Classification of higher dimensional algebraic varieties

Thomas Eckl

University of Liverpool

26/10/2007
INTRODUCTION
Problem: Classify all smooth projective complex algebraic varieties up to isomorphy!
A complex algebraic variety is the solution set of a system of homogeneous polynomial equations in $\mathbb{C}^n (\mathbb{CP}^n)$.

$x^2 + y^2 = 1$
Complex algebraic varieties

Copyright: Herwig Hauser, Sebastian Gann, Universität Innsbruck
Problem: Classify all smooth projective complex algebraic varieties up to isomorphy!

A projective complex algebraic variety is called smooth if it is a complex manifold. Otherwise the variety is called singular.

\[x^2 - y^3 = 0 \]
Problem: Classify all projective complex manifolds!

First division by complex dimension of the manifold:

- dimension 0: points
- dimension 1: projective algebraic curves
PROJECTIVE ALGEBRAIC CURVES
1-dimensional projective complex manifold

\[\|
\]
2-dimensional orientable closed compact real surface with complex structure

Algebraic topology: Homeomorphism classes are characterized by genus \(g \)

genus \(g \) = “number of holes”
Classification of algebraic curves

Division in classes of isomorphic curves by

\textbf{genus:} discrete/numeric invariant

\textbf{moduli space:} continuous invariant

\textbf{Theorem (D. Mumford, Fields-Medal 1974):}
The classes of isomorphic projective algebraic curves of genus g are
parametrized by the points of a projective complex algebraic variety M_g, with a
universal property.
Riemann’s Mapping Theorem: There are exactly 3 simple-connected 1-dimensional complex manifolds
Differential geometry on algebraic curves

Fubini-Study metric on $\mathbb{P}^1(\mathbb{C})$

- curvature = 1

Euklidian metric on \mathbb{C}

- curvature = 0

Poincaré metric on Δ

- curvature = -1

Metrics are invariant under deck transformations

↓

Induced metric on covered curve
Trichotomy

\[g = 0 \]
\[\text{curvature} > 0 \]

\[g = 1 \]
\[\text{curvature} = 0 \]

\[g \geq 2 \]
\[\text{curvature} < 0 \]
HIGHER DIMENSIONAL ALGEBRAIC VARIETIES
Trichotomy: curvature > 0

$\mathbb{P}^1(\mathbb{C})$ is exceptional: **Unique** curve with positively curved metric

Idea: If a projective complex manifold contains many rational curves $\cong \mathbb{P}^1(\mathbb{C})$, then this implies something for the curvature.
Quadric

\[x^2 + y^2 - z^2 = 1 \]
A projective complex manifold X is called uniruled, if it is covered by rational curves in X.

Quadric

$$x^2 + y^2 - z^2 = 1$$
A projective complex manifold X is called \textit{rationally connected}, if 2 general points x, y can be connected by chains of rational curves.

\begin{align*}
equivalence relation \sim \Rightarrow \text{quotient map}
\end{align*}
Theorem (Campana; Kollár-Miyaoka-Mori):
For every projective complex manifold X there is a holomorphic map $f : X \to B$ with

- rationally connected fibres and
- a universal property.

$f : X \to B$ is called MRC-quotient.
Problem: Characterisation of the MRC-quotient by “positive directions” of the tangent bundle

Theorem (Graber-Harris-Starr 2000):
\(X \) projective complex manifold.
\(f : X \rightarrow B \) MRC-quotient \(\implies B \) not uniruled

Resume

Every projective complex manifold can be decomposed in rationally connected and not-uniruled varieties.
Trichotomy: Curvature $= 0$

Metric g on a projective complex manifold.

Ricci curvature $= \text{trace of the curvature tensor of } g$
Theorem (S.-T. Yau, Fields-Medal 1982): There are Ricci-flat, but not flat projective complex manifolds of arbitrary dimension ≥ 2, so called Calabi-Yau-Varieties.

Fact: Ricci-flat projective complex manifolds are not uniruled.
ABUNDANCE
Two points of view on positivity

X, n-dimensional projective complex manifold

differential geometry: metric g with Ricci-curvature ≥ 0

Ricci-curvature $= \text{curvature of the induced metric on the canonical holomorphic line bundle } K_X$

algebraic geometry: global holomorphic sections of K_X

global holomorphic sections of $K_X = \text{holomorphic } n\text{-forms, locally: } f(z)dz_1 \wedge \ldots \wedge dz_n \text{ with } f \text{ holomorphic}$
X n-dimensional projective complex manifolds

algebraic geometry

\[\exists \text{ sections of } K_X \]

\[\exists \text{ sections of } K_X^\otimes m \]

\[\parallel \]

pluri-canonical forms

\[f(z)(dz_1 \wedge \ldots \wedge dz_n)^\otimes m \]

differential geometry

\[\Rightarrow \exists \text{ singular metric on } K_X \text{ with semi-positive curvature} \]

\[\Leftarrow \exists \text{ smooth metric on } K_X \text{ with positive curvature} \]
sections of $K_X \rightsquigarrow$ map $X \to \mathbb{P}^N$

X projective complex manifolds
$
\sigma_0, \ldots, \sigma_N$ m-canonical forms on X

representation in local coordinates:

(z_1, \ldots, z_n) \quad $\sigma_i = f_i(z)(dz_1 \wedge \ldots \wedge dz_n)^\otimes m$

$\psi \downarrow \quad \parallel$

$(w_1, \ldots, w_n) \quad f_i(\psi(w)) \cdot \det\left(\frac{\partial z_k}{\partial w_l}\right)^m \cdot (dw_1 \wedge \ldots \wedge dw_n)^\otimes m$

$\Rightarrow \quad \Phi_{\sigma_0, \ldots, \sigma_N} : X \to \mathbb{P}^N, \ p \mapsto [f_0(p) : \ldots : f_N(p)]$

is a rational map.
The **Kodaira-dimension** $\kappa(X)$ of X is the maximal dimension of the image

$$\Phi_{\sigma_0,\ldots,\sigma_N}(X) \subset \mathbb{P}^N$$

for any m-canonical forms $\sigma_0, \ldots, \sigma_N$.

