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Abstract. The real and imaginary part of any Abelian differential on a com-

pact Riemann surface define two flows on the underlying compact orientable
C∞ surface. Furthermore, these flows induce an interval exchange transforma-

tion on every transversal simple closed curve, via Poincaré recurrence. This

note shows that the ordered K0- groups of several C∗- algebras naturally
associated to one of the flows resp. interval exchange transformations are

isomorphic, mainly using the methods of I. Putnam [Put89, Put92].

0. introduction

The real and imaginary part of an Abelian differential on a compact Riemann
surface are C∞ real 1 forms defining flows with finitely many singularities of saddle
type on the underlying compact orientable C∞ surface M . Furthermore, each of
these flows induces an interval exchange transformation on a closed transversal
curve, via Poincaré recurrence. If the Abelian differential is sufficiently general the
induced flows are minimal. Then it is possible to associate several C∗- algebras to
them: The crossed product C(M)>/ R of the flow, the crossed product C0(M0)>/ R
where M0 = M −{singularities} and the crossed product C(Σ)>/ Z corresponding
to a discrete dynamical system on a Cantor set Σ induced by the interval exchange
transformation. Putnam [Put89, Put92] showed how to compute the ordered K0-
groups of C0(M0)>/ R and C(Σ)>/ Z via embeddings in and inclusions of AF-
algebras which induce order-isomorphies on the K0- groups.
The aim of this paper is to show the order-isomorphy of these K0- groups. Fur-
thermore we prove that the cone defining the order is dual to the cone of invariant
measures w.r.t. the interval exchange transformation. Both aims are achieved by
using Veech’s induced interval exchange transformations and Putnam’s “method of
towers”. All these facts considered it is reasonable to expect the ordered groups to
yield interesting invariants of a Riemann surface together with an Abelian differ-
ential on it. It seems that Nikolaev [Nik00, Nik01] tries to define and exploit such
invariants but further clarification is certainly needed.
To give a short synopsis of the article, the first two sections carefully explain the
necessary notions from the theory of dynamical systems and applies them on flows
coming from Abelian differentials on Riemann surfaces, using classification results
of Strebel [Str84]. These sections contain more details than necessary for the spe-
cialists but try to be also readable for those mainly interested in new invariants of
Abelian differentials on Riemann surfaces. Following Veech [Vee78, Vee82] section 3
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develops the notion of induced interval exchange transformations which is central
to what follows. Section 4 gives the details of Putnam’s “method of towers” used
to compute the ordered K0- groups of C0(M0)>/ R and C(Σ)>/ Z. These details
are needed in section 5 to produce a comprehensive proof of the order-isomorphy
of all occuring ordered groups and to show that the order-defining cone is dual to
the cone of measures invariant w.r.t. the interval exchange transformation.

1. Basics on flows

Definition 1.1. Let M be a compact orientable C∞ surface. A C∞ flow f t is a
C∞ map f : M ×R →M such that f(m, 0) = m and f(m, t1 + t2) = f(f(m, t1), t2)
for all m ∈M , ti ∈ R.

In this note we only consider flows defined by closed real-valued 1- forms φ1, φ2

which are the real and imaginary part of a holomorphic 1- form (Abelian differ-
ential) ω = φ1 + iφ2 on a Riemann surface C. These flows can be constructed as
follows: Around non-vanishing points of ω it is trivial to find vector fields w1 such
that φ1(w1) = 0 and φ2(w1) > 0 outside the zeroes, and around zeroes choose a
holomorphic coordinate chart V → R2 such that ω = zkdz, and set

w1 = r sin(k + 1)θ
∂

∂r
+ cos(k + 1)θ

∂

∂θ
.

Glue the finitely many vector fields by a partition of unity. In the same way it is
possible to construct a vector field w2 on M such that φ1(w2) > 0 and φ2(w1) = 0.
The pair (w1, w2) is positively oriented outside the zeroes and in particular the wi
do not vanish outside the zeroes. Hence these vector fields can be integrated to
flows f ti having their fixed points (singularities) exactly in the zeroes of ω.
Let f t be a flow on a compact surface M . The curve
l(x) := {f(x, t) : −∞ < t < +∞} is called the trajectory of f t through
x ∈M . A trajectory l(m) = {m} is called a singular point.
There are two other types of trajectories, called regular : if there exist t1 6= t2 such
that f(x, t1) = f(x, t2), the trajectory through x is periodic or closed. Otherwise it
is called non-closed.
For non-closed curves the rays l(x)+ := {f(x, t) : 0 ≤ t < ∞} and
l(x)− := {f(x, t) : −∞ < t ≤ 0} are called the positive resp. negative trajectory ray
through x. The ω-limit set is defined as

ω[l(x)] := {x̃ ∈M : ∃ sequence (tn)n∈N, tn →∞, f(x, tn) → x̃},
and similarly the α-limit set α[l(x)], with tn → −∞.
A segment Σ : [0, 1] →M is called contact-free or transversal to the flow f t iff for all
m ∈ Σ \ ∂Σ there exists a neighborhood U of m and a diffeomorphism φ : U → R2

such that
φ(f t(m′)) = φ(m′) + (t, 0), φ(m) = (0, 0)

and φ(Σ ∩ U) = {0} × [−1, 1]. Since such a diffeomorphism exists around any
non-singular (or regular) point of a flow, we have

Lemma 1.2. Through each regular point of a flow there passes a contact-free seg-
ment. �

A simple closed curve C (the image of an embedding of a circle in M) is called
a contact-free cycle or a closed transversal of the flow if its arcs are contact free
segments. It is not hard to give an example of a flow for which no regular point
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has a contact free cycle passing through it (for example a flow on a sphere with
two saddles and four centers). On the other hand there is an easy criterion for the
existence of such a contact-free cycle:

Lemma 1.3 ([ABZ96, Lem.2.1.2]). Suppose that the trajectory l of the flow f t

intersects a contact-free segment Σ at more than one point. Then there exists a
contact-free cycle that intersects l.

The proof of this lemma uses the following

Theorem 1.4 (Long Flow Tube Theorem). Let d be a compact arc of a regular
trajectory of a C∞- flow f t, and suppose that d does not form a closed curve. Then
there exists a neighborhood U of d and a C∞- diffeomorphism ψ : U → R2 car-
rying the arcs in U of trajectories of f t into trajectories of the dynamical system
ẋ = 1, ẏ = 0.

For a proof see e.g. [ALGM73].
Let m1m2 be the arc with endpoints m1 and m2 on a trajectory of the flow f t,
and let Σ1 and Σ2 be disjoint contact-free segments passing through m1 and m2,
respectively, such that m1m2 ∩ (Σ1 ∪ Σ2) = {m1,m2}. For definiteness we will
assume that m2 ∈ l(m1)+.
By the Long Flow tube Theorem, there exists a neighborhood Σ ⊂ Σ1 of m1 on Σ1

such that for any m ∈ Σ the positive semitrajectory l(m)+ intersects Σ2 without
first intersecting Σ1. Denote by m̃ the first point where l(m)+ intersects Σ2.

Definition 1.5. The mapping P (m,Σ) : Σ1 → Σ2 assigning the point m̃ ∈ Σ2 to
a point m ∈ Σ according to the rule above is called the Poincaré mapping or first
return mapping (induced by the flow f t).

The Long Flow Tube Theorem gives us

Lemma 1.6 (Poincaré mapping theorem). Let P (m,Σ) : Σ1 → Σ2 be the Poincaré
mapping of the contact-free segment Σ1 into the contact-free segment Σ2 induced
by a C∞- flow f t. Then P is a C∞- diffeomorphism of Σ1 onto its range. �

The only flows we want to consider are those induced by (the imaginary part of)
holomorphic 1- forms. Their behaviour is in some sense more regular than the
behaviour of arbitrary flows on surfaces, see for example in [ABZ96, III.2]. The
simplifications are described in [Str84].
Let f tφ be a flow on a compact surface M induced by the holomorphic 1-form φ. It
can be shown that closed trajectories never come alone: the trajectories through
points in a neighborhood of the closed trajectory l(x) are also closed. One may
even find an open neighborhood of l(x) on M which is homeomorphic to a ring
domain {z : r < |z| < R} ⊂ C such that the circles around 0 are mapped onto the
closed trajectories (this is a consequence of the fact, that the flow f tφ preserves the
volume given by |φ|). There is a maximal ring domain associated to l(x) which is
uniquely determined if M is not a torus.

