
ON THE STRONG FACTORIZATION OF TORIC BIRATIONAL
MAPS

THOMAS ECKL

Abstract. A proof of the strong factorization conjecture for toric birational

maps is presented, following the ideas of Morelli and Abramovich-Matsuki-
Rashid. The main new ingredient is the insertion and deletion of so called

trivial cobordisms which allow the formulation of a factorization algorithm.
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1. Introduction

The aim of this paper is to proof

Theorem 1.1 (Strong Factorization of Toric Birational Maps). Every proper and
equivariant birational map f : X∆ 99K X∆′ between two nonsingular toric varieties
can be factored into a sequence of blowups , immediately followed by a sequence of
blowdowns, where all blowups and blowdowns have smooth centers which are the
closure of orbits.

A very nice account of the historical background, explicit examples of the basic
ideas and related problems is given in the fundamental article [AMR99]. This paper
already contains a proof of the Strong Factorization Theorem, trying to correct
errors in an even earlier proof of [Mor96]. Unfortunately, the corrections were not
successful, s. [Mat00].

This paper’s proof follows closely the main ideas of these earlier works: It starts
in section 2 with the explanation of Morelli’s wonderful idea of a cobordism be-
tween toric varieties, then introduces the notions of circuits, bistellar operations,
collapsibility and π−nonsingularity in section 3 and 4. In this setting the proof of
the Weak Factorization Theorem (where the order of the blowups and blowdowns
is arbitrary) is possible [AMR99, Mor96]. The only new feature of these sections is
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the consequent use of cuts through the cobordisms in the direction of the projec-
tion π: They allow to draw pictures which help to get a better intuition of these
concepts, and also clarify some of the arguments. Especially lemma 4.2 is crucial
for understanding the algorithm.

Section 5 introduces the main new tool, the trivial cobordisms. They are the
star of a circuit generated only by two rays (with the same projection), and their
name comes from the fact that the lower and the upper face of such a cobordism
project to the same fan. The theorems of this section show how to insert or delete
these trivial cobordisms in arbitrary collapsible cobordisms.

At first sight, the insertion of a trivial cobordism seems to be a useless operation.
But what is the main problem of the proof of [Mor96, AMR99]? It tries to transform
arbitrary circuits (which correspond to a blowup followed by a blowdown, both with
smooth centers) to a pointing up circuit (which corresponds only to a blowup), by
smooth star subdivisions. But these star subdivisions also affect the stars of other
circuits, and so the algorithm gets out of control.

The insertion of a trivial cobordism at the right place makes it possible to con-
trol which stars are affected. Furthermore, the subdivision of a star of a trivial
cobordism gives only pointing up and pointing down circuits. All these properties
are used to establish the algorithm of section 6.

It starts with replacing an arbitrary circuit by a pair of a pointing up and a
pointing down circuit. In the next step the cobordism is modified such that the
order of pointing down and pointing up circuits is exchanged until the cobordisms
starts with pointing up circuits and ends with pointing down circuits. In the last
step, these pointing down circuits are deleted.

Finally a remark on generalizations: The methods of this proof (espacially the in-
sertion and deletion of trivial cobordisms) should be valid for the toroidal case, too.
Unfortunately, this is not enough for the general Strong Factorization Theorem: It
is still necessary to prove

Conjecture 1.2 (Toroidalization Conjecture). Let f : X → Y be a morphism
between nonsingular complete varieties. Then there exist sequences of blowups with
smooth centers for X and Y such that the induced morphism f ′ : X ′ → Y ′ is
toroidal.

Note that in [AKMW00] it is only proven that there are sequences of blowups
with smooth centers such that X ′ and Y ′ are toroidal.

Acknowledgement. This paper is only the last step of the proof of the Strong Factor-
ization Theorem for toric varieties. As already the explanations above should have
made clear, it follows very closely the brilliant ideas of Morelli. And it uses abun-
dantly the terminology, the notation and sometimes even the wording of [AMR99].
Of course, I am still responsible for all mistakes in this article.

Recently I learned from new corrections which Morelli offers on his home page
[Mor00]. I was not able to check these corrections, but I think that my approach,
especially the use of trivial cobordisms, is of its own value.

2. Cobordisms

The notation and terminology concerning toric varieties X∆ and their corre-
sponding fans ∆ follow the presentation in [Dan78, Ful93, Oda88] as adapted in
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[AMR99]. Everything is done over an algebraically closed field of characteristic 0,
that is, C.

The key operation used over and over again is the star subdivision of a fan ∆.
It corresponds to a blow up.

Definition 2.1. Let ρ be a ray passing in the relative interior of a cone τ in a fan
∆. (Once the ray ρ is fixed, such a τ ∈ ∆ is uniquely determined.) Then the star
subdivision ρ ·∆ of ∆ with respect to ρ is defined to be

ρ ·∆ = (∆− Star(τ)) ∪ {ρ + τ ′ + ν; τ ′ a proper face of τ, ν ∈ link∆(τ)}

where

Star(τ) = {ζ ∈ ∆ : ζ ⊃ τ}
Star(τ) = {ζ ∈ ∆ : ζ ⊂ η for some η ∈ Star(τ)}

link∆(τ) =
{

ζ ∈ Star(τ) : ζ ∩ τ = ∅
}

.

The inverse of a star subdivision is called a star assembling, corresponding to a
blowdown.

When τ = 〈ρ1, . . . , ρl〉 is generated by the extremal rays ρi with the primitive
vectors vi = n(ρi) and the ray ρ is generated by the vector v1 + . . . + vl, the star
subdivision is called the barycentric star subdivision with respect to τ .

When ∆ is nonsingular, the barycentric star subdivision with respect to a face
τ is called a smooth star subdivision and its inverse a smooth star assem-
bling. These operations correspond to blowups and blowdowns of smooth varieties
in smooth centers.

The notion of a cobordism as defined below sits in the center of Morelli’s idea of
proving the toric strong factorization conjecture.

