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Abstract

The logistic equation is one of the established paradigms in modelling popula-
tion growth. Here we propose a statistical interpretation of the logistic equation.
This interpretation is based on modelling the population–environment relation-
ship, the mathematical theory of which we discuss in detail. By applying this
theory, we obtain stochastic evolutionary equations, for which the logistic equa-
tion is a limiting case. The prospect of modifying logistic population growth is
discussed.
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1. Introduction

Dynamics of a single species population is a prototype for mathematical
modelling in ecology and is commonly described by the following differential
equation,

ẋ = xf(x), (1)

where x is the population density and f(x) describes the per capita growth. The
observed upper limit for population growth determines the level of saturation
known as carrying capacity. The simplest form of the associated dynamics, the
Verhulst-Pearl [1, 2] logistic equation,

ẋ = rx
(

1− x

K

)
, (2)

where r is a time scale so that rt is dimensionless time and K is the carrying
capacity, is often and successfully used to model population growth [3]. The
modelling of population dynamics using equation (1) is based on a special choice
of mathematical expressions for the laws governing population growth, that is,
the function f(x), so that the environment is treated as a static reservoir. The
logistic equation (2) inherits the requested generic properties of the equation
(1). To substantiate a choice f(x) = r

(
1−K−1x

)
, the data of experimental

observations and heuristic reasoning are usually used [1–3].
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Another approach to justifying the equation (2) was initiated by Volterra
[4] and was based on finding a certain minimum principle leading to the logistic
law of population growth, that is, to the equivalent Euler-Lagrange equation.
The problem is to find the Lagrangian that has the required form. This ap-
proach was discussed in the literature and several forms of the Lagrangian were
proposed [4–8]. Also some speculations were made regarding the universality of
the functional approach in the context of ecological problems [7–9].

Philosophically, one can trivially assert that all subsystems of the ecosphere
are in interaction and interdependence. However, this statement is meaningless,
since only a relatively small number of characteristic variables need to be taken
into account in specific models. Since reliable information about the actual state
of the entire ecosphere is unknown, its impact on small ecosystems can only be
accounted for phenomenologically, based on plausible reasoning.

A statistical approach to population dynamics, which can be either determ-
inistic or stochastic, is as follows. Consider an ensemble of identical populations,
differing only in initial size, together with the corresponding phase space. As-
suming that the ensemble is initially characterised by a probability density on
the phase space, we interpret the population dynamics as an evolution of this
ensemble, and we are interested in the asymptotic density at large times. Tradi-
tional deterministic population dynamics can be represented by a stable asymp-
totic behaviour [10], so that the resulting densities are singular. If the dynamics
can be perturbed in some way, we must consider smooth density functions. In
the context of dynamical systems theory we are interested in invariant densit-
ies. Ergodicity means equivalence of ensemble averaging and time averaging.
This property is the basis of statistical approach to dynamics, and therefore the
ergodic hypothesis is necessary for our analysis.

By moving towards a mathematical formulation of a statistical approach to
population dynamics, we recognise that natural populations do not exist and
grow in isolation, but are in dynamic contact with the environment. It is clear
that population evolution is influenced by changes in static (or quasi–static)
environmental conditions, but to better understand population growth, dy-
namic models must also account for population–environment interactions, en-
vironmental responses to a growing population, and internal population and
environmental processes that may be only partially known, introducing a de-
gree of uncertainty into population dynamics. Indeed, any population placed in
the environment must perturb it to some extent and will itself be subject to the
backward influence of this perturbation. Depending on the time scale of the pop-
ulation growth the environment can be divided into two parts: the part involved
in the joint dynamics with the population and the unperturbed part, which
determines the general statistical properties of the population–environment co-
evolution and the long-term homeostasis of the population, if it exists.

To ensure an equilibrium state, population growth must be controlled by
resource balance, population abundance and a variety of other mechanisms. The
dynamic processes of fluctuation and relaxation must be defined accordingly.
However, we do not specify explicit mechanisms. Instead, we define general
statistical hypotheses that cover many different biological processes. Specific
biological processes need to be considered separately.