Theorem 1.7 ([Str84, Thm.9.4]). Let f tφ be a flow on a compact Riemann surface
M induced by a holomorphic 1- form φ. Every closed trajectory l(x) of f t is em-
bedded in a maximal ring domain R swept out by closed trajectories l(x′), the ring
domain associated with l(x). It is uniquely determined except for an orientable foli-
ation with closed trajectories on a torus. The boundary of the ring domain consists
of compact critical leaves of the foliation.
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Two ring domains R0 and R1 associated with the closed trajectories l(x0) and l(x1)
respectively are either disjoint or identical. If a closed trajectory l(x1) is freely
homotopic to l(x0) then l(x1) ⊂ R0, which is equivalent to R1 = R0.

Strebel [Str84, p.44pp] gives a description of all possible types of non-closed tra-
jectory rays and the structure of their limit sets: If ω[l(x)] = {P}, then P is a
singularity of the foliation (this is an easy exercise). l(x)+ is called a critical ray,
and there are only finitely many critical rays.
If ω[l(x)] contains more than one point, then it contains the initial point x, and
l(x) = ω[l(x)] (this is again a consequence of the volume preserving property of the
flow). Such a ray is called recurrent. A trajectory both rays of which are recurrent
is called a spiral.
The interior of the limit set of a recurrent ray l(x)+ is non-empty and connected,
hence a domain. Its boundary consists of compact critical rays of the flow and their
limiting singularities. Every trajectory ray l(x′)+ through a point x′ in the interior
of ω[l(x)] is everywhere dense in ω[l(x)], and its limit set coincides with ω[l(x)]. If
the limit sets of two recurrent rays have an interior point in common, they coincide.
Takink all these facts together we get

Theorem 1.8. Let f t be a flow on a compact Riemann surface M induced by the
imaginary part of a holomorphic 1- form. Then the connected components of M
minus the compact critical rays of f t are bounded by critical segments, and either

(i) the components are ring domains swept out by closed trajectories, or
(ii) they are the closure of a spiral trajectory.

The most general type of flow is given by

Definition 1.9. Let M be a compact orientable C∞ surface. A C∞ flow f t is
minimal iff

(i) every trajectory which is not a fixed point, is dense in M , and
(ii) the set of singularities Singf t consists of saddles with 2m separatrices.

This means in particular that every trajectory is non-closed and has a direction
in which it is recurrent. There are only finitely many trajectories which are not
spirals. Vice versa, it follows from theorem 1.8 that a flow on a compact Riemann
surface induced by a holomorphic 1- form without critical segments is minimal.

2. Interval exchange transformations

Let x be a regular point of a minimal flow f t on a compact Riemann surface X of
genus g ≥ 2 induced by the imaginary part of a holomorphic 1- form on X, and
let Σ be a contact-free segment through x (which exists by lemma 1.2). Since the
trajectory l through x is dense on X, the trajectory l intersects Σ in another point
x′. Consequently, by lemma 1.3 there exists a contact-free cycle C.
Let l(x)+ be a critical ray through a point x ∈ X. Since l(x)− is dense in X,
this ray intersects C. By a compactness argument, we can choose x′ ∈ l(x) such
that l(x′)+ ∩ C = {x′}. Since there are only finitely many critical rays, we have
n points x1, . . . , xn ∈ C such that l(xi)+ is critical and l(xi)+ ∩ C = {xi}. Order
x1, . . . , xn ∈ C such that xi+1 is next to xi.
Obviously, the Poincaré return mapping maps the open arc xixi+1 to another
arc yiyi+1 on C. The yi’s are points on critical rays of type l(y)− such that
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l(yi)− ∩ C = {yi}, and the inverse mapping from yiyi+1 to xixi+1 is the Poincaré
return mapping of the reversed flow f−t.
Now, if φ is the imaginary part of the holomorphic 1- form defining f t then the line
element |φ| defines a transverse measure to the trajectories of f t. The Long Tube
Theorem shows that the (transverse) length of the two arcs above remains equal.
Cutting C at some point x0, we get a map of the following type (at least outside
the critical points x1, . . . , xn):

Definition 2.1. Let n ≥ 2 be an integer and σ ∈ Σn a permutation of {1, 2, . . . , n}.
Let α = (α1, α2, . . . , αn) be an element of Rn. For i = 0, . . . , n define

βα(i) =
∑
j≤i

αj , β
′
α(i) =

∑
σ(j)≤i

αj .

Let Iα(i) = [βα(i− 1), βα(i)) and I ′α(i) = [β′α(i− 1), β′α(i)), and let

τα(i) =
∑

σ(j)<σ(i)

αj −
∑
j<i

αj ,

for i = 1, . . . , n. The bijective mapping T = T (σ, α) of [0, βα(n)) onto itself defined
by

T (x) = x+ τα(i), x ∈ Iα(i)

is called an interval exchange transformation, with data σ, α, mapping Iα(i)
to I ′α(i).

Roughly speaking, T = T (σ, α) partitions [0, βα(n)) into n subintervals of length
α1, . . . , αn and translates each so that they fit together to make up [0, βα(n)) in a
new order determined by σ.
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β′α(0) β′α(1) β′α(2) β′α(3) β′α(4)

βα(0) βα(1) βα(2) βα(3) βα(4)

The minimality of the flow f t with which we started above implies the minimality
of T , that is, the orbit of every point in [0, βα(n)) is dense. (The orbit of a point
x under T , or the T - orbit of x, is {Tn(x) | n ∈ Z}.) A necessary condition for
minimality is that there is no k such that σ({1, . . . , k}) = {1, . . . , k}. In this case,
σ is called irreducible. A (non-trivial) sufficient condition ([Kea75]) is given by the
following

Definition 2.2. T = T (σ, α) satisfies the infinite distinct order condition (for short
IDOC) iff σ is irreducible and the T - orbits of the points βα(1), βα(2), . . . , βα(n−1)
are all infinite and distinct.

The interval exchange transformation which we constructed from (the imaginary
part of) a holomorphic 1- form ω on X and a closed transversal C still depends on
the point where we cut C. If we choose one of the yi (see above) we have (notations
as above)
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Lemma 2.3. Let ω have l zeroes p1, . . . , pl ∈ X, and let T = T (σ, α) be the induced
interval exchange transformation when cutting C in one of the points yi. Then T
exchanges 2g + l − 1 intervals.

Proof. Let k1, . . . , kl be the multiplicities of the zeroes p1, . . . , pl. Then the singu-
larity pi of the flow induced by Im ω is a (2ki + 2)- prong saddle, hence there are
ki+1 critical rays emanating from pi. The construction of T implies that there are
k1 + · · ·+ kl + l points xi, hence intervals on C. Cutting in yi divides one of these
intervals in two parts since no yi can be equal to some xj (otherwise, there exists a
critical segment, and the foliation is not minimal). On the other hand, no interval
is mapped to an interval containing yi in its interior. Consequently, T exchanges
k1 + · · ·+ kl + l + 1 intervals.
Finally k1 + · · ·+ kl = 2g − 2 by Riemann-Roch, and the lemma follows. �

That T comes from cutting the closed curve C is reflected by the condition

σ(1) = j ⇒ σ(n) = j − 1.

Here, j is always 6= 1 because otherwise σ would be reducible. A T constructed as
above is called the intervall exchange transformation induced by the holomorphic
1- form ω (and the simple closed curve C). It satisfies the IDOC because otherwise
there would exist a critical segment.
Putnam ([Put92]) described a procedure how to construct a flow F on a compact
oriented surface M resolving the discontinuities of an interval exchange transforma-
tion T , together with a closed transversal N such that the Poincaré return mapping
on N is just the interval exchange T , except at the discontinuities of T which flow
directly into the singularities:
Begin with P = [0, 1) × [0, 1). Let V ′(0) = V (0) = {0} × [0, 1] and
V ′(n) = V (n) = {1} × [0, 1]. For i = 1, . . . , n − 1, let V (i) = (β(i), 1) and
V ′(i) = (β′(i), 0). We define M to be the quotient of P obtained by collapsing
V (0) and V (n) to single points and by identifying I(i) × {1} with I ′(i) × {0} via
T , for i = 1, 2, . . . , n.
Define σ0, a permutation of {0, 1, . . . , n} by

σ0(j) =

 σ−1(1)− 1 if j = 0,
n if j = σ−1(n),

σ−1(σ(j) + 1)− 1 otherwise.

