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INTRODUCTION
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Problem of complex algebraic geometry

Complex algebraic geometry

Problem: Classify all smooth projective complex algebraic
varieties up to isomorphy!
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Complex algebraic varieties

smooth projective complex algebraic varieties

A complex algebraic variety is the solution set of a system of
homogeneous polynomial equations in Cn (CPn).

x2 + y2 = 1
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Complex algebraic varieties

Copyright: Herwig Hauser, Sebastian Gann, Universität Innsbruck
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Problem revisited

Problem: Classify all smooth projective complex algebraic
varieties up to isomorphy!

A projective complex algebraic variety is called smooth if it is a
complex manifold.
Otherwise the variety is called singular.

x2 − y3 = 0
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Dimension

Problem: Classify all projective complex manifolds!

First division by complex dimension of the manifold:

dimension 0: points
dimension 1: projective algebraic curves



Introduction Algebraic Curves Algebraic Varieties Abundance Numerical Triviality Upshot

PROJECTIVE ALGEBRAIC CURVES
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Genus of algebraic curves

1-dimensional projective complex manifold
‖

2-dimensional orientable closed compact real surface
with complex structure

. . .

Algebraic topology: Homeomorphy classes are characterized by
genus g

genus g = �number of holes�
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Moduli spaces of algebraic curves

Classi�cation of algebraic curves

Division in classes of isomorphic curves by

genus: discrete/numeric invariant

moduli space: continuous invariant

Theorem (D. Mumford, Fields-Medal
1974):
The classes of isomorphic projective
algebraic curves of genus g are
parametrized by the points of a projective
complex algebraic variety Mg , with a
universal property.
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Di�erential geometry on algebraic curves

Riemann's Mapping Theorem: There are exactly 3
simple-connected 1-dimensional complex manifolds

P1(C) C ∆
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. . .

g = 0 g = 1 g ≥ 2
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Di�erential geometry on algebraic curves

Fubini-Study metric on
P1(C)

Euklidian
metric on C

Poincaré metric on
∆
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curvature = 1 curvature = 0 curvature = −1

metrics are invariant under deck transformations
↓

induced metric on covered curve
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Trichotomy

Trichotomy

. . .

g = 0
curvature > 0

g = 1
curvature = 0

g ≥ 2
curvature < 0
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HIGHER DIMENSIONAL ALGEBRAIC VARIETIES
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Uniruled Varieties

Trichotomy: curvature > 0

P1(C) is exceptional: Unique curve with positively curved metric

Idea: If a projective complex manifold contains many
rational curves ∼= P1(C), then this implies something
for the curvature.
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Rational Connectedness

Quadric
x2 + y2 − z2 = 1
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Rational Connectedness

Quadric
x2 + y2 − z2 = 1

A projective complex manifold X is called uniruled, if it is covered
by rational curves in X .
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Rational Connectedness

A projective complex manifold X is called rationally connected, if 2
general points x , y can be connected by chains of rational curves.

equivalence relation  quotient map
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The MRC-quotient

Bq q q↓
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Theorem (Campana; Kollár-Miyaoka-Mori):
For every projective complex manifold X there is a holomorphic
map f : X → B with

rationally connected �bres and

a universal property.

f : X → B is called MRC-quotient.
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The MRC-quotient

Bq q q↓
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Problem: Charakterisation of the MRC-quotient
by �positive directions� of the tangent bundle

Eckl (will appear in Math. Nachr.): Naive idea not correct.
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Dichotomy in higher-dimensional algebraic varieties

Theorem (Graber-Harris-Starr 2000):
X projective complex manifold.
f : X → B MRC-quotient =⇒ B not uniruled

Resume

Every projective complex manifold can be decomposed in
rationally connected and not-uniruled varieties.
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Ricci-�at Varieties

Trichotomy: Curvature = 0

Metric g on a projective complex manifold.

Ricci curvature = trace of the curvature tensor of g
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Ricci-�at Varieties

Theorem (S.-T.Yau, Fields-Medal
1982): There are Ricci-�at, but not �at
projective complex manifolds of arbitrary
dimension ≥ 2, so called
Calabi-Yau-Varieties.

Fact: Ricci-�at projective complex manifolds are not uniruled.
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ABUNDANCE
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Positivity in di�erential geometry and algebraic geometry

Two points of view on positivity

X n-dimensional projective complex manifold

di�erential geometry: metric g with Ricci-curvature ≥ 0

Ricci-curvature = curvature of the induced metric on the
canonical holomorphic line bundle KX

algebraic geometry: global holomorphic sections of KX

global holomorphic sections of KX = holomorphic n-forms,
locally: f (z)dz1 ∧ . . . ∧ dzn with f holomorphic
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Positivity in di�erential geometry and algebraic geometry

X n-dimensional projective complex manifolds

algebraic geometry di�erential geometry

∃ sections of KX ⇒ ∃ singular metric on KX with
semi-positive curvature

∃ sections of K⊗mX ⇐ ∃ smooth metric on KX with
‖ positive curvature

pluri-canonical forms
f (z)(dz1 ∧ . . . ∧ dzn)⊗m
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canonical forms and the Kodaira-Iitaka-�bration

sections of KX  map X → PN

X projective complex manifolds
σ0, . . . , σN m-canonical forms on X

representation in local coordinates:

