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While previous experimental and numerical studies of dilute micro-swimmer suspensions
have focused on the behaviours of swimmers in bulk flow and near boundaries, models
typically do not account for the interplay between bulk flow and the choice of boundary
conditions imposed in continuum models. In our work we highlight the effect of boundary
conditions on the bulk flow distributions, such as through the development of boundary
layers or secondary peaks of cell accumulation in bulk-flow swimmer dynamics. For the
case of a dilute swimmer suspension in Poiseuille flow, we compare the distribution (in
physical and orientation space) obtained from continuum models with those obtained
from individual based stochastic models, and identify mathematically sensible continuum
boundary conditions for different physical scenarios. We identify that the spread of
preferred cell orientations is dependent on the interplay between Jeffrey orbits and rota-
tional diffusion. We further find that in the absence of hydrodynamic wall-interactions,
the preferred orientations of swimmers at the walls are perpendicular to the walls in
the presence of high rotational diffusion, and are shape dependent at low rotational
diffusion (when suspensions tend towards a fully deterministic case). In the latter case,
the preferred orientations are nearly parallel to the surface for elongated swimmers
and nearly perpendicular to the surface for near-spherical swimmers. Furthermore, we
highlight the effects of swimmer geometries and shear throughout the bulk-flow on
swimmer trajectories and show how the full history of bulk-flow dynamics affects the
orientation distributions of micro-swimmer wall incidence with varying magnitudes of
rotational diffusion.
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1. Introduction

Microorganisms are ubiquitous and can be found in disparate systems like soils,
surfaces, and fluids. While microorganisms are not all harmful, and some are important
for the daily processes of larger lifeforms, like gut bacteria in humans and microalgae
in the marine food-chain, there exist a number of pathogenic or toxic microorganisms.
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Pathogenic bacteria are sources of infections and infectious diseases, ranging from ty-
phoid fever (Salmonella typhi), to tuberculosis (Mycobacterium tuberculosis), pneumonia
(Streptococcus, Pseudomonas), and food illnesses (other Salmonella). Meanwhile, harm-
ful algal blooms can produce highly potent neurotoxins (e.g. Alexandrium catenella),
block sunlight for aquatic plants, and lead to hypoxic and anoxic water. A neurotoxin
build-up can lead to serious injury or death in marine animals, freshwater animals,
and humans. The motility of many microorganisms (Jarrell & McBride 2008; Kearns
2010) makes them effective pathogens (Ottemann & Miller 1997), especially when using
medical equipment like catheters, inside of which biofilms can form and upstream motility
can occur (Figueroa-Morales et al. 2020), ultimately leading to infection. To develop
improved insertion devices it is essential to understand the behaviours of motile mi-
croorganism suspensions in sheared flows, especially as the swimmers approach surfaces.
Harmful microorganisms can also contaminate water transport infrastructure, and if not
dealt with early on (or prevented from colonising surfaces) can lead to illness, serious
injury, or death in local populations which consume the water. The prevention of such
contamination is important for population well-being and also the associated industries
which seek to meet governmental regulation targets.
Since motile microorganisms are exceedingly small and typically on the micron scale

(Childress 1981), swimming microorganisms perceive the fluids through which they
traverse as highly viscous environments, and adapt their behaviour for motility in a
regime with negligible inertia (Stokes flow). For this traversal, they have developed long,
slender appendages, known as flagella, which can create propulsion through various means
(Brennen & Winet 1977). Bacteria swim through bundling their appendages and rotating
them via specialised motors at flagellar bases, sperm pass waves along their tails (Lauga
2016), and microalgae (Goldstein 2015) use different strokes (recovery and effective
strokes) to create asymmetry with various degrees of coordination (e.g. breaststroke
motion in Chlamydomonas or metachronal waves in Volvox).
A field of much recent interest has been the study of microswimmers near walls, whether

