + |2 )

wherez; = ?,ZQ = % are local coordinates arourgd : 0 : 0). The weight, and
hence the curvature curre@y, of  have an isolated poleifl : 0 : 0).
Let L = {aZ; + bZ5 = 0} be aline throughl : 0 : 0). If w.l.o.g. b # 0 the weight of
the metrich restricted taL is
2
bniL = log(|21|2 + |- Zl| ) =log|z1| + = log(l + b2)
Hence

J(h1) = T (mon ) =Ip
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whereZp C Oy, is the ideal sheaf oP = (1:0: 0) € L and
KL, O (mH) ® T (b))

(H,h).L = limsup
m— 00 m
hO(L, O
= limsup M =0.

m—00

Consequently the lines through : 0 : 0) must be contained in fibers of the numerically
trivial fibration w.r.t. (L, h). On the other hand, by the characterization of numerically
trivial varieties above, this fibration cannot be the projection to a point $ihces not

the integration current of a divisor. Hence the numerically trivial fibration wWEth)

is the composition of the blow up &2 in (1 : 0 : 0) and the natural projection from this
blow up toP! which certainly is not almost holomorphic.

3.5. The litaka fibration

Let X be a projective complex manifold arida line bundle with non-negative Kodaira-
litaka dimensions(X, L) > 0. In this section we construct a metfidor L on X such
that the(L, h)-numerical trivial fibration is the litaka fibratiofi: X --» Y of L on X.

To this purpose we use a result of Takaya®@l:[

The asymptotic multiplier ideal7 (||mL||) is defined to be the unique maximal ele-
ment among all multiplier ideaIST(pi“J - |[pmoemL|) wherem is chosen such that
|momL| # 0 ([27],[28]). With this ideal Takayama defined intersection numbers re-
flecting properties of the linear syteths L|:

IL.Cl| = Tim m ™ dege (mL ® T ([lmL]))),

where(C' is an irreducible curve not contained in the stable base locus

SBs(L) := ("] Bs(|mL|)
meN

of L. Then he showed that such a cueis mapped to a point by if and only if
IL,C|| =0.
Now we consider the sé¥ (L) of all m € N such that the linear systeia L| # {. Let
mg be the greatest common divisor of the number&VifL). Then there is a positive
integerm (L) such thaimmL| # 0 for all positive integersn > m(L). Choose gen-
erating sets, . . ., fx,, for the linear systemBnmgL| # () and leth,,, be the (possibly
singular) hermitian metric o with plurisubharmonic weight (on the baQecC C™ of
a local trivializationL = Q x C)

2mmy

1 Kkm
bm log(> 1£if?)
i=1

and curvature currer®d,, = i90¢,, (on Q). Let h; be a smooth hermitian mtajric on
L with weight ¢;, on Q and smooth curvature for® ;. Write ©,, = O + i00¢],
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and normalize the,, by subtracting (if necessary) a positive constaht such that

sup ¢}, < 0 (this is possible becausg, is defined on the compact manifaki hence
bounded from above). Then take the upper semicontinuous upper engéloftae ¢’ .

and callh the (singular) hermitian metric oh given by the plurisubharmonic weight

¢ = ¢, + ¢'. By constructiong’ has the singularities exactly at the stable base locus
SBs(L) of L.

To prove that the litaka fibration is (up to birational equivalence) the same as the nu-
merically trivial fibration w.r.t.(L, h) first compare Tsuji's and Takayama'’s intersection
numbers:

LEMMA 3.9. With L, h as above,
(L, h).C < ||L, C]
for smooth irreducible curve§' not contained in a set of Lebesgue measure zero.

PROOF To begin with, one has to relate the multiplier idedl& - |mmgL|) of the
linear systemmmL| and the positive rational numbemwith the (analytic) multiplier
ideals7 (¢.,). The ideal7 (c - [|mmgL|) is defined via a log resolution, but singg, is
a plurisubharmonic function with analytic singularities defined by generating elements
of [mmy L], it follows that

J(c-mmody) = T (c- [mmoLl)
by [14, (5.9)]. Consequently,

1
(35.1) ||IL,C|| = L.C+ lim m_lmaxdegcj(m—p|mome\):
0

m— 00 peN

L.C+ lim m™! pllrgo dege T (Mdmp)

m—00

= L.C+ lim m™! lim dego J(me,).

m—00

The last equality is true becaugéme,,) C J(mep,+1) for all n: The multiplier ideals
do not depend on the generating set used to defineBy multiplying the generators
defining¢,, with a section ini® (X, mo L) and completing this set to a generating set of
H°(X,(n+ 1)moL) itis possible to choose,, < ¢,,1, hence the inclusion.
Next, Tsuji’s intersection number may be expressed as
(L, hy).C = L.C +limsupm ™" deg J(may,),
m—00

by (2.2.3 and the fact thak,, is a metric with analytic singularities, hence restriction to
C and taking the multiplier ideal in thiém sup above may be interchanged on smooth
curves (Prop2.15. The inclusion (m¢,,) C J(me¢,+1) shows that

lim (L,h,).C = L.C+ lim limsupm™'degs J(men)

n—oo n—o0 m-—oo

< L.C+ lim m_lnli_{godegc J(meon) = ||L; C||.

m—00
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On the other hand(L, h,).C = L.C — 3 _~v(hyc,z) by 2.2 Since the upper
semicontinuous upper envelopéof the ¢!, equalssup,,, ¢/, outside a set of Lebesgue
measure zero §0]), the envelope of the restrictiondz‘;n‘ ¢ equals almost everywhere the
restriction(¢;,,);c on all curves outside a Lebesgue zero set. For these curves the lemma
follows from the next statement, using the definition of Lelong numbers via integrals
([14, 2.7))). O

LEMmA 3.10 Let C <C X be a smooth curve not contained in
{z € X :sup,, ¢,,(z) < ¢'(x)}. Thenforallz € C

m

nlLrI;o V(hnior ) > v(hic, x).
PrROOF By definition of Lelong numbersy(¢, z) > v(¢,z) if ¢ < 1. Conse-
quently, by the same construction as for the inclugitimme,,) C J(me.+1), the Le-
long numbers (h,,c, z) of the¢,, form a decreasing sequence of non-negative numbers
in every pointz € C' whose limitis> v(h¢, x). It remains to show the equality:
If z is alocal parameter af' centered inz, the functiong’, may locally onC' be written
as

3 (2) = On(2) =01 (2) = Cp = v(hnic, 0) log |2|+dp log (14D alz|') —d1(2)—Ch
=0

for some real numbet,,. For everye > 0 and a sufficiently small neighborhood @it

is true that

dnlog(1+ > ailz|") — ¢r(z) — C < —elog 2],
=0

henceg;, (2) < (v(hnc,0) — €) log |z|, which implies
¢'(z) < (lim v(hy,c,0) —€)log|z|

for almost allz aroundd. Consequentlyy(¢’,0) > limy, .o v(hy|c,0)—eforalle > 0,
and the equality follows. O

This already implies that the litaka fibration éfis contained in Tsuji's numerically
trivial fibration for (L, h): Take a birational morphism : X’ — X from a smooth
projective varietyX’ such that the litaka fibration induced by the linear system*L|
is a morphismf : X — Y on another smooth variety. The general fiber of this
fibration is smooth. Smooth varieties are numerically trivial W.EL.R) iff (L, h).C =0
for all sufficiently general smooth curves in this variety, by the Reduction &ap
Hence by the above inequality the numerically trivial fibration w(i:t.L, u*h) contains
the litaka fibration. By birational equivalence of intersection numbers (rag), the
numerically trivial fibration w.r.t. (u*L, u*h) is birationally equivalent to that oX
w.rt. (L, h).
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Next note that there is a positive integersuch that the litaka fibration df is induced
by the linear systermL| [26, 10.3]. This mappy,,r induced bylmL| is also the nu-
merically trivial fibration of the metric.,,,: The linear systemyn L| has no base points
on a curveC’ not contained in the indefinite locus @f,, .| hence the restriction éf,,, on
C'is smooth and strictly positive. By the Lelong number inequalities in Ler&rh@we
conclude that numerical triviality of a sufficiently general curve wirimplies numeri-
cal triviality w.r.t. h,,,. In particular the numerically trivial fibration w.rk. is contained
in that w.r.t.h,,, and we are finished.






CHAPTER 4

Moving intersection numbers

Tsuiji's numerically trivial fibrations depend not only on the pseudo-effective line bundle
L but also on a positive possibly singular hermitian metrion L. But since posi-

tive metrics onL might be rather rare this sometimes leads to undesirable effects. For
example there are nef line bundléssuch that for no choice of a positivethe (L, h)-
numerically trivial fibration is equal to the nef fibration (see secid).

In this chapter we describe Boucksom’s concept of moving intersection numbers which
lead to a solution of this problem. His idea was to look at many metrics at the same time
and even allow small negative curvature which should tend to 0 in a limit process. In this
manner he was able to define non-negative intersection numbers for pseudo-effective
line bundles and also a notion of volume for big line bundles having nice properties.
Furthermore Boucksom introduced a useful divisorial Zariski decomposition.

We give a short survey on this circle of ideas in its natural setting of K&hler manifolds
and(1, 1)-classes, without claiming any originality or completeness. Our main source
will be Boucksom’s thesisg] where also most of the proofs may be found. The second
section proves an approximation theorem for currents of minimal singularities which
will be useful later on.

4.1. Moving intersection numbers of pseudo-effective classes

Starting with Fujita’s approximate Zariski decompositioB4[[15]) Boucksom devel-
opped a notion of volume for arbitrary pseudo-effective clas§&8sdph compact Kahler
manifolds. The construction leading to the volume was then generalized (with small
modifications) to a “moving intersection product” of pseudo-effective classes. This in
turn allows the definition of a numerical dimension for pseudo-effective classes.
Logically one has to start with defining the “moving intersection numbers”:

DEFINITION 4.1 Let X be a compact Kéhler manifold with Kéhler forin Let
ai,...,ap € HYY(X,R) be pseudo-effective classes and@ebe a closed positive
current of bidimensiottp, p). Then the moving intersection numiges; - .. .- «, - ©)>¢
of thea; and © is defined to be the limit when> 0 goes ta) of

sup/ (T +ew)AN...AN(Tp +ew) NO
X-F

57
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where theT;’s run through all currents with analytic singularities iw;[—ew], and F' is
the union of theSing(T;).

It is not difficult to justify the existence of the limit above: First, &h— F' the currents

T; + ew may locally be written a¥; + ew = dd“u; for some bounded plurisubharmonic
function u;. By results of Bedford-Taylord] this implies the existence of the inte-
gral. In addition Boucksom?] showed that these integrals are bounded by a constant
only depending on the cohomological clas$&s} and{©} (this is where the Ké&hler
assumption comes in). Hence the supremum always exists, and is increasing with in-
creasing. This implies the existence of the limit. Finally it is easy to see that this limit
does not depend on the choice of the Kéhler farm

The(a -...-ap,-©)>0 are symmetric in the,; and concave and homogeneous in every
variable separately. For nef classese H'!'(X,R) the moving intersection number
equals the normal cohomological intersection nuniber- . .. - «, - {©}) [8]. If some

of the pseudo-effective classes coincide one has

LEMMA 4.2. For pseudo-effective classesay,1, - . ., o, the moving intersection
number(a? - apqq - ... - ap)>o IS the limit fore — 0 of

sup/ (TH+ ew)? A (Tpp1 + ew) Ao A (T, + ew)
X-F

whereT € a[—ew] andT; € a;[—ew] have analytic singularities.

PROOF See Lemma 3.2.7 irg]. O

DEFINITION 4.3. Let X be a compact Kahler manifold. Then the numerical dimen-
sionv(«a) of a pseudo-effective classe H*(X,R) is defined as
max{k € {0,...,n} : (& -w" )5 > 0}
for some (and hence all) Kéhler classes

Now the volume of a pseudo-effective classe H''!'(X,R) on a compact Kahler
manifold may be defined as a special case of the moving intersection product:

vol(a) = (&™) >o.

