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Statistical hypothesis tests 

• Often a research question is about means. 

• Is mean mfERG intensity response equal to 29? 

• Is mean visual acuity similar between treated and non-treated 

 groups of  patients? 

• The strategy is to collect data on sample of  patients to answer 

these questions on whole population of  patients.  

• We need statistical inferential tools: such as confidence interval (see 

slides from session 2) or hypothesis test  

How to do hypothesis testing? 



Outline 

• Hypothesis testing principles 

• One-sample t-test 

• What to be careful about: interpretation of  test, checking 

assumptions, types of  errors 

• Link between hyp testing and confidence interval 

• References 



Statistical hypothesis  

 A hypothesis is a claim (assumption) about a population parameter 

 E.g. mean mfERG in whole population of diabetic patients. 

 Statistical hypothesis consists of two parts a null and an alternative hypothesis.  

 Null hypothesis is the claim of no difference  

  e.g. Mean mfERG is 29 

  or if diabetic and not-diabetic patients have same mean mfERG 

 Or the mean Visual Acuity after treatment is same as before treatment    
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We investigate the mfERG intensity of  patients with diabetic maculopathy 
(DM) without clinical signs of  macular oedema (CSMO) and who are 25 
to 75 years old. A current paper is suggesting that the mean intensity is 29 
in USA population of  same age. We wish to see if  our population is similar 
with respect to mfERG. We measured mfERG intensity in 20 randomly 
chosen patients: 18.5, 19.5, 20.4, 20.7, 23.5, 23.8, 25.3, 26.7, 27.2, 28.0, 
28.5, 29.5, 29.7, 30.7, 31.3, 31.8, 33.7, 33.9, 33.9 and 36.8.  

• Research question? 

• See if  our population of  UK patients is similar to the published USA study. 

• Population of  interest? 

• People with DM without CSMO who are 25 to 75 years old 

• Hypotheses? 

• Ho:μ = 29 i.e. population mean mfERG in UK DM without CSMO equals to 29,  

• H1 or Ha:  μ≠ 29 

 

Example: mfERG in diabetic maculopathy 
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Example: mfERG in diabetic maculopathy 

We use sample to obtain the sample mean and sample standard 

deviation (see Session 2): 

What is the next step? How do we decide if  27.67 gives enough 

evidence that population mean is not 29? 

 

We look at a statistic (sample mean) calculated from sample and see if  

there is a reason for rejecting H0. 



Example: mfERG in diabetic maculopathy 

Sampling Distribution of X if H0 is true 

 μ0 = 29 

... then we reject the 

null hypothesis that 

μ = 29 

27.67 

... if  in fact this were 

 the population mean… 

X 

Where on the vertical axis are the unlikely values? 

How unlikely is the value 27.67? 

If  it is unlikely that we 

would get a sample mean 

of  the value 27.67... 



Key points about hypotheses 

• Begin with the assumption that H0 is true. 

• Similar to the notion of innocent until proven guilty 

• Refers to the status quo 

• Always contains “=”  

• May or may not be rejected 

• The alternative hypothesis H1 (also denoted as Ha) is the 

opposite of the null hypothesis. 

• Challenges status quo 

• Never contains the “=” sign 

• May of may not be supported 

• Is generally the hypothesis that the researchers is trying to support. 
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Classical hypothesis testing steps 

 

• Step 1 – Formulate hypotheses H0 and H1. E.g.   H0: μ= 29 vs. H1: μ≠ 29 

• Step 2 – Choose the significance level for the test, α =0.05 

• Step 3 – Decide on statistical test, gather data and do any checks required 

by the test. 

• Step 4 – Calculate the test statistic 

• Step 5a – Decision via p-values. Refer the value of  the test statistic to a 

known distribution which it would follow if  H0 were true.. Then calculate 

the probability p (p-value) of  obtaining a test statistic such as ours or one 

even more extreme if   H0 were true. If  p is small (i.e. smaller than α ) H0 is 

rejected in favour of  H1. If  p large then there is no evidence to suggest H0 

should be rejected. 

