	Abundan ce 00000000	Upshot 00

Classification of higher dimensional algebraic varieties

Thomas Eckl

University of Liverpool

26/10/2007

Algebraic Curves 00000		Numerical Triviality 0000	Upshot 00

INTRODUCTION

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000					
Problem of comp	olex algebraic geometry				

Complex algebraic geometry

Problem: Classify all smooth projective complex algebraic varieties up to isomorphy!

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
0000					
Complex algebrai	ic varieties				

smooth projective complex algebraic varieties

A complex algebraic variety is the solution set of a system of homogeneous polynomial equations in \mathbb{C}^n (\mathbb{CP}^n).

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000					
Complex algebraic	c varieties				

Copyright: Herwig Hauser, Sebastian Gann, Universität Innsbruck

Introduction	Algebraic Curves	Algebraic Varieties	Abundan ce	Numerical Triviality	Upshot
○○○●○	00000	0000000	00000000	0000	00
Problem revisited					

Problem: Classify all **smooth** projective complex algebraic varieties up to isomorphy!

A projective complex algebraic variety is called smooth if it is a **complex manifold**.

Otherwise the variety is called singular.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
○○○○●		0000000	00000000	0000	00
Dimension					

Problem: Classify all projective complex manifolds!

First division by complex **dimension** of the manifold:

dimension 0: points dimension 1: projective algebraic curves

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot

PROJECTIVE ALGEBRAIC CURVES

Algebraic topology: Homeomorphy classes are characterized by genus \boldsymbol{g}

genus
$$g =$$
 "number of holes"

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	00000000	0000	
Moduli spaces of	algebraic curves				

Classification of algebraic curves

Division in classes of isomorphic curves by genus: discrete/numeric invariant moduli space: continuous invariant

Theorem (D. Mumford, Fields-Medal 1974):

The classes of isomorphic projective algebraic curves of genus g are parametrized by the points of a projective complex algebraic variety M_g , with a universal property.

Riemann's Mapping Theorem: There are exactly 3 simple-connected 1-dimensional complex manifolds

metrics are invariant under deck transformations ↓ induced metric on covered curve

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	0000●	0000000	00000000	0000	00
Trichotomy					

Trichotomy

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot

HIGHER DIMENSIONAL ALGEBRAIC VARIETIES

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	000000	00000000	0000	
Uniruled Varieties					

Trichotomy: curvature > 0

 $\mathbb{P}^1(\mathbb{C})$ is exceptional: Unique curve with positively curved metric

Idea: If a projective complex manifold contains many rational curves $\cong \mathbb{P}^1(\mathbb{C})$, then this implies something for the curvature.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	000000	00000000	0000	00
Rational Connect	edness				

$$\begin{aligned} & \text{Quadric} \\ & x^2 + y^2 - z^2 = 1 \end{aligned}$$

	Algebraic Curves	Algebraic Varieties			Upshot
Rational Connect	edness	0 0 0000	00000000	0000	00

Quadric
$$x^2 + y^2 - z^2 = 1$$

 \sim

A projective complex manifold X is called **uniruled**, if it is covered by rational curves in X.

Rational Connectedness	Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
	00000 Rational Connec	00000 tedness	000000	00000000	0000	00

A projective complex manifold X is called rationally connected, if 2 general points x, y can be connected by chains of rational curves.

equivalence relation \rightsquigarrow quotient map

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000		00000000	0000	00
The MRC-quotien	nt				

Theorem (Campana; Kollár-Miyaoka-Mori): For every projective complex manifold X there is a holomorphic map $f: X \rightarrow B$ with

- rationally connected fibres and
- a universal property.

 $f: X \rightarrow B$ is called MRC-quotient.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	○○○●○○○	00000000	0000	00
The MRC-quotie	nt				

Problem: Charakterisation of the MRC-quotient by "positive directions" of the tangent bundle

Eckl (will appear in Math. Nachr.): Naive idea not correct.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
		0000000			
Dichotomy in hig	igher-dimensional algebi	raic varieties			

Theorem (Graber-Harris-Starr 2000):

X projective complex manifold. $f: X \rightarrow B$ MRC-guotient $\Longrightarrow B$ not uniruled

Resume

Every projective complex manifold can be decomposed in **rationally connected** and **not-uniruled** varieties.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
		0000000			
Ricci-flat Varietie	es				

Trichotomy: Curvature = 0

Metric g on a projective complex manifold.