But there are other useful possibilities to define it: First remember that Fujita considered
projectiven—dimensional algebraic varieties and line bundled. over X, and defined
the volume ofL by
vol(L) := lim sup n—!hO(X, kL).
k— oo kn
If L is nef, the volume ofL is the self-intersectionL.”, by Riemann-Roch
and h?(X,kL) ~ O(k™ %) ([14, (6.7)]). For arbitrary pseudo-effective classes
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a € HY(X,R) on compact Kahler manifoldX Boucksom generalized this volume
by defining

vol(a) = sup/ T
b

where the supremum is taken over all closed positivé )— currentsT with {T'} = «
andT,. is the absolute continuous part of the Lebesgue decompoSitieril,,. + T,.
Again, the Kahler assumption is necessary to guaranteelthas locally integrable.

By using singular Morse inequalities and the Calabi-Yau theorem Boucksom proved
thatvol(L) = vol(¢q (L)) and thatvol(L) > 0 iff L is a big line bundle, i.e. iff there is

a closed strictly positive current representingL).

Note that it is not necessary to look at all closed posifivel )— currents for taking the
supremum. This is a consequence of an approximation theorem of Demailly:

THEOREM4.4 ([19)). LetT = 6 + dd°¢ be a closed almost positivé, 1)— cur-
rent on a complex manifol& with hermitian metrico such thatf is a smooth form.
Suppose thaf” > ~ for some realC>°— form ~. Then there exists a decreasing se-
quenceg;, of almost plurisubharmonic functions with analytic singularities such that
theTy := 0 4 dd°¢y, verify

(i) Thegy converge pointwise anf}, . againstg, hence thé}, converge weakly
againstT.
(i) Ty > v — exw for some sequence of positive numbgrs- 0.
(i) The Lelong numbers/ (T}, x) converge uniformly against(7T,x) w.rt.
r € X.

Using another approximation theorem ) Boucksom slightly modified this statement

([7):

THEOREM4.5. Let the assumptions and notations be the same as in the theorem
before. Then there exists a decreasing sequeépad almost plurisubharmonic functions
with analytic singularities such that tHB, := 6 + dd°¢;, verify

(i) TheT} converge weakly againgt, andT}, .. — T, almost everywhere.
(i) Tx > v — exw for some sequence of positive numbgrs- 0.
(i) The Lelong numbers/ (T}, x) converge uniformly against(7T,x) w.rt.
z e X.

So one may define instead

vol(a) = lim sup/ T
b'e

e—0t

where theT’s run through all closed1, 1)— currents with analytic singularities in
al—ew], thatis{T} = a« andT > —ew for some hermitian metric on X.
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Here, closed(1,1)— currents with analytic singularities are currents whose almost
plurisubharmonic potentials locally look like
g

5 gLl + -+ 1)

with f1, ..., f, holomorphic, up to a boundet —function. Such current$' are par-
ticularly useful because their absolut continuous part is the same as the residual part
in the Siu-decompositio® = >°, a;[D;] + R. Consequently, one may compufie 77",

by blowing up the (integral closure) of the ideal of singularities locally generated by the
fi and integrating the smooth form given by the pull backiominus the integration
currents of the exceptional divisors as they occur in the inverse image of the singularity
ideal. In Fujita’s setting this corresponds to blowing up the base locus of the multiples
mL and decomposing the pull back bfinto an effective part’,,, and a free parD,,,,

and Fujita’s theoremif4, (14.6)] tells us that

vol(L) = lim D .

Finally, the last definition ofol(«) is equivalent to the first one, with moving intersec-
tion numbers, by Lemméd.2

4.2. Currents with minimal singularities

In the notions of moving intersection numbers etc. introduced above it is necessary to
take limits over all current®> —ew in a pseudo-effective clags. Often it is enough

to take limits over currents with minimal singularities or sequences of currents approxi-
mating them.

DEFINITION 4.6. Let ¢ and ¢, be two almost plurisubharmonic functions on a
complex manifold. Theng; is said to be less singular thaty in z € X iff

02 < 91+ 0(1)

in a neighborhood ofX. The fact thaty, is less singular tharp, in every point is
denoted by, < ¢-.

Now let X be compact Kahler and € H'(X,R). Letd be a smoott(1,1)—form
representingv. Then every current i may be written ag” = 6 + dd®¢ for some
almost plurisubharmonic functiohand

T 2T
shall denote the fact that, < ¢.

PROPOSITION4.7. Lety be a smooth{1, 1)—form onX. Every non-empty subset
of a[y] admits a lower bound in[y] w.r.t. <.
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PROOF The proof is almost trivial and of course contained 18][but is repeated
for emphasizing a certain uniqueness property.
Let (T;),cr be the given subset ef[y]. Write T; = 0 + dd°¢; whereg; is almost
plurisubharmonic andd¢¢; > v — 6. SinceX is compact, all almost plurisubharmonic
functions are bounded from above hence one may supposg;tkad by subtracting a
constant. If one choose this constant suchghat,. - ¢;(z) = 0 the¢; will be unique:
An almost plurisubharmonic functiopwith dd¢ = 0 is a holomorphic function.
The ¢, have an almost plurisubharmonic upper envelppich that) + dd°¢ € afy].
The currenfl’ = 0+ dd¢ is obviously a lower bound for thg?;) ;< 7, with the following
property: IfS < T; for all I, thenS < T. O

Remark. The construction above shows that this lower boiing 7,,;, is unique only
up to L*°. On the other hand, given the smodth 1)—form 6 in «, the construction
leads to a well defined curreff},,;,, = 0 + dd°p..;», Via the upper envelope. Here, the
almost plurisubharmonic functiof,;,, satisfiesp; < ¢,,:» Where thep; are chosen as
above.

This current will be used in the following.

The currents with minimal singularities may be used to define minimal multiplicities
of pseudo-effective classes, having a look at Boucksom'’s construction of higher dimen-
sional Zariski decomposition8]. In this paper, he interpreted the Lelong numbers of a
currentT,;,.. with minimal singularities iru[—ew] as the obstructions to reach smooth
currents in[—ew]. This led him to

DEFINITION 4.8. The minimal multiplicity of a pseudo-effective class
a € HY(X R)inz € X is defined as

v(a, z) == sup V(Tiin,e, T).
e>0

The generic minimal multiplicity on a prime divisér C X is defined as

v(a,D) = wlglfju(oz,x).

Denoting byT,,;, a current with minimal singularities ia[0] one has always
v(a,z) < v(Tmin, ), v(a, D) < v(Thin, D).
There are examples wher¢a, D) < v(Tnin, D), See sectio.2
The following approximation of ,,;,, will be useful later on:
THEOREM 4.9. Let X be a compact Kahler manifold with Kahler form, let
a € HY'(X,R) be a pseudo-effective class. Then there exists a sequence of closed

(1,1)—currentsT}, with analytic singularities inv[—ejw] for some sequendey,) — 0
of positive real numbers such that

(i) theT} converge weakly against a closed positf¥el)—currentT which has
minimal singularities inx[0],
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(i) v(Tk,z) — v(a,x) for every pointz € X,
(iii) forall ¢

/ (T + exw)P AW 7P — (aP W™ P)>o.
X—Sing(Ty) B
PROOFE To computeg(a?.w™ P)>( it is enough to determine the limit of the

Se 1= sup/ (T + ew)? A" P
T JX—-Sing(T)

whereT € a[—ew] has analytic singularities, by Lemmda2. Consequently, for eagh
there are two sequences| 0, 6, — 0 of real numbers and a sequence of cloged )—

currents(T,i”))keN with analytic singularities such thﬁ;ﬁp) € a]—exw] and
Sep, — O < / (T,Sp) +epw)P Aw™ P <5, = S
X —Sing(T™)

Now leté be a smootli1, 1)—form on X representingv. Let T, s = 0 + dd°Ppmin i

be the current with minimal singularities if]—e,w] associated té, as described in the
remark above. Sinc@,ﬁp) =0+ dd%}f) € a[—epw] this implies¢§f’) < Gmink < 0.
Furthermore th&,,,;,, ». converge weakly against a curref,;,, with minimal singular-
ities in «[0].

By Demailly’s Approximation Theorem.4there exists a decreasing sequence of almost
plurisubharmonic functiong; ; with analytic singularities converging pointwise and
L} . againstg,,,  such thatly; = 6 + dd°¢r,; € a[—ex w] for some sequence
(€k,1)1eN s ¢ of positive real numbers. FurthermowéTy, ;, z) S V(Toin s ) for
every pointr € X.

Lety : Y — X be a common resolution of the singularitieszaf; and theT,E”). Then

w TP = R + [DP), 4*Tyey = Ryy + (D]

WhereREf’), Ry, are smooth ancD,(f), Dy, are effectiveR— divisors. Since the);,
form a decreasing sequendé?) < ¢, andT}, ; is less singular thajﬂ,gp). In particular
Dy, < D,(f’), hence theclass {Ry,; — R,(f)} = {D,(f) — Dy} is pseudo-effective.
Consequently,

/Y(Rk,ﬂrék,z,u*w)/\(R;Cp)+€k,lu*w)p71/\u*wn7p > /Y(Ri(gp)ﬁLfk,lﬂ*w)p/\H*wnip’

since the integrals over the compact manifgldonly depend on the cohomology classes,
and all factors besideBy, ; + e 1" w anngf) + ex, 1" w are smooth. Iterating gives

/ (R + ek ap™w)? A7 > / (RP) + ea*w)? A .
Y %
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Noting that
/ (Rk,l =+ ekyl,u*w)p A ,u,*wnip = / (Tk,l + ek’lw)p AP
Y X*Si’ﬂg(Tk,l)
and similarly foerf) andT,E”) one finally gets
(Tlgp) + € lw)p Aw'™P < (Tk 1+ €x lw)p AwW™P,
X—Sing(Tép)) ' X—S8ing(Tk,1) , '
Sinceey,; — ¢ the same line of arguments shows
/ (T,gp) +epw)?P Aw" P — (T,ip) + epw)? Aw™ TP,
X—Sing(T{") X —Sing(TP)

For big enough (depending d¥) this gives
s — 0 < / (TkJ + eka)p AW'P < spyq.
X*S’L‘TLQ(TR,J)

Combining all these facts one gets a sequence of closed poéiting— currents
Ty, = Ty, () With analytic singularities imv[—ex 1w] such that thd’, converge weakly
againstl;,,;,, and conditions (ii) and (iii) of the theorem are also satisfied. O

Remark. As long asl; ;min — Tmin Weakly fork — oo, in the construction above it is
not necessary that tf#, ,,,;,, are computed w.r.t. the same smo¢thl)—form ona.

The approximation may be used e.g. to prove

LEMMA 4.10. Let X be a compact Kahler manifold ande H'!(X,R) a pseudo-
effective class. LeA™ = U C X be an open subset, and let: A — A”~! be the
projection onto the last — 1 coordinates. Then there is a pluripolar sEt ¢ A™~!
such that for all fibers\ over points inA”~! \ E

liﬂ)liITlf v(Tia,z) = v(o,z) forallaz € A,

where theT”s run through all currents inv[—ew] with analytic singularities, for which
the restriction toA is well-defined.

PrROOF The proof is an application of the theory @f, h)- general curves gener-
alized to almost positivél, 1)- currentsT’ on X. As in Chapter2, a smooth curve”
(compact or not) will be called’- general iff the restriction of” on C' is well-defined
and

() C intersects no codim-2-component in any of the Lelong number level sets
E.(T),

(i) C intersects every prime divisab C E.(T) in the regular locusD,.,
of this divisor, C' does not intersect the intersection of two such prime
divisors, and every intersection point has the minimal Lelong number
v(T,z) =v(T,D) := min,cp v(T, 2),
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(iii) forall =z € C, the Lelong numbers
v(Tia,z) = v(T,x).

Then Theoren®.5 can be reformulated in this setting and states that in a family of
curves over a smooth base there is a pluripolar subset in the base such that every curve
over points outside this pluripolar setiis general. In particular, this is true for currents

T, approximating’;,;, as in the theorem above. Since the union of countably many
pluripolar sets is again pluripolar, this proves the lemma. O



CHAPTER 5

Foliations and Fibrations

In this chapter we want to introduce several constructions on possibly singular holomor-
phic foliations and describe the connection to fibrations. The facts gathered here will be
used in the next chapters.