In the context of population dynamics and ecosystem evolution, the stat-
istical approach, as we formulate it, contains the possibility of implementing
different scenarios of transition from the initial state to the asymptotic state of
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statistical equilibrium, which implies qualitatively different dynamic scenarios.
In our case, the goal is the statistical interpretation of a very special process -
the logistic law of population growth.

To present a statistical interpretation of the logistic equation, that is, a rather
simple but important mathematical model of population growth, we begin with
a brief statement of the relevant mathematical assumptions that combine the
dynamic principle for ensemble control tools, the definition of the environmental
temperature and the corresponding invariant density, the ergodic hypothesis and
methods of stochastic analysis [11–14]. Then, based on plausible probabilistic
reasoning, we formulate and explore the statistical interpretation of the logistic
equation.

2. Mathematical formalism

In this section, we briefly summarise the mathematical concepts necessary
to understand the statistical interpretation of the logistic equation.

Let a population P be placed in an environment E , a system of large (infin-
ite) number of phase variables, that determines the general statistical properties
of the entire ecosystem. The population has to disturb the environment to some
extent, and will be affected by this disturbance. Let the environment E be di-
vided into the part participating in the joint dynamics with the population, E ∗,
and the rest of the ecological system, E \E ∗, which determines statistical prop-
erties of population and environment coevolution, and long-term population
homeostasis. Subsystems P and E ∗ interacting with the global environmental
reservoir E \ E ∗ can be fluctuating, while E \ E ∗ remains unchanged, determin-
ing the general statistical properties of the whole system, P + E ∗. Let us make
an important assumption that the population P and its environment E ∗ parti-
cipating in the joint dynamics are statistically independent in equilibrium. Of
course, the actual description of E ∗ cannot be done in advance and depends on
the population, the environment and the experiments used to extract informa-
tion on population growth, as they determine the temporal and spatial scales of
measurements and the corresponding interpretation of data. Thus, the system
E ∗ is not predetermined, but depends on a number of factors that do not affect
the asymptotic statistical behaviour of the population. Among these factors,
the possibility of various evolutionary transients should be emphasised. The
study of transients in population dynamics and ecology is an intensively studied
problem [15, 16]. Practically, to describe E ∗, one can try one or another set
of variables to construct consistent coevolution equations and investigate their
properties.

To consider the interaction and joint evolution of systems P and E ∗ as de-
scribed above, we first need to define the dynamical system, S = (M+, G(z)),
which is a direct product of noninteracting (autonomous) systems P = (M, g(x))
and E ∗ = (M∗, g∗(y)), that is, S = P ×E ∗ = (M⊕M∗, g(x)× g∗(y)), where
M and M∗ are phase spaces of systems P and E ∗ correspondingly. In other
words, we consider a simple combination of two independent systems into one
so that z = (x, y) ∈M+ =M⊕M∗ and ż = G(z), where G(z) = g(x)× g∗(y).
When P and E ∗ are considered as systems involved in joint evolution, such
a separation into noninteracting systems becomes impossible and we have to
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consider dynamics in the general form,

ż = G+(z). (3)

However, it is important that, as in the case of noninteracting systems, the
invariant density σ+ for the combined system S is the direct product of the
invariant densities σ and σ∗ for the systems P and E ∗,

σ+ (z) = σ (x)× σ∗ (y) , (4)

that is, the systems P and E ∗ are statistically independent in the equilibrium
state, provided that the equilibrium state of the entire ecosystem exists, where
P and E ∗ are small subsystems.

As preparation for what follows, we briefly summarise two important con-
cepts: (1) ecological temperature and (2) the dynamic principle for statistical
ensemble control tools.

Ecological temperature
The concept of temperature expression [11, 12].
Let the probability density σ (x) , x ∈ M be given. Define the function

h(x) : M → R, h(x) ∝ −ϑ lnσ (x), where ϑ > 0 is a parameter, so that h(x)
is a sufficiently smooth function, bounded from below and growing at infinity,
h(x) ≥ a |x|b for some a > 0, b > 0, that is, a coercive function. Let us represent
the probability density function as,

σϑ (x) ∝ exp
{
−ϑ−1h(x)

}
, x ∈M. (5)

The density σ∗ϑ (y) ∝ exp
{
−ϑ−1h∗(y)

}
, y ∈M∗ is understood in the same way.