We let N(σ) denote the number of cyclic components of σ0 and we let X(σ) de-
note the image of {V (0), . . . , V (n), V ′(0), . . . , V ′(n)} in M . Then it is easy to
check that if ∼ denotes the equivalence relation generated by V (i) ∼ V (σ0(i)),
i = 0, . . . , n, then V (i) ∼ V (j) iff they have the same image in M . It is clear that
each V ′(i) has the same image as some V (j). Thus we may identify X(σ) with
{V (0), . . . , V (n)}/ ∼ and X(σ) just consists of N(σ) points in M .
The flow F : R × M → M is obtained by integrating the vector field
X(p) = ω(p) · (0, 1), for p ∈ M , where ω(p) is a certain positive scalar function
on M vanishing exactly on X(σ) and (0, 1) comes from the obvious vector field on
P . A transversal N is given by the image in M of [0, 1]×{ 1

2}. It is closed iff V (0) is
identified with V (n). This is the case if σ(1) = j and σ(n) = j − 1 for some j > 1,
since then σ0(n) = 0.
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Lemma 2.4. Let X be a Riemann surface of genus g ≥ 2, let C be a simple closed
curve transversal to the minimal flow f t induced by the imaginary part of a holomor-
phic 1- form ω on X. Let T (σ, α) be the induced interval exchange transformation,
and let F t be the flow constructed on M from T (σ, α) as above. Then there exists
a homeomorphism φ : X → M equivariant with respect to the flows f t and F t. In
particular, the X(σ) points on M correspond to the zeroes of ω, and the length of
the cycles belonging to one of these N(σ) points (after possibly omitting 0 and n)
equals the multiplicity +1 of the corresponding zeroes. The closed transversal N is
homotopic to C.

Proof. We easily check that the singularities of F on M are saddles, where the
emanating rays are counted by the members of the cycle belonging to the singularity
(they consist of the points V (i) which are identified with the singularity on M) and
the incoming rays by the points V ′(j) which are identified with the singularity on
M . The only exceptions are V (0) = V ′(0) and V (n) = V ′(n) from which no ray
emanates resp. to which no ray in P runs in.
Now look at the singularity p to which V (0) and V (n) are mapped. N runs through
p but if we perturb N appropriately in a small neighborhood around p, we get a
closed everywhere transversal curve N ′. The construction of T (σ, α) from ω and C
(and especially lemma 2.3) shows that we can identify C and N ′ and the intervalls
given on them. This identification may be expanded to the wished equivariant
homeomorphism φ : X →M . �

This lemma allows to exclude that T may be represented as a transformation ex-
changing less intervals:

Lemma 2.5. Let T = T (σ, α) be the the interval exchange transformation induced
by the holomorphic 1- form ω and the simple closed curve C. Then there is no
1 ≤ j < n such that

σ(j + 1) = σ(j) + 1.

Proof. Obviously,

σ0(j) = σ−1(σ(j) + 1)− 1 = σ−1(σ(j + 1))− 1 = j.

This means that V (j) would be a 2-prong saddle of the flow f t, and cannot be a
singularity of (the imaginary part of) ω: contradiction. �

3. Induced interval exchange transformations

This construction was introduced by Keane [Kea75] and systematically used by
Veech [Vee78, Vee82] to prove ergodicity results for interval exchange transforma-
tions. It starts with the following

Definition 3.1. An interval J = [a, b) ⊂ [0, β(n)) is admissible for T = T (σ, α) if
a = T kβα(i), b = T lβα(j) for some 1 ≤ i, j < n and k, l satisfying either

(a) k ≥ 0, and there is no m such that 0 < m < l and Tmβα(i) ∈ J (and
similarly for l), or

(b) k < 0, and there is no m, k < m ≤ 0, such that Tmβα(i) ∈ J (and similarly
for l).

In particular, every interval [βα(i), βα(i+ 1)) is admissible (here, k = l = 0).
Assume now that T = T (σ, α) satisfies the IDOC (see definition 2.2), and let
J = [a, b) be an admissible interval for T . We define U to be the induced first
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return transformation of T on J . For each j such that 1 ≤ j ≤ n, the minimality of
T implies that there exists a least kj ≥ 0 such that T−kjβα(j) ∈ J . This determines
m − 1 distinct points by the IDOC, and the distances between consecutive points
from left to right (including a and b) determine α′ = (α′1, . . . , α

′
n) ∈ Rn such that

[a, a + βα′(n)) = J and T−kj0βα(j0) = βα′(i0), where i0 denotes the position of
T−kj0βα(j0) in the m− 1 distinct points T−kjβα(j) ∈ J .
It is also true for 1 ≤ j ≤ n that Tm(a + Iα′(j)) = Tm[a + βα′(j − 1), a + βα′(j))
lies in some Iα(i) for 0 ≤ m < time of return to J . For given j, i we denote by Aij
the number of times Tm(a+ Iα′(j)) ⊂ Iα(i) for 0 ≤ m < time of return to J .

Proposition 3.2. Let T = T (σ, α) be an interval exchange transformation satis-
fying the IDOC, let J = [a, b) ⊂ [0, βα(n)) be an admissible interval, and let U , α′

and A = (Aij) ∈ M(n,Z) be as above. Then there exists a permutation σ′ ∈ Σn
such that U−a = T ′ = T (σ′, α′) is an interval exchange transformation on [0, b−a)
satisfying the IDOC. Furthermore

detA = ±1, α = Aα′.

Proof. We can repeat all the arguments in [Vee78, §3]. The only difference is that
the separation points βα of T need not be points of discontinuity, that is there may
exist j ∈ {1, . . . , n} such that σ(j + 1) = σ(j) + 1 (and similarly for σ′).
The idea behind the equality α = Aα′ is that Iα(i) is composed of Aij copies of the
interval Iα′(j), 1 ≤ j ≤ n.
That U satisfies the IDOC is a consequence of the IDOC for T , the representation
of the separation points of U by iterated T - images of separation points of T and
the representation of U restricted to the intervals by iterations of T . �

Induced interval exchange transformations are so important because they can be
used to compute the (nonnegative nonzero) invariant measures for the interval
exchange transformation T (σ, α), in particular the ergodic ones.

Definition 3.3. A nonnegative nonzero T - invariant Borel measure µ on [0, β(n))
is called ergodic if µ(A) = 0 or µ(A) = µ([0, β(n))) for any T - invariant subset
A ∈ [0, β(n)).

The set of all T - invariant Borel measures on [0, β(n)) is a cone Σ(σ, α). It contains
the Lebesgue measure, and if T is minimal the Lebesgue measure is necessarily
an ergodic invariant measure. T is called uniquely ergodic if every T - invariant
measure is a multiple of Lebesgue measure.
In general, it is well known that the extremals of Σ(σ, α) are the ergodic invariant
measures (see e.g. [Wal82, Thm.6.10]). Furthermore, a minimal transformation
exchanging n intervals can have at most n different ergodic measures ([CFS82,
Thm.5.2.1]). As Σ(σ, α) is spanned by its extremals,

ν(σ, α) = dim Σ(σ, α)

is the number of ergodic invariant measures for T .
In the beginning it was conjectured that every minimal interval exchange transfor-
mation is uniquely ergodic. But soon counterexamples were discovered (see [CFS82,
§5.4]), and Keane conjectured instead that almost all interval exchange transfor-
mations (with respect to the Lebesgue measure on the vectors σ ∈ Rn) are uniquely
ergodic. This conjecture was proven simultaneously by Masur [Mas82] and Veech
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[Vee82]. Veech’s idea was to use the induced interval exchange transformations to
describe Σ(σ, α):

Proposition 3.4. Let T = T (σ, α) be a minimal interval exchange transformation,
and let Λn ⊂ Rn be the simplex generated by the unit vectors in Rn. If J1 ⊃ J2 ⊃ · · ·
is a sequence of admissible intervals shrinking to a point (or ∅) then

Σ(σ, α) ∼=
∞⋂
i=1

(A1A2 · · ·AiΛn)

where the Ai are the matrices describing the transition from the (i− 1)st to the ith
induced interval exchange transformation. In particular, the cone on the right is
spanned by the set of cluster points of the images of the extremal rays of Λn under
the sequence

A(i) = A1A2 · · ·Ai.