5.1. Operations on Foliations

Holomorphic foliations on complex manifolds are usually defined as involutive subbun-
dles of the tangent bundle. Then the classical theorem of Frobenius asserts that through
every point there is a unique integral complex submanif8#.[ Singular foliations

may be defined as involutive coherent subsheaves of the tangent bundle which are fur-
thermore saturated, that is their quotient with the tangent bundle is torsion free. In points
where the rank is maximal one may use again the Frobenius theorem to get leaves.
Later on we use the following notation:

DEFINITION 5.1. Let X be a complex manifold anfl C T'x a saturated involutive
subsheaf. Then the analytic subset

{z € X : F/mxF — Tx 4 is not injective}

is called the singular locus of and is denoted bging F. The dimension af /mx ,F
in a pointz € X — Sing F is called rank ofF and denoted byk(F).

BecauseF is saturated we haveodim Sing 7 > 2. The existence of leaves means
that around every point € X — Sing F there is an (analytically) open subset
U c X — Sing F with coordinateszy, ... z,, n = dim X, such that the leaves of

F are the fibers of the projection onto the coordinates,, . . ., z, wherek = rk(F).

In particular the leaves have dimensi{.F).

To construct numerically trivial foliations we need a local description of several opera-
tions applied on two foliations. We start with the easiest configuration:

PROPOSITIONS.2. Let G C F be two foliations on a complex manifold,
rk(F) = k, tk(G) = I, 1 < k. Then for allz € X — (Sing F U Sing G) there is
an open neighborhootf ¢ X — (Sing F U Sing G) with coordinates:, .. ., z,, such
that the leaves af are the fibers of the projection onto the last- k& coordinates and
the leaves of; are the fibers of the projection onto the last- | coordinates.

65
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PROOF. Let zy,..., 2, be local coordinates around such that the leaves @
are the fibers of the projection onto the last- [ coordinates. Let,.. .,z be local
coordinates aroundgsuch that the leaves & are the fibers of the projection onto the last
n — k coordinatesg C F implies that the coordinates, 1, . . ., 2, fix the coordinates
Zit1s - - 2y, Which consequently do not depend o). . ., z;. This implies that (after

oz

possibly reordering; .1, ..., 2,) the matrix(azl is invertible. The theorem

. i . J )i,jzkﬂ

on implicitely defined functions shows then that
(21, ey 2n) — (zl,...,zk,z,/C_Fl,...,Z;L)

is an invertible map in a neighborhood of =z. The new coordinates

(21545 2k, 2415 - - - » 2,,) have the required properties singg, |, . . ., z,, only depend

ONZi41,..-,2n- O

Note that neitheBing G need to be contained Bing F nor vice versa.

DEFINITION 5.3, Let F and G be two foliations on a complex manifokd. Then
F NG C Tx is called the intersection foliation of andg.

Note thatF N G is certainly involutive but may be not saturated: the raniofi G can

even jump incodim 1 subsets. To get a better picture in local coordinates we neverthe-
less think of it as a foliation and denote Bing (F N G) the analytic locus where the
rank jumps.

PROPOSITIONS.4. Let F and G be two foliations on a complex manifokd with
tk(F) = k, tk(G) = m andrk(F N G) = [. Letx € X be a point which is not singular
for F, G andF N G. Then there exists an open neighborhood

U C X — (Sing F U Sing G U Sing (F N G))

of z with coordinates:, . . ., z, such that
(i) the leaves ofF in U are the fibers of the projection ot 41, .. ., 2n,
(i) the leaves ofF NG in U are the fibers of the projection on, 4, ..., 2, and
(i) the leaves of G in U are the fibers of the projection on
B4l Zhs Zpg i 410 - - - » 2 Where thezp ., s are analytic functions
with Z:n+k—z+j\Uz = Zj4; ON

Upr={2€U:z141(2) = z141(x), ..., z1(2) = z(x) }.

PROOFE Again this results from applying the theorem on implicitely defined func-
tions several times. The geometric essence of the situation may be taken from the figure
below.

To start the proof, choose coordinatgs. . ., z,, for 7 andF N G in a neighborhood

V € X — (Sing F U Sing G U Sing (F N G))

of z as in Prop5.2 Since the leaves af contain the leaves of N G we can de-
scribe the leaves @ in V' (possibly restricted) as the fibers of the projection given by
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analytic functions;,, , ,, ..., z, only depending on;1, ..., z,. By construction, the
differential of the map
(21, s 2n) 7 (Zli1s o) Zhy 2l 1y - -+ > Zn)
has the kernel'z~g . in z. Hence the rank of the differential inis n — [, and after
possibly reordering the/, . ;... ., z;, the differential of
(21, s 20) = (2153 20 21 -+ o> Pl Pl Ly - - 3 Zn)

has full rank inz and is invertible. Consequently,

zl,...,zl,z;n_H,...,z;n+k_l,zk+1,...,zn
are coordinates in V (possibly restricted).
By construction the fibers of the projection ontg, 1, ..., z, are the leaves of and
the fibers of the projection ontg, , 1, ..., 2, are the leaves @. Since the differentials
of

! !

(21,3 2n) = (Zing1s -2 Zns Zhg 1y - - Zn)

and
/ /
(21,-+32n) = (Zina1s - Zmg ks Zht1s - - -5 Zn)

have the same rank their kernel in poipts V' is in both cased’r~g . Consequently
the fibers of the projectionontg, , ,, ..., 2, ;s 2k+1, - - -, 2o @nd the leaves oFNG
have the same tangent space in every pgiatl’, hence are equal ii.
After possibly reorderingy. 1, . . ., z, a similar argument as above shows that

Zlyeney Rl z;n_H, e Z;L, Zn—m—I4+1s--+3%n

are coordinates ifv (possibly restricted). Let

o N
g1 = 2y 1 (T)y ooy Okt i= Zyy oy

Since the differentials of

/ /
(210 -52n) = (Z1s o5 21 21 - - 0 2y Zn—m—l 15 - - > Zn)
and
(21, ey 2n) —
’ /

(Zla v 7Zl7zm+17 e 5Zm+kfl’

/ ’

Zm+k_l+1(am+17 <. 7am+k—l)a cees Zn(am-i-lv cee 7am+k—l)a Zn—m—Il+1s-- -, Zn,)

are equal in, they are both invertible and

Bl ey 2l By 1s e« o s Bl
2t (@t 1y - ooy Qg k=)o 20y (@15 - o vy Qompk—1)s Zne—m—I415 - - - » Zn
are coordinates iv” (possibly restricted).
Sincezy, 11 (@mits s Qmak—1)s - Zp (At 1y -+ 5 Gmgk—1)y Zn—m—l415- -+ %n

and  z it s Zneme gl Zn both- do not depend on
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2y 2 Zmats - - 2t — teir respective values are fixed by each other. Hence the
fibers of the projection onto the two sets of coordinates are equal, and the same is true
for the fibers of the two projections onto

! / / !/
Zma1r s Fmdk—1> Zm+k71+1(am+17 RS am+k7l)a AR Zn(am+17 AR a7n+kfl)7
Zn—m—Il+1y:-+3s”n
resp.
!/ !/
Zialr -+ > Zns Zn—m—l41r -+ s Zn-

Hence the coordinates

/ /
217‘..,Zl,Zerl,...,Zerkil,
Z':Tl+k—l+1(am+17 ey a?nJrkfl)? ey Z;L(am+17 R a’erkfl)v Zn—m—l+15--+3%n
satisfy all the required properties. O

For our purposes the most important operation on two holomorphic foliaffoasd

G on a complex manifoldX is theunion F U G. We define it as the foliation given

by the smallest saturated involutive subsheaf gf containing both# andG. Such a

sheaf exists because saturated foliations contained in each other have different ranks, the
intersection of two foliations is again a foliation afig is involutive.

Besides this pure existence statement there is an inductive algebraic construction of
FUG: ForH C Tx, let [H,H] be the subsheaf dfxy generated by all Lie brack-

ets of vector fields irt{. Then construct

H; := saturationof F+§G
Ho, := saturation of Hy + [H1, H1]

and so on unti¥,,, = H,,+1 which means$H,,,, H,,] C H,. ThenH,,, = FUG. This
is a local construction hence for open subgéts X we have

FlolGu =(FUG)u.
We want to describe an inductive geometric constructioft of G on open subsets
UcC X — (Sing FUSing GUSing (FNG))—Z

whereZ is an analytic subset of — (Sing F U Sing G U Sing (F N G)). Following the
inductive steps of this construction we will construct the maximal numericatiyvial
foliation in Theoren6.5.

Start with a neighborhootl’ of a pointz € X — (Sing F U Sing G U Sing (F N G))
having coordinatesy, .. ., 2z, as in Prop5.4. Define a foliationg’ on U whose leaves
are the fibers of the projection ap, 1, . . ., z,—m+:. The figure below illustrates that in
generalF + G’ # FUG (take the fibers of the vertical projection as leavegafhereas
the leaves ofj are the horizontal lines twisted around in vertical direction):
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y

]
—

Denoting the projection o1, ..., z, by mx we examine insteag-tuples of points
1,...,z, infibersw 2! (y) of pointsy € 7x(U) C C**. If Tg(z;) C Tx,., indicates
the space of directions tangentdan x; we have a sequence of inclusions

0 C drr(Tg(21)) C drr(Tg(z1))+drr(Tg(wa)) C -+ C Y drr(Tg(w:)) C Ton-n g,

=1
There is an- € N and a Zariski open subset of thdold product
T (y) x - x 7R (y)
such that
(i) allinclusions in the above sequence are strict and
(i) drr(Tg(2") C Yi_, dnr(Tg(z;)) for every pointy’ € w7 (y).
Varyingy € 7x(U) may change the numberand the dimensions of the vector spaces

> dnr(Tg(x)), s=1,...,m.
=1
But again there is an analytic subsgt C 7x(U) suchthatfoy € V := n2(U) — Zy
the dimensions and remain constant. Since everything is defined intrinsically the sets
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7+ (Zv) glue together to an analytic subsebdf X — (Sing FUSing GUSing (FNG)).
Furthermore for every” we can find a covering of with open subset®”’ c V andr
sectionsy; : V' — U of & for everyV’ such that

() the points z; := o;(y) produce a sequence of tangent subspaces
S drr(Tg(z;)), s =1,...,r, as above, and
(ii) if 7 : U — CFlisthe projection onte;, 1, ..., 2, the maproo; is constant.
To get the announced inductive constructiorafi G on 2! (V') we need another little
observation: Since the holomorphic functiorjslefiningrg do not depend omy, ... ., 2
(see proof of Propb.4) the tangent space
drr(Tg(x))

does not change for differentin the intersection of a fixed - and ar-fiber. Further-

more the fibers ofr consist of leaves of.

Now we construct inductively foliationg;,: =0, ..., r, omr}l(v’). We start with
Fo=Fnaz (V).

Because of the observation above the leavegiofr—!(r(x1)) map onto the leaves of
a smooth foliatiorj; on vV’ which is induced by a projectiong, . Put

.7:1 = 71';_—1 (Ql)

and letrz, := mg, o mx be the projection whose fibers are the leavegof
The observation and the properties of thg ...,z imply that T —1(r(2,)) Maps
onto an involutivesubbundle of 7" 1y, and consequently the leaves Gfin

7~ 1(r(x2)) also map onto leaves of a smooth foliati@non 7, (7' (V')). Define
Fo =15 (G2)

and continue inductively setting
Fi= 7T]-' (Gi)

whereg; is the image of the leaves @fin 7~ (7 (z;) onmz, , (72" (V")).
By construction these foliations; have as tangent space in a point w}l(V’)

dry(z de Tg(x:))

i=1

whererz(z;) = mz(x) for all 4. In additionF,. contains all leaves af andg in
77" (V'): otherwise there is a poigte V' and a point: € 7' (y) such that

drr(Tg(x)) ¢ de Tg(x:)),

i=1

mr(x;) = nxe(z) for all .
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On the other han@'z g (x) must contain every tangent subspace
dmr(x) ™ (Tg(a"))
of pointsa’ with mx(2') = mx(x) sincerz'mr(mg 7g(z')) is contained in a leaf of
F UG. Consequentlyirz(z) "t (3;_, drr(Tg(x;)) C Trug(x) and onm 2 (V') we
have
FUG=F,.

5.2. Foliations induced by Fibrations

An important type of foliations are those induced in a unique way by birational maps
f : X --» Y from a projective complex manifolX to another projective complex
manifoldY. We need some preparations to describe this construction.