Definition 2.2. Let ∆ and ∆′ be two fans in NQ = N⊗Z Q with the same support,
where N is the lattice of one-parameter subgroups of the torus. A cobordism Σ
from ∆ to ∆′ is a fan in N+

Q = (N ⊕ Z) ⊗ Q = NQ ⊕ Q equipped with the natural
projection

π : N+
Q = NQ ⊕Q→ NQ

such that

(1) any cone τ ∈ Σ is π-strictly convex, i.e.

x, y ∈ τ, π(x) = −π(y)⇒ x = y = 0,

(2) the projection π gives an isomorphism between ∂−Σ and ∆ (resp. ∂+Σ and
∆′) as linear complexes, i.e., there is a one-to-one correspondence between
the cones σ− of ∂−Σ (resp. σ′+ of ∂+Σ) and the cones σ of ∆ (resp. σ′

of ∆′) such that π : σ− → σ (resp. π : σ′+ → σ′) is a linear isomorphism
for each σ− (resp. σ′+) and its corresponding σ (resp. σ′). (The map of
lattices π : (N ⊕Z)∩σ− → N ∩σ, resp. π : (N ⊕Z)∩σ′+ → N ∩σ′, is not
required to be an isomorphism.)

We denote this isomorphism by

π : ∂−Σ ∼→ ∆ (resp. π : ∂+Σ ∼→ ∆′)
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where

∂−Σ = {τ ∈ Σ : (x, y − ε) 6∈ Supp(Σ) for any (x, y) ∈ τ
with x ∈ NQ, y ∈ Q and any sufficiently small ε > 0}

resp. ∂+Σ = {τ ∈ Σ : (x, y + ε) 6∈ Supp(Σ) for any (x, y) ∈ τ
with x ∈ NQ, y ∈ Q and any sufficiently small ε > 0}

(3) the support Supp(Σ) of Σ lies between the lower face ∂−Σ and the up-
per face ∂+Σ, i.e., for any (x, y) ∈ Supp(Σ), the point x ∈ NQ is in
Supp(∆) = Supp(∆′), and there are numbers yx

−, yx
+ ∈ Q such that

π−1(x) =
{
(x, y) ∈ N+

Q : yx
− ≤ y ≤ yx

+

}
and

(x, yx
−) ∈ Supp(∂−Σ), (x, yx

+) ∈ Supp(∂+Σ).

Actually only the third condition is needed for the definition of a cobordism
(not the second one as misprinted in [AMR99]). This may be summarized in the
following

Proposition 2.3. A fan Σ in N+
Q equipped with the natural projection

π : N+
Q = NQ ⊕ Q → NQ is a cobordism between the fans π(∂−Σ) and π(∂+Σ)

in NQ iff the support Supp(Σ) of Σ lies between the lower face ∂−Σ and the upper
face ∂+Σ, i.e., for any (x, y) ∈ Supp(Σ), there are numbers yx

−, yx
+ ∈ Q such that

π−1(x) =
{
(x, y) ∈ N+

Q : yx
− ≤ y ≤ yx

+

}
and

(x, yx
−) ∈ Supp(∂−Σ), (x, yx

+) ∈ Supp(∂+Σ).

Proof. Suppose that Σ satisfies the condition. Then, for every (x, y) ∈ Supp(Σ),
there are points

(x, yx
−) ∈ Supp(∂−Σ), (x, yx

+) ∈ Supp(∂+Σ)

with yx
− ≤ y ≤ yx

+. Therefore, Supp(π(∂−Σ)) = Supp(π(∂+Σ)). Furthermore, this
implies condition (2) of the cobordism definition.

Finally suppose that τ ∈ Σ is not π-strictly convex, i.e. there are points
(x, y), (−x, y′) ∈ τ , 0 6= x ∈ NQ, y ∈ Q. By the definition of fans the cone τ
of the fan Σ must be strictly convex, i.e. y 6= −y′. But then the ray generated by

(x, y) + (−x, y′) = (0, y + y′) 6= (0, 0) ∈ NQ

lies in τ , and this contradicts the existence of yx
−, yx

+ ∈ Q as in the assumption. �

Corollary 2.4. Let Σ in N+
Q be a cobordism, let x, x′ ∈ π(Supp(Σ)) ⊂ NQ, let

[x, x′] be the line segment connecting x and x′. Then π−1([x, x′]) ∩ ∂+Σ resp.
π−1([x, x′])∩∂−Σ is the graph of a continuous, piecewise linear function from [x, x′]
to Q.

Proof. The piecewise linearity is clear by the definition of cones. The intersections
are graphs of continuous functions because there are no points (x′′, y) ∈ ∂+Σ resp.
∂−Σ with yx′′

− < y < yx′′

+ .
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↓ π(x′′, yx′′

− )

(x′′, y)

(x′′, y + ε)

(x′′, yx′′

+ )

.........
.........
.........
.........
.........
..not in ∂+Σ!

........................................................................Σ

�

3. Circuits and bistellar operations

In this section it is shown how the circuits of π-nonsingular cobordisms corre-
spond to blowups and blowdowns.

Definition 3.1. Let Σ be a simplicial fan in (N ⊕ Z)⊗Q = N+
Q with the natural

projection π : NQ → N+
Q . Assume that all the cones in Σ are π-strictly convex.

A cone σ ∈ Σ is π- independent if π : σ → π(σ) is an isomorphism. Otherwise
σ is π- dependent.

A cone σ ∈ Σ is called a circuit if it is minimal among the π-dependant cones,
i.e., if σ is π-dependent and any proper face of σ is π- independent.

A cone σ ∈ Σ is π- nonsingular if the projection π(τ) of each π-independent
face τ ⊂ σ is nonsingular as a cone in NQ in the lattice N . The fan Σ is called π-
nonsingular if all the cones in Σ are π- nonsingular.

The following proposition shows how to find cobordisms in an arbitrary simplicial
fan.

Proposition 3.2. Let Σ be a simplicial fan in (N ⊕Z)⊗Q = N+
Q with the natural

projection π : NQ → N+
Q , which contains only π-strictly convex cones. Let σ ∈ Σ

be a π-dependent cone. Then σ is a cobordism between π(∂−σ) and π(∂+σ), and
Star(σ) is a cobordism between π(∂−Star(σ)) and π(∂+Star(σ)).

Proof. One problem is to see why π(∂−Star(σ)) and π(∂+Star(σ)) are fans in NQ.
But this follows from condition (3) of the cobordism definition, too, so one only has
to show this condition:

(a) Let σ be a cone in Σ, let x ∈ NQ. If x = 0, the intersection of the line
Lx = π−1(x) with σ is Lx∩σ = {0} because σ is π-strictly convex. If x 6= 0
the intersection Lx ∩ σ is a closed intervall Ix on Lx. The end points and

the interior
◦
Ix are lying in the relative interior of (different) faces τ+, τ−

and τ of σ. Furthermore, Ix varies continuously with x ∈ π(σ). Finally,
τ+ and τ− are π-independent because a cone τ is π-independent iff for an
arbitrary point (x, y) in the relative interior of τ , (x, y± ε) 6∈ τ for all ε > 0.