these be hydrodynamic interactions, the mechanisms of reorientation, or accumulation
to form biofilms. Experiments in confined environments have shown swimming cells to
be attracted to surfaces with some hypothesising that the hydrodynamic interaction of
the cells with the walls realign bacteria parallel to the walls (Berke et al. 2008) whilst
puller-type algae (front actuated swimmers which pull in the fluid from the direction of
propulsion) approach walls at steep angles (Buchner et al. 2021). In microfluidic channels,
the phenomenon of upstream swimming has been observed for bacteria (Hill et al. 2007;
Kaya & Koser 2009) where E. coli swimming in a region below a critical flow speed can
reorient and swim against the direction of fluid flow. However, in the presence of strong
flow, swimming is dominated by fluid advection, and cells are transported downstream.
In three-dimensions, E. coli have also been observed to swim in clockwise circles near
rigid surfaces (Frymier et al. 1995; Vigeant & Ford 1997; Giacché et al. 2010). Three-
dimensional models for monotrichous bacteria near walls (Park et al. 2019), which ac-
count for hydrodynamic interactions via regularised Stokeslets and the method of images,
have also highlighted the importance of body aspect ratios to the inclination angles
near walls and the radii of circular trajectories along walls, while finding that flagellar
length affects whether bacteria can leave the wall. Meanwhile, numerical models without
hydrodynamic interactions propose that the reorientation of swimmers interacting with
walls can be explained purely mechanistically, by hitting a wall, maintaining orientation
for a finite time scale, rotating via Brownian rotation, and swimming away (Li & Tang
2009; Li et al. 2011; Costanzo et al. 2012; Elgeti & Gompper 2013). In this paper, we
will study microswimmer distributions and microswimmer wall interactions for a dilute
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suspension via continuum modelling and stochastic individual based simulations. Here we
do not account for inter-cellular or cell-wall hydrodynamic interactions, instead focusing
on the impact of the bulk flow and swimmer geometry on cell trajectories, and explore a
range of simplified boundary interactions.
We are interested in the relationship between the bulk flow and attachment dy-

namics, that occur through swimmer-wall interactions. To study the bulk behaviours
of suspensions of microswimmers, continuum models have been developed to capture
collective dynamics. These are developed as an alternative to expensive individual-based
simulations. These types of models have been used to study several suspension phenom-
ena such as bioconvection (Pedley & Kessler 1992), downwelling gyrotactic swimming
(Fung et al. 2020) or determining how sheared flow can lead to layer formation below
surface levels for gyrotactic swimmers (Maretvadakethope et al. 2019). Early continuum
type models include advection-diffusion equations as introduced by Kessler (1986) where
deterministic, directional dynamics are captured via advection terms, and diffusion
terms act to capture the randomness of microswimmers. For gyrotactic swimmers,
Pedley & Kessler (1990) developed a model which allowed both the directional swimming
and the diffusion coefficient to be modified by the flow. It also accounted for reorientation
of non-spherical particles by incorporating the reorientation of cells as described by
Jeffery’s equation (Jeffrey 1992; Hinch & Leal 1972). This is particularly important due
to the assumption that cells in a volume element swim relative to the fluid in the
direction of cell orientation. Another continuum model of note is the Smoluchowski
equation, which models active suspensions using continuum kinetic theories, as reviewed
in detail by Saintillan & Shelley (2013). The Smoluchowski equation describes the cell
distribution via a probability distribution function dependent on time, physical space
and orientational space. For three-dimensional physical space, the problem has seven-
dimensional dependence and is rarely solved fully due to the computational cost. To
reduce the problem the effective transport coefficients for the advection and diffusivity can
be estimated by only using the local flow dynamics, and in the case of generalised Taylor
dispersion (GTD), approximating the diffusivity from the pdf of a tracer particle in orien-
tation and physical space (Hill & Bees 2002; Manela & Frankel 2003; Frankel & Brenner
1993). Although the GTD model is more accurate than the Pedley & Kessler (1990)
model at high shear rates (Croze et al. 2013, 2017; Fung et al. 2020), it can fail for
straining dominated flows. A recent new transport model (Fung et al. 2021) combines
a transformation of the Smoluchowski equation into a transport equation with drift
and dispersion terms approximated as functions of local flow fields, allowing it to be
applied for any global flow field. In our study of boundaries and bulk distributions we
will consider a two-dimensional Smoluchowski equation which reduces the problem to
three-dimensional dependencies. The results from our study will have implications on
broadening the validity of models such as the doubly periodic Poiseuille flow models
(Vennamneni et al. 2020), justifying their application in capturing the dynamics and cell
distributions for bounded domains.
Given that the geometry of swimmers (particularly their aspect ratios) affect swimmer