LEMMA 5.5, LetF,G C Tx be two foliations on a projective complex manifald
andU C X a Zariski open subsetiX. If 7| = Gy C Ty thenF = G.

PrROOF This statement is already true for saturated subshe&ves C £ in a
locally free sheaf of rankn on X. Itis a local statement, so we can prove it on affine
open subsetSpec(R) = V C X such thatr is an integral domairt is free onV and
F, G are the sheafifications of tHe-modulesF, G C R". Furthermore we can assume
thatU' = Spec(Ry) is a principal open subset df w.r.t. some non-zero elemejite R.
Then the assumptions of the lemma tell us that= G C (Ry)".

Let (ry,...,7,) € F. Because of’y = Gy thereis a(r/,...,r,) € Gandak € N
such that

1
ﬁ(ri,...,r;) =(ri,. ., n).
This implies
= e i=1, .
If the minimal possible: in these considerations Is 1 we conclude(ry,...,r,) € G

but f* - (r1,...,m,) € G. Consequently, the residue clasgof,...,r,) in R"/G is a
torsion class. This contradiofs C R™ saturated.
In the same way we conclude C F', and the statement follows. O

LEMMA 5.6. Let X be a projective complex manifold afil C X a Zariski open
subset. Then for any foliatiofy, C Ty on U there exists a unique foliatiodA C T'x
such thatF; = Fy.

PROOF SinceTY is torsion free the Lie bracket of two vector fields is completely
determined on Zariski open subsets. Hence a saturated suliskedfy that is involu-
tive on a Zariski open subsét is a foliation onX. Consequently it is enough to show:
If 7y C Ty is a saturated subsheaf there exists a unique saturated exté#nsiofy
such thatF|; = Fy.
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As in the proof of the previous lemma we can reduce the problem to extending a module
Fg, saturated inR}‘, f € RandR an integral domain. Set := Fr, N R". ThenF
is a saturated submodule &f*: If g - m € F for some0 # g € R, m € R", then
4.1 € Fr,. Hence} € Fg, sincel', is saturated irR}", and consequenthy, € F.
Finally, Fy = Fr, C R}L: If % € Fy forsomem € F' C Fg, then% € Ig,.

Conversely, if% € I'r, then

k m m
O

Now we can define the foliation induced by a rational nfapX --» Y whereX,Y are
projective complex manifolds: Léf C X be a Zariski open subset whefds regular
and smooth. Then the relative tangent burille,- C Ty defines a foliation o/

DEFINITION 5.7. The foliationZ induced byf : X --» Y is the extension dfy;/y
to a foliation onX.

This foliation exists by Lemm&.6and is unique by Lemma.5.

Since the properties definirig above are local the Stein factorizatigh--+ Y’ --» Y

does not change the induced foliation. Note furthermore that the general fibgeref
irreducible if they are already connected: These fibers are isomorphic to the fibers of the
projectionr; : I'y — Y from the irreducible grapfiy C X x Y of ftoY. If ff is the
desingularization of'; the general fibers cﬁf — Y are smooth by4] and birational

to the general fiber of ;. Consequently the general fiberszof are irreducible if they

are already connected.

PROPOSITIONS.8. Let X be a projective complex manifold and: X --» Y,
g : X --» Y5 two rational surjective maps with induced foliatioffisandG on X. Then
F UG is alsoinduced by a rational map: X --» Z.

This proposition is a consequence of the following more general construction:

DEFINITION 5.9, Let X be a compact Kéhler manifold. A covering famiy;):cr
of closed complex subspacesXnparametrized by a compact complex base spaée
called generically connecting iff for any analytic subgetc X two general points are
connected by a finite sequence of element€’in such that two subsequent elements do
not intersect inZ.
A meromorphic magf : X --» Y is called the generic reduction map with respect to
a covering family(C;):cr of closed complex subspacesiniff the general fibers are
genericallyC;-connected and every element(6%) is contained in a fiber. Here, fibers
of f are defined via the graph df.

THEOREM 5.10. Let (Cy):er be a covering family of closed complex subspaces
in a compact Kahler manifold{ given by a closed complex subspaceC 7 x X
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over a compact complex base spdcte Suppose that the irreducible componentg£of
correspond bijectively to the connected componenis afd project surjectively oX
and the associated connected componerif ofSuppose furthermore that the general
fiber C; is irreducible.

Then there exists a generic reduction m@apX --+ Y for (Ci)ier.

PROOF. Starting withC(®) := ¢ andT(® := T we will inductively construct a
complex spacé&*) and a subspad@®) ¢ T*) x X from C*~1) andT(*~1) such that
C®) andT*) satisfy the same assumptions@sndT, there exists a finite surjective
mapm, : T® — T(*=1 and, denoting the fiber overc T with C*,

@ c® > C’;:é) for a general point € T,
(i) Ct(k) = Cfr’z(j) for general points in all connected components %) im-

plies that all fibersj‘t(’” through a general point € X are isomorphic.
(i) If Z c X is a complex subspace (possibly empty) then for gertegall’(*),
o 2" € O™ there existt', " € Tk, 7 ¢ Cf,kfl) n c% Y and

i (t)
S Cfrt(j) n %Y such that

x e C’t(,kfl),x" € Ct(,]ffl) and 7', 7" ¢ Z.

Then propertiesi) and(ii) imply that afterk < dim X stepsC*) defines a meromor-
phic mapf : X --» Y with the same general fibers a§¥): Let T° c T the open
locus where the familg'(*) — T is flat. TakeY as the closure and desingularisation of
the image ofl™® under the map to the Douady spaceXof The meromorphic mayf is
induced by the projection from the universal family. Fingllyi) shows that the fibers of
f are genericall)((]t(’“))-connected and hence by induction genericélly)-connected.
To start the construction, denote the projectiodf'ck X toT byp : T'x X — T and
the projection froni" x X to X by ¢ : T' x X — X. Denote the restrictions gfandg

to C by pc andqc. Then thepe-fiber overt € T is justC; € X. Everyqc-fiber over
some points € X decomposes into not necessarily connected components

g’ (x) N p~H(Ty),

whereT; is any connected component6f For everyT; there exists am; € N such
that for general points € X the setg' (U) N p~!(T;) decomposes inta; irreducible
components. Finally, th&; are irreducible because by assumptionZhare images of
irreducible spaces.

To construcC' (M), consider the produdt x X x X x T and its projectiong:, ps, ps, ps
onto the subsequent factors. A pofnt, z1, 2, t2) of the intersection

S = (p1 xp2) HC)N (p2 x p3 x pa) HC xpC)CT x X x X xT

satisfiesr; € Cy,, 21,22 € C,.
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Next, fix a general point € X, an irreducible componefff; ¢ T and enumerate the
irreducible componentg; ., ,, of qgl(a:) Np XT;), k = 1,...,n;. Itis possible to
extend this enumeration to the irreducible compon@hts ;. of ;' (') N p~(T;) for
pointsz’ in a Zariski open subséf; C X in such a way that th&; . ,, 2’ € U;, form

an irreducible analytic subset 6f. Furthermore, the Zariski closure of this subset must
beC N p~1(T;), since this is an irreducible component©f

Cram 1. Each tripel (T;,T; » 1, T;) of two connected componenrifs, T; C T
and an irreducible componerf;, ,, ., 1 < k < n;, of qgl(x) N p~(T;) determines
exactly one irreducible compone#ft;;, C S such thatps(S;;) = X, p1(Si;) = T;,
p4(Si;) = T}, and the fiber over every poifit’, zo,t2) € (p2 X p3 X pa)(S), &’ € U;,
contains an irreducible component isomorphicito,- ;.

PrRooF The assumptions imply that over any irreducible compotgnof
(p2 X p3 X pg)(S) C X x X xT
such thap» (R;) = X andps(R;) = T; there exists exactly one irreducible component
S;jx with the required properties.
By the properties o€’ we have for suclR;’s that
(p2 x pa)(R;) = Cnp~ ! (Ty) C C,

and the fiber ovefzq,t2) € (p2 x pa)(R;) in R, is the irreducible subset,, C X if
to € Tj is general. Consequentlf; is uniquely determined b¥; and hences;;, is
uniquely determined by}, T;. O

Set .
T =] T,
i,k
which contains a copy df; for every irreducible compone;;;, as above. Set

c 5:U (p1 % p3)(Sije) C T x X.
1,5,k
By construction, the irreducible components@f) correspond bijectively to the con-
nected components @) and project surjectively oX and the associated connected
component of (). Furthermore there exists a natural finite map 7" — 7 = T

CLAIM 2. For a general point € T( we haveC{" > C,, (»).

PROOF Suppose that lies in the connected componéﬂi@l) of T(M) correspond-
ing to S;;x. Thenm(t) € T;. For a general point € C, ;) choose a general
t' € g5'(x) N p~(Ty). Sincet, t' andz are general(m(t),z,z,t') € Sijx, by
construction. Consequently; (t), z) € (p1 X p3)(S;;) andz € cM. sincec™ and
Cr, (+) are irreducible this implies the claimed inclusion. O
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Claim 2 implies property(i) for C(1). Property(ii) follows from
CLam 3. If ¢V = = (+) for general pointg € 7;21,2 then
Cy D Cyr

for general pointse € X and all pointst’ € p(T; ) andt” € p(q;' (z) N p~H(T})).

PROOF Sincer is an isomorphism oﬂ“i(].lk) and the component af") overTi(jlk)

is irreducible,Ct(l) = Cr, 1) holds for allt € 7}(7.1,3. By construction and assumption,

(p1 % p3)(Siji) NP~ H(mi (1) = CF C Cry0)-

Thenforall(my (t), z, z2,t") € Sijx itis true thates € C, (4. Butthe fiber ofS;;, over
(m1(t),z,t") is Cp for general points € X, as the construction of;;; in Claim 1
shows. Consequentlg;;,» C Cy . O

Finally we show propertyiii) for C(: Fort e Tl.(jlk) andz’ 2" € Ct(l) there exist
points
(7T1 (t)7§l7 xla tl)7 (7T1 (t)7j”7 x/lv t//) € Sz_]k: CS.

Consequently we only have to assure that for gerterdl z”” the pointsz’, 7’/ € X can
be chosen outsidg. But if the fiber of the projectiom; x ps in .S;;;, over (m(t), ")
is always contained itZ x T thenS;;;, C T x Z x X x T, and this contradicts
p2(Sijr) = X.

Since the construction @f") and7™") and the proof of propertie), (ii), (iii) do not
rely on propertiesi), (ii), (iii) for C andT it is possible to construa®®) and 7*)
from C(*=1) andT*~1) and prove propertieg), (ii), (iii) in the same way as far'")
andT™. O

ExXAMPLE 5.11 To illustrate the construction of the generic reduction map consider
the family of lines{l;},cp: in P? through a pointp € P2. ThenT = P! has only
one irreducible component, arfl C P! x P? x P? x P! consists of two irreducible
components: the closul¥ of

{(t,z1,22,t) : T1 # p,T1,%2 € I}
and
S" = {(thp? ‘T2at2) 1 Xg € ltz}‘

The construction above singles diltbecause,(S”) = {p}. Hence the generic reduc-
tion is already induced by the family of ling4, }, i.e. it is the projection oP? from p to
P!. The reduction map igenericsince the connection of the lines througls not taken
into account.
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REMARK 5.12 This construction closely resembles that of Campana’s reduction
map [11, 12]. The difference is that in the above construction for any given analytic
subsetZ C X two general points lie in the same fiber iff they can be connected without
touchingZ. In the example above the two reduction maps fall apart.

Another difference between the generic and Campana’s reduction map is the stability un-
der modifications: LeK be a compact complex manifold at@; ). a covering family

of complex subspaces of. Let f : X --» Y be the generic quotient and: X --+ Z
Campana’s quotient with respect(6;). If 7 : X — X is a modification of compact
Kahler manifolds then the generic quotientﬁfw.r.t. the strict or total transforms of

(C}) is described by o w whereas in general Campana’s quotient is describegldy

only w.r.t. the total transforms ¢f”; ): Consider again the pencil of lines through a point

p € P2 and its strict transform in the blow up 82 in p.

PROOF OFPROPOSITIONS.8. LetI'; C Y7 x X, I'y C X x Y, be the graphs of
fandg. Thenl'y UT, C X x (Y; UY>) is a covering family of complex subspaces in
X. Hence we can apply TheoremlOand get a generic reduction map X --» Y.