(b) By a characterization of faces, for every face τ of a cone σ there is a hyper-
plane Hτ ⊂ N+

Q such that σ ∩ Hτ = τ , and σ is completely contained in
one of the two half spaces seperated by Hτ . If τ is π-independent, Hτ can
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be chosen π- independent, too. Consequently, every π-independent face of
a π-dependent cone σ is contained in ∂−σ or ∂+σ.

(c) (a) and (b) imply immediately that every π-dependent cone σ satisfies con-
dition (3) of the cobordism definition and is therefore a cobordism between
π(∂−σ) and π(∂+σ).

(d) Since π-independent cones remain π- independent as faces of arbitrary π-
dependent cones,

∂±Star(σ) =
⋃
τ⊃σ

∂±τ.

(e) For all x ∈ π(Supp(Star(σ))) there is a cone τ ⊃ σ such that

Lx ∩ Supp(Star(σ)) = Lx ∩ τ.

This is true, because, first of all, Lx∩Supp(Star(σ)) =
⋃

τ⊃σ Lx∩τ . If x ∈ σ,
then Lx∩ τ = Lx∩σ because of (a). Otherwise, set Ix,τ = Lx∩ τ . Suppose
that τ1, τ2 ∈ Σ are cones containing σ such that neither Ix,τ1 ⊂ Ix,τ2 nor

vice versa. Then
◦
Ix,τ1 ∩

◦
Ix,τ2= ∅.

Since σ is π-dependent, there is a point (xσ, yσ) ∈ σ such that
◦
Ix,σ 6= ∅.

Since τ1, τ2 are π-strictly convex, the line segment [x, xσ] is contained in
π(τ1), π(τ2), and the intervalls Ix′,τ1 , Ix′,τ2 vary continuously for x′ ∈ [x, xσ]
because of (a). This implies the existence of a point x′ ∈ [x, xσ] such

that neither Ix,τ1 ⊂ Ix,τ2 nor Ix,τ2 ⊂ Ix,τ1 nor
◦
Ix,τ1 ∩

◦
Ix,τ2= ∅. This is

impossible.

x x′ xσ
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↓ π

Ix,τ2

Ix,τ1

Ixσ,σ = Ixσ,τi

All these points imply that Star(σ) satisfies condition (3) of the cobordism defi-
nition and consequently, Star(σ) is a cobordism. �

The following theorem describes the transformation called bistellar transfor-
mation, from the lower face ∂−σ to the upper face ∂+σ of a circuit σ in a simplicial
and π-nonsingular cobordism Σ. More generally, the theorem describes the trans-
formation from the lower face ∂−Star(σ) to the upper face ∂+Star(σ) of the closed
star of a circuit σ. It turns out that the bistellar operation corresponds to a smooth
blowup immediately followed by a smooth blowdown.

Theorem 3.3. Let Σ be a simplicial and π-nonsingular cobordism in N+
Q . Let

σ = 〈ρ1, . . . , ρk〉 ∈ Σ be a circuit generated by the extremal rays ρi. Each extremal
ray ρi contains a vector of the form (vi, wi) ∈ N+

Q = NQ ⊕ Q where vi = n(π(ρi))
is the primitive vector of the projection π(ρi).
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(1) There is a unique linear relation among the vi (up to renumbering) of the
form∑

rαvα = v1 + · · ·+ vl − vl+1 − · · · − vk = 0 for some 0 ≤ l ≤ k

with ∑
rαwα = w1 + · · ·+ wl − wl+1 − · · · − wk > 0.

(2) All the maximal faces γi (resp. γj) of ∂−σ (resp. ∂+σ) are of the form

γi = 〈ρ1, . . . , ρ̂i, . . . , ρl, ρl+1, . . . , ρk〉 , 1 ≤ i ≤ l,

(resp. γj = 〈ρ1, . . . , ρl, ρl+1, . . . , ρ̂j , . . . , ρk〉 , l + 1 ≤ j ≤ k.

(3) Let lσ be the extremal ray in NQ generated by the vector

v1 + · · ·+ vl = vl+1 + · · ·+ vk.

The smooth star subdivision of π(∂−σ) with respect to lσ coincides with the
smooth star subdivision of π(∂+σ) with respect to lσ, whose maximal faces
are of the form

〈π(γij), lσ〉 =
〈
π(ρ1), . . . , π̂(ρi), . . . , π(ρl), π(ρl+1), . . . , π̂(ρj), . . . , π(ρk), lσ

〉
.

Thus the transformation of π(∂−σ) to π(∂+σ) is a smooth star subdivision im-
mediately followed by a smooth star assembling. This transformation is called a
bistellar operation.

Similarly, the transformation from π(∂−Star(σ)) to π(∂+Star(σ)) is a smooth
star subdivision immediately followed by a smooth star assembling.

Proof. The only difficult point is to show that the rα = ±1. This is done by using
the π-nonsingularity. For a complete proof of the theorem s. [AMR99, p.499]. �

4. The circuit graph and collapsibility

Let Σ be a simplicial cobordism between simplicial fans ∆ and ∆′. Noting that

Σ = ∂−Σ ∪
⋃
σ

Star(σ) ∪ ∂+Σ

where the union is taken over the circuits σ, one may try to factorize the transfor-
mation from ∆ to ∆′ into smooth star subdivisions and smooth star assemblings by
replacing ∂−Star(σ) with ∂+Star(σ), if Σ is π-nonsingular. But this is not always
possible; for a counterexample s. [Mat00]. The notion of “collapsibility” ensures
this possibility.

Definition 4.1. Let Σ be a simplicial cobordism in N+
Q . The circuit graph of

Σ is a directed graph defined as follows: The vertices of the circuit graph con-
sist of the circuits of Σ. There is an edge from σ to σ′ if there is a point
p ∈ ∂−Star(σ) ∩ ∂+Star(σ′) such that

p− (0, ε) ∈ Star(σ), p + (0, ε) ∈ Star(σ′) for sufficiently small ε.

Σ is called collapsible if the circuit graph contains no directed cycle. When Σ is
collapsible, the circuit graph determines a partial order among the circuits: σ ≤ σ′

if there is an edge σ → σ′.