Remark 3.5. A sequence of admissible intervals J1 ⊃ J2 ⊃ · · · shrinks to ∅ iff the
half open intervals Jn have the same right end b (for all n ≥ N). Of course it is
reasonable to say that such a sequence shrinks to b (from the left). This point of
view agrees with the splitting of orbit points T kβ(i) in the Cantor set interpretation
of an interval exchange transformation (see section 4) because b is of this form.

Proof. See [Vee78, Prop.3.22]. The isomorphism is given by the map Σ(σ, α) → Λn
mapping a T - invariant measure µ to

λ(µ) = (µ([0, β(1))), µ([β(1), β(2))), . . . , µ([β(n− 1), β(n)))) ∈ Rn.

For the last statement we have to prove that

A(i+1)Λn ⊂ A(i)Λn.

This is a direct consequence of the nonnegativity of the entries of Ai which implies
that the (i + 1)st images of the extremal rays are positive linear combinations of
the ith images.
The inclusion of the cone on the right side in the image of this map follows from
the fact that each column of A(i), when normalized, gives the relative frequency of
visits of a specific maximal interval in Jn to the intervals [β(k), β(k + 1)) before
returning to Jn. Therefore, any cluster point of the sequence of normalized columns
corresponds to an invariant measure for T (σ, α), by a construction described in the
next lemma. �

Lemma 3.6. Let T (σ, α) be a minimal interval exchange transformation, let
p ∈ [0, β(n)) be any point. Take any sequence m1,m2, . . . of integers ≥ 0
(which may be equal or not, increasing or not) and an increasing sequence
n1 < n2 < . . . < nk < . . . of positive integers such that for each 1 ≤ j ≤ n
the limit

σ′j := lim
k→∞

1
nk

mk+nk∑
i=mk

χIj
(T ip)

exists. Then there exists a unique T - invariant measure µ on [0, β(n)) such that

µ(Ij) = σ′j .
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Proof. Let δT ip be the Dirac distribution with center T ip, and set

µk :=
1
nk

mk+nk∑
i=mk

δT ip.

We know that limk→∞ µk(Ij) = σ′j and we want to show that the limit is a T -
invariant measure. For the T - invariance we compute for any Borel set I ⊂ [0, β(n))
such that limk→∞ µk(I) exists

lim
k→∞

µk(TI) = lim
k→∞

1
nk

mk+nk∑
i=mk

δT ip(TI) = lim
k→∞

1
nk

mk+nk∑
i=mk

δT i−1p(I) =

= lim
k→∞

1
nk

(δTmk−1p(I)− δTmk+nkp(I)) + lim
k→∞

1
nk

mk+nk∑
mk=0

δT ip(I) =

= lim
k→∞

1
nk

mk+nk∑
mk=0

δT ip(I) = lim
k→∞

µk(I).

Hence the limit exists for all T kIj .
Now we can use that the T kIj form a Dynkin system for the Borel algebra of
[0, β(n)): The limit exists for all intervals in the common refinements of the par-
titions {Ij}, . . . , {T kIj}, and these intervals generate the Borel algebra. Thus
µ := limk→∞ µk exists. At the same time this shows the uniqueness. �

The description of Σ(σ, α) in proposition 3.4 led to an easy criterion for unique
ergodicity:

Proposition 3.7. Let T = T (σ, α), J1 ⊃ J2 ⊃ · · · and A1, A2 . . . be as before. If
there exists a matrix B with positive entries such that for infinitely many i, j

AiAi+1 · · ·Aj = B,

then T is uniquely ergodic.

Proof. See [Vee78, Prop.3.30]. �

The heart of Veech’s proof in [Vee82] was to construct an absolute continuous
measure on the space of all interval exchange transformations whose permutation
are belonging to the same so-called “Rauzy class” and which is invariant with
respect to the map given by induction of interval exchange transformations.

4. The crossed product C∗−algebras and their K0 groups

In this section we associate several C∗−algebras to a minimal flow f t on a compact
oriented surface M induced by a holomorphic 1- form and to the induced interval
exchange transformation T .
The most natural C∗−algebra associated to f t is the crossed product C∗−algebra

C(M) >/ft R
associated to the action of R induced on M by f t (for details about the crossed
product construction see [GBVF01, 12.1]).
Let f t have the singularities in x1, . . . , xn and set M0 := M − {x1, . . . , xn}. Since
M0 is f t- invariant we can consider the crossed product C∗- algebra

C0(M0) >/ft R.
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We have the following f t- invariant short exact sequence

0 → C0(M0) → C(M) → C({x1, . . . , xn}) → 0,

and taking crossed products we obtain the short exact sequence

0 → C0(M0) >/ft R → C(M) >/ft R → C({x1, . . . , xn}) >/ft R → 0.

Here we know that

C({x1, . . . , xn}) >/F R ∼=
l⊕
i=1

C0(R)

because the crossed product C0({x}) >/ R ∼= C0(R).
Next, let T (σ, α) be the interval exchange transformation induced on a closed simple
curve by f t. Putnam ([Put89]) attached a C∗- algebra to T by constructing a Cantor
set Σ and a homeomorphism φ of Σ so that [0, β(n)) is densely contained in Σ (in
a natural way) and φ|[0,β(n)) = T , proceeding as follows: Let D(T ) denote the T -
orbits of β(1), . . . , β(n − 1), omitting the point 0. We want to consider the set
D(T )×{0, 1}, but it will be more convenient to denote (x, 0) and (x, 1) by x+ and
x−, respectively. Let

Σ = [0, 1]−D(T ) ∪ {x+, x−|x ∈ D(T )}.

(This amounts to inserting the “Cantor gaps” at the points of D(T ).) There is an
obvious linear order on Σ, using x− < x+, for all x ∈ D(T ). Endowed with the
order topology, Σ is a Cantor set since the minimality of T insures that D(T ) is
dense. We include [0, β(n)) in Σ by mapping x in D(T ) to x+. The definition of φ
and the fact that it is a homeomorphism are both clear. Defining an automorphism
on C(Σ) via f 7→ f ◦ φ gives the crossed product

C(Σ) >/φ Z.

This C∗- algebra may also be defined as an operator algebra on L2([0, β(n))): The
Lebesgue measure on [0, β(n)) induces a φ- invariant Borel measure µ on Σ with
respect to the order topology. Using the reduced crossed product description (see
[GBVF01, Ex.12.1]) we conclude that the C∗- algebra of operators on L2(Σ, dµ)
generated by the multiplication operators ξ(x) 7→ f(x)ξ(x) and the shift operator
V ξ(x) := ξ(φ−1(x)) is isomorphic to C(Σ) >/φ Z. Since φ is minimal, we can
restrict the generating operators to V and the multiplication operators defined by
the characteristic functions χ[β(i),β(i+1)], i = 0, . . . , n − 1 of the intervals involved
in T (σ, α). These operators can be transferred to operators on L2([0, β(n))).
In order to investigate its K- theory Putnam ([Put89]) constructed an AF-
subalgebra of C(Σ) >/φ Z for every non-empty closed subset Y of Σ and proved
(for definitions and first properties of AF-algebras see [Dav96])

Theorem 4.1 ([Put89]). Let Y be a non-empty closed subset of Σ. Then AY , the
C∗- subalgebra of C(Σ) >/φ Z generated by C(Σ) and V C0(Σ − Y ), is an AF-
algebra. If i denote the inclusion map of AY in C(Σ) >/φ Z there is an exact
sequence

0 → Z α→ C(Y,Z) → K0(AY ) i∗→ K0(C(Σ) >/φ Z) → 0
where α is the map taking n ∈ Z to the constant function n.
Moreover, for every a ∈ K+

0 (C(Σ) >/φ Z), there is b ∈ K+
0 (AY ) such that i∗(b) = a.