The function Θ(x, ϑ), Θ : M × R+ → R is called an ecological temper-
ature expression (abbreviated as ϑ-expression) if it explicitly depends on the
parameter ϑ and satisfies the conditions,

Eϑ {Θ(x, ϑ)} = 0 for all ϑ > 0, (6)

where Eϑ {. . .} =
´
M(. . .)dµϑ(x) is the mathematical expectation, and dµϑ(x) =

σϑ(x)dx is the probability distribution. The ϑ-expression (6) is defined up to
a constant factor, possibly depending on ϑ, and an additive function ψ(x) such
that

´
M ψ(x)dµϑ(x) = 0. We consider Θ(x, ϑ) as an analytic function of the

real parameter ϑ, Θ(x, ϑ) = Θ0(x) + Θ1(x)ϑ+ . . ., whose first term Θ0(x) has a
nonzero expectation Eϑ {Θ0(x)} 6= 0. Usually Θ(x, ϑ) is a polynomial in ϑ [12].
This is the context in which definition (6) should be understood. In practice,
although ψ(x) functions are not true ϑ-expressions, they can nevertheless be
used to generate deterministic equations of motion consistent with the dynamic
principle, as defined below. However, in this case the required property of
ergodicity seems to be more than doubtful (e.g. [17]).

We consider P and E ∗ as parts of a large, infinitely large, ecosystem that
determines the equilibrium statistical properties of both the population P and
environment E ∗, provided that such an equilibrium state exists. Thus, it should
be assumed that the ecological temperatures of the population P and the envir-
onment E ∗ coincide (see [18] to argue for this). This equality of the parameter
ϑ has direct implications for the mathematical formulation of the theory.
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The set of all ϑ-expressions for an arbitrary but fixed value of the parameter
ϑ is a linear system in which the operations of addition and multiplication by
numbers are defined in the usual way. In order to study and use the properties
of ϑ-expressions, it will be necessary to interpret them as elements of either the
space L1 (summable expressions) or L2 (square summable expressions). Such
an interpretation is appropriate here, since the ϑ-expressions we are considering
are bounded from below and grow at infinity no faster than a polynomial.

For the combined system S a temperature expression satisfies the condition,ˆ
M+

Θ+(z, ϑ)dµ+
ϑ (z) =

ˆ
M+

Θ+((x, y, ϑ) , ϑ)dµϑ(x)dµ∗ϑ(y) = 0 for all ϑ > 0,

and, provided that
´
M |Θ

+(z, ϑ)| dµϑ(z) <∞, it follows from Fubini’s theorem
that ˆ

M
Θ+(z, ϑ)dµϑ(x) = Θ∗(y, ϑ) and

ˆ
M∗

Θ+(z, ϑ)dµ∗ϑ(y) = Θ(x, ϑ)

are ϑ-expressions as defined above. For more information about the properties
and selection of ϑ–expressions, see [12].

Dynamic principle
The dynamic principle [11, 12] for development of statistical ensemble control

tools is based on the assumption of ergodicity, that is, the averaging can equally
be interpreted either as an ensemble average or as a time average for a single
trajectory. To unify the notation, we denote the result of the averaging by ” ∼ ”
and write, for example, in relation to the ϑ-expression, Θ(x, ϑ) ∼ 0, assuming
that lim

t→∞
1
t

´ t
0

Θ(x(t′), ϑ)dt′ = 0.
In the statistical description of a dynamical system ẋ = g(x), the concept of

the first integral plays a central role [18]. The function h (x) is the first integral
if and only if ∇h (x) · g (x) = 0 for all x ∈ M. When populations are involved
in coevolution with the environment, then h (x) is no longer the first integral.
This is also true when the effects of the ecosystem on the population are treated
as random perturbations. To describe such coevolution with a given invariant
measure, the dynamic principle for ensemble control tools is used, which leads
to consistent dynamic equations. The invariant measure can be a priori or can
be derived from experimental data. Let us assume that the equations of motion
are of the form (3) and denote Γ (z) ≡ ∇zh