The next lemma gives a better intuition for this notion:
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Lemma 4.2. Let Σ be a simplicial, collapsible cobordism in N+
Q with circuits

σi, 1 ≤ i ≤ k, such that σi ≤ σj implies i ≤ j. Let x ∈ π(Supp(Σ)). Then
π−1(x) ∩ Supp(Σ) may be divided into intervalls Ix,i := π−1(x) ∩ Supp(Star(σi)),
such that the relative interiors of Ix,i do not intersect. Some of the Ix,i may be
empty. If Ix,i = [y−i , y+

i ],

y−1 ≤ y+
1 = y−2 ≤ . . . ≤ y+

k−1 = y−k ≤ y+
k .

If
◦

Ix,i,
◦

Ix,j 6= ∅ and y+
i = y−j , there is an edge σi → σj.

Proof. Point (e) of Proposition 3.2 shows: If Ix,i := π−1(x) ∩ Supp(Star(σi)) 6= ∅
there is a π-dependent cone τ ∈ Star(σi) such that Ix,i = π−1(x) ∩ τ . Since π-
dependent cones contain exactly one circuit, the relative interiors of the Ix,i do not
intersect. The last statement of the lemma is immediate from the definition of an
edge: The point (x, y+

i ) satisfies the conditions.
To prove the inequality chain the only cases still to exclude are

y−j < y+
j = y−i = y+

i or y−j = y+
j = y−i < y+

i with i < j.

For the first case, let τj ∈ Star(σj), τi ∈ Star(σi) be π-dependent cones such that
Ix,j = π−1(x) ∩ τj , Ix,i = π−1(x) ∩ τi. Since τi is π-dependent there is a point x′

arbitrarely near to x such that π−1(x′) ∩ τi is an intervall with non-empty inte-
rior. Since by corollary 2.4, Ix = π−1(x) ∩ Σ varies continuously with x, there is a
π-dependent cone τj ⊂ τ ′j ∈ Star(σj) with x′ ∈ Supp(τ ′j). Since Ix,j varies contin-
uously with x, Ix′,j is still an intervall with non empty interior. This contradicts
the last statement of the proposition.

The second case is done in the same way. �
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↓ π

........................................................................Star(σ2)

........................................................................Star(σ3)

........................................................................Star(σ1)

Corollary 4.3. Let Σ be a simplicial and collapsible cobordism in N+
Q and σ ∈ Σ

a circuit. Let τ ∈ ∂+Star(σ) and ∂+σ ⊂ τ . Then τ 6∈ Star(σ′) for all σ′ < σ.
Similarly, let τ ′ ∈ ∂−Star(σ) and ∂−σ ⊂ τ ′. Then τ ′ 6∈ Star(σ′′) for all σ < σ′′.

Proof. Let σ = 〈ρ1, . . . , ρk〉 ∈ Σ be generated by the extremal rays
ρi = 〈(vi, wi)〉, where vi = n(π(ρi)) is the primitive vector of the projection
π(ρi). Let v1 + · · · + vl = vl+1 + · · · + vk be the unique relation such that
w1 + · · ·+ wl − wl+1 − · · · − wk > 0. Then ∂+σ = 〈ρ1, . . . , ρl〉.
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The midray ρ :=
〈
(
∑l

i=1 vi,
∑l

i=1 wi)
〉

= 〈(v, w)〉 has projection π(ρ) = 〈v〉, and

because of the relation, the line segment Iv,σ := π−1(v) ∩ Star(σ) has non-empty
interior with upper bound (v, w). Thus the first statement follows from the lemma.

Similarly one proves the second statement. �

Now it is possible to state the fundamental existence theorem of cobordisms:

Theorem 4.4. Let ∆ and ∆′ be two fans in NQ = N ⊗Q with the same support.
Then there exists a simplicial, collapsible, π-nonsingular cobordism in N+

Q from ∆
to ∆′.

Proof. The first step to construct this cobordism is easy: Embed ∆ “at the level
−1” into N+

Q so that the embedding ∆− maps isomorphically back onto ∆ by the
projection π. Namely, take the fan ∆− in N+

Q consisting of the cones σ− of the
form

σ− = 〈(v1,−1), . . . , (vk,−1)〉 ,

where the corresponding cone σ = 〈ρ1, . . . , ρk〉 is generated by the extremal rays ρi

with the primitive vectors vi = n(ρi). Similarly, embed ∆′ “at the level +1” into
N+

Q so that the embedding ∆′
+ maps isomorphically back onto ∆′ by the projection

π.
Next, add the cones ζ of the form

ζ = 〈(v,−1), (v,+1)〉 ,

where the v vary among all the primitive vectors for the extremal rays ρv such that
ρv is a generator for some σ ∈ ∆ and σ′ ∈ ∆′ simultaneously.

Now, this fan is equivariantly completed, it is simplexified and made collapsible.
For a complete account of these steps s. [AMR99].

The last and most subtle step of the construction is the π-desingularization. This
done in [AMR99, section 5] and also in the very readable survey [Bon01]. �

To factorize a cobordism it is necessary to define the composition of two cobor-
disms:

Definition-Proposition 4.5. Let Σ1,Σ2 be cobordisms in N+
Q such that

(1) Σ1 ∪ Σ2 is again a fan in N+
Q ,

(2) For all x ∈ N+
Q , π−1(x) ∩ Σ1 = ∅ or π−1(x) ∩ Σ2 = ∅ or

π−1(x) ∩ Σ1 = [y−1 , y+
1 ], π−1(x) ∩ Σ2 = [y−2 , y+

2 ] with y+
1 = y−2 .

(3) π−1(x) ∩ (Σ1 ∪ Σ2) varies continuously with x ∈ π(Σ1 ∪ Σ2).

Then the union Σ1∪Σ2, called the composite of Σ1 with Σ2 and denoted by Σ1◦Σ2,
is a cobordism.

Moreover, if both Σ1 and Σ2 are simplicial, collapsible and π-nonsingular, then
so is the composite Σ1 ◦ Σ2.

Proof. Condition (3) of the cobordism definition follows from (2) and (3). Condition
(3) ensures that the end points of the intervalls π−1(x) ∩ Supp(Σ1 ◦ Σ2) belong to
∂−(Σ1 ◦ Σ2) resp. ∂+(Σ1 ◦ Σ2).
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↓ π

........................................................................Σ2

........................................................................Σ1
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......
discontinuity

.................
.................

