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Motivation: How to compare 

several groups? 
• Often the research question is: 

• Is mfERG intensity response same across five disease (e.g. diabetic 

retinopathy) patient groups? 

• Is visual acuity same across three treatment groups? 

• Is the degree of  staining in conjuctivial tissues same across 5 

different storage methods? 

• Is visual acuity different at two different time points after a 

treatment? 

• An efficient strategy is to collect data on random 

independent samples in each group.  

• Then data are used to answer these questions on whole 

population of  patients.  
• One way of  comparing the groups is to compare their means 

via Analysis of  Variance (ANOVA) 
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Example 1:  
Three groups of  diabetic retinopathy (DR) 

were randomly selected. The groups are: # 

• Healthy,  

• DR with clinical signs of  macular 

edema (DRnoCSMO), 

• DR with CSMO (DRwithCSMO.. 

We are interested to see if  the groups differ 

in terms of  Microperimetry.  

What is it used for? It allows us to compare the means of  two or more 

independent groups analysing the different sources of  variability.  

One-way analysis of variance 

(ANOVA): Definitions & Goals 

Healthy DRnoCSMO DRwithCSMO 

83 86 71 

85 82 73 

99 72 61 

100 89 64 

98 69 75 

91 94 85 

95 79 86 

77 65 74 

100 80 82 

90 79 60 



Definition of factors and levels in ANOVA  

 

Factor (categorical variable): Any general aspect of  interest we want to 

analyse (e.g., disease group, treatments). 

 

Level (categories):  Specific realizations of  a factor  

(e.g., three different levels of  the disease, levels of  treatment). 

 

Research question that can be addressed with ANOVA 

 

Are there significant differences among the three groups of  patients 

with regard to the MP1?  



To identify if the factors are random or fixed is relevant to determine 

the type of statistical analysis. 

 

How to decide on fixed or random factors?  
 

Random-factor: Factor whose levels may be regarded as a sample from 

a large  population of  levels. (e.g. subjects when a sample of  

subjects is analyzed to infer about a large population). 

Fixed-factor: Factor whose levels are the only levels of  interest (e.g., 

treatments)  

E.g.:     

Observers random factor                                     

  Gender Fixed factor (Male, Female) 

   Drug Fixed factor 



 

• One-way ANOVA involves the comparison of  two or more population 

means 1, 2, … , k . The null hypothesis of  interest is:  

 

 

 And the alternative hypothesis is given by: 

 

                         HA:  “Not all k population means are equal” 

kH   210 :

•  If  H0 is rejected, we cannot conclude that all population means are 

different, (i.e.,  we cannot conclude that all treatments are different). 

 

• Rejecting H0 means that at least two population means have different 

values. (i.e.,  at least two treatments are different). 

 

Most common ANOVA with one fixed factor, called one-way ANOVA   
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Data and means in one-way ANOVA: formally  
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Study Group 

Data and means in one-way ANOVA: visually 



1. Random Samples (i.e., individuals, animals, tissue samples, etc.) have 

been selected for each of  the k  treatments i.e. subjects selected 

independently from each other. 

 

2. The variable of  interest, y, is normally distributed for each group 

(treatment).  

 

3. Same amount of variability in each group. The population variance 

of  y (denoted as 2 ). 

o In such case, an estimator of  the total variance is then obtained by 

pooling the individual sample variances.         

Assumptions in  
One-way ANOVA 

NB. Always check if  the assumptions of  the statistical method are satisfied. 

If  assumptions are not satisfied the results of  ANOVA can be biased. 

 



• The total variability in the observations can be decomposed into two 

components: 

• If  the patient groups are different then this should be reflected in  

• SSB large or small?  

• SSW large or small? 

• Ratio SSB /SSW large or small? 

SSWSSBTSS 

Total variation   =  variation between treatments + variation within treatments 

  Sum squares  
between treatments 

   Sum squares  
within treatments  

How ANOVA data analysis work: 
Informally 

SSB large when compared with SSW 

SSW small when compared to SSB 

Ratio large. This ratio is called F and 

is the measure used in ANOVA. 
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Healthy           DRnoCSMO          DRwithCSMO       

Study Group 

SSWithin 

SSBetween 

 2 

If  there are differences across diseases with respect to MP1 then the 

ratio will be F = SSB /SSW large  

How ANOVA works.  
A visual illustration: 



 Analysis variance table corresponding to one-way ANOVA 

 

Between                  k – 1 

 
 

  

Within                    N – k 

Source of         Degrees of freedom        Sum squares           Mean squares          F statistic 

Variability                    (df) 
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How ANOVA works. The formulas for the variabilities: 



Large values of  F                  Total variability due mainly to differences 

between treatments rather than to differences within treatments. 

Small values of  F                  Variability between treatments can not be 

significantly differentiated from the variability within treatments. 

k
H   

210
:

HA:  “Not all k population means are equal” 

Hypotheses: 

Test statistic: 

MSWithin

MSBetween
F 

Estimate of  2 
Under H0 

Estimate of  2 
always 

How ANOVA works. The F-test and interpretation 



Under the null hypothesis H0 (i.e., all population means are equal), the F 

statistic follows the F distribution with k  1 and N  k degrees of  freedom. 