In particular, two general points, 2’ € X can be connected by a sequencefoaind
g-fibers such that two subsequent fibers do also intersect outside

7 = Sing(F U G) U {indeterminacy loci of f and g}.

Such pointsz, 2/ must lie in the same leaf f LI G. On the other hand, thg¢- and
g-fibers through a general point € X must be contained in thie-fiber of z, by the
properties ofh.

Consequently: induces? U G. O



CHAPTER 6

The numerically trivial foliation of a pseudo-effective
class

In this chapter we introduce the notion of numerically trivial foliations with respect to
pseudo-effective classeson compact Kéahler manifoldX. Our first goal will be the
construction of a maximal numerically-trivial foliation, and as for the nef reduction
map in Chaptet and Tsuiji's numerically trivial fibrations in Chaptgthe main tool will

be a Key Lemma. This time it is local, according to the nice local structure of foliations.
In section6.2 we show that the leaf dimension of a numericailitrivial foliation is
bounded from above by the numerical codimenslon X — v(«) of « if the foliation

has only isolated singularities. Of course this is a very restrictive assumption, which is
in addition difficult to check. To generalize the bound to arbitrary numerically trivial
foliations the structure of these foliations around singularities must be analysed much
closer. In any case, the philosophy behind the notion of numerical triviality and also the
examples in Chaptét make the bound plausible.

In section6.3 we generalize the notion of numerical triviality w.r.t. a pseudo-effective
class ton-admissible systems of currentsdfi—ew]. The most interesting examples are
the systems induced by a closed posi{ivel )-current© representingy, giving rise to
numerical®-triviality. This notion can be characterized by the Siu decompositiad, of

as in Theoren8.8. We also show that the litaka fibration of a line bundlénduces the
numerically trivial foliation w.r.t. a metric generated by the sections@f, for m > 0
appropriately chosen.

In the last section we identify Tsuji's numerically trivial fibrations w.r.t. a pseudo-
effective line bundld. and a possibly singular hermitian mettion L with the pseudo-
effective fibration associated to the curvature cur@ptthat is the maximal rational
mapf : X --» Y inducing a numerically9,-trivial foliation. Finally the nef reduction
map of a nef clasa also fits into the picture, as the pseudo-effective fibration.of

These facts yield a sufficient criterion for the litaka fibration and the nef reduction map
of a nef line bundle falling apart: The maximal numerically; (L)-trivial foliation is

not a rational fibration. Examples for this phenomenon will be studied in Chapter

6.1. Numerical triviality for pseudo-effective classes

77
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DEFINITION 6.1 Let X be a compact Kahler manifold with K&hler foramand
pseudo-effective class € H!(X,R). A submanifoldy c X (closed or not) is
numerically a-trivial iff for every immersed disk C Y,

lim sup/ (T + ew) =0,
elo T A’—Sing T

where theT’s run through all currents with analytic singularities in[—ew] and
A" ={t:|t| <1—4}isany smaller disk contained ih = {¢ : |¢t| < 1}.

As a convention sefAfsmg (T +ew) = 0if A —Sing T = (). Furthermore note
that the restriction to diskA’ may be replaced by the assumption that it is possible to
continue the immersio C Y holomorphically.

DEFINITION 6.2, Let X be ann-dimensional compact Kahler manifold with a
pseudo-effective classc H'''(X,R). A foliation F of rankk is numerically a-trivial
iff for any open subseh™ = U ¢ X — Sing(F) such that the leaves df are the fibers
of the projectiorp : U — A™~* onto the last: — k coordinates the following holds:

(i) Every fiber ofp is numericallya-trivial,

(i) andif. : A™ — U is an extendable immersion with relatively compact image
such that the projectiopo . : A” — U — A"~ factors through the projec-
tiong¢ : A — A™~! onto the last: — 1 coordinates, then for any sequence
of currentsT}, € a|—exw], e — 0, the integralsfq,l(a)_Sing T (Tx + exw)
are uniformly bounded from above inc A"~! andk € N.

Note that no exceptional fibers are allowed: if the fibers are completely contained in the
common singularity locus of th€ € a[—ew], then they are numerically trivial by the
convention above, otherwise the limit in definitibri is supposed to bé. The uniform
boundedness is essential for the proof of the Local Key Lemma below.

To construct a maximal numerical trivial foliation w.r.t. this notion, we first need to
prove an analog for the Key Lemn3a4 used for constructing Tsuji’s numerically trivial
fibrations:

LEMMA 6.3 (Local Key Lemma for pseudo-effective classés Let X be a com-
pact Kahler manifold with a pseudo-effective clase H''!'(X,R). LetW = A" be
an open subset ok with a projectionp : W — AF onto the lastk factors, and let
V ={z =... = z,_r = 0} be a complex submanifold &F . If every fiber of and
also V' are numericallya-trivial then W will also be numericallyy-trivial.

The proof of this Local Key Lemma for pseudo-effective classes is rather technical but
becomes more transparent when looking at the characterization of numerical triviality
w.r.t. a single closed positivel, 1)— current in Sectior6.3: In this case, the numerical
triviality of the fibers of the projection implies that the residue current of the Siu de-
composition is a pull back of a current on the base (see the Pullback Lé&i@a Of
course, the Pullback Lemma is not true for pseudo-effective classes. But it is enough to
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prove that the restriction onto different horizontal sections are almost the same, hence
the numerical triviality ofl” implies the numerical triviality of all horizontal sections,
hence that ofV. This argument is made exact by

PROPOSITION6.4. Let X be a compact Kéhler manifold with Kéhler form,
and letT, = T} + exw, e, — 0, be a sequence of closed positi{e 1)- cur-
rents with analytic singularities oX’ such that thel] represent the same cohomology
class. LetA? — X be an immersion (with coordinates, z3). Let A’ cC A be
a disk, and consider the functiorfs : A’ — Rt,a — f({Zl:a}m,)_Smg 1, T and
gk : A — RY)b — f({@:b}mA/)fsmg T Ty. Suppose thalimy_., fx(a) = 0 for
all a € A, and that thef, are uniformly (ina) bounded from above. Suppose further-
more thatlimg - gx(0) = 0. Thenlimy_,, gx(b) = 0 for all b € A/, and theg,, are
uniformly (inb) bounded from above.

PROOF Since the integrals are always evaluated outside the singulariti&s, of
and since the mass of the integration current of a divisor is always concentrated in the
divisor, one can assume without loss of generality that the Siu decomposifigrdoes
not contain any integration currents of divisors. Consequéfitiias only finitely many
isolated singularities on any compact subseppf(A’) where A’ cC A is any disk
andp; : A2 — A is the projection onto the first coordinate, digdmay be written on
prl(A) as

Ty = 0% idzy A dZ) + 0%yidzy A dZs + 05 idzy A dZ) + 05,idzs A dZs,

where thef}; are smooth functions outside these singularities, and integrable*on

The currenfl}, being real implie:ﬁfj = @
To prove the proposition it is enough to show that

lim ‘ Tk 7/ Tk| =0.
k—o0 A} —Sing Ty A{—Sing Ty

whereA} = {z; = b} N A’. Now, choose a path € A from 0 to b. Then,
‘ ngfsmg 7, Tk — fA(’)fSing Tk Ti| = | fA’ (011 (21, b) — 011 (21, 0))idz1 A dZ |
equals (by Stokes and Fubini)
|fA,(f7 do%))idzy Ndzy| = | fA,M d(0%idz A dzy)|.
Since the closedness Bfimplies
d(0% idzy A dzy) = —d(05yidzy A dZa + 05 idzy A dZ) + 05,idzy A dZs),

this integral equals by Stokes

| / (0%yidzy A dZo + 05 idzy A dZ) + 05yidzs A dZs)|,
(A X7)



80 6. THE NUMERICALLY TRIVIAL FOLIATION OF A PSEUDO-EFFECTIVE CLASS
and sincez,; is constant oM\’ x 9, this simplifies to
| (05yidzy A dZa + 05 idze A dZy + 055idzs A dZ5)).
J(OA") xy

Observe that these integrals do not depend on the chosen p&bnsequently, cover
the diskAg ;, with center inb/2 and radiugb|/2 with a family of pathsy, from 0 to b.
Then to proveimy .o | [, Tk — [, Tx| = 0 itis enough to show that

b 0

k—oo

lim / \ / (0%yidzy A dZo + 05 idza A dZy + 08yidze A dZ5))|da = 0.
a (OA")Xva

The term witﬁ’gQ vanishes sincélz; Adz, is pulled back td) in any chart of 0A) X .
Sinced¥, = 0%, the remaining integral may be bounded from above by

OA" X Ao b

whereC' is independent of andk, anddV is a volume element 08A’ x Ag ;.
Now interpretT;, as a semipositive hermitian forfn,.) on every tangent spacgy
(whereT has no singularities). Then the Schwarz inequality implies that

o 0 g 0 g 0
Ok | = {— )| < (—=—. |z . |(— =
0%2] = K ) < o )1 o 5
Hence the integral above s the square root of the product

[ ey OhsJav.
OA' X Ag b OA’ X Ag,p

again by the Schwarz inequality.
Claim. There exists a bound/’ > 0 such that for allk there is a diskA}, cC A

containingA’ with
/ 0%, |V < M.
DAY X A

PROOF Suppose that\’ cc A” cc A, and look at the(l,1)- form
n = idzo N dZo. There exists & > 0, such thaty < C-wonA” x A’. Hence,

/ 103, |dV = (T + exw) An < C - / (T}, + exw) A w,
(A =AY A (A7 =AY A X

N

1 ki ki
MNZ = 101112 - [055]2.

and the last integral only depends on the cohomology clag3 ¢dndw). By Fubini
one gets a disk\} as above. O

For the second term note that the assumptions on the functianamply
limg oo [o, frida A da = 0, by Lebesgue’s dominated convergence, and the measure
of the setqa : fr(a) > ¢} tends ta, too, fork — cc.
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Hence, as above, for a given> 0 it is possible to bound the measure{ef: fi.(a) > §}
small enough such that for dllbig enough there is a disk}, CC A containingA’ with

/ |05,|dV < e.
A x A/

Choosingd small enough and/’ big enough (but both independent bf) one can
assume that the two disks; andA} coincide (at least fok big enough). Sincé/’ is
independent of, the diﬁerencquk , Tk—fAk , T tends td) for & — oo, and uniformly

k—o0

inb. Since [, Tp — 0, this is also true forf,, T}, — [, Tx. Consequently,
¢,0 b 0

limg_ o gx(a) = 0, and the uniformity inb implies the uniform boundedness of the

9k- O

Proof of the Local Key Lemma for pseudo-effective clas$ed.is a disk immersed in
W such thap projects it on a point in\*, there is nothing to prove.
If Ais a disk immersed il not intersecting” which is projected biholomorphically
onto A*, then a coordinate change and further cutting down leads to the configuration
described in the proposition. Note that it is sufficient to check on anyflisk c A
that

lim Ty + lw =0

k=00 JA’—SingT. k
for arbitrary sequence;, of currents with analytic singularities in[—+w]. The as-
sumptions of the Local Key Lemma imply that

1

lim Ty + —w = lim a) =
k—oo {z1=a}—SingT} L k k—oo fk( ) 0

for all @ andlimy,_, f{ZFO}_Smng Tr + %w = 0. The definition of a numerically

trivial foliation implies the uniform boundedness of tfig so it is possible to apply the

proposition.

If Aisadiskimmersed ifii’ not satisfying one of the two conditions above, then for any

A’ CC A there are diska\] cC A} C A such thal A7 > A’ (hence it is enough

to consider finitely many of these disks), and there are projecfipnsiV — A"~k

(possibly different fronp) such that the restriction onttY; is a submersion. Since the

fibers and sections of thege are composed of disks already shown to be numerically

trivial, it is possible to apply again the proposition &f cc A/ (by possibly further

cutting down and a coordinate change). Since there are only finitely ifsaay is also

numerically trivial.

Finally, the uniform boundedness property of the foliation follows directly from the

uniform boundedness shown in the proposition. O

Now we construct thenaximalnumericallya-trivial foliation:
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THEOREM®6.5. Let X be a projective complex manifold with Kéhler fozmand let
a € HY1(X,R) be a pseudo-effective class. Then there exists a numeriedtiyial
foliation 7 C T'x on X such that7’ c F for all numericallya-trivial foliations F".