In particular, if Y is a single point, i∗ is an isomorphism of ordered groups.
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Since we need the techniques used in the proof later on we reproduce them in all
details: Putnam explicitely constructed the Bratteli diagram of the AF-algebra
AY (and hence its K0 group) by the “method of towers”. To understand it, we
first need some notation: We say that a subset E of Σ is clopen if it is both
closed and open. We let χE denote the characteristic function of E, which will be
continuous if E is clopen. A partition P of Σ is defined to be a finite collection of
pairwise disjoint clopen sets whose union is all of Σ. If P is a partition of Σ, we let
C(P) = span{χE |E ∈ P}. C(P) may be viewed as those functions in C(Σ) which
are constant on each element of P. The fact that Σ is totally disconnected implies
that any function in C(Σ) may be approximated arbitrarily closely by one in some
C(P). Given two partitions P1 and P2 of Σ, we say P2 is finer than P1 and write
P2 ≥ P1, if each element of P2 is contained in a single element of P1. This is clearly
equivalent to the condition that C(P1) ⊂ C(P2). Given two partitions P1 and P2,
we define the partition P1 ∨ P2 to be {E ∩ F |E ∈ P1, F ∈ P2}.
The first step is to show that a partition P of Σ and a non-empty closed subset Y
of Σ give rise to a finite-dimensional C∗- subalgebra of C(Σ) >/φ Z.

Lemma 4.2. The C∗- subalgebra of C(Σ) >/φ Z generated by C(P) and V χΣ−Y is
finite dimensional.

Proof. We begin by defining λ : Y → Z by

λ(y) = inf{n ≥ 1|φn(y) ∈ Y }, y ∈ Y.

Notice that since φ is minimal and Y is open, there is, for each point y, a positive
integer n such that φn(y) ∈ Y , so λ is well-defined.
It is straightforward to verify that λ is upper (lower) semi-continuous because Y is
open (closed), and so λ is continuous. Then because Y is compact, λ(Y ) is finite.
Let us suppose that λ(Y ) = {J1, J2, . . . , JK} with J1 < · · · < JK .
For k = 1, . . . ,K and j = 1, . . . , Jk define the clopen set Y (k, j) = φj(λ−1(Jk)). It
follows at once from the definitions that the following properties hold:

(1)
⋃K
k=1 Y (k, 1) = φ(Y ),

(2) φ(Y (k, j)) = Y (k, j + 1), for 1 ≤ j < Jk,
(3)

⋃K
k=1 Y (k, Jk) = Y .

This implies that for a fixed k, the union of all Y (k, j) is invariant under φ. It is
also clearly closed and so, by minimality, must be all of Σ.
We shall refer to {Y (k, j)|j = 1, . . . , Jk} as a tower of height Jk.
Now we argue that we can make the partition we have constructed above finer than
the given one P, without changing its essential structure (namely, properties 1-3
above). Suppose Z ∈ P and suppose Z meets some Y (k, j) but does not contain it.
Divide Y (k, j) into two clopen sets Y (k, j)∩Z and Y (k, j)∩(Σ−Z). Unfortunately,
this “disrupts” the entire kth tower, so we form Y (k, i)′ = φi−j(Y (k, j) ∩ Z) and
Y (k, i)′′ = φi−j(Y (k, j) ∩ (Σ − Z)), for each i = 1, . . . , Jk. Thus the kth tower
breaks into two separate towers (both of height Jk) with Y (k, i)′ ⊂ Z and Y (k, i)′′

disjoint from Z. We repeat this for all Z and all (k, j) (which will be a finite
process). We then obtain a new K and new clopen sets Y (k, j) (neither will be
given a new notation) which satisfy conditions 1-3 above and such that the partition
P ′ = {Y (k, j)|k = 1, . . . ,K, j = 1, . . . Jk} is finer than P.
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We are now prepared to define a finite dimensional C∗- subalgebra of C(Σ) >/φ Z.
In fact, it will be ∗- isomorphic to

MJ1 ⊕ · · · ⊕MJK
.

To do this, it suffices to define matrix units e
(k)
ij for all k = 1, . . . ,K and

i, j = 1, . . . , Jk. Let
e
(k)
ij = V i−jχY (k,j) = χY (k,i)V

i−j .

Using the conditions 1-3, it is routine to check that for fixed k, {e(k)ij } forms a
complete system of matrix units for MJk

, that the projections

pk =
Jk∑
i=1

e
(k)
ii

are pairwise orthogonal and sum to the identity. We also note that
span{e(k)ii |k = 1, . . . ,K, i = 1, . . . , Jk} = C(P ′) ⊃ C(P) and that

V χΣ−Y =
K∑
k=1

Jk∑
i=2

e
(k)
i,i−1.

The C∗- algebra generated by C(P) and V χΣ−Y is contained in the finite di-
mensional algebra we have just described and therefore must itself be finite-
dimensional. �

We will denote the C∗- algebra generated by C(P) and V χΣ−Y by A(Y,P).

Lemma 4.3. Let Y1 and Y2 be two non-empty clopen subsets of Σ, and let P1

and P2 be two partitions of Σ. If P1 ≤ P2, χY1 ∈ C(P2) and Y1 ⊃ Y2, then
A(Y1,P1) ⊂ A(Y2,P2).

Proof. Clearly C(P1) ⊂ C(P2) and, since Y2 ⊂ Y1,

V χΣ−Y1V χΣ−Y2χΣ−Y1 ∈ A(Y2,P2).

�

Theorem 4.4. Let Y be a non-empty closed subset of Σ. Then AY , the C∗-
subalgebra of C(Σ) >/φ Z generated by C(Σ) and V C0(Σ− Y ), is an AF-algebra.

Proof. We begin by selecting an increasing sequence of partitions of Σ,
P1 ≤ P2 ≤ · · · , whose union generates the topology of Σ. We also choose
a decreasing sequence of clopen subsets of Σ, Y1 ⊃ Y2 ⊃ · · · , whose inter-
section is Y . We will inductively define partitions P ′n and finite dimensional
subalgebras An = A(Yn,P ′n), for each positive integer n. Let P ′1 = P1 and
A1 = A(Y1,P1). Now assume that we have defined P ′n and An = A(Yn,P ′n).
We let P ′n+1 = P ′n∨Pn+1∨{Yn, X−Yn}. Then we have P ′n+1 ≥ Pn+1, P ′n+1 ≥ P ′n
and χX−Yn

∈ C(P ′n+1). Let An+1 = A(Yn+1,P ′n+1).
We claim that the An’s form a nested sequence of finite dimensional subalge-
bras of AY whose union is dense in AY . First of all, C(P ′n) ⊂ C(Σ) and
V χX−Yn ∈ V C0(Σ− Y ), since Y ⊂ Yn, so An ⊂ AY . From the properties of P ′n+1

as described in the last paragraph and lemma 4.3, we see that An ⊂ An+1, for all n.
Since the union of the Pn’s generates the topology of Σ and C(Pn) ⊂ C(P ′n) ⊂ An,
we know that C(Σ) ⊂

⋃
nAn. As Y is the intersection of the Yn’s it is clear that

V C0(Σ− Y ) ⊂
⋃
nAn. �
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To get a better understanding of the ordered K0- group of C0(M0) >/FT
R Put-

nam [Put92] constructed another surface M̃ and flow F̃ with a proper surjective
map p : M̃ → M which is equivariant for F and F̃ : Take a simple closed curve
and consider the induced interval exchange transformation T . Let (M,F t) be the
flow constructed from T as in section 2. By lemma 2.4 the flow F t is topologically
equivalent to the original flow f t.
Now Putnam splitted the F - orbit of (T (0), 1

2 ) into 2 parallel orbits. Note that the
F - orbit of (T (0), 1

2 ) is

{(T k(0), s) | k ≥ 1, T k(0) 6= T (0), s ∈ (0, 1]} − {(T l(0), 1) | T l+1(0) = T (0)},

since as t approaches −∞, F ((T (0), 1
2 ), t) converges to

(T (0), 0) = (β′(σ(1)− 1), 0).