Possible values for F 

Do Not Reject H0 
Reject H0 

Critical Value (*) 

Under H0    

(5%)k,NkF 1

95% 

•  If                                     we reject H0 at the 5% significance level and conclude 

that at least two of  the population means are different from one another. 
 

•  If                                    we don’t reject H0. 

%) 5 ( , 1 k N k F F   > 

%) 5 ( 
, 1 k N k 

F F   
 

(*) Note that we could test H0 at a different level of significance by replacing 5% with  



Example 1  

We use ANOVA to compare 3 

diabetic retinopathy groups 

with respect to MP1. 

In SPSS Menu:  

Analyze > Compare Means  

> One-Way ANOVA 

 

SPSS output: 



 

 Between                 k – 1 = 2 
 

 

  

  Within                  N – k = 27 

Source of         Degrees of freedom      Sum squares       Mean squares     F statistic 

Variability                    (df) 

1086SSB

2105SSW

903MSB

78MSW

11.6
MSW

MSB
F

  Total                      N – 1 =  29 97.94TSS

Example 1 

SPSS output: 



 

 Between                 k – 1 = 2 
 

 

  

  Within                  N – k = 27 

Source of         Degrees of freedom      Sum squares       Mean squares     F statistic 

Variability                    (df) 

1086SSB

2105SSW

903MSB

78MSW

11.6
MSW

MSB
F

  Total                      N – 1 =  29 97.94TSS

•  Is                           ?                                %)5(,1 kNkFF > 96.2%)5(6.11 27,2 > FF

•  Is                           ?                                %)1(,1 kNkFF  60.4%)1(6.11 27,3  FF

Example 1 

Conclusion: Can we reject at the 1% and 5% significance level the 

hypothesis that all treatments have the same effects? Answer: Yes.  



F test in one-way ANOVA as a generalization of the two-sample t test 

For the simplest case involving a comparison of  two population 

means, one-way ANOVA is equivalent to a t test for two 

independent groups with the assumption of  equal population 

variances. Therefore, the F test yields the same P-value as the t-test. 

In fact, when k = 2 we have: 

%)5(%)5( 2
22,1   NN tF



Non-parametric comparison of  samples should be done (i.e. ANOVA can 

NOT be used) if  any of  the following holds:  
 

 

•     Data are categorical 

•     Data are not normally distributed in one or more groups. 

•     Homogeneity of  variance cannot be assumed. 
 

The null hypothesis H0: “all k population medians are equal” could be 

tested by applying the non-parametric Kruskal-Wallis test (which is a 

generalization of  the non-parametric Mann-Whitney two-sample test). 

Non-parametric comparison of 
independent samples 



H0 is rejected with 5% significance  

level by applying the Kruskal-Wallis test.st: 

Example 1 

 
In SPSS menu: Analyze  

> Nonparametric tests  

> Legacy dialogs  

> K independent samples 

 

Result given by SPSS: 



Note about Kruskal-Wallis test and SPSS:  

By default, in SPSS the p-value of  the Kruskal-Wallis test is calculated 

approximatelly – i.e. it is based on a simplified formula that is valid only 

in large samples. You can try one of  other two options especially if  your 

sample is short: 

• Monte-Carlo calculated p-values,  

• exact p-value formula 



Example 1. Kruskal-Wallis test p-values comparison 

 

In this example the p-values from 2 methods are same. 



• When several t-tests are performed, each at a significant level  (Type I 

error), the probability of incorrectly obtaining at least one significant finding 

will be much larger than  and it will increase with the number of tests made.  
 

• E.g.,  when k = 5 we can perform 10 different tests, if we choose   = 0.05  

in each of them, the probability of finding a significant difference when all 

population means are equal is:  

 
!!%4095.01Prob 10 

• One possibility is to compare each pair of means by using t-tests. 

Question: ANOVA analysis concluded that the disease groups are 

different with respect to their MP1. How can we interpret this 

difference? Which groups are different? We need post-hoc analyses. 
 

Post hoc analyses (i.e. after ANOVA)  
and problem of multiple comparisons   



 

 

• One simple, but not optimal method, for addressing this problem, is to 

employ the so-called Bonferroni correction. If we perform r tests, then, to 

keep the total Type I error  small, we should use a significant level  

’=  / r.  

 

•  For example, if we use Bonferroni method, if k =5 (which implies r 

= 10) and we want a final Type I error equal to 0.05, the individual 

t-tests should be performed with a significance level ’= 0.05 / 10 = 

0.005. 

 

 

• For small number of tests, Bonferroni correction is reasonable, but for 

large numbers the method is highly conservative (i.e., difficult to detect an 

existing difference) and alternative methods, such as Duncan’s multiple 

range or Scheffé’s method, are more appropriate.    