......
not in ∂+(Σ1 ◦ Σ2)

The “moreover” part of the proposition is clear. �

In the special case of a simplicial, collapsible and π-nonsingular cobordism the
following proposition shows how the factorization works:

Proposition 4.6. Every simplicial, collapsible and π-nonsingular cobordism

Σ = ∂−Σ ◦ Star(σk) ◦ · · · ◦ Star(σl+1) ◦ Star(σl) ◦ · · · ◦ Star(σ1) ◦ ∂+Σ

in N+
Q such that σi is minimal among the σi, σi−1, . . . , σ1 may be decomosed in two

simplicial, collapsible and π-nonsingular cobordisms

Σk,l+1 = ∂−Σ ◦ Star(σk) ◦ · · · ◦ Star(σl+1)
Σl,1 = Star(σl) ◦ · · · ◦ Star(σ1) ◦ ∂+Σ,

i.e., Σ = Σk,l+1 ◦ Σl,1.
When π−1(x) ∩ Supp(Σ) = [yx

−, yx
+], then there is a yl+1,l such that

π−1(x) ∩ Supp(Σk,l+1) = [yx
−, yl+1,l] and π−1(x) ∩ Supp(Σl,1) = [yl+1,l, y

x
+].

Proof. This is a direct consequence of the description of a collapsible cobordism in
Lemma 4.2 and the continuity statement in Corollary 2.4. �

5. Insertion and deletion of trivial cobordisms

The aim of this secton is to establish a new operation to manipulate a cobordism:
the insertion and deletion of trivial cobordisms.

Definition 5.1. A cobordism Σ in NQ is called trivial iff all circuits are 2-
dimensional.

Obviously, the lower and the upper face ∂−Σ and ∂+Σ are mapped isomorphically
to the same fan ∆ in NQ. This means that these cobordisms correspond to the
identity morphismus. Thus, they seem to be irrelevant. Their importance comes
from the fact that a star subdivision can generate circuits whose dimensions are
bigger than 2, as shown in lemma 6.8.

The next theorem describes how to insert trivial cobordisms:

Theorem 5.2. Let ∆,∆′ be two nonsingular fans in NQ, let

Σ = ∂−Σ ◦ Star(σk) ◦ · · · ◦ Star(σl+1) ◦ Star(σl) ◦ · · · ◦ Star(σ1) ◦ ∂+Σ

be a simplicial, collapsible and π-nonsingular cobordism in N+
Q from ∆ to ∆′ such

that σi is minimal among the σi, σi−1, . . . , σ1. Let ρ± be a ray in ∂+Σk,l+1∩∂−Σl,1,
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i.e., a generator of a cone in ∂+Σk,l+1 and ∂−Σl,1 simultaneously. Then there is a
simplicial, collapsible and π-nonsingular cobordism

Σ′ = ∂−Σ′ ◦ Star(σ′k) ◦ · · · ◦ Star(σ′l+1) ◦ Star(σ±) ◦ Star(σ′l) ◦ · · · ◦ Star(σ′1) ◦ ∂+Σ′

from ∆ to ∆′ such that σ± is a 2-dimensional circuit generated by ρ−, ρ+ with
π(ρ±) = π(ρ−) = π(ρ+) and in the circuit graph, there are no arrows from σ± to
σ′i with k ≥ i ≥ l + 1, no arrows from σ′i to σ± with l ≥ i ≥ 1 and no arrows from
σ′i to σ′j with i < j.

Furthermore, σ′i is a circuit whose bottom and top have the same dimension as
those of σi.

This operation is called insertion of a trivial cobordism between σl+1 and σl

with respect to ρ±.

Proof. The main idea is to decompose Σ into Σk,l+1 and Σl,1 and then to tear apart
these two cobordisms in ρ± by splitting ρ± into ρ− and ρ+ and “shifting upwards”
all rays of Σk,l+1 not in the lower boundary. The technical difficulty of this “shifting
upwards” is to ensure that the new rays remain linearly independent.

The “shifting upwards” is given by the following data: Attach to each ρ ∈ Σl,1 a
rational number ερ ≥ 0. When ρ = 〈(v, w)〉 where v = n(π(ρ)) ∈ N is the primitive
vector of π(ρ), the new ray ρ′ is generated by (v, w + ερ).

So the first step is to prove the following

Lemma 5.3. There is a simplicial fan Σ′
l,1 such that

(a) there is a 1-1 inclusion preserving correspondence between the cones τ of
Σl,1 and τ ′ of Σ′

l,1.
(b) for each ray ρ ∈ Σl,1 there is a rational number ερ ≥ 0 such that

ρ′ = 〈(vρ, wρ + ερ)〉, ερ = 0 for all ρ ∈ ∂−Σl,1, ρ 6= ρ±, and ε± := ερ± > 0.
(c) the only circuits of Σ′

l,1 are the cones σ′i; if σi = 〈(vi1, wi1), . . . , (vin, win)〉
with

vi1 + · · ·+ vim − vi,m+1 − · · · − vin = 0
wi1 + · · ·+ wim − wi,m+1 − · · · − win > 0,

then still

(wi1 + εi1) + · · ·+ (wim + εim)− (wi,m+1 + εi,m+1)− · · · − (win + εin) > 0.

Proof. It is an open and non-empty condition for the ερ that the new cones τ ′

remain simplicial.
Note further that for each circuit σi there must be a ρi ∈ σi such that

ρi 6∈ ∂−Star(σi) and therefore ρi 6∈ σj for all j > i.
Thus, Σ′

l,1 may be constructed as follows:
(1) Start with ερ = 0 for all ρ ∈ ∂−Σl,1, ρ 6= ρ±. Then there is a choice for

the rest of the ερ, ρ ∈ Σl,1, such that all the new cones τ ′ in Σ′
l,1 remain

simplicial, and ε± > 0.
(2) Make successively the ερi

big enough such that

(wi1 + εi1) + · · ·+ (wim + εim)− (wi,m+1 + εi,m+1)− · · · − (win + εin) > 0,

without changing the ερ for

ρ = Σl,i+1 = ∂−Σl,1 ◦ Star(σl) ◦ · · · ◦ Star(σi+1).

�
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Back to the proof of the theorem: Σ′ consists of all the cones of Σk,l+1 and
Σ′

l,1 as constructed above and additionally of the cones τ ′ + ρ± for all cones
τ ∈ ∂−Σl,1 = ∂+Σk,l+1 which contain ρ± = ρ−.