+(z) · G+(z). Then the dynamic
principle postulates the following functional relationship:

Γ (z) ∝ Θ+(z, ϑ) ∼ 0, (7)

or Eω {Γω (z)} ∝ Θ+(z, ϑ) ∼ 0 in the case of stochastic dynamics. Solutions
to the functional equation, Γ (z) = Θ+(z, ϑ), represent possible transient pop-
ulation evolution scenarios compatible with a given invariant density. To find
a particular solution to the equation Γ (z) = Θ+(z, ϑ), it is necessary to spe-
cify an invariant density and select an admissible ϑ–expression corresponding
to this density. The criterion of such a selection is determined by the nature
of the problem to be solved, for example, it can be the simplest admissible
ϑ–expression. However, the range of possible selections is wide [11–14].

To understand the practical value of this rather abstract mathematical scheme,
let us start simple and consider a conceptual example. To this end, we will con-
sider a statistical interpretation of the logistic equation.
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3. Statistical interpretation of the logistic equation

3.1. Preliminaries
Consider P as a single species homogeneous population with density x ∈ R+,

placed in an environment such that a state of equilibrium exists. This is not a
static equilibrium. Population growth depends on available resources and other
environmental conditions, as well as the size of the population itself, to ensure
a dynamic statistical equilibrium. These processes, which involve the environ-
ment in coevolution, must have balanced dynamics where the fluctuation and
relaxation processes must be appropriately specified. To formulate a statistical
approach to population dynamics, we will assume that the state of equilibrium
and the corresponding ecological temperature ϑ are determined by the ecosys-
tem as a whole, of which the population is a small part.

According to the theoretical scheme presented in Section 2, we must first
establish the invariant density for the system S = P + E ∗, i.e. σ+

ϑ (z) =
σϑ (x)× σ∗ϑ (y).

3.1.1. The environment
Assume that the environment E ∗ is characterised by a variable y ∈ R with a

probability density σ∗ϑ(y). By necessity, y is a collective variable that incorpor-
ates a number of environmental factors and processes. Thus, it is reasonable to
guess the Gaussian statistics, that is,

σ∗ϑ(y) ∝ exp

{
−ϑ−1 1

2
y2
}
, (8)

where y is a dimensionless variable. The ecological temperature ϑ defines the
intensity of the environmental fluctuations. The Gaussian statistics is com-
pletely characterised by the first two cumulants: Eϑ (y) = 0, Eϑ

(
[y − E (y)]

2
)

=

Eϑ

(
y2
)

= ϑ. Thus, a linear combination of y and
(
y2 − ϑ

)
is a ϑ–expression.

It should be noted that even in the case of Gaussian statistics, it is only the
simplest ϑ–expression associated with the environment. There are also other
ϑ-expressions of higher order in ϑ [12].

3.1.2. The population
Let us accept the invariant probability density σϑ (x) in the form (5), where

the coercive function h(x) is a subject to define. The ϑ parameter is the same
as in σ∗ϑ(y). The simplest ϑ-expression associated with the population has the
form,

Θ(x, ϑ) = xh′(x)− ϑ, (9)

where prime denotes derivative (Lagrange notation). The proof is by direct
calculation. For more advanced ϑ–expressions, see [12].