orientations in the bulk flow, the orientation distributions for swimmers interacting
with walls are affected as well, thus prompting our study into determining how bulk
flow and cell shape play a role in how microswimmers approach walls. Furthermore,
there is the problem of determining appropriate boundary conditions to be used in
continuum models, such as in Bearon & Hazel (2015) and Ezhilan & Saintillan (2015).
It is possible to introduce a no-flux condition or Dirichlet conditions. For the case of a
two-dimensional equilibrium solution, the no-flux condition corresponds to the integral
of the flux terms over all orientations being zero at the wall. This condition by itself
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does not specify the probability density of orientation distributions at the wall, and
is not a sufficient condition to obtain a unique solution. In Bearon & Hazel (2015) and
Ezhilan & Saintillan (2015) a point-wise no-flux boundary condition was proposed for
a finite element solution, imposing that the flux in every direction must be zero for
all microscale orientations. However, in section 3.1, we will illustrate that this is not a
sensible boundary condition because the formulation of the two-dimensional equilibrium
Smoluchowski equation in the absence of any external taxes (like chemotaxis) leads
to unrealistic cell densities in a boundary layer. We note that while some continuum
models impose the additional constraint of perfect symmetry in azimuthal angles and
spatial changes in orientation at boundaries to satisfy no-flux (Jiang & Chen 2020),
this is not the only additional constraint which can satisfy the no-flux condition. We
also note that in individual based dynamics, there exist various boundary interactions
for Brownian swimmers (Jakuszeit et al. 2019), such as specular reflection (Volpe et al.
2014) and different types of surface sliding models (Sipos et al. 2015; Spagnolie et al.
2015; Zeitz et al. 2017). Given our focus on dilute suspensions for channels with height
W = 426µm (see table 1), and typical bacterial lengths of 1-2µm, we can approximate
a point-like surface interaction (Saintillan & Shelley 2013; Ezhilan & Saintillan 2015)
without concern about swimmer exclusion areas at the wall, as considered when studying
swimmers in microfluidic channels (Chen & Thiffeault 2021).

In this paper we develop and analyse dynamics captured by two types of mathematical
models (continuum models and stochastic individual based models) to determine sensible
boundary conditions for continuum models that correspond to different physical wall-
interactions. We also study the underlying bulk-flow behaviours which lead to different
distributions of wall interactions. We will outline the numerical methods for solving the
conservation equation (§2.1, §2.2), introduce an individual based stochastic method, and
highlight the analytical deterministic approach used for highlighting the underlying bulk-
wall interactions (§2.3). After establishing these methods, we will demonstrate the non-
uniqueness of the no-flux boundary condition (§3.1) and illustrate how we can choose a
sensible boundary condition for the continuummodel using individual based model (IBM)
stochastic simulations (§3.2). We compare the relationships between models captured by
doubly periodic Poiseuille flow (a flow with a parabolic flow profile in the upper half-
channel and reverse profile in the lower half-channel and periodic boundary conditions)
and specular reflection (§3.2.1), and the relationship between constant wall conditions
and randomised reflections (§3.3.1). We also analyse the wall-interaction behaviour
observed in the limiting case of a perfectly absorbing wall condition (§3.3.2) in terms
of diffusional effects and the importance of deterministic trajectories (as quantified by a
novel accumulation index). Finally, we will analyse the effects of shear and shape near the
wall without hydrodynamic interactions (§3.2), and use a dynamical systems approach
to understand the effect of swimmer geometry, the ratio of swimming to fluid velocities,
and the magnitude of rotational and translational diffusion on the interplay between bulk
behaviour and wall interactions (§3.4).

2. Methods

2.1. Conservation equation for ψ

We begin by considering the conservation equation for a probability distribution
function ψ(x,p, t) that is dependent on swimmer position, x, swimmer orientation p,
and time t,
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Figure 1: Schematic of two-dimensional Poiseuille flow and individual swimmer
trajectories. Swimmers are not drawn to scale.