(z1, . . . , zn) σi = fi (z)(dz1 ∧ . . . ∧ dzn)⊗m

ψ ↓ ‖
(w1, . . . ,wn) fi (ψ(w)) · det( ∂zk∂wl

)m · (dw1 ∧ . . . ∧ dwn)⊗m

⇒ Φσ0,...,σN : X → PN , p 7→ [f0(p) : . . . : fN(p)]
is a rational map.
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The Kodaira-dimension

The Kodaira-dimension κ(X ) of X is the maximal dimension of the
image

Φσ0,...,σN (X ) ⊂ PN

for any m-canonical forms σ0, . . . , σN .
If κ(X ) equals the dimension of the image of

Φσ0,...,σN : X → B ⊂ PN ,

this map is called Kodaira-Iitaka �bration.
If there are no m-canonical forms 6= 0, we set

κ(X ) := −∞.

Facts: −∞ ≤ κ(X ) ≤ dimX .
X uniruled ⇒ κ(X ) = −∞.
Fibers of the Kodaira-Iitaka �bration have
Kodaira dimension 0.
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The Abundance conjecture

Abundance conjecture (Mumford)

κ(X ) = −∞ ⇒ X uniruled.
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The numerical dimension

Fact: ∃ topological bound for κ(X ):

κ(X ) ≤ ν(X )

De�nition: Numerical dimension ν(X ) := max{k : c1(KX )k 6= 0}

Generalized Abundance conjecture

X not uniruled ⇒ κ(X ) = ν(X ).
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A special case of the Abundance conjecture

Idea of proof for a special case of the Abundance conjecture:

Assumption: The Kodaira-Iitaka �bration f : X → B ⊂ PN is
everywhere de�ned.

KX is the f -pullback of the hyperplane bundle H on PN .
The Fubini-Study metric hFS on H has positive curvature.

The pullback hX = f ∗hFS is a metric on KX ,
with positive curvature in f -transversal directions,
≡ 0 in direction of the f -�bres.

c1(KX )dimB = c1(KX , hX )dimB > 0,

c1(KX )k = c1(KX , hX )k = 0 for k > dimB

⇒ κ(X ) = dimB = ν(X ). �
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A special case of the Abundance conjecture

Observe: On KX , a metric with semi-positive curvature is
constructed vanishing in direction of the �bres.
The construction is possible for every
holomorphic line bundle.
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NUMERICAL TRIVIALITY



Introduction Algebraic Curves Algebraic Varieties Abundance Numerical Triviality Upshot

The Nef-Reduction

Problem: Given a semi-positive line bundle on X .
Construct a maximal �bration with �bers, in whose
direction the curvature of the line bundle vanishes!

Theorem (Tsuji; Bauer, Campana, Eckl, Kebekus et al.):
L nef line bundle on projective complex manifold X .
Then there is a rational map f : X → Y , such that:

F �ber of f ⇒ ∀ curves C ⊂ F : c1(L)|C = 0.

x ∈ X general, x ∈ C ⊂ X curve with dim f (C ) = 1 ⇒
c1(L)|C does not vanish
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Numerically trivial �bration

De�nition: L pseudo-e�ective :⇔ ∃ singular metric h of L with

c1(L, h) ≥ 0.

Theorem (Tsuji; Eckl): X projective complex manifold,
(L, h) pseudo-e�ective line bundle on X .
Then there is a map f : X → Y , such that:

F general �ber of f , C ⊂ F curve with h|C 6= +∞:

c1(L, h)|C−Sing(h) ≡ 0.

x ∈ X general, C 3 x curve with dim f (C ) = 1 ⇒
c1(L, h)|C−Sing(h) 6≡ 0.

Problem: basis Y can have dimension > ν(L).
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Numerically trivial foliations

De�nition: X projective complex manifolds,
(L, h) line bundle with metric h and curvature c1(L, h) ≥ 0.
A foliation F on X is called numerically (L, h)-trivial, if

c1(L, h)|leaf ≡ 0.

Theorem (Eckl)

There exists a maximal numerically (L, h)-trivial foliation.
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Numerically trivial foliations

Properties of the numerically trivial foliation

�bers of the numerically trivial �bration
∩

leaves of the numerically trivial foliation
∩

�bers of the Kodaira-Iitaka �bration.
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UPSHOT AND FURTHER PROSPECTS
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Eine Strategie für die Abundance Vermutung

Upshot: Complex di�erential geometry helps in understanding the
Abundance conjecture.

Strategy for Abundance conjecture:

(1) The numerically KX -trivial foliation has leaves of dimension
dimX − ν(X ).

(2) The numerically KX -trivial foliation is a �bration.

(3) The numerically KX -trivial foliation is a �bration f : X → Y

with dimY = ν(X )
⇒ X is abundant.
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A conjecture of Yau

Upshot: Complex di�erential geometry helps in understanding the
Abundance conjecture.

Conjecture (Yau): X compact Kähler manifold,
g Kähler metric with non-positive holomorphic bisectional curvature
⇒ X is abundant.

Wu/Zheng:
Additional assumption on metric ⇒ Step (1) and (2)
Step (3) trivial.

Eckl: Step (1) ⇒ Step (2) and (3)
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