Let D0(T ) = {T k(0) | k ≥ 1, T k(0) 6= T (0)}. Let

Σ0 = [0, 1]−D0(T ) ∪ {x+, x− | x ∈ D0(T )}

with the obvious linear order on Σ0, using x− < x+, for all x ∈ D0(T ). If D0(T ) is
dense, Σ0 endowed with the order topology is a Cantor set.
Let M̃ be the compact set obtained from Σ0 × [0, 1] as follows. First, identify
the points (T (0)+, 0) and (T (0)−, 0) and denote the resulting point by (T (0), 0).
Identify each of {0}× [0, 1] and {1}× [0, 1] to a point. Finally for each i = 1, . . . , n
identify [β(i − 1), β(i)] × {1} with [β′(σ(i) − 1), β′(σ(i))] × {0} via T – meaning
that for x in D0, we identify (x+, 1) and (x−, 1) with (T (x)+, 0) and (T (x)−, 0),
respectively. Let F̃ be the obvious vertical flow stopped at the images of (β(i), 1),
i = 0, 1, . . . , n in M̃ . There is an obvious surjection π : M̃ → M , and we may
choose F̃ such that π is equivariant, i.e.

F ◦ id× π = π ◦ F̃

as maps from R× M̃ to M .
This construction is useful because of

Theorem 4.5 ([Put92, Thm. 4.1]). Let M̃0 = π−1(M0). Then

(i) C0(M̃0) >/ eF R is an AF-algebra, and
(ii) π∗ : K0(C0(M0) >/F R) → K0(C0(M̃0) >/ eF R) is an order isomorphism.

Remark 4.6. The order on K0(C0(M0) >/F R) is pulled back from the order on
K0(C0(M̃0) >/ eF R) via the statement (contained in the proof) that every projection
on C0(M̃0) >/ eF R comes from a projection in C0(M0) >/F R. Since C0(M̃0) >/ eF R
is an AF-algebra, the equivalence classes of these projections generate a cone in
K0(C0(M̃0) >/ eF R), hence an order, and similarly for K0(C0(M0) >/F R).

To get a Bratteli diagram of the AF-algebra C0(M̃0) >/ eF R (and hence a description
of the ordered K0- group) we need to have a close look at the proof of (the first
part of) this theorem: The idea is to construct a sequence of open subsets

Ũ1 ⊂ Ũ2 ⊂ . . . ⊂ M̃0

exhausting M̃0 such that the crossed product C∗- algebras C0(Ũi) >/ eF eUi
R are

AF-algebras. Since the union of the C0(Ũi) >/ eF eUi
R is dense in C0(M̃0) >/ eF R we
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get that this C∗- algebra is AF, too. The set Ũ1 is chosen first. Then we describe
an iterative procedure for obtaining Ũj+1 from Ũj .
Choose an integer K sufficiently large so that, for each i = 1, . . . , n

{T k(0)|1 ≤ k ≤ K} ∩ I(i)

has at least two points. In the case β(j − 1) < TK(0) < β(j) and σ(j) = n and
in the case β(j) < TK(0) < β(j + 1) and σ(j + 1) = 1, replace K by K + 1.
(TK(0) = β(j) is impossible because of the IDOC.) For i = 0, 1, . . . , n− 1 let

x(1, i) = inf({T k(0)|1 ≤ k ≤ K} ∩ I(i+ 1))

and for i = 1, . . . , n let

x(0, i) = inf({T k(0)|1 ≤ k ≤ K} ∩ I(i)).

For convenience, set Ω = {0, 1} × {1, . . . , n − 1} ∪ {(1, 0), (0, n)}. For each ω ∈ Ω,
let k(ω) be the positive integer such that x(ω) = T k(ω)(0). We also define

x′(1, i) = inf({T k(0)|2 ≤ k ≤ K + 1} ∩ I ′(i+ 1)),

x′(0, i) = inf({T k(0)|2 ≤ k ≤ K + 1} ∩ I ′(i))
for appropriate i, and k′(ω) is given by T k

′(ω) = x′(ω) for ω ∈ Ω. Note that

T{x(ω)|ω ∈ Ω} = {x′(ω)|ω ∈ Ω}.

We define closed sets Z(i), Z ′(i) in P = Σ0 × [0, 1] by

Z(0) = Z ′(0) = [0, x(1, 0)−]× [0, 1]
Z(n) = Z ′(n) = [x(0, n)+, 1]× [0, 1]
Z(i) = [x(0, i)+, x(1, i)−]× [ 34 , 1]
Z ′(i) = [x′(0, i)+, x′(1, i)−]× [0, 1

4 ]

for i = 1, . . . , n−1. We let Ũ (= Ũ1) be the complement of the union of the images
of the Z(i), Z ′(i) under the quotient map π : P → M̃ . This open set is M̃ minus
the union of closed neighborhoods around the singularities of F .
Now, Putnam proved that the F eU - orbits of the points

{(T (0)±,
1
2
), (x′(δ, i)±,

1
2
)|δ = 0, 1; i = 1, . . . , n− 1} ⊂ Ũ

are pairwise disjoint. Moreover, these orbits bound n strips ∼= Σi × R, which are
F

eU - invariant (Σi a Cantor set). These F
eU - flows are topologically conjugated

to id × τ on Σi × R, where τ denotes the canonical flow on R (i.e. translation).
Consequently,

C0(Ũ) >/F eU R ∼= (
n⊕
i=1

C0(Σi × R)) >/id×τR ∼= (
n⊕
i=1

C(Σi))⊗K

(the last isomorphism follows from the approximation of compact operators by
Hilbert-Schmidt operators on L2(R) which arise during the construction of the
crossed product).
Next, we show how to construct Ũ2 satisfying the same conditions: Let y be one of
the points of the set

{(T (0)±,
1
2
), (x′(δ, i)±,

1
2
)|δ = 0, 1; i = 1, . . . , n− 1}
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above. Define y+ = limt→∞ F
eU (t, y). Putnam showed that each of the corners of

the Z(i)’s is a y+ for some y = (x′(δ, i)±, 1
2 ) in our set. These y’s cover all but

one pair (δ, i), and Putnam proved that y = (x′(δ, i)±, 1
2 ) has y+ contained in the

interior of the line segment [x(0, j)+, x(1, j)−]× 3
4 , for some j. In fact, (δ, i) is such

that
k′(δ, i) = sup{k′(δ′, i′)|δ′ = 0, 1, i′ = 1, . . . , n− 1}.

Let y+ = (T l(0), 3
4 ), for some l ≥ 1. Notice that T l(0) = β(j) is not possible because

of the IDOC. Redefine the x(δ, i) etc. by replacing K by l. In the case T l(0) < β(j)
and σ(j) = n and in the case β(j) < T l(0) and σ(j + 1) = 1, replace K by l + 1.
Now, define Z(i) = [x(0, i), x(1, i)]× [ 78 , 1] and Z ′(i) = [x′(0, i), x′(1, i)]× [0, 1

8 ]. It
is clear that U2, defined as before, has the same properties as U1 and

C0(Ũ2) >/F eU2 R ∼= (
n⊕
i=1

C0(Σ
(2)
i ))⊗K.