• Step5b–Decision via rejection regions. Find rejection regions i.e. the region 

of  unlikely values. If  test statistics falls in rejection region then reject H0.   

• Step 6- State conclusions and interpret the results  

 



T-test (one-sample t-test) 

The known 
distribution which test 
statistic follows if  H0 
were true. In t-test this 
distribution is t-
distribution with n-1 
degrees of  freedom. 
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H0: μ = μ0  

H1: μ ≠ μ0  
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It is a hypothesis tests for the population mean μ, if  population standard 

deviation  is unknown, if  population is Normal and if  random sample 

was done (i.e. measurement independent of  each other). 

So the data should be Normally distributed but test statistic has t-distribution… 

t 



Student’s t-distribution 

• t-distribution has one parameter: the 

degrees of  freedom. 

• The picture shows 4 t-distributions.  

• The last distribution (df=infinity) is 

identical with Normal distribution. They 

are virtually same if  df=30. 

Note: If  we have n data values and if  we use 

it to estimate the population standard 

deviation parameter then our data are less 

informative as data were we would knew the 

population parameter. Specifically, if  we 

estimate 1 mean, then knowing n-1 data 

values we do not need to be told the last data 

value as we can calculate it from the n-1 data 

values and from their sample mean--- this is 

called as having n-1 degrees of  freedom.  

t-distribution with smaller 

degrees of  freedom has heavier 

tails then normal distribution, 

so it allows for higher chance of  

values from tails due not 

knowing the population 

standard deviation. 



Example. t-test, Steps 1-4 

Solution 

• The test is to determine: H0:μ=29, Ha:μ≠29 

• We can use the one sample t-test  

• It assumes that the distribution is to Normal 

• It assumes that we do not know population standard deviation sigma, but 

we estimate it by sample standard deviation s  

• We will use level of significance α =0.05 

• Test statistic is t: 
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To find rejection region, we need to use Student’s t table (in any stats 

book). As the alternative is two tailed alpha must be split: α/2= 0.025. 

Because n=20 the degrees of freedom are n-1=20-1=19.  

So t19,0.025  =2.093 “critical value” 
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Rejection region Rejection region 

Example. Step 5b. Decision via rejection  region.   

Decision: 

Do we reject H0?  

No, bc value is -1.1194 which is within the 

non-rejection region.  

Do we accept H0?  

No, we only reject or not reject H0. If we 

accepted H0 it would mean that true mean is 29, 

but we have no idea what it is. 



Alternatively we may look for probability of  obtaining a test statistic such as 

ours or one even more extreme. Such probability is called p-value. If  p is 

small H0 is rejected in favour of  H1  (i.e. smaller then chosen level of  

significance). If  p large then no evidence to suggest H0 should be rejected 

 

 

Example. Step 5b. Decision via p-value  

How we use p-value to decide if  we reject H0?  

Pvalue = 0.26> α =0.05 so we will not reject the null hypothesis at the 5% 

significance level.  

P-value =  

2 x (area of tail up to  

-2.093)  

= 2x 0.13=0.26 

  
t 

  

0 

  

-1.1194 

-2.093 2.093 
1.1194 



Be careful when performing 

hypothesis testing 



What to be careful about 

• Know how to interpret the p-value 

• Always heck the assumptions of  the test. If  they are 

not satisfied the results are NOT valid. 

• The one sample t-test has assumptions.  