PROOFE It is enough to prove that for two numericallg-trivial foliations
F,G C Tx the unionF U G is also numericallyn-trivial. But this follows immedi-
ately from the Local Key Lemm@.3since it can be applied on the inductive steps of the
construction ofF LI G in Section5.1 O

6.2. The leaf dimension of numerically trivial foliations

Numerically trivial foliations w.r.t. a pseudo-effective clasbave leaves with codimen-
sion bounded from below by the numerical dimensiompprovided that the singulari-
ties of the foliation are nice enough:

THEOREM 6.6. Let X be a compact Kéhler manifold with Kahler foran and
a € HY'(X,R) a pseudo-effective class. L&t be the numerically trivial foliation
w.r.t. o and suppose that the singularities Bfare isolated points. Then the numerical
dimensiorv(«) is less or equal to the codimension of the leaves of

PrROOF Applying theoremd.9, one gets a sequence of clogddl)- currentsT},
with analytic singularities im[—exw] such that

lim (Ti + epw)? Aw"™P = (aP.w" 7 P)>g
k—oo X —Sing T} B
forallp =1,...,n. Inthese integrals, th€,'s may be replaced by the residue currents

Ry =T — Z v(Ty, D)[D]

of the Siu decomposition of tHE;.

Now the proof consists of two steps: first, I8t = U C X be an open set such that the
projectiong : U = A™ — Al on the last coordinates describes the numerical trivial
foliation w.r.t. a locally in U. Then use as in propositidh4 that theR,’s get close to
pulled back currents from the badé to show

Claim 1.For! < p < n and an open subs&t cc U,

/ (Ri + exw)? Aw™™P — 0.

PROOFE Every Ry + exw may be written as a surﬁ:i)j Hfjdz,» A dzj. Then ev-
ery coefficient of(Ry + exw)P w.r.t. the baselz; A dz; (I, J multi-indices of length
[I| = |J| = p) is a product ofp of thesef);. If p > I, then one of thesé/; has index
t<n—-lorj<n-—I.

As in proposition6.4 one can argue with the Schwarz inequality that

1 1
05] < 1051 - 1051
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Furthermore, leF; be a sufficiently general fiber of the projectiodt — A~ onto all
but the ith coordinate, = 1,...,n — [. SinceRy, is a current with analytic singularities
only in codimensior2, a sufficiently general; does not hit the singularities &f;,. Then
HZ‘F ~u- 1S smooth and positive, and numerical triviality applied on the 1-dimensional
fibers F; which are leaves af implies that

— k—oo

/ |0 |dz; Ndz; = 9 “dz; Ndz; — 0.
FinU’ FNU’

This leads to the following chain of inequalities: Lét = (iy,...,4,) and
J = (j1,.-.,Jp) be two multi-indices of lengtlp such that (without loss of general-
ity) i1 <n —1[. Then

fU' |011j1 ij |dv < fU’ ‘01111 o zpzp| | jij1 ‘%de

< fU’ |9%111|dv fU’ ‘91212 ’ %Zp”ahh ’ -prjp‘de)%.
The second integral of the last term remains bounded for co because th&), + e,w
(weakly) converge against some current according to thedr@nThe first integral may
be computed via Fubini as

/\9m|de=/ (/ 105, |dziy A dZsy)dVano,
an-1 Jpy,

hence tends t0 for £ — oo since the mtegral#F |0F i |dz;, A dz;, are uniformly
bounded from above by definition of numerlcally trivial foliations. Consequently,
Jor 16055, - dV,, *==° 0 and the claim follows. O

117]

The second step is to give an estimate of the considered integrals around the isolated
singularities of the foliation by using the uniform boundedness of the Lelong numbers
of (almost) positive currents in the same cohomology class.

Claim 2. There is a sequence of compact sEtsC X exhaustingX — Sing F and a
constantC > O such thatforall <p <n

/ (Ri + exw)? Aw"™P < 4,
X—K;

PROOFE This is just an expanded version of Boucksom’s argumeni8jnLeEm
3.1.11]. Choose a finite covering &f by open charté/; isomorphic to the unity ball
B c C", such that the balls with half of the diameter still coér If z(Y) denote
coordinates oii/; one may find two constants;, C, > 0 such that

Ciw < %85|z(i)\2 < Cow

in U;, for all 4.
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If z € X liesinUs;, the Lelong number ((Ry, + ew)?, z) is by definition the decreasing
limit for » — 0 of
1

V((Ry + ew)?,x,r) = W

/ (R + ew)? A (L03]0 2.
|2(D) —z|<r 2

On the one hand, far < ry one has
Co

V((Rk + Eu))p, [Z},’I’) < I/((Rk + €w)p’x,7’0) < W

/ (R + ew)? Aw"™ P,

X

But [ (R + ew)? Aw™ P < [ (T + ew)? Aw™ P, and the last integral depends only
on the cohomology class @f;, sincew is closed.

On the other hand,
(7r?)"=Pu((Ty + exw)P, ,7) Cy f|z(’i)fz|<r(Tk‘ + epw)P Awn P

¢y j‘lz(i)71‘|<r(Rk’ + epw)P Awn P,

Vv v

For p < n the claim follows since&sing F is compact, hence consists of only finitely
many points. Fop < n there is nothing to argue, sineéa) = n implies thata is

big ([8, Thm. 3.1.31]). Hence the numerically trivial foliation coincides with the litaka
fibration w.r.t.cr, because it is the identity map. O

Both claims together show the theorem. O

6.3. Variants of numerically trivial foliations

Itis remarkable that the definitions of numerically trivial submanifolds and foliations and
the construction of maximal numerically trivial foliations also work when the currents
T do not run over all currents with analytic singularitiesif-ew:

DEFINITION 6.7. Let X be a compact Kéhler manifold with Ké&hler forn and
let « € H»'(X,R) be a pseudo-effective class. Aradmissible system of currents
(Ce C a]—ew])cecr+ IS asystem of setk C a[—ew] such thatC. C C., for every pair
e <€,

A submanifold” C X (closed or not) iswumerically (C)-trivial iff for every immersed
diskA CY,

lim sup/ (T + ew) =0,

€lo /—Sing T
where the T's run through all currents with analytic singularities i€, and
A" ={t:|t| <1—4d}isany smaller disk contained i = {¢t : [¢t| < 1}.
A foliation F of rank k is numerically (C.)-trivial iff for any open subset
A" =2 U C X — Sing(F) such that the leaves ofF are the fibers of the projection
p: U — A" F onto the last, — k coordinates the following holds:

(i) Every fiber ofp is numerically(C.)-trivial,
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(i) andif. : A™ — U is an extendable immersion with relatively compact image
such that the projectiopo . : A” — U — A"~ factors through the projec-
tiong : A — A"~! onto the lastr — 1 coordinates, then for any sequence
of currentsTy, € C.,, e, — 0, the integralsfq_l(a)_smg T (Ty + exw) are

uniformly bounded from above inc A»~! andk € N.

THEOREM 6.8. Let X be a projective complex manifold with Ké&hler fotm let
a € HY(X,R) be a pseudo-effective class aftl C a[—ew]).cr+ an a-admissible
system. Then there exists a numericédly)-trivial foliation 7 C Tx on X such that
F' c F for all numerically(C.)-trivial foliations F”. O

As an immediate consequence of the definition we obtain

PROPOSITIONG.9. Let(C. C a]—ew])., (C. C a]—ew]). be twoa-admissible sys-
tems such that, C C! for eache > 0. Then every numericallfC.)-trivial submanifold
or foliation is also numericallyC. )-trivial. O

These generalized notions of numerical triviality are especially interesting when applied
to a positive closedl, 1)-current® € «[0].

DEFINITION 6.10. Let X be a projective complex manifold with Kéhler form
let « € HY'(X,R) be a pseudo-effective class afl € «[0] a positive closed
(1,1)-current. For a sequencéOy)reny Of currents©, € al—erw], e | 0,
approximating © as in Theorem4.5 consider the a-admissible system of sets
Cc = {0 : € < €} C a[—ew]. Then a submanifold” C X or a foliation 7 C Tx is
callednumerically ©-trivial iff they are numerically(C, )-trivial.

Obviously we have to show the independence of this definition from the approximating
sequenceéOy)ren. This is done by the following characterization of numericaly
trivial submanifolds which is a local analogue of Theorg®

PrOPOSITIONG.11 With the notation as in the definition, a submaniféldc X
is numerically(C. )-trivial iff ©),- exists and

@|Y = Z a; [Dl]
for countably many divisor®); in Y and real numbersg,; > 0.

PROOF By the properties of the approximation listed in Theor

lim (Ok)ac + ew :/ O.c

k—oo JAr ’

for every immersed disk’ cC A C Y.

If ©y = > a;[D;], the absolute continuous part®f;- vanishes ory” and hence on any
disk immersed irft". Consequently the above integral is alw@ysndY” is numerically
(C¢)-trivial.
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On the other hand, I is numerically(C.)-trivial, thean, 0, for every immersed disk
A’ CC A CY. This can be used as follows:

Let© = >, v;[D;] + R be the Siu decomposition &. Let A" = U C X be an open
subset and leg : A — A™~! be the projection onto the firat— 1 factors. Since the
Lelong number level setB.(R) contain no codim 1 component, very general fibErs
of ¢ do not intersect any of th&.(R). By the results of 31] there is a pluripolar set
N c A"~ ! such that the level sefS. (R, ) = () for the restriction ofR to all fibersF’
over points outside aV. By assumption? » = 0.

By the following lemma there exists a positive clogad1)— currentS on A"~ such
thatR = ¢*S. Let D = A"~! x {p} be a section of such thatR| p is well defined.
By induction |, = 0. Since the projectiop : D — A"~ !is an isomorphisnt = 0
henceR = 0. (|

LEMMA 6.12 Let T be a positive closedl,1)— current on A™ and let
q : A" — A"~! pe the projection onto all factors but the last onedff-1,) =0
for all = outside a pluripolar setv ¢ A"~! then there will be a positive closéd, 1)—
currentS on A1 such thatl’ = ¢*S.

PROOF The positive currenf” may be written as

T = ZZ G)”dzz AN dEj
i,j
where the©,; are complex measures ai” ([14, (1.15)]). ThatT is a real current
implies©;; = @ji. SinceT is positive,y )\Z-)Tj@ij is a positive measure for all vectors
(A,...,A,) € C™. Hence

Claim.As a(1,1)—currenti®,,,dz, A dz, = 0.

PROOFE By definition one has to show that
/’ 1Ondz, NdZ, Naidzy ANdzZi A ... Nidzp—1 NdZp—1 =0
for all complex valued functions € C°(A™). SinceT|;-1(y) = 1Onndz, A dZ,
/ 1Opndzy, NdzZ, N aidzy NdZi N ... Nidzp—1 NdZp—1 =
/ TAaidzy NdZy N ... Nidzp_1 ANdZp_1,

and the slicing formulal4, (1.22)] implies that this is equal to

/ </ T|q71(w/) A\ qul(x/)> idzy NdzZy N .. N idzp—1 N dZp—1.
An—1 a=1(z’)
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This is0 becausd,-1(,) = 0 for all z outside a pluripolar se¥ C AP O

Consequently,
Oii + MOin + AnOni = 04 + X0 + A0, > 0

for all A\,, € C. Now suppose tha®,,; # 0, i.e. there is a smooth real valued function
a > 0 with compact support such th@t,; («) # 0. Then there is &,, € C such that

6“(04) + Xngnl(a) —+ /\n@m-(a) < 0.

This is a contradiction. Hend®;,, = ©,,; = 0foralli <n — 1.
Next, the closedness @fimplies

0 0

20 = ij =0 Vi,j<n-—1

(‘3zn9] 82’79] 0 Vi,j<n
Hence thed;; only depend orxy, . . ., z,—1. One finally gets

i,j<n—1

andS is a closed positivél, 1)—current onA™ 1, O

Now we can show that the litaka fibration of a line bunflles the maximal numerically
trivial foliation w.r.t. a certain metric ot:

PROPOSITIONG6.13 Let L be a holomorphic line bundle on a projective complex
manifold X such thatmL| is a non-empty linear system which induces a rational map
®mr| * X --» Y. Theng,,,, is the numerically trivial foliation w.r.th,, .