Solutions to multiple comparisons  



Example 1 
In SPSS menu: Analyze > Compare Means > One-Way ANOVA 

 



Example 1. Results given by SPSS 

 

With an overall 5% significance level, the treatments Healthy and 

DRnoCSMO are significantly different (p-value=0.016); also Healthy and 

Drwith CSMO are different (p-value<0.001) 

Conclusion? 



Summary for ANOVA 

• When to use ANOVA?  

• Comparison of  groups with respect to their means 

• When assumptions are satisfied. 

• Assumptions?    

• Random independent samples of  patients 

• If  samples related then you need a suitable method for related samples (Repeated measures 
ANOVA, Linear mixed models, Non-parameteric tests for related samples...)  

• The variable of  interest (e.g. MP1) is normally distributed for each group 

• Remedy: Try log or sqrt transform if  data are unimodal but skewed in each group. If  this does not 
work use non-parametric test (e.g. Kruskal-Wallis) 

• If  data are not normal because they are nominal you need to use a non-parametric method. 

• The variance (of  MP1) is same for all the groups. 

• Remedy: Try log or sqrt transform if data are unimodal but skewed in each group. If this does not work use non-
parametric test (e.g. Kruskal-Wallis)  

• Post-hoc analyses needed after ANOVA concludes different groups. 

• Need to adjust for multiple comparisons. 

 



Resources 

Books   

• Practical statistics for medical research by Douglas G. Altman 

• Medical Statistics from Scratch by David Bowers 

Journals’ with series on how to do statistics in clinical research 

• American Journal of  Ophthalmology has Series on Statistics 

• British Medical Journal has series Statistics Notes 

Manual for SPSS statistical software - with lots of  worked-out examples 

• Andy Field, Discovering statistics using SPSS  

Workshops organized by Biostatistics Department, U of  Liverpool 

• http://www.liv.ac.uk/medstats/courses.htm,  

• Design and analysis of  laboratory-based studies, 22 April 2013 

• Statistical issues in the design and analysis of research projects 15-19 April 2013 

 

http://www.liv.ac.uk/medstats/courses.htm
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf


Thank you for your attention 

These slides and worksheet can be found on: http://pcwww.liv.ac.uk/~czanner/ 

Planned future workshops: 

• How to analyze data if  they are not Normal? Nonparametric methods 

• How to predict if  a patient is having a disease? Classification methods. (Spt/Oct) 

• How to make sense of  many measured characteristics? Multivariate stats methods 

• Log-odds ratios? When primary outcome is dichotomous (disease or no disease), how 
we measure odds of  someone having a disease if  he is a smoker? 

• Ideas are welcome! 

 

Statistical Clinics for ophthalmic clinicians and researchers !  

Run by appointment.  

Email: czanner@liv.ac.uk 

Phone: +44-151-706-4019 

Further information: http://pcwww.liv.ac.uk/~czanner/ 

http://pcwww.liv.ac.uk/~czanner/
http://pcwww.liv.ac.uk/~czanner/
mailto:czanner@gmail.com


 

Type II error, usually denoted as , is the probability of not rejecting 

the null hypothesis when it is false.  

Remember that , known as the significance level or Type I error, is the 

probability of rejecting the null hypothesis when it is true.   

 
 

 

 

Power of a test, which is denoted as (1– ), is the probability of rejecting 

the null hypothesis when it is false.  

Power of a test and sample size 



                                

 

                              
 

                                                        

 

 

    HA                                                     1 –   

                        (Type II error)      (Power) 

Figure.1. Illustration of the hypothesis testing 

Probabilities of outcomes of hypothesis testing 

Comparison of  two independent samples 

                  0 

2/

Reject H0 Reject H0 

2/

H0 

 Real difference                  

Power 

β1

HA 

Probabilities of outcomes of hypothesis testing 

                               Conclusion 

Reality 

                       H0 not rejected      H0 rejected 

 

   H0                     1 –                    

                                                   (Type I error)) 



The minimum sample size required to detect an existing difference   with  

significance level  and power  is given by the following formula: 

 

 

 

                

    

 

 

 
 

where  2  is the variance within groups and z 1–/2, z  are the (1 –/2) and  

 percentiles of the standard normal distribution, respectively. 
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How to calculate the required sample size? 
Two independent  
               samples 



             Comparison of three or more independent samples 

 The minimum sample size required to reject H0 depends on four different factors: 

 

1. The real differences between population means 

 

 

 

2. The variability of the observations for each of the populations. 

 

 

 

3.     Significance level (Type I error)  

 

         

 

4.   Power 

 

  kjiji ,...,2,1, Sample size decreases 

 kii ,...,2,1
2

   Sample size increases 

 Sample size increases 

1 Sample size increases 



1. Decide the value of the significance level and power (e.g.,  = 0.05  

        and 1– = 0.90 ) 

 

 

2. Calculate the parameter  applying the following formula: 

 

 

 

 

 

 

 

 

3. Use the Feldt–Mahmoud table  (see attached sheets) to calculate the minimum  

        sample size per group required for a significant test with power 1–. 

 

How to calculate the required sample size? 
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