Ricci curvature = trace of the curvature tensor of g

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
		000000			
Ricci-flat Varietie	s				

Theorem (S.-T.Yau, Fields-Medal 1982): There are Ricci-flat, but not flat projective complex manifolds of arbitrary dimension ≥ 2 , so called **Calabi-Yau-Varieties**.

Fact: Ricci-flat projective complex manifolds are not uniruled.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot

ABUNDANCE

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
			0000000		
Positivity in diffe	rential geometry and al	lgebraic geometry			

Two points of view on positivity

X n-dimensional projective complex manifold

differential geometry: metric g with Ricci-curvature ≥ 0

Ricci-curvature = curvature of the induced metric on the canonical holomorphic line bundle K_X

algebraic geometry: global holomorphic sections of K_X

global holomorphic sections of K_X = holomorphic *n*-forms, locally: $f(z)dz_1 \land \ldots \land dz_n$ with *f* holomorphic

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	0000000	0000	00
Positivity in diffe	rential geometry and a	lgebraic geometry			

X n-dimensional projective complex manifolds

algebraic geometry

differential geometry

 \exists sections of $K_X = \exists$

 $\exists \text{ sections of } \mathcal{K}_X^{\otimes m}$ \parallel pluri-canonical forms $f(z)(dz_1 \wedge \ldots \wedge dz_n)^{\otimes m}$

- $\Rightarrow \quad \exists \text{ singular metric on } K_X \text{ with} \\ \text{ semi-positive curvature} \end{cases}$

	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
	00000	0000000	○○●○○○○○	0000	00
canonical forms	and the Kodaira-litaka-	fibration			

sections of $K_X \rightsquigarrow \operatorname{map} X \to \mathbb{P}^N$

X projective complex manifolds $\sigma_0, \ldots, \sigma_N$ *m*-canonical forms on X

representation in local coordinates:

$$\begin{array}{ccc} (z_1,\ldots,z_n) & \sigma_i = f_i(z)(dz_1\wedge\ldots\wedge dz_n)^{\otimes m} \\ \psi \downarrow & \parallel \\ (w_1,\ldots,w_n) & f_i(\psi(w)) \cdot \det(\frac{\partial z_k}{\partial w_l})^m \cdot (dw_1\wedge\ldots\wedge dw_n)^{\otimes m} \end{array}$$

$$\Rightarrow \quad \Phi_{\sigma_0,\ldots,\sigma_N} : X \to \mathbb{P}^N, \ p \mapsto [f_0(p) : \ldots : f_N(p)]$$

is a rational map.

Introduction	Algebraic Curves	Algebraic Varieties	Abundan ce	Numerical Triviality	Upshot
00000	00000	0000000	○○○●○○○○	0000	00
The Kodaira-dim	ension				

The Kodaira-dimension $\kappa(X)$ of X is the maximal dimension of the image

 $\Phi_{\sigma_0,...,\sigma_N}(X) \subset \mathbb{P}^N$

for any *m*-canonical forms $\sigma_0, \ldots, \sigma_N$. If $\kappa(X)$ equals the dimension of the image of

$$\Phi_{\sigma_0,\ldots,\sigma_N}:X\to B\subset\mathbb{P}^N,$$

this map is called Kodaira-litaka fibration. If there are no m-canonical forms \neq 0, we set

$$\kappa(X) := -\infty.$$

Facts:

-∞ ≤ κ(X) ≤ dim X.
X uniruled ⇒ κ(X) = -∞.

Fibers of the Kodaira-litaka fibration have Kodaira dimension 0.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
			00000000		
The Abundance of	conjecture				

Abundance conjecture (Mumford)

$$\kappa(X) = -\infty \Rightarrow X$$
 uniruled.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
			000000000		
The numerical di	imension				

Fact: \exists topological bound for $\kappa(X)$:

 $\kappa(X) \leq \nu(X)$

Definition: Numerical dimension $\nu(X) := \max\{k : c_1(K_X)^k \neq 0\}$

Generalized Abundance conjecture

X not uniruled $\Rightarrow \kappa(X) = \nu(X)$.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	00000000	0000	00
A special case of	the Abundance conjec	ture			

Idea of proof for a special case of the Abundance conjecture:

Assumption: The Kodaira-Iitaka fibration $f: X \to B \subset \mathbb{P}^N$ is everywhere defined.