This is a simplicial cobordism between ∆ and ∆′ in N+
Q which is also π-

nonsingular because the primitive vectors of the images of the rays aren’t changed.
The only new circuit is σ± = ρ− + ρ+.

The following consideration, together with Lemma 4.2, implies the collapsibility
and the statements about the arrows:

Let x ∈ π(Supp(Σ′)). By Proposition 4.6 there is a unique point
(x, y±) ∈ ∂−Σl,1 = ∂+Σk,l+1. Let π−1(x) ∩ Star(σi) =: Ix,i = [y−i , y+

i ] and
π−1(x) ∩ Star(σ±) =: Ix,± = [y−, y+]. Then there is an inequality sequence

y−k ≤ y+
k = y−2 ≤ . . . ≤ y+

l+1 = y− ≤ y+ = y−l ≤ . . . ≤ y1.

Of course, the intervalls Ix,i resp Ix,± are inserted iff they are not empty. If Ix,± 6= ∅,
then y± = y−. �

Theorem 5.4. Let ∆,∆′ be two nonsingular fans in NQ, let

Σ = ∂−Σ ◦ Star(σk) ◦ · · · ◦ Star(σl+1) ◦ Star(σl) ◦ Star(σl−1) ◦ · · · ◦ Star(σ1) ◦ ∂+Σ

be a simplicial, collapsible and π-nonsingular cobordism in N+
Q from ∆ to ∆′ such

that σi is minimal among the σi, σi−1, . . . , σ1 and σl = ρ− + ρ+ is a 2-dimensional
circuit.

Then there is a simplicial, collapsible and π-nonsingular cobordism

Σ′ = ∂−Σ′ ◦ Star(σ′k) ◦ · · · ◦ Star(σ′l+1) ◦ Star(σ′l−1) ◦ · · · ◦ Star(σ′1) ◦ ∂+Σ′

from ∆ to ∆′ such that in the circuit graph, there are no arrows from σ′i to σ′j with
i < j.

Furthermore, σ′i is a circuit whose bottom and top have the same dimension as
those of σi.

This operation is called deletion of the trivial cobordism σl.

Proof. There are real non-negative numbers r+, r− with r+ + r− = 1 with the
following property:

For any cone τ in Σ of the form τ = ρ1 + · · ·+ρn−1 +ρ+, τ = ρ1 + · · ·+ρn−1 +ρ−
or τ = ρ1 + · · ·+ ρn−2 + ρ− + ρ+, the cone τ ′ = ρ1 + · · ·+ ρn−1 + (r+ρ+ + r−ρ−)
will be also a simplicial and π-nonsingular cone in N+

Q .
Now, to get Σ′ from Σ, replace all cones τ ∈ Σ which contain ρ+ or ρ−, by τ ′.
As in the previous theorem the collapsibility and the statements about the arrows

follow from a consideration of the intersection of fibers π−1(x) with Supp(Σ′). �

6. The algorithm

The purpose of this section is to show the strong factorization theorem, i.e., a
proper and equivariant birational map X∆1 99K X∆2 between smooth toric varieties
can be factored into a sequence of smooth equivariant blowups X∆1 ← X∆3 followed
immediately by smooth equivariant blowdowns X∆3 → X∆2 .

The starting point is a simplicial, collapsible and π-nonsingular cobordism Σ
from ∆1 to ∆2. The first step is to identify the circuits which correspond only to
a blowing up or down, not to both. Then the aim is to transform Σ into a new
simplicial, collapsible and π-nonsingular cobordism Σ′ from ∆′

1 to ∆′
2 such that ∆′

i
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is obtained from ∆i by a sequence of smooth star subdivisions, and Σ′ contains
only circuits corresponding to blowups.

Definition 6.1. A π-nonsingular simplicial circuit

σ = 〈(v1, w1), (v2, w2), . . . , (vk, wk)〉 ⊂ N+
Q

is called pointing up (resp. pointing down) if it has exactly one positive (resp.
negative) extremal ray, i.e., there is a linear relation among the primitive vectors
vi = n(π(ρi)) of the projections of the extremal rays ρi for σ (after renumbering)

v1 − v2 − · · · − vk = 0 with w1 − w2 − · · · − wk > 0
resp. − v1 + v2 + · · ·+ vk = 0 with −w1 + w2 + · · ·+ wk > 0.

An immediate consequence of Theorem 3.3 is

Lemma 6.2. Let Σ be a simplicial and π-nonsingular cobordism in N+
Q and σ ∈ Σ

a circuit which is pointing up. Let

σ = 〈(v1, w1), (v2, w2), . . . , (vk, wk)〉 ⊂ N+
Q

with the linear relation among the primitive vectors vi = n(π(ρi)) of the projections
of the extremal rays ρi for σ

v1 − v2 − · · · − vk = 0 with w1 − w2 − · · · − wk > 0.

Then the bistellar operation going from π(∂−Star(σ)) to π(∂+Star(σ)) is a smooth
star subdivision with respect to the ray generated by

v1 = v2 + · · ·+ vk.

If σ is pointing down with the linear relation

−v1 + v2 + · · ·+ vk = 0 with − w1 + w2 + · · ·+ wk > 0,

then the bistellar operation going from π(∂−Star(σ)) to π(∂+Star(σ)) is a smooth
star assembling, the inverse of a smooth star subdivision going from π(∂+Star(σ))
to π(∂−Star(σ)) with respect to the ray generated by

v1 = v2 + · · ·+ vk.

Besides the insertion and deletion of trivial cobordism the key operation of
the following algorithm is the smooth star subdivision with respect to the “π-
barycenter” of a π-independent cone. It is necessary to give a criterion for the π−
nonsingularity of the subdivided cobordism.

Definition 6.3. Let τ be a cone in a simplicial cobordisms Σ in N+
Q and l a ray in

π(τ). Then the midray Mid(τ, l) is defined to be the ray generated by the middle
point of the line segment τ ∩ π−1(n(l)). If τ ∩ π−1(n(l)) consists of a point, then
Mid(τ, l) is the ray generated by that point.