3.2. Logistic equation
To proceed to the statistical interpretation of the logistic equation, it is neces-

sary to solve the functional equation (7) that includes at least the ϑ–expression
associated with the environment, that is, the equation

Eω {h′ (x) g(x, y) + yg∗(x, y)} ∝ Θ∗(y, ϑ) ∼ 0, (10)
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where ẋ = g(x, y), ẏ = g∗(x, y). If we take a ϑ–expression of the form Θ∗(y, ϑ) =
ay + b

(
y2 − ϑ

)
, in accordance with Section 3.1.1 Eϑ (Θ∗(y, ϑ)) = 0, where a, b

are constant coefficients and b 6= 0, then among the solutions of equation (10)
there are only stochastic equations [11]. The algorithmic scheme for finding
a solution to the functional equation (10) is based on a specific technique of
stochastic analysis [11]. In order to stay within reasonable mathematical limits,
we will skip the relevant details. Let us examine the following solution,

ẋ = λxy,

ẏ = −λΘ(x, ϑ)− γy +
√

2γϑξ(t), (11)

where ξ(t) is the standard Gaussian white noise, Eω {ξ(t)} = 0, EωE {ξ(t)ξ(t′)} =
δ(t− t′), λ > 0 and γ > 0 are parameters that actually define two time scales.

First of all, we check the ϑ-expression for the environment, Θ∗(y, ϑ), by
direct calculation,

Eω

{
h′(x)λxy + y

[
−λ (xh′(x)− ϑ)− γy +

√
2γϑξ(t)

]}
= Eω

{
λϑy − γy2 +

√
2γϑyξ(t)

}
= λϑy − γ

(
y2 − ϑ

)
= Θ∗(y, ϑ),

as required. Then, we prove that the density,

σ+
ϑ (x, y) ∝ exp

{
−ϑ−1h(x)

}
× exp

{
−ϑ−1 1

2
y2
}
, (12)

is invariant for dynamics (11). Indeed, the Fokker-Planck equation correspond-
ing to stochastic differential equation (11) has the form ∂tσ = F∗σ, where

F∗σ = − ∂

∂x
[λxyσ]− ∂

∂y

{[
−λ [xh′(x)− ϑ]− γy − γϑ ∂

∂y

]
σ

}
,

is the Fokker-Planck operator. We prove the identity, F∗σ+
ϑ (x, y) = 0 , by direct

calculation, implying that σ+
ϑ (x, y) (12) is the invariant density for dynamics

(11). One would expect that for the stochastic evolution equation (11) the
dynamics would be ergodic.

We have arrived at fairly simple population–environment coevolution equa-
tions (11). We can now ask how these dynamic equations relate to the conven-
tional population growth equations (1), in particular the logistic equation (2).
To answer this question, consider the limiting case, γ � 1 (relaxation processes
are extremely fast) and ϑ → +0 (the environment is in static equilibrium). In
this procedure we follow an analogy with the Kramers problem [19, 20]. As a
result, we arrive at deterministic dynamics involving only the population vari-
able. Note that the corresponding mathematically consistent passage to the
limit is not trivial, but intuitively the result seems quite clear.

Thus, passing to the limit γ � 1, ẏ = 0, and ϑ → +0, we get y =
−γ−1λxh′(x), and hence the correspondence

xf(x) = −λ2γ−1x2h′(x).

For the logistic population growth rate, that is, f(x) = r
(
1−K−1x

)
, setting

λ2γ−1 = r, we get the following expression for the function h(x),

h(x) = K−1x− lnx. (13)
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We shall say that h(x) (13) is the logistic h–function. Let us now substitute
this h–function into the equations (11) and thus obtain a stochastic analogue of
the logistic equation (2), which to some extent describes the coevolution of the
population and the environment,

ẋ = λxy,

ẏ = −λ
[
K−1 (x−K)− ϑ

]
− γy +

√
2γϑξ(t), (14)

where λ2γ−1 = r.
To illustrate the difference between the population evolution described by

the (2) and (14) equations, we performed a test numerical simulation of these
dynamic equations. This simulation also allowed us to test the validity of our
basic assumptions. We simulated these equations using the Euler scheme with
a time step dt = 0.001. In all simulations, we keep K = 1, λ = 1, and γ = 50
(the latter to stay close to the logistic equation (2)), but vary the values of ϑ.
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Figure 1: (colour online) Population density versus time. The various curves correspond to
the Verhulst-Pearl logistic equation (2) (blue curve) and a stochastic analogue of the logistic
equation (14) at two values of the ϑ parameters: ϑ = 0.001 (red curve) and ϑ = 0.005 (green
curve). Initial values are x = 0.01, y = 0.
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Figure 2: (colour online) Population probability density versus population density. The (red)
dash lines show the theoretical result given by the logistic h–function. The (black) circles show
the normalised histogram generated at ϑ = 0.5 by running numerical simulation for quite a
long time, up to tmax = 105. Observe, the circles follow the theoretical curve exactly.