It is clear how to continue this process inductively to obtain Ũ3, Ũ4, . . .. From the
fact that the orbit of 0 is dense in [0, β(n)) it follows that the union of all Ũj will
be M̃0.
Instead of going into the details of the proof, we present an example for these argu-
ments, which hopefully enables the reader to produce a proof by himself and also
clarifies the meaning of the exceptions T l(0) < β(j) and σ(j) = n resp. β(j) < T l(0)
and σ(j + 1) = 1. We start with the interval exchange transformation T = T (σ, α)
where σ = (12) and α = (

√
2 − 1, 2 −

√
2). In the first step, if we don’t in-

clude the exceptional cases, we set K = 4 and the second strip does not end in
one of the Z(i)’s, but in [x′(0, n)+, 1] × [0, 1]. And in the next step, there is no
y = T k(0)±, 1 ≤ k ≤ K + 1, whose orbit ends in the interior of one of the intervals
[x(0, j)+, x(1, j)−]× { 3

4}:
� -I(1) � -I(2)

� -I ′(2) � -I ′(1)

T 2(0) T 4(0) T (0) T 3(0)

2 1 2

Hence we set K = 5 and get
� -I(1) � -I(2)

� -I ′(2) � -I ′(1)

T 2(0) T 4(0)T 6(0)T (0) T 3(0) T 5(0)

2 2 1 2 2

The next step leads to K = 7 and
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� -I(1) � -I(2)

� -I ′(2) � -I ′(1)

T 7(0)

T 2(0)

T 9(0)

T 4(0)

T 11(0)

T 6(0)T (0)

T 8(0)

T 3(0)

T 10(0)

T 5(0)

1 2 1 2 1 1 2 1 2 1

The whole construction tells us that C0(M̃0) >/ eF R is the inductive limit of C∗-
algebras of type (

⊕n
i=1 C(Σi))⊗K. But these C∗- algebras are already AF-algebras

because the Σi are Cantor sets ([Dav96, Ex.III.2.5]). Hence, C0(M̃0) >/ eF R is also
an AF-algebra. It can be presented as the inductive limit of finite-dimensional C∗-
algebras in the following way: Let Aj be the C∗- subalgebra of C0(Ũj) >/ eF j R
which is mapped to

⊕n
i=1 C ⊗ K under the isomorphism above, for j = 1, 2, . . ..

It is not hard to check that Aj ⊂ Aj+1 for all j and that the union of the Aj is
dense in C0(M̃0) >/ eF R. Obviously, K0(Aj) ∼= Zn, for all j, and the embeddings
induce isomorphisms of abelian groups given by a matrix of 1’s in the diagonal, one
off-diagonal 1 and the rest of the entries 0. This form of the matrix reflects the
fact that in every step of the construction above, exactly one strip is divided in two
strips and one of these two strips becomes part of an already existing one.

5. Order-isomorphisms of K0-groups

The aim is now to show that the K0- groups of C(Σ) >/φF
Z and the crossed

product C∗- algebras C0(M0) >/F R and C(M) >/F R are order-isomorphic.
As a first step, it is an easy exercise in K-theory to prove

Proposition 5.1. The K0- groups of C0(M0) >/F R and C(M) >/F R are order
isomorphic.

Proof. If {x1, . . . , xl} are the singularities of the minimal flow F , we have the short
exact sequence

0 → C0(M0) >/F R φ→ C(M) >/F R ψ→
l⊕
i=1

C0(R) → 0.

The long exact sequence of K-functors yields

K2(
⊕l

i=1 C0(R)) → K1(C0(M0) >/F R) → K1(C(M) >/F R) →

→ K1(
⊕l

i=1 C0(R)) → K0(C0(M0) >/F R) →

→ K0(C(M) >/F R) → K0(
⊕l

i=1 C0(R)).

Next, C0(R) = C0(R) ⊗ C is the suspension ΣC of the C∗- algebra C [GBVF01,
Def.1.15]. By using Kn+1(A) = Kn(ΣA) [GBVF01, Prop.3.26], K1(C) = 0
[GBVF01, p.128] and the split exact sequences associated to the direct sum
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i=1K0(C0(R)) [GBVF01, Prop.3.29], we get

K0(
⊕l

i=1 C0(R)) = 0,

K1(
⊕l

i=1 C0(R)) =
⊕l

i=1K1(C0(R)) =
⊕l

i=1K1(ΣC) =
⊕l

i=1K2(C) =

=
⊕l

i=1K0(C) = Zl and

K2(
⊕l

i=1 C0(R)) = K0(
⊕l

i=1 C0(R) = 0,

by Bott periodicity [GBVF01, Thm.3.34] and K0(C) = Z [GBVF01, p.96]. Connes’
analogue to the Thom isomorphism [Con94, II.C, Thm.8] tells us that

K1(C0(M0) >/F R) ∼= K2(C0(M0)) ∼= K0(C0(M0))

K1(C(M) >/F R) ∼= K2(C(M)) ∼= K0(C(M)).

Since the second map in the short exact sequence

0 → C0(M0) → C(M) → C({x1, . . . , xl}) → 0

has a (in fact, many) splitting(s), we have again by [GBVF01, Prop.3.29] that there
is a short exact sequence

0 → K0(C0(M0)) → K0(C(M)) → K0(C({x1, . . . , xl}) =
l⊕
i=1

K0(C) → 0.

Consequently,

φ∗ : K0(C0(M0) >/F R)
∼=→ K0(C(M) >/F R).

is an isomorphism.
We need some additional arguments to show that the K0− groups of the con-
sidered C∗- algebras have an order. As described in remark 4.6 the order on
K0(C0(M0) >/F R) is pulled back from the order on K0(C0(M̃0) >/ eF R). It
remains to construct a projection p ∈ P(C0(M0) >/F R) for every projection
q ∈ P(C(M) >/F R) such that

φ∗([p]) = [q].

But this is trivial, because the image ψ(q) is a projection in some matrix algebra
over

⊕l
i=1 C0(R), hence equivalent to 0, and consequently,

q ∈ C0(M0) >/F R.

�

Next we prove

Theorem 5.2. Let (Σ, φF ) be the dynamical system on a Cantor set Σ correspond-
ing to the minimal flow F induced by (the imaginary part of) a holomorphic 1- form
on a Riemann surface X = M . Then

(K0(C0(M0) >/F R),K+
0 (C0(M0) >/F R)) ∼= (K0(C(Σ) >/φF

Z),K+
0 (C(Σ) >/φF

Z).
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Proof. The idea is to bring the apparent similarity of the “method of towers” and
the construction for K0(C0(M0) >/F R) in section 4 into a mathematically exact
form. This is done by constructing AF-subalgebras Bj ⊂ C(Σ) >/φF

Z which are
stably isomorphic to Aj , such that B := limj→∞Bj ⊂ C(Σ) >/φF

Z is stably iso-
morphic to limj→∞Aj = C0(M̃0) >/ eF R. Furthermore we show that the inclusion
i : C(Σ) ↪→ C(Σ) >/φF

Z factors through B:

C(Σ)
i1 i

B
i2

C(Σ) >/φF
Z

Then by [Put90, Cor.2.4], for every a in K0(C(Σ) >/φF
Z)+ there is a c in

K0(C(Σ))+ such that i∗(c) = a. Letting b = i1,∗(c) we have i2,∗(b) = a. Hence i2,∗
is surjective. It is also injective because

K0(B) = K0(C0(M̃0) >/ eF R) = Zn = K0(C(Σ) >/φF
Z),

where the first isomorphism follows from B stably isomorphic to
limj→∞Aj = C0(M̃0) >/ eF R. The conclusion of the theorem follows.
The towers leading to the Bj ’s consist of the intervals [T l(0)+, Tm(0)−] such that
the lines T l(0)+× [0, 1] and Tm(0)−× [0, 1] border the same strip in the jth step of
the construction above. In particular, there is a minimal pair (l,m) such that the
intervals

Y (k, 0) = [T l(0)+, Tm(0)−],
Y (k, 1) = [T l+1(0)+, Tm+1(0)−],

...
Y (k, Jk) = [T l+Jk(0)+, Tm+Jk(0)−]

form the kth strip, k = 1, . . . , n. In this picture, the strips [0, T k(1,0)(0)−]×[0, 1] and
[T k(0,n)(0)+, 1]× [0, 1] are missing, but they can be naturally included as the strips
preceding those with left boundary T (0)+×[0, 1] resp. right boundary T (0)−×[0, 1].
We get a partition of Σ into the intervals Y (k, j), k = 1, . . . , n, j = 0, . . . Jk.
This partition may be used as in the “method of towers” to produce a finite dimen-
sional C∗- subalgebra of C(Σ) >/φF

Z,

MJ1 ⊕ . . .⊕MJn
,

defined with matrix units

e
(k)
ij = V i−jχY (k,j) = χY (k,i)V

i−j

for all k = 1, . . . , n, i, j = 0, . . . Jk. Let Bj be this finite dimensional C∗- algebra.
Since the (j + 1)st partition is finer than the jth partition and the union of all
partitions generates the toplogy of Σ, the Bj ’s form a nested sequence of finite
dimensional C∗- algebras whose inductive limit B contains C(Σ).
On the other hand, we can also carryover the argument that yields the form of
the matrix describing the homomorphism K0(Aj) → K0(Aj+1) in the natural Zn-
bases. Hence, B and limj→∞Aj are stably isomorphic, and the proof is finished. �
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Remark 5.3. It would be nice to have a ∗- homomorphism between C0(M0) >/F R
and C(Σ) >/φF