• normality of  data 

• random sample  

• data are metric (continuous) 

• It is sensitive to outliers 
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Interpretation of P-value 

• Interpretation: Probability of  observing data such as ours 

or data even more extreme if the null hypothesis is true 

 

• Significance level (: cut-off  for p) is usually taken to be 

5% (1% or 0.1%) 

 

• P < 0.05   =>  reject the null hypothesis at the 5% 

significance level 
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P-value conventions 

• P<0.001  => reject H0 at the 0.1% significance level 

   => very strong evidence against H0 

 

• P<0.01  => reject H0 at the 1% significance level 

   => strong evidence against H0 

 

• P<0.05  => reject H0 at the 5% significance level 

   => sufficient evidence against H0 

 

• P>0.05  => cannot reject H0 at the 5% significance level 

   => insufficient evidence against H0 
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Misinterpretation of p-values 

• a common misinterpretation is that the p-value is the probability 
that the data have arisen by chance 

 

• We cannot say this since we do not know what the truth is in the 
population 

 

• We can say that the p-value is the probability of  observing the 
data such as ours or even more extreme if  the null hypothesis is 
true 

This comment is general for any statistical 
hypothesis test. 



t-test assumes normal 

distribution of the population 

• Data that are said to follow the ‘Normal Distribution’ will produce 
a characteristic single peaked, bell-shaped histogram symmetric 
about the mean. 

• How do we check normal distribution of  our population? 

• Checking normality visually.  

• Histogram 

• Boxplot 

• Normal probability plots 

• Test of  normality 

• Kolmogorov-Smirnov goodness-of-fit test 

• Other tests 

 

),( 2N



Normal distribution with mean   

and standard deviation  
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 Possible values for the variable x  

from the population 

 

(16%) (16%) 

(68%) 2 

),( 2N



Example. Normality of mfERG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is the mfERG distribution Normal? Do they appear to be outliers? 

 

It appears that it is symmetric, it does not appear to copy the normal 

curve, but that can be due to fact that we have only 20 observations. We 

can use a Normality test. 

No outliers – by looking at the boxplot. 

Boxplot Histogram 



Example. Testing the normality of mfERG via KS test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One test to use is Kolmogorov-Smirnov test (KS) of  how how well our data match 

normal distribtuion. It is a nonparametric test, it calculates deviations between 

distribution of  our data and of  normal distribution. 

 

In SPSS – Analyze – Nonparametric Tests – One Sample, then chose follow 

description on the menu. Here we chose “Automatically compare observed data to 

hypothesized”. 

What are hypotheses of  this test? 

Ho: Normal distribution H1: Not normal 

Is there evidence that distribution of  the mfERG is not Normal?  

No evidence, bc p=0.98>0.05, hence can not reject H0 



The inventor of  normal distribution (1809) 
 

Carl Friedrich Gauss (1777-1855), German mathematician and physical scientist. 
Discovered the normal distribution in as a way to rationalize the method of  least squares. 
The normal distribution is also called “Gaussian distribution”. 
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Two-sided and one-sided hypothesis tests 

• Extreme results can occur by chance in either 

direction, which is allowed for in a two-sided 

test and two-sided p-value 

• sometimes it might be thought that the 

difference can only occur in one direction, 

leading to a one-sided test 

• rarely appropriate 

• must be specified before data are analysed 
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Two types of error associated 

with hypothesis tests 

We need to impose reasonable limits on two types of  error: 

Type I error:    =probability of  rejecting H0 when in fact H0 is true 

Type II error:  b =probability of  not rejecting H0 when in fact H0 is false  

Can not

reject H0

Reject H0

H0 is true correct

decision

Type I error



H0 is false Type II

error b

correct

decision

Note: Power  = 1 – b  = 
probability of  rejecting H0 
when H0 is false. 
 
Typically  is set to 5% (1% or 
0.1%) and b to 10% or 20%, 
but will vary according to 
context. 
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Multiple testing 

• Each hypothesis test is usually performed allowing there to be a 1 in 20 chance 
of  saying there is a difference between groups when actually there is not (setting 
 to 0.05) 

• The chance of  finding such a spurious result increases as the number of   tests 
performed increases 

 

 

 

 

 

• decide on number of  comparisons in advance of  analysis and adjust p-values 
using Bonferroni or similar method. 