Definition 6.4. Let η be a simplicial, π- dependent and π-strictly convex cone in
N+

Q . A π-independent face τ of η is said to be codefinite with respect to η if the
set of generators of τ does not contain both positive and negative extremal rays ρi

of η. That is to say, if
∑

rivi = 0 is the nontrivial linear relation for η among
the primitive vectors vi = n(π(ρi)), then the generators for τ contain only extremal
rays from the set {ρi : ri < 0} or from the set {ρi : ri > 0}, exclusively.
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Lemma 6.5. Let Σ be a simplicial and π-nonsingular cobordism. Let

τ = 〈(v1, w1), (v2, w2), . . . , (vl, wl)〉 ⊂ N+
Q

be a π-independent cone of Σ with the vi = n(π(ρi)) being the primitive vectors of
the projections of the extremal rays ρi for τ . Let ρτ be the midray Mid(τ, lr(τ)),
where r(τ) ∈ N is the vector r(τ) = v1 + · · ·+ vl, called the π-barycenter of τ . If
τ is codefinite with respect to all the circuits σ ∈ Σ with τ ∈ Star(σ), then ρτ · Σ
stays π-nonsingular.

Proof. S. [AMR99, Lemma 7.3., resp. Prop. 5.5.]. �

Now, let Σ be a simplicial, collapsible and π-nonsingular cobordism from ∆1 to
∆2. To get a new simplicial, collapsible and π-nonsingular cobordism Σ′ from ∆′

1

to ∆′
2 such that ∆′

i is obtained from ∆i by a sequence of smooth star subdivisions,
and Σ′ contains only pointing up circuits, one uses an algorithm consisting of three
steps:

6.1. Replacing a circuit by a pointing up and a pointing down circuit.
Let

Σ = ∂−Σ ◦ Star(σk) ◦ · · · ◦ Star(σi) ◦ · · · ◦ Star(σ1) ◦ ∂+Σ

be a simplicial, collapsible and π-nonsingular cobordism in N+
Q . Let σi be a cir-

cuit which is not pointing up or down. The aim is to replace Star(σi) in Σ by
Star(σ↑i ) ◦ Star(σ↓i ), where σ↑i is pointing up and σ↓i is pointing down.

The following simple observation of Morelli is the basis of this step:

Lemma 6.6. Let σ be a circuit in a simplicial and π-nonsingular cobordism Σ. Let

σ = 〈(v1, w1), . . . , (vm, wm), (vm+1, wm+1), . . . , (vk, wk)〉 ,

where v1, . . . , vm, vm+1, . . . , vk are the primitive vectors in N of the projections of
the extremal rays for σ, having the unique linear relation

v1 + · · ·+ vm − vm+1 − · · · − vk = 0 with w1 + · · ·+ wm − wm+1 − · · · − wk > 0.

Let

σ+ = 〈(v1, w1), . . . , (vm, wm)〉 and σ− = 〈(vm+1, wm+1), . . . , (vk, wk)〉 .

Then the fan ρσ+ ·Star(σ), where ρσ+ is the midray Mid(σ+, lr(σ+)) with r(σ+) being
the π-barycenter of σ+, is π-nonsingular and the closed star of a π-nonsingular
circuit σ′ = ρσ+ + σ−.

Similarly, the fan ρσ− · Star(σ), where ρσ− is the midray Mid(σ−, lr(σ−)) with
r(σ−) being the π-barycenter of σ−, is π-nonsingular and the closed star of a π-
nonsingular circuit σ′′ = ρσ− + σ+.

Proof. S. [AMR99, lemma 7.5.]. �

The problem with this operation (which also spoils the proof of the strong fac-
torization in [AMR99]) is that the star subdivision may possibly also affect other
cones than those in Star(σ), thus perhaps creating new circuits or even destroying
the π-nonsingularity. To control this process one inserts a trivial cobordism:
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Proposition 6.7. Let Σ and σi be as in the beginning of this subsection.
Let (vi1, wi1), . . . , (vim, wim) be the generators of the positive rays of σi, i.e.,
(σi)+ = 〈(vi1, wi1), . . . , (vim, wim)〉, where (σi)+ is defined as in the lemma above.
Let

Σ′ = ∂−Σ′ ◦ Star(σk) ◦ · · · ◦ Star(σi) ◦ Star(σ±) · · · ◦ Star(σ1) ◦ ∂+Σ′

be constructed from Σ by inserting the trivial cobordism Star(σ±) with respect to
ρ1 = 〈(v1, w1)〉.

Then the star subdivision ρ(σi)+ ·Σ only affects the closed stars of σi and σ± and

gives a cobordism which replaces Star(σi)◦Star(σ±) by Star(σ↑i )◦Star(σ±)◦Star(σ↓i ),
where σ↑i is pointing up and σ↓i is pointing down. Deleting the trivial cobordism
Star(σ±) finally gives a simplicial, collapsible and π-nonsingular cobordism

Σ′′ = ∂−Σ′′ ◦ Star(σk) ◦ · · · ◦ Star(σ↑i ) ◦ Star(σ↓i ) · · · ◦ Star(σ1) ◦ ∂+Σ′′.

Proof. First of all, note that the tops and the bottoms of the circuits σ′j ∈ Σ′,
σ′′j ∈ Σ′′ have the same dimension as those of σj ∈ Σ. Therefore, the numbers
of pointing up and pointing down circuits, besides the inserted ones, remain un-
changed. In a sloppy notation, the primes are deleted.

By corollary 4.3, the cone σ+ is only belonging to Star(σ±) and Star(σi). By
Lemma 6.6, ρ(σi)+ · Star(σi) = Star(σ↑i ) with σ↑i = ρσ+ + (σi)−. The next lemma
shows that ρ(σi)+ · Star(σ±) is the union of the (new) closed star of σ± and the
closed star of the new circuit

σ↓i =
〈
(v1, w+), (v2, w2), . . . , (vm, wm), ρσ+

〉
,

which is a pointing down circuit.
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Lemma 6.8. Let η = 〈γ1, . . . , γm, ρ1, . . . , ρk〉 be a simplicial π-dependent
cone such that the unique circuit σ ⊂ η is generated by ρ1, . . . , ρk, and
σ+ = ∂+σ = 〈ρ1, . . . , ρl〉, σ− = ∂−σ = 〈ρl+1, . . . , ρk〉.

Let τ = 〈γn, . . . , γm, ρ1, . . . , ρl〉 ⊂ ∂−η be a face containing σ−, let ρτ be
the midray Mid(τ, lr(τ)). Then the smooth star subdivision ρτ · η is the union
of the (new) star of the (old) circuit σ and the closed star of the new circuit
σ′ = 〈ρτ , γn, . . . , γm, ρl+1, . . . , ρk〉, where

σ′+ = 〈γn, . . . , γm, ρl+1, . . . , ρk〉 , σ′− = 〈ρτ 〉 .
A similar statement is true for τ ′ ⊂ ∂+η, σ+ ⊂ τ ′.