Z which induces an order-isomorphism of their K0- groups. Indeed,
Putnam [Put92, Thm.3.2] proved the following

Theorem 5.4. Let C(Σ) >/φT
Z and C0(M0) >/FT

R arise from a transformation
T (σ, α) exchanging n intervals satisfying the I.D.O.C. as above. Then there are
isomorphisms

K0(C(Σ) >/φT
Z) ∼= Zn, K0(C0(M0) >/FT

R) ∼= Zn

and an injective ∗- homomorphism

ρ : C0(M0) >/FT
R → (C(Σ) >/φT

Z)⊗K,
where K denotes the C∗- algebra of compact operators on a separable, infinite-
dimensional Hilbert space.
Furthermore, using the isomorphisms above,

ρ∗ : K0(C0(M0) >/FT
R) → K0(C(Σ) >/φT

Z)

is given by multiplication by Lσ, an n× n matrix with

Lσij =

 1 if i > j and σ(i) < σ(j)
−1 if i < j and σ(i) > σ(j)
0 otherwise.

Unfortunately, Lσ need not be invertible (e.g., if n is odd, since then Lσ describes
an alternating quadratic form).
It is not known to the author whether there is another ∗- homomorphism inducing
an order-isomorphism between the K0- groups, or whether the two crossed product
C∗- algebras C0(M0) >/F R and C(Σ) >/φF

Z are (strongly) Morita equivalent.

Proposition 5.1 and theorem 5.2 show that the C∗ algebras associated in section 4
to a minimal flow induced by the imaginary part of a holomorphic 1- form have the
same ordered K0- group. We finally prove that the cone defining the order for this
abelian group is dual to the cone Σ(σ, α) of T - invariant Borel measures on [0, β(n))
where T is an induced interval exchange transformation on the interval [0, β(n)).
Recall the description of Σ(σ, α) in proposition 3.4: Let J1 ⊃ J2 ⊃ · · · be a sequence
of admissible intervals shrinking to a point. Then

Σ(σ, α) ∼=
∞⋂
i=1

(A1A2 · · ·AiΛn)

where the Ai are the matrices describing the transition from the (i−1)st to the ith
induced interval exchange transformation and Λn ⊂ Rn is the simplex generated
by the unit vectors in Rn.
For every point y0 ∈ [0, βα(n)) it is possible to choose a sequence of admissible
subintervals Jk = [ak, bk) such that

J1 = [0, βα(n)) ⊃ J2 ⊃ · · · {y0}
contract to this point {y0}: Start with the admissible interval J2 = [βα(j), βα(j+1))
containing y0. Take as J3 the interval [βα(2)(k), βα(2)(k+1)) of the induced interval
exchange transformation α(2) containing y0, and iterate this procedure. The Ji con-
tract to y0: Assume that another point y1 6= y0 lies in all the Jn. Let T (n)

|Jn
= T l

(n)
.

Then by construction, Tm(y0) and Tm(y1) would lie in the same interval of α = α1,
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for all 0 ≤ m ≤ l(n). Now, l(n) increases for increasing n. This means that Tm(y0)
and Tm(y1) would lie in the same interval of α = α1, for all m ∈ N. But this is
impossible: By the minimality assumption, there are i, l ∈ N such that T−lβα(i)
separates y0 and y1. This certainly implies that T l(y0) and T l(y1) lie in different
intervals of α.
The sequence of Z- invertible matrices A(k) ∈ M(n,Z) describing the transition
from α(k) to α(k+1) (that is, α(k) = A(k)α(k+1)) allow us to define an ordered group
(GT , G+

T ) as the direct limit of

(Zn, (Zn)+) A
(1)

→ (Zn, (Zn)+) A
(2)

→ (Zn, (Zn)+) A
(3)

→ · · · .

The homomorphisms A(k) : (Zn, (Zn)+) → (Zn, (Zn)+) are positive, since all the
entries of A(k) are positive integers. Furthermore, this direct limit is dual to the
cone

⋂∞
i=1(A1A2 · · ·AiΛn).

Proposition 5.5. Let T (σ, α) and (Σ, φ) be the interval exchange transformation
resp. dynamical system on a Cantor set Σ corresponding to the minimal flow in-
duced by (the imaginary part of) a holomorphic 1- form on a Riemann surface X.
Then

(GT , G+
T ) ∼= (K0(C(Σ) >/φ Z),K+

0 (C(Σ) >/φ Z))

as ordered groups.

Proof. By theorem 4.1 we have to prove that

(GT , G+
T ) ∼= (K0(A{y}),K0(A{y})+)

for some point y ∈ Σ. It is quite self-evident to set y = y0 ∈ [0, βα(n)) ⊂ Σ and to
try to identify the ordered group (Zn, (Zn)+) from the direct limit defining (GT , G+

T )
with the ordered K0- group of A(Yk,Pk) for some clopen interval Yk ⊂ Σ and par-
tition Pk which are in some way derived from the admissible interval Jk = [ak, bk)
and the interval exchange transformation T (σ(k), α(k)).
Again, it is eye-catching to set Yk = [a+

k , (ak + βα(k)(n))−] ⊂ Σ. This gives
a generic choice for the partitions Pk: Define λk : Yk → Z and Yk(l, j) as
above such that the clopen intervals Yk(l, Jl) are the same as the intervals
[(ak + βα(k)(i − 1))+, (ak + βα(k)(i))−], i = 1, . . . , n. (This means in particular
that some of the Jl may be equal.) Then let Pk be the partition of Σ into the
towers {Yk(l, j)|j = 1, . . . , Jl} of height Jl, l = 1, . . . , n. Obviously,

{Yk,Σ− Yk} ≤ Pk ≤ Pk+1.

Comparing with the arguments above we see that

Ak = A(Yk,Pk) ⊂MJ1 ⊕ · · · ⊕MJn

is generated by the elements (see notation above)

e
(l)
ii , l = 1, . . . , n, i = 1, . . . , Jl; f =

n∑
l=1

Jl∑
i=2

e
(l)
ii−1.

Since e(l)ii · f = e
(l)
ii−1, f

m =
∑n
l=1

∑Jl

i=m+1 e
(l)
ii−m and (e(l)ij )∗ = e

(l)
ji , we have

Ak ∼= MJ1 ⊕ · · · ⊕MJn
.
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We still have to show that the union of the partitions Pk generates the topology of
Σ. But this is clear since the lengths of the intervals Yk tend to 0, and the intervals
Yk(l, j) are subsets of Yk. Hence

A{y0} =
⋃
k

Ak.

To compute (K0(A{y0}),K
+
0 (A{y0})) we need to determine the inclusions

Ak → Ak+1. It is enough to look at the ∗- homomorphisms M
J

(k)
l

→ M
J

(k+1)
m

,
1 ≤ l,m ≤ n, which are unitarily equivalent to direct sums of the identity map
on M

J
(k)
l

, (by [Dav96, III.2.1]). Let e(l,k)ij , e
(m,k+1)
ij be the matrix units of Ak resp.

Ak+1 from above. The number of identity representations in the ∗- homomor-
phisms M

J
(k)
l

→ M
J

(k+1)
m

is given by the rank of the image matrix in M
J

(k+1)
m

of

e
(l,k)
JlJl

= χYk(l,Jl). But the interpretation of the A(k)
lm in proposition 3.2 shows that

Yk(l, Jl) is composed of A(k)
lm elements of the tower {Yk+1(m, j)|j = 1, . . . , J (k+1)

m },
1 ≤ m ≤ n, hence A(k)

lm is the rank of the image matrix of e(l,k)JlJl
in M

J
(k+1)
m

. In
particular, the matrix A(k) describes the induced map of K0- groups.
We still have to show that the union of the partitions Pk generates the topology of
Σ. But this is clear since the lengths of the intervals Yk tend to 0, and the intervals
Yk(l, j) are subsets of Yk. �
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