The results of the simulations confirm our assumptions and expectations.
Figure 1 shows that the concept of a statistical approach to interpreting the
logistic equation is reasonable. In the case of γ = 50 � 1, the agreement with
the logistic curve becomes particularly good as the ambient temperature de-
creases. Note that this good agreement corresponds to short relaxation times
of the environmental variable, γ−1 = 0.02 � 1, which is in line with our the-
oretical assumptions. The variation of the time scales γ−1 and λ−1 requires
further research. Figure 2 confirms the validity of the ergodic hypothesis. It
can be seen that the numerically obtained population density distribution fits
the theoretical curve.
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4. Discussion

On a fairly simple but conceptually important example, we have presented
the way of probabilistic reasoning and the mathematical structure underlying
the statistical approach in modelling evolutionary processes in ecology and pop-
ulation dynamics. This example is rather a particular implementation of the
idea of the proposed statistical approach. In this context, a natural question
arises: What perspectives, in a wide sense, does the statistical approach poten-
tially provide in modelling ecological processes, if any? Indeed, if mathematical
ideas are formulated in general terms, then it is necessary to clarify the further
prospect of their possible application.

Population growth models differ in how to model the transition to the most
probable state of the population. This distinction is central to understanding
ecological evolution in general. The availability of a variety of mathematical
descriptions of transient processes offers the prospect of implementing qualitat-
ively different models of evolution. In this context, let us consider the following
concrete example in order to answer, at least in part, the question posed.

Without over-complicating the evolutionary dynamics (14), we modify these
equations on the assumption of non-Gaussian statistics of the environment vari-
able, while keeping the logistic h–function (13) unchanged. More precisely, we
consider the equilibrium (invariant) density of the form,

σ+
ϑ (x, y) ∝ exp

{
−ϑ−1h(x)

}
× exp

{
−ϑ−1h∗(y)

}
, (15)

where h∗(y) is the environment h–function. Let the ϑ-expression be chosen in
the form

Θ∗(y, ϑ) = λϑh∗′(y)− γ
[
(h∗′(y))

2 − ϑh∗′′(y)
]
.

The proof that Θ∗(y, ϑ) is indeed a ϑ-expression is done by direct calculation
[12]. Under these assumptions, we arrive at the (stochastic) equations of motion,

ẋ = λxh∗′(y),

ẏ = −λ [xh′(x)− ϑ]− γh∗′(y) +
√

2γϑξ(t). (16)

The density σ+
ϑ (x, y) (15) is invariant for dynamics (16). The proof is by dir-

ect calculation. In the case h∗(y) = y2
/2, ϑ-expression and dynamic equations

coincide with those considered earlier. Note that if we put γ ≡ 0, we obtain
a system of ordinary differential equations with the required invariant dens-
ity (easily checked by direct calculation). However, in this case the ergodicity
condition is problematic [17].

The choice of admissible function h∗ (y) introduces noticeable freedom in
the modelling of transients. As an example, let us consider two variants of the
bimodal probability density function σ∗ϑ(y), symmetric and asymmetric. First,
let the symmetric density be defined by the expression

h∗′(y) = y
(
y +
√
m
) (
y −
√
m
)
, (17)

where m > 0 is a parameter. For the shortened ordinary differential equation,
ẏ = −γh∗′(y), the equilibria y = ±

√
m are stable, while y = 0 is an unstable

equilibrium.
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To deepen the discussion, consider a hypothetical situation where changes
in the environment are associated not only with population size, but also with
changes in the phenotype of the population itself, when an additional environ-
mental resource becomes available to the population and affects its growth and
terminal size. The asymptotic result would be a change in the value of the most
probable population density. We now focus on describing such a process.
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Figure 3: (colour online) Population density x (top) and environment variable y (bottom)
versus time for the symmetric bimodal equilibrium probability density of variable y (equa-
tion(17)) in two modes: in the absence (black) and in the presence of functional popula-
tion–environment relationship (blue). The parameters used in the simulation are as follows:
m = 0.5, ϑ = 0.01, r = 1, γ = 50, λ =

√
50.