PROOFE On every immersed disk: A cC X — Bs(|mL|) mapped to a point by
¢mz| the pulled back curvature currefit®,,,,,| of hy,z| is = 0. Consequently the
litaka fibration is numericallyd,,,, | -trivial.

On the other hand for every immersed disk A cC X — Bs(|mL|) not mapped to
a point by¢y,,z| the diskA is not numerically trivial w.r.t..*h,,,;: When|mL| has
no base points in the image &f, the metric.*h,,z| is @ smooth metric with smooth
positive curvature form different frofh. Consequently no foliation oA not contained
in the litaka fibration can be numericad,,,, . -trivial. O

Note that there is a positive integer such that the litaka fibration df is induced by
the linear systemmL| [26, 10.3].

6.4. Pseudo-effective fibrations

In general it is not true that numerically trivial foliations are (rational) fibrations, see the
surface examples in chaptérThis motivates the following
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DEFINITION 6.14. Let X be a compact Kahler manifold and € H*!(X,R) a
pseudo-effectivél, 1)-class. LetF be the numerically trivial foliation ofv. Then the
maximal meromorphic map : X --» Y such that the induced foliation is contained in
F is called thepseudo-effective fibratioof .

Prop.5.8shows that the definition makes sense: There is a maximal fibration contained
in a foliation.

If «is a nef class on a projective complex manifold the pseudo-effective fibratian of

is given by the nef reduction map affrom Chapter1:

PROPOSITIONG.15 Let X be a projective complex manifold arda nef line bun-
dle onX. Then the nef fibration df is the pseudo-effective fibrationaf(L).

PROOF We only have to show for every curve C X that
C'is numerically ¢; (L)—trivial < L.C' = 0.
So letw be a Kahler form onX. If A CcC X is an extendable immersion and
T € ¢1(L)[—ew] then
O§/ Toc + ew §/ T+ ew=LC+ ew.
A c

Soif L.C = 0 the integralsz T.. + ew tend to0 for ¢ | 0. On the other hand, if’ is
numericallyc; (L)-trivial then choose a sequence of smooth foffase ¢; (L)[—exw],
€x | 0, and a covering of” with extendable immersion&; cc C. Then

OSL-CS/TI@“FGI&USZ/ Th + €pw = 0.
c — Ja,

d

REMARK 6.16 Together with Proposition6.13 and 6.9 this proposition gives a
sufficient criterion for the litaka fibration and the nef fibration of a nef line bundle being
different: The maximal numericalli-trivial foliation is not a fibration.

The same definition for numerically trivial foliations w.r.t. a single positive current leads
to Tsuji’'s numerically trivial fibrations from Chapt&r

PROPOSITIONG.17. Let X be a smooth projective complex manifold dne pseu-
doeffective holomorphic line bundle ofi with positive singular hermitian metrig.
Then the pseudo-effective fibration w.r.t. the curvature cu@pnis Tsuji's numerically
trivial fibration w.r.t. (L, h).

ProOF By Definition 3.1, a subvarietyt” C X is numerically(L, h)-trivial iff
(L, h).C = 0 for all irreducible curve€” C Y not contained in the singularity locus of
h. The analysis of these intersection numbers in Chdpsiows that
(L,h).C = (n*L,7*h).C = 7*L.C — Z v(r*h, ),
zeC
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wherer : C — C is the normalization. In particulat, h).C = 0 iff the curvature
current of7*h on C may be written a$~_ & v(7*h,z)[z]. Hence propositiors.11
shows that numericall®,,-trivial subvarieties are also numericallf, i)-trivial.

The converse is also true: By the birational invariance of numeticat)-triviality the
normalization and desingularizatian of a numerically(L, h)-trivial subvarietyY” is
also numerically(L, h)-trivial. Hence the curvature current of the pulled back metric
is of the form}_ v;[D;], by Theorem3.8. But this implies numerica®-triviality of

Y, and since every holomorphic map: A — Y may be lifted to a holomorphic map
f: A — Y, the numericad-triviality of Y follows. O






CHAPTER 7

Three surface examples

7.1. Mumford’s example

The first example is due to Mumford and has the property that the nef dimension is
bigger than the numerical dimension: Start with a smooth projective cuiroegenus
> 2 with the unit circleA as universal covering and an irreducible unitary representation
p : m(C) — GL(2,C) of the fundamental group a&f'. This defines a rank 2 vector
bundleE = (A x C?)/m;(C) on C of degree 0 where the action of (C) is given by
covering transformations afA and the representatignon C2.
Mumford proved that the nef line bundie = Opg)(1) on the projectivized bundle
P(E) is stable hence the restriction &fto all curvesD C P(FE) is positive. On the
other handleg E = 0 henceL.L = 0. Hence the numerical dimensiofiL) is 1, while
the nef reduction map is the identity, and the nef dimensi@n is
It seems quite obvious how to explain this deviation: the ruled suif§é8 carries a
foliation induced by the images of the x [ in P(E) (wherel is a line through the origin
in C2). Furthermore, locally the leaves of this foliation are mapped to points by the
morphism induced byL|, which is a kind of numerical triviality.

This intuition is made exact by constructing a smooth closed positivie —current
on L = Op: (1) whose maximal numerically trivial foliation is the one described above:
Take a measure invariant w.r.t. the representation o{C) in PGL(2). This gives a
measure oA xP1) /7 (C) transversal to the foliation induced by the image&of{p}.
Averaging out the integration currents of the leaves with this transverse measure gives an
(even smooth) closed positivé, 1)— current in the first Chern class &f = Op(g)(1)
which vanishes on the leaves but not in any transverse direction.
We still have to discuss the existence of a measuie ¢; (Op: (1)) invariant w.r.t. the
unitary representation of(C) in GL(2) and the smoothness of the metric which results
from averaging out the integration currents of the leaves. But this is easy: Take the Haar
measurev on the Lie groupl(2) which is absolutely continuous2Q, Ch.14]). Since
U(2) operates transitively oR! this measure inducesla(2)—invariant measure on the
homogeneous quotient spaBé. SincelU (2) is compact it is possible to normalize
such thafP! has measuré. Hence averaging over the integration currents of the leaves
w.r.t. w gives a smooth positivél, 1)— form which is still in the first Chern class of

91
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L = Opg(1). Since it is smooth it is a current with minimal singularities bnand
obviously, this current is numerically trivial on the leaves.

On the other hand it is strictly positive on tBé-fibers, hence no submanifold transversal
to the leaves of the foliation can be numericadly L)-trivial, and the foliation is the
maximal numerically:; (L)-trivial foliation.

7.2. A nef line bundle without smooth semipositive metric

This example was already discussed16]{ LetT' = C/(Z + Z7), Im 7 > 0, be an
elliptic curve and letF be the rank 2 vector bundle ovErdefined by

E=CxC?*/(Z+Zr)
where the action is given by the two automorphisms

g1(z, 21, 22) = (x + 1, 21, 22)
g-,—(l',Zl,ZQ) = (.’L’ +T,Z] + 22722)7

and where the projectio — T is induced by the first projectiof, 21, 22) — =x.
ThenC x C x {0}/(Z + Zr) is a trivial line subbundle®? — E, and the quotient
E/O =T x {0} x Cis also trivial. LetL be the line bundld. = Og(1) over the ruled
surfaceX = P(F). The exact sequence

0-0O—-FE—->0—0

shows thatl. is nef overX.

Now, in [16] all hermitian metrics: (including singular metrics) are determined such that
the curvature currer®;, (L) is semi-positive (in the sense of currents): These metrics
have all the same curvature current

On(L) = [C],
where( is the curve onX induced by{z; = 0}. (This implies in particular that there
exists nasmooth positive hermitian metric oil.) To exclude the possibility that there

exist positive currents in; (L) which are not the curvature current of a metricloone
proves the following

LEMMA 7.1 Let X be a projective complex manifold ardda holomorphic line
bundle onX. Then for every closed positive currentd{ L) there is a possibly singular
hermitian metrich on L such that the curvature current

On(L) =T.

PROOF Let T be any positive current in; (L). By [6] there exists a line bundle
L’ on X with a possibly singular hermitian metri¢ such that®;, (L") = T. (This is
just the usual construction of a cycle it (X, ©*)). The line bundleV = (L") "' ® L
is numerically trivial, hence nef. Consequently there exists a positive singular hemitian
metrichy on N such that the class of the curvature current

{04y (N)} =0 HY(X,R).
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Now, all closed positive currents in € H!'(X,R) have the formdd‘¢ for some
plurisubharmonic function oX. Since¢ is upper semi-continuous it attains its supre-
mum. But then the maximum principle implies thais a constant function. There-
fore the only closed positive currentine H'!(X,R) is the zero form. This implies
O, (N) =0 (as a current).

Furthermore this gives the hermitian metlic= hy ® h on L = N ® L’ with
on(L)=T. O

So[C] really is a positive current with minimal singularities én(L). But thenX is
numerically trivial w.r.t.[C], and the associated numerical trivial foliation has only one
leaf X with codimensior?.

On the other handl. is certainly not numerically trivial since it intersects a fiber of
X = P(E) with intersection numbet. Consequently, the moving intersection number
(c1(L))>0 = c1(L) is strictly positive, and X, ¢; (L)) is a counter example to equality
of the numerically trivial foliation w.r.t. the positive closét, 1)- current with minimal
singularities and that w.r.t. the associated pseudo-effective cohomology class.

Now there is an obvious candidate for a numerically trivial foliation wer.{.L): its
leaves are the projection of the curv@sx {p} in Pc(FE). The strategy to show this
has two parts: first, one constructs a sequence of cur¥énts ¢; (L)[—e,w] for some
Kahler formw on X and a sequencs, of positive real numbers tending osuch that
the foliation mentioned above is the numerically trivial foliation w.r.t. this sequence of
T,’s. Second, one uses that the restriction offhis to anyP!-fiber of Po(E) is > c-w,

for some fixed numbet > 0.

The construction of thé&), requires a careful study of almost positive (singular) hermit-
ian metricsh on L: As the total space of ~' is equal toE* blown up along the zero
section, the function

$(¢) =log | ¢ 31, Ce L
associated to any hermitian mettion L can also be seen as a functioniBhsatisfying
the log-homogeneity condition
d(AC) = log |A| + ¢(C) for every A € C.
One has _
QLa%(g) =7t Ou(L), T L7t X,
Y
Thus©,, (L) is almost positive iffp is almost plurisubharmonic off*.
The total space of* is the quotient* = C x C2/(Z + Zt) by the dual action

gf(xawlau@) = (x+17w17w2)
gr(z,wi,we) = (z+ T, w1, w1 + w2).

The function¢ gives rise to a functiorcfs on C x C? which is invariant byg?, g* and
log-homogeneous w.r.w,, ws), and¢ is almost plurisubharmonic it is almost psh.
Even more is true: InterpreX as the zero section of the total spacelof! and let
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wx,wr,-1 be positive(1,1)-forms on X, L=. Then there are constants,Cy > 0
such that

0< 7 wx <Cwp-1, 0 Swp-11x < Cowx.
Hencer; .0, > —ewp-1 implies ©, > —eCowyx, and©, > —ewx implies
7} 10, > —eCiwr 1. Consequently, instead of constructing curréhts> —e wx,
e, — 0 on X, it suffices to construct current3;, > —e,wy-1, €, — 0, and func-
tions ¢, on C x C2 such thatidd¢, = O, and thed, are invariant byg:, ¢* and
log-homogeneous w.r.fw; , ws).
This can be done by using a gluing procedure developetidin Choosing an appropri-
ate partition of unity which ig- andg?- invariant and only depends on the imaginary

part of x, one gets the desired almost plurisubharmonic funct«jbmrom plurisubhar-
monic functions

~ k
kb = 5 log(jun|* + [jwn +wal*), k€N, j € Z,
defined on stripes of type
{(z,wi,we): (j—a)lmT<Imzx < (j—a+1)Im7}, 0<a <1,

and the associated currefitg have arbitrary small negative part for— co.

On the other hand, it follows from the construction that the restriction of the induced
currentsTy, to theP!-fibers of X = P(E) remain> ew for somee > 0.