If $\kappa(X)$ equals the dimension of the image of

$$\Phi_{\sigma_0,\ldots,\sigma_N} : X \rightarrow B \subset \mathbb{P}^N,$$

this map is called **Kodaira-Iitaka fibration**.

If there are no m-canonical forms $\neq 0$, we set

$$\kappa(X) := -\infty.$$

Facts:

- $-\infty \leq \kappa(X) \leq \dim X$.
- X uniruled $\Rightarrow \kappa(X) = -\infty$.
- Fibers of the Kodaira-Iitaka fibration have Kodaira dimension 0.
The Abundance conjecture

Abundance conjecture (Mumford)

$$\kappa(X) = -\infty \Rightarrow X \text{ uniruled.}$$
Fact: \exists topological bound for $\kappa(X)$:

$$\kappa(X) \leq \nu(X)$$

Definition: Numerical dimension $\nu(X) := \max\{k : c_1(K_X)^k \neq 0\}$

Generalized Abundance conjecture

X not uniruled $\Rightarrow \kappa(X) = \nu(X)$.
A special case of the Abundance conjecture

Idea of proof for a special case of the Abundance conjecture:

Assumption: The Kodaira-Iitaka fibration $f : X \to B \subset \mathbb{P}^N$ is everywhere defined.

- K_X is the f-pullback of the hyperplane bundle H on \mathbb{P}^N.
- The Fubini-Study metric h_{FS} on H has positive curvature.
- The pullback $h_X = f^* h_{FS}$ is a metric on K_X, with positive curvature in f-transversal directions, $\equiv 0$ in direction of the f-fibres.
- $c_1(K_X)^{\dim B} = c_1(K_X, h_X)^{\dim B} > 0$,
- $c_1(K_X)^k = c_1(K_X, h_X)^k = 0$ for $k > \dim B$,
- $\Rightarrow \kappa(X) = \dim B = \nu(X)$. □
A special case of the Abundance conjecture

Observe:

- On K_X, a metric with semi-positive curvature is constructed vanishing in direction of the fibres.
- The construction is possible for every holomorphic line bundle.
NUMERICAL TRIVIALITY
Problem: Given a semi-positive line bundle on X. Construct a maximal fibration with fibers, in whose direction the curvature of the line bundle vanishes!

Theorem (Tsuji; Bauer, Campana, Eckl, Kebekus et al.):

L nef line bundle on projective complex manifold X. Then there is a rational map $f : X \to Y$, such that:

- F fiber of $f \Rightarrow \forall$ curves $C \subset F$: $c_1(L)|_C = 0$.
- $x \in X$ general, $x \in C \subset X$ curve with dim $f(C) = 1 \Rightarrow c_1(L)|_C$ does not vanish
Definition: L pseudo-effective $:\iff \exists$ singular metric h of L with

$$c_1(L, h) \geq 0.$$

Theorem (Tsuji; Eckl): X projective complex manifold, (L, h) pseudo-effective line bundle on X. Then there is a map $f : X \to Y$, such that:

- F general fiber of f, $C \subset F$ curve with $h|_C \neq +\infty$:
 $$c_1(L, h)|_{C-\text{Sing}(h)} \equiv 0.$$

- $x \in X$ general, $C \ni x$ curve with $\dim f(C) = 1 \implies c_1(L, h)|_{C-\text{Sing}(h)} \neq 0$.

Problem: basis Y can have dimension $\geq \nu(L)$.

Numerically trivial fibration
Definition: X projective complex manifolds, (L, h) line bundle with metric h and curvature $c_1(L, h) \geq 0$. A foliation \mathcal{F} on X is called numerically (L, h)-trivial, if

$$c_1(L, h)|_{\text{leaf}} \equiv 0.$$

Theorem (Eckl)

There exists a maximal numerically (L, h)-trivial foliation.
Numerically trivial foliations

Properties of the numerically trivial foliation

fibers of the numerically trivial fibration
\[\cap \]
leaves of the numerically trivial foliation
\[\cap \]
fibers of the Kodaira-Iitaka fibration.
UPSHOT AND FURTHER PROSPECTS
Upshot: Complex differential geometry helps in understanding the Abundance conjecture.

Strategy for Abundance conjecture:

1. The numerically K_X-trivial foliation has leaves of dimension $\dim X - \nu(X)$.
2. The numerically K_X-trivial foliation is a fibration.
3. The numerically K_X-trivial foliation is a fibration $f : X \to Y$ with $\dim Y = \nu(X) \Rightarrow X$ is abundant.
Upshot: Complex differential geometry helps in understanding the Abundance conjecture.

Conjecture (Yau): X compact Kähler manifold, g Kähler metric with non-positive holomorphic bisectional curvature $\Rightarrow X$ is abundant.

Wu/Zheng:
Additional assumption on metric \Rightarrow Step (1) and (2)
Step (3) trivial.

Eckl: Step (1) \Rightarrow Step (2) and (3)