To solve this problem, we assume that the functional relationship between
the population and the environment has the form K [y] = 1 + H(y), where
H(y) is a Heaviside function. Although this piecewise linear relationship is
speculative and oversimplified, it reflects an important qualitative feature of
the phenotype–environment relationship responsible for the transition between
two equilibrium population densities. It would be more correct to relate K
to its own dynamics, but for our illustrative purposes such a complication is
unnecessary.

Qualitatively, this dependence can be explained as follows: the transition of
the environment from one steady state to another is associated with a change in
the phenotype of the population such that an additional environmental resource
becomes available to the population.

To test the intended perspective, we perform numerical simulations. The
parameters used in the simulation were chosen to remain close to the logistic
dynamics. Figure 3 shows the population density x (top) simultaneously with
the corresponding environmental variable y (bottom) versus time, in two differ-
ent modes: in the absence (black curve) and in the presence (blue curve) of a
functional relationship between population and environment K[y]. The random
fluctuations of the population density synchronised with the environment can
be clearly identified.

This behaviour provides the basis for the following important modification
of the bimodal density σ∗ϑ(y). Namely, a conceptually important example is the
asymmetric bimodal probability density σ∗ϑ(y), defined by the expression

h∗′(y) = Dy (y − a) (y − 1) . (18)

The detuning parameter a in this expression satisfies 0 < a < 1, and the
parameter D > 0. Thus, for the shortened ordinary differential equation,
ẏ = −γh∗′(y), the equilibria y = 0, 1 are stable, while y = a is an unstable
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equilibrium. Let there be a functional relationship between the population and
the environment of the form K [y] = 1+H(y−a). This piecewise linear depend-
ence should, under certain conditions, determine the long-term transition from
the initial equilibrium population density to the new one. To check this, we carry
out numerical simulations. The parameters used in the simulation are chosen
to remain close to the logistic equation. Figure 4 shows population density x
as a function of time in two different modes: in the absence (black curve) and
in the presence (blue curve) of functional relationship K[y] between population
and environment. For the selected asymmetric bimodal density parameters, it
is observed a clear transition to a new equilibrium state in the population size.
Mathematically, a backward transition to the initial population size is possible,
but the average waiting time is expected to be long and may exceed the lifetime
of the population [21]. We omit the discussion of the relevant mathematical
details.
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Figure 4: (colour online) Population density versus time for the equilibrium asymmetric
bimodal probability density of variable y (equation (18)), in two different modes: in the
absence (black) and in the presence (blue) of functional population–environment relationship.
Note that the transition to a new population density persists for a long time ("forever"). The
parameters used in the simulation are as follows: D = 4, a = 0.25, ϑ = 0.001, r = 1, γ =
50, λ =

√
50.

When we use the term ecological temperature, we refer to the parameter ϑ,
which in turn is related to the key definition of the ϑ–expression in Section 2. For
the presented statistical interpretation of the logistic equation, the specific value
of ϑ is immaterial. To give ϑ an appropriate value, one should choose a special
device, an ecological thermometer. The analogy with thermodynamics can be
useful. However, a discussion of this issue is beyond the scope of this article. In
an extended context, other parameters in addition to ϑ may be necessary, for
example, when considering the processes of emigration and immigration of the
population.

Finally, we should make a note about the random term in the system (16).
If we put γ ≡ 0, we obtain a system of ordinary differential equations for which
the density (15) is invariant (this is easy to check). However, these equations of
motion are not ergodic for the given density (note that there exists the integral of
motion, I = h(x)−ϑ lnx+h∗(y) = const), so the dynamical scenarios discussed
earlier have no place.
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