Let 7T} € a[—e,w] be another sequence of currents representing A* =~ U C X is

an open subset with coordinates z, such that the line$z; = a} belong toP!-fibers
and{z; = b} are subsets of the leaves of the foliation one can write

2 2
Ty + €pw = Z Hgf)idzi NdzZj, Ty, + epw = Z Hgg-k)idzi Adz;.
4,5=1 i,j=1
By the remark above,
(aég))|{z1:a}id22 NdzZa > ew

for all a, and

by the numerical triviality (use as before the Schwarz inequality for the terms
with 6% 6.
Since the numerical dimension 6fis 1, one knows furthermore that
lim (T + exw) A (T}, + exw) = 0.
k=00 J X _Sing T}
But

(T), + exw) A (Th + epw) = 0% A (T] + epw) + Qég)id@ AdzZy A 0;(1k)id21 Ndzy,
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hence the vanishing of the limits above implies

/ 0V idzy A dzy Aidzy A dzy =30,
J(A)2—Sing Ty,

whereA’ cc A is any open disk such thaf\")? c U = A2
Consequently, [, g, 7 (Th + €xw) "% 0 for almost allb € A’ (where
b k
Ay = {b} x A’). The definition of the numerically trivial foliation requires that

Jar —sing 0 (Th, + €xw) "Z% 0 forall b € A’. To prove this one can use the same
b k

line of arguments as in the proof of the Local Key Lemma for pseudo-effective classes:
One tries to show that

lim | (T} + exw) — / (T}, + exw)| = 0.
k—o0 A} —Sing T}, A{—Sing Ty,

Following the proof of propositios.4 one sees that it is enough to show that

lim 10/ av - 059 1av = 0,
k—oo Janrxng., DA X Ao

whereA ; is the disk with center ih/2 and radiugb/2
of A" x Ag p.

As in the proof of propositio.4 there is a bound/ > 0 such that for alk there is a
disk Aj, CC A containingA” with

/(9A . 16:591dV < M.
XA

For the first term, look at thg1,1)- form n = idz; A dz, and take a disk
A" cc A” cc A. Then by the arguments above,

/ 0%, |dV = / (T} + epw) A =20 0.
(A=A x A/ (A7 =AY XA

By Fubini, one gets a disk, such that

k—
AL XA’

and one concludes that the limit above is indeed

, anddV is a volume element

REMARK 7.2. The difference to the previous example is that the unitary group is
compact and consequently its Haar measure is finite. This is not the case for the group
of linear automorphisms generated (y, z2) — (21 + 22, 22).
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7.3. P2 blown up in nine points

Consider the following situation: Lef’ C P2 be a smooth elliptic curve and let
p1,---,ps € C be sufficiently general points. The aim is to study the numerically triv-
ial foliation w.r.t. the anticanonical bundle K x on varietiesX,, = P?(pi,...,ps,D)
blown up in pointy € C.

Let E; = = !(p;) be the exceptional divisor orX over p;,. First of all,
—Kx = Op2(3) + Y. E; is nef and—K% = 0. Next, the pencil of elliptic curves
on P? throughpy, ..., ps has a base point So X, = P?(p1,...,ps,q) is an elliptic
fibrationw, : X, — P'. The pull back of a smooth positive metric 6k (1) gives a
smooth semi-positive hermitian metric enk’x, which is strictly positive in directions
transverse to the fibers. Hence by the same arguments as in the two examples above, the
fibration is the numerically trivial foliation w.r.t- Kx_ .

For pointsp # ¢ in C there is only one section in K'x,, the strict transforn” of C.
But if one considers torsion points (w.r.t. ¢ of orderm on C then a calculation in
[17] shows that-m Kx, defines again an elliptic fibration oVBt. This fibration yields
a smooth semi-positive hermitian metric emn K x,, hence on-Kx , and again the
fibration is the numerically trivial foliation w.r.t=mKx, .

The question is: What happens if non-torsion pojnts C' are blown up ? In particular:
Is there always a smooth semi-positive hermitian metrie-@ay, inducing a holomor-
phic foliation onX,,, which may be seen as the limit of the fibrationsXyf, where the
p. are torsion points ? (The last question was asked Th)[ A strategy to answer it is
to use the theory of holomorphic foliations on surfaces, as developed elf).in [

DerINITION 7.3. A (holomorphic) foliation on a compact complex surfa¢é is
a coherent analytic rank 1 subshégf of the tangent bundl&’y (the tangent bundle of
the foliation) fitting into an exact sequence

0—=Tr —=Tx - Jz Ny —0

for a suitable invertible shed¥ » (the normal bundle of the foliation) and an ideal sheaf
Jz whose zero locus consists of isolated points called the singulafitieg F) of F.

Furthermore, one can easily show thgt ® Nr = Kx.

Numerically trivial foliations{F, (U;,p;)} on surfacesX with F of rank 1 are such
foliations: If 7 is not a line bundle then replace it I%y**. As a reflexive sheaf on a
surface this is a line bundl&8, 1.1.10], and dualizing the inclusiah” C Tx twice
shows that it is still a subsheaf @fy. FurthermoreF is locally integrable because it
has rank 1, hence the mapsexist trivially.

Let X beP?(py, ..., ps) x C blown up in the diagonal

ACXCCC’XCC]P’g(pl,...,pg) x C.
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The fibers oft overp € C are just theX,, for all p. If there is an algebraic family of
foliations on theX,, such that over torsion points, the foliation coincides with the fibra-
tion described above, then (at least generically) the conormal line buN(;IIgashouId
also fit into a family. But this is impossible, as the following computation shows:

LEMMA 7.4. LetC, ¢, X, be as above, and lgtbe a torsion point w.r.tg of order
m. LetNp, be the normal bundle of the foliation induced by the fibratign X, — P*.
Then

Np = (m+1)Kx,.

PrROOF. Let D be an irreducible component of a fiberof= =, with multiplicity
Ip. If nis a local non-vanishing- form onP! then=*(n) is a local section of* (Kp1 )
vanishing of ordetp — 1 on D. Hence,

Np =7*(Kp) ® Ox, (> _(Ip — 1)D).
The relative canonical bundle formula (for elliptic fibrations, s&#)[tells that
Kx, =m"(Kp ® (R'm.0x,)") @ Ox,()_(lp — 1)F),

where the sum is taken over all fibersoccuring with multiplicitylz in the fibration.
There are two differences between the two formulas: First, in the relative canonical
bundle formula occurs the term

L:=(R'r.0x,)".

Now, deg L > 0, anddeg L = 0 would imply thatL is a torsion bundle o', hence it
is trivial, andX,, = C' x P! —a contradiction. If is nontrivial, a short calculation with
spectral sequences shows that

0=p, =degL — g(P") +1,
hencedeg L = 1, andL = Op: (1) (see againg3, Ch.VII]). This shows
T (Kp ® L) = 7°0Op1 (—1) = mKx,,

and together with the relative canonical bundle formula this showsstliats the only
multiple fiber.

The second difference is that some fibers may contain multiple components, but are not
multiple themselves. By the classification of singular fibers of elliptic fibrations this is
only possible if there are-2-curves (R3]). But onP? blown up in9 points in general
position, there are ne-2-curves. Hence

Ox,(> (lp —1)D) = Ox, (> _(lr = 1)F),

and the claim of the lemma follows. O
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The threefoldY is also a counter example to equality of numerical dimension and codi-
mension of the leaves of the numerically trivial foliation w.r.t. some pseudo-effective
class: Set

L=~ (51 K puy) ~ Es + 30(00),

wherep; is the projection oP?(py, . .., ps) x C ontoP?(py, . . ., ps), p2 is the projection

of X ontoC, r is any point onC' andn > 0 an integer. The restriction df to any fiber
overp € C'is the anti-canonical bundlE’, .

Forn sufficiently big,L is nef: L is effective, sinceD = C' x (C'+nX,) is contained in

|L|. Consequently, to prove the nefnesd.of suffices to show that all curvds Cc C'xC
have non-negative intersection number with To this purpose first get an overview
over all curves o x C: According to the general theory of abelian surfaces the Picard
number ofC' x C is 4 or 3 depending on whethe&r has complex multiplication or not
([5, 2.7]. Hence it suffices to look at the fibers of the two projection§' of C ontoC,

the diagonal, and if necessary, on some other curve constructed as the graph of complex
multiplication inC' x C. Since it is a graph of an isomorphism, such a curve maps
isomorphically toC under both projections.

Now, one has to compute the degree of the restrictioh td £. This restriction may
also be seen as the restriction of the diviggy, to such ant. Let C’ be a sufficiently
general curve in the pendil- Kp2(;,, .. »,)|- Then the strict transform @’ x C'is an
element of—7* (p} Kp2 (5, ... p)) @nd intersects’ x C'in {q} x C. Furthermore Ea
intersects” x C' in the diagonalA¢ . Therefore,

Dip ~{q} x C+n(C" x {r}) — Acxc +n(C x {r}),

whereFE, is the exceptional divisor overin X,.. And L is nef if n is > the maximum

of 1 (this is the intersection number of fibetsx {p} with the diagonal) and the inter-
section number of the curve coming from complex multiplication (if existing) with the
diagonal. (The self intersection number of the diagon@ldsce the tangent bundles on
C = Acxc andC x C are trivial.)

PROPOSITION7.5. LetX, L be as above. Then the numerical dimensi¢h) of L
is 2, but the numerically trivial foliation w.r.te; (L) is the identy map.

PROOF. To proveL? # 0, observe thaf.? is represented by the cycles in the ex-
pression above fab, . This is not= 0, since the intersection number wifh} x C'is
positive forn > 1.

The numerically trivial foliation w.r.tc; (L) cannot be the trivial map onto a point, be-
cause in fibersX,, over torsion pointg there are curves which are not numerically
trivial. Since immersed disks which do not lie in a fiber of the projection @rntare
not numerically trivial, the only possible numerically trivial foliation w.e.t( L) with 2-
dimensional leaves is the fibration ondo But this is impossible by the same reason as
above. To exclude the possibility that the numerically trivial foliation hasmensional
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leaves, one notes first that over torsion pojntthe fibers ofr, : X,, — P* are numeri-
cally trivial: This is clear since these fibeFsare projective, hencg,. 7). only depends

on the cohomology class of thf, and [,. c1(L) is certainly0.

This can be used to show that thalimensional leaves of a numerically trivial foliation
must lie in the fibersX,, of X: Otherwise, letA® = U C X be any open subset with
coordinatesr, 21, zo such that the projection ont@' is given by the projection onto

the first coordinate, and the foliation is described by the projection onto the two last
coordinates. Choose such thatz = 0 corresponds to a torsion poipg. Shrinking

U if necessary, one can suppose that the fibers,pfare smooth irl/. But then the
Local Key Lemma for pseudo-effective classes implies that ther@-adenensional
numerically trivial leaves, contradiction.

Next one shows that the-dimensional leaves in fibetk,,, wherep is a torsion point,
must be the fibers of,, : X, — P': Take an ample line bundlé on X'. SinceL is nef,

LF @ Ais also ample, and some multiple is very ample. The global sections of this very
ample line bundle generate a smooth metrid6re A whose strictly positive curvature
form may be written a& (7}, + twa), for some fornil}, € ¢;(L)[—fwal.

Letp € C be any torsion point of order andr, : X,, — P! the induced fibration. Let

T = i00log(|z1]? + |22|%) be a strictly positive curvature form in (O4(1)). Then

1 1,
(Tk + EWA)‘XP > EWPT'

But this means in particular that for any diskC X, not immersed into a fiber of,,,

1 1
/T;@+*wA2f/7T;T>0.
A k mJa

Hence the leaves of the numerically trivial foliation w.e4( L) coincide with the fibers
of m, in X,.
But this is impossible, as shown above. O

REMARK 7.6. This proposition does not exclude the possibility that (some of) the
X, over non-torsion pointg have a numerically trivial foliation with 1-dimensional
leaves.

Another result dealing with this type of foliations is

PROPOSITION?.7 (Brunella) LetF be a foliation on a compact algebraic surface
X and suppose thaF is tangent to a smooth elliptic curvg, free of singularities of
F. Then either is a (multiple) fiber of an elliptic fibration or, up to ramified coverings
and birational mapsJ is the suspension of a representatjon wl(E) — Aut(CP"),
E an elliptic curve.
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