Proof. This is a generalization of Morelli’s lemma and is proven in the same way.
See again [AMR99, lemma 7.5] �
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6.2. Exchanging a pointing down and a pointing up circuit. Let

Σ = ∂−Σ ◦ · · · ◦ Star(σi) ◦ Star(σi−1) ◦ · · · ∂+Σ

be a simplicial, collapsible and π-nonsingular cobordism such that σi is pointing
down and σi−1 is pointing up.

If no arrow in the circuit graph points from σi to σi−1 it will be possible to
exchange σi and σi−1 without destroying the induced preorder.

Otherwise, by definition there will be point p in ∂−Star(σi)∩ ∂+Star(σi−1) such
that

p− (0, ε) ∈ Star(σi), p + (0, ε) ∈ Star(σi−1) for sufficiently small ε.

Lemma 6.9. Let Σ be a simplicial, collapsible and π-nonsingular cobordism con-
taining the circuits σ and σ′. If p is a point in ∂+Star(σ) ∩ ∂−Star(σ′) such that

p− (0, ε) ∈ Star(σ), p + (0, ε) ∈ Star(σ′) for sufficiently small ε,

then p is belonging to a cone τ ∈ Star(σ) ∩ Star(σ′) such that ∂+σ ⊂ τ , ∂−σ′ ⊂ τ .

Proof. Let τ be the uniquely determined minimal cone in ∂+Star(σ) ∩ ∂−Star(σ′)
which contains p.

Let τ ⊂ τ− ∈ Star(σ) be a π-dependent cone containing p and p− ε. Let

(u1, w
′
1), . . . , (uk, w′

k), (v1, w1), . . . , (vl, wl), (vl+1, wl+1), . . . , (vm, wm)

be generators of τ−, where u1, . . . , uk, v1, . . . , vm are the primitive vectors in N of
the projections of the extremal rays of τ−, having the unique linear relation

v1 + · · · vl − vl+1 − · · · − vm = 0 with w1 + · · ·wl − wl+1 − · · · − wm > 0.

Then

p = a1(u1, w
′
1) + · · ·+ ak(uk, w′

k) + b1(v1, w1) + · · ·+ bm(vm, wm),
p− ε = c1(u1, w

′
1) + · · ·+ ck(uk, w′

k) + d1(v1, w1) + · · ·+ dm(vm, wm),

where all the coefficients are ≥ 0. The cone τ is generated by all (ui, w
′
i), (vj , wj)

with ai 6= 0, bj 6= 0. Since p ∈ ∂+Star(σ), there is a j = 1, . . . , l with bj > 0.
Suppose that b1 = 0. The expressions for p and p− ε above imply the relation

a1u1 + · · ·+ akuk + b1v1 + · · ·+ bmvm = c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dmvm

which must be a non vanishing multiple of v1+ · · ·+vl = vl+1+ · · ·+vm. Therefore,

ai = ci, i = 1, . . . , k
bi − di = −d1 < 0, i = 2, . . . , l
bi − di = d1 > 0, i = l + 1, . . . ,m.

But furthermore,

(a1 − c1)w′
1 + · · ·+ (ak − ck)w′

k + (b1 − d1)w1 + · · ·+ (bm − dm)wm =
(−d1)(w1 + · · ·+ wl − wl+1 − · · · − wm) = ε.

This contradicts w1 + · · ·+ wl − wl+1 − · · · − wm > 0. Consequently, ∂+σ ⊂ τ .
In the same way one proves ∂−σ′ ⊂ τ . �

Now, consider the minimal cone containing p, ∂+σi and ∂−σi−1 as in the lemma
above. Let

(v1, w1), . . . , (vl, wl), . . . , (vk, wk), . . . , (vm, wm), . . . , (vn, wn), l ≤ k ≤ m,
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be generators of this cone, with the usual conventions about the vi and wi, such
that (v1, w1), . . . , (vk, wk) generate ∂−σi−1 and (vl+1, wl+1), . . . , (vm, wm) generate
∂+σi.

Suppose first that k = l. The first step is to insert a trivial cobordism Star(τ)
between σi−1 and σi−2 with respect to (vm, wm). The next step is a smooth star
subdivision of ∂+σi. By corollary 4.3 only the stars of σi, σi−1 and τ are involved:
σi is replaced by a trivial circuit, σi−1 stays as it is (since ∂+σi does not intersect
σi−1), and Star(τ) splits into the star of a trivial cobordism and in the star of a
pointing down circuit with peak in (vl+1 + · · ·+ vm, wl+1 + · · ·+ wm), as described
in lemma 6.8. Deletion of the trivial cobordisms gives the exchange of the pointing
up and pointing down circuit.

If k > l, the first step is to insert a trivial cobordism Star(τ) between σi and
σi−1 with respect to (vk, wk). The next step is a smooth star subdivision of
∂−σi−1. Only the stars of σi−1 and τ are involved: σi−1 is replaced by a triv-
ial circuit, and Star(τ) splits into the star of pointing up circuit σ′i−1 with peak in
(v1 + · · ·+ v+

k , w1 + · · ·+ w+
k ) and the new star of τ . There is an arrow from σ′i−1

to τ .
Afterwards, one makes a smooth star subdivision of ∂+σi, and the only

stars involved are those of σi and τ : σi is replaced by a trivial circuit,
and Star(τ) splits into the star of pointing down circuit σ′i with peak in
(vl+1 + · · · + v−k + · · · + vm, wl+1 + · · · + w−

k + · · · + wm) and the new star of
τ .
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The deletion of the trivial cobordisms gives the exchange of the pointing up and
pointing down circuit, because of the arrow from σ′i−1 to τ .

6.3. Deleting pointing down circuits. By the above two operations it is possible
to transform an arbitrary simplicial, collapsible and π-nonsingular cobordism into
a simplicial, collapsible and π-nonsingular cobordism which is composed of several
pointing up circuits, followed by some other pointing down circuits. A smooth star
subdivision of the top of the maximal pointing down circuit replaces this circuit
by a trivial one, without affecting the other circuits. Deleting the corresponding
trivial cobordism reduces the number of the pointing down circuits. Continuing
this process the aim of the algorithm is finally reached.
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