 

Number of comparisons Probability of at least one

false-positive result

1 0.05

2 0.10

5 0.23

10 0.40

20 0.64



How hypothesis testing links with 

other statistical inference tools? 



How hypothesis test  

links with confidence interval 

• Hyp test and conf  interval are two key tools of  statistical inference 

• A confidence interval for the population mean is a range of  values 
which we are confident (to some degree) includes the true value of  the 
population mean 

• In Session 2 we constructed 95% confidence interval for mean mfERG: 
(25.3, 30.0) 

• Based on this confidence interval how we decide about H0: mean=29 vs 
not? 

• Since 29 belongs to the confidence interval we decide not to reject H0 
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There is a correspondence between confidence intervals and hypothesis tests. 

Why we learn both? 

Confidence interval gives answer in original units. Test gives p-values i.e. a 

sense how close we are to rejecting null hypothesis.. 

 



Example: back to mfERG  

Sampling Distribution of X if H0 is true 

 μ0 = 29 27.67 
X 

Where on the vertical axis are the unlikely values? 

• Outside of  95% conf  interval (25.3, 30.0) 

How unlikely is the value 27.67? 

• P-value=0.26 is giving us the idea here. Obtaining sample mean value 

27.67 or more extreme value has probability 0.26 (if  population mean 

is 29 – which is what we do not know), hence the mean value 27.67 is 

not unlikely. 



Summary 

 Hypothesis testing  

• is used to make inference about population parameter, and not the sample statistic 

• Null hypothesis is always tested, i.e. we try to find if there is an evidence in sample 
against the null hypothesis 

• If we do not find evidence against null hypothesis, then we say that we do not reject the 
null hypothesis. In such situation these are wrong statements: “null hypothesis is true”, 
“we accept the null hypothesis”. .  

 Always check assumptions of  tests. If  assumptions not satisfied the results of  the test 
are not valid. 

 Conclusion of test can be found in two ways 

• Using critical values that define the rejection region 

• Using p-value that defines the probability of observing even more extreme sample if H0 is 
true 

 In statistical tests we do two errors: type I and type II 

• If prob of type I decreases, then prob of type II error increases… 

• We always set Prob of type I error before analyzing sample data. 

• One way to have both errors on specific level is by having large enough sample. 

 



Resources 

Books   

• Practical statistics for medical research by Douglas G. Altman 

• Medical Statistics from Scratch by David Bowers 

Journals’ with series on how to do statistics in clinical research 

• American Journal of  Ophthalmology has Series on Statistics 

• British Medical Journal has series Statistics Notes 

Manual for SPSS statistical software - with lots of  worked-out examples 

• Andy Field, Discovering statistics using SPSS  

Workshops organized by Biostatistics Department, U of  Liverpool 

• http://www.liv.ac.uk/medstats/courses.htm,  

• Design and analysis of  laboratory-based studies, 22 April 2013 

• Statistical issues in the design and analysis of research projects 15-19 April 2013 

 

http://www.liv.ac.uk/medstats/courses.htm
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf
http://www.liv.ac.uk/medstats/Introduction to the design and analysis of laboratory-based .pdf


Thank you for your attention 

These slides and worksheet can be found on: http://pcwww.liv.ac.uk/~czanner/ 

Planned future workshops: 

• How to analyze data if  they are not Normal? Nonparametric methods 

• How to predict if  a patient is having a disease? Classification methods. 
(june/july) 

• How to make sense of  many measured characteristics? Multivariate stats 
methods 

• Ideas are welcome! 

 

Statistical Clinics for ophthalmic clinicians and researchers !  

Run by appointment.  

Email: czanner@gmail.com 

Phone: +44-151-706-4019 

Further information: http://pcwww.liv.ac.uk/~czanner/ 

http://pcwww.liv.ac.uk/~czanner/
http://pcwww.liv.ac.uk/~czanner/
http://pcwww.liv.ac.uk/~czanner/
mailto:czanner@gmail.com