- K_X is the *f*-pullback of the hyperplane bundle *H* on \mathbb{P}^N .
- The Fubini-Study metric *h_{FS}* on *H* has positive curvature.
- The pullback $h_X = f^*h_{FS}$ is a metric on K_X , with positive curvature in *f*-transversal directions, $\equiv 0$ in direction of the *f*-fibres.
- $c_1(K_X)^{\dim B} = c_1(K_X, h_X)^{\dim B} > 0$,
- $c_1(K_X)^k = c_1(K_X, h_X)^k = 0$ for $k > \dim B$
- $\Rightarrow \kappa(X) = \dim B = \nu(X).$

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
			0000000		
A special case of	the Abundance conje	cture			

- Observe: On K_X , a metric with semi-positive curvature is constructed vanishing in direction of the fibres.
 - The construction is possible for every holomorphic line bundle.

Algebraic Curves 00000	Abundance 00000000	Numerical Triviality 0000	Upshot 00

NUMERICAL TRIVIALITY

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
				0000	
The Nef-Reduct	tion				
/	/				

Problem: Given a semi-positive line bundle on X. Construct a maximal fibration with fibers, in whose direction the curvature of the line bundle vanishes!

Theorem (Tsuji; Bauer, Campana, Eckl, Kebekus et al.): *L* nef line bundle on projective complex manifold X. Then there is a rational map $f : X \rightarrow Y$, such that:

- F fiber of $f \Rightarrow \forall$ curves $C \subset F$: $c_1(L)|_C = 0$.
- $x \in X$ general, $x \in C \subset X$ curve with dim $f(C) = 1 \Rightarrow c_1(L)_{|C|}$ does not vanish

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
				0000	
Numerically trivia	fibration				

Definition: *L* pseudo-effective : $\Leftrightarrow \exists$ singular metric *h* of *L* with

 $c_1(L,h) \geq 0.$

Theorem (Tsuji; Eckl): X projective complex manifold, (L, h) pseudo-effective line bundle on X. Then there is a map $f : X \to Y$, such that:

• F general fiber of f, $C \subset F$ curve with $h_{|C} \neq +\infty$:

 $c_1(L,h)|_{C-\mathrm{Sing}(h)}\equiv 0.$

• $x \in X$ general, $C \ni x$ curve with dim $f(C) = 1 \Rightarrow c_1(L,h)_{|C-\operatorname{Sing}(h)} \neq 0$.

Problem: basis Y can have dimension $> \nu(L)$.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	00000000	0000	
Numerically trivia	l foliations				

Definition: X projective complex manifolds, (L, h) line bundle with metric h and curvature $c_1(L, h) \ge 0$. A foliation \mathcal{F} on X is called numerically (L, h)-trivial, if

 $c_1(L,h)_{|\text{leaf}} \equiv 0.$

Theorem (Eckl)

There exists a maximal numerically (L, h)-trivial foliation.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
				0000	
Numerically trivia	al foliations				

Properties of the numerically trivial foliation

fibers of the numerically trivial fibration \cap leaves of the numerically trivial foliation \cap fibers of the Kodaira-litaka fibration.

	Abundance 00000000	Numerical Triviality 0000	Upshot ○○

UPSHOT AND FURTHER PROSPECTS

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	00000000	0000	0
Eine Strategie für	r die Abundance Verm	utung			

Upshot: Complex differential geometry helps in understanding the Abundance conjecture.

Strategy for Abundance conjecture:

- (1) The numerically K_X -trivial foliation has leaves of dimension dim $X \nu(X)$.
- (2) The numerically K_X -trivial foliation is a fibration.
- (3) The numerically K_X -trivial foliation is a fibration $f : X \to Y$ with dim $Y = \nu(X)$ $\Rightarrow X$ is abundant.

Introduction	Algebraic Curves	Algebraic Varieties	Abundance	Numerical Triviality	Upshot
00000	00000	0000000	00000000	0000	00
A conjecture of Yau					

Upshot: Complex differential geometry helps in understanding the Abundance conjecture.

Conjecture (Yau): X compact Kähler manifold, g Kähler metric with non-positive holomorphic bisectional curvature $\Rightarrow X$ is abundant.

Wu/Zheng: Additional assumption on metric \Rightarrow Step (1) and (2) Step (3) trivial.

```
Eckl: Step (1) \Rightarrow Step (2) and (3)
```