∂ψ

∂t
+∇x · (ẋψ) +∇p · (ṗψ) = 0, (2.1)

where ∇x and ∇p are the gradient operators in physical space and orientational space on
a unit sphere of orientations Ω, respectively. The translational flux, ẋ, and orientational
flux, ṗ, as given in Saintillan & Shelley (2013), are

ẋ = u+ Vsp−DT∇x lnψ, (2.2)

ṗ = βp · E · (I − pp) +
1

2
ω × p− dr∇p lnψ. (2.3)

The translational flux is dependent on the fluid velocity u, the cell swimming at speed Vs
in direction p, and translational diffusion DT . The orientational flux for an asymmetric
swimmer with a shape factor (Bretherton constant) β, consists of the rotation charac-
terised by the rate-of-strain tensor E, background vorticity ω, and Brownian rotational
diffusion dr. The shape factor β is restricted to 0 6 β < 1 for prolate shapes, where
β = 0 corresponds to spherical swimmers.
On integrating the conservation equation 2.1 over all orientations, we obtain

∂

∂t

∫

Ω

ψ(x,p, t)dp+∇x · J = 0 (2.4)

with flux term

J =

∫

Ω

((u+ Vsp)ψ −DT∇xψ)dp. (2.5)

To satisfy a no-flux condition through the walls in a confined geometry, we impose

J · n̂ = 0, (2.6)

where n̂ is normal to the wall. Due to no-penetration of the fluid at the walls, this can
be simplified to

[∫

Ω

(Vspψ −DT∇xψ)dp

]

· n̂ = 0. (2.7)

2.2. Two-dimensional channel flow

To expand upon the study of two-dimensional channel flow as motivated by
experiments (Rusconi et al. 2014) and numerical studies (Bearon & Hazel 2015;
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Scaling I Scaling II

Channel width W 425µm 425µm
Centreline flow velocity U 0mms−1–2.125mms−1 1.25mms−1

Swimming velocity Vs 50µms−1 50–125µms−1

Rotational diffusion dr 1s−1 6×10−4s−1–6s−1

Brownian translational diffusion DT 2× 10−9cm2s−1 2× 10−9cm2s−1

Relative translational diffusion d = DT dr/V
2

s 10−4 –
Swimming Péclet number ǫ = 2Vs/Wdr 0.2 –
Rotational (Flow) Péclet number Pe = 2U/Wdr 0–10 1–104

Translational Péclet number PeT = WU/2DT – 1–106

Velocity ratio ν = Vs/U – 0.04-0.1

Table 1: Parameter variables for scalings I and II, unless stated otherwise.

Vennamneni et al. 2020), let us consider a horizontal channel of height W (as shown in
figure 1), such that for a coordinate system (X,Y ) with orthonormal base vectors i, j,
the channel walls are at positions Y = ±W/2. Suppose there is a parabolic flow through
the channel with velocity

u = U

(

1− 4

(

Y

W

)2
)

i, (2.8)

where U is the centreline flow speed of the channel.

We also take the cell orientation to be constrained in the two-dimensional place, so
that the direction of orientation p can be defined in terms of the angle θ measured from
the horizontal:

p = cos θi+ sin θj. (2.9)

We further introduce the cell concentration distribution

n(y) =

∫ 2π

0

ψ(y, θ)dθ. (2.10)

To identify how key parameters affect the behaviour of the system, it is helpful to
non-dimensionalise to reduce the number of free parameters. We have identified that
two separate scalings are useful to enable the study of (I) flow effects on microswimmer
distribution and (II) rotational and translational diffusion effects on swimmer and wall
interactions. In scaling I (§2.2.1), used by (Bearon & Hazel 2015), the rotational diffusion,
dr, appears in all non-dimensional parameters, and so the scaling is most useful when
we can keep the rotational diffusion constant. This is appropriate when we investigate
flow effects, highlight the significance of how the no-flux boundary condition is imposed,
and how the boundary affects the bulk flow dynamics computed numerically in §3.1.
Meanwhile, with scaling II (§2.2.2), the flow speed, U , appears in all non-dimensional
parameters, but here we can easily examine the effects of translational and rotational
diffusion (as they only appear in a single non-dimensional parameter) and study their
impact on wall-interactions (§3.2, §3.3 and §3.4).
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2.2.1. Scaling I

We nondimensionalise the system with length and time scales L = W
2

and TI = 1

dr

,

respectively, such that our coordinate system can be redefined as (x, y) =

(

2X

W
,
2Y

W

)

,

with boundaries located at y = ±1. This leads to the two-dimensional conservation
equation

∂ψ

∂t
+ ǫ

∂

∂y
(sin θψ)− ǫ2d

∂2ψ

∂y2
+

∂

∂θ

(

yPe(1− β cos 2θ)ψ −
∂ψ

∂θ

)

= 0 (2.11)

where ǫ = 2Vs

Wdr

, d = DT dr

V 2
s

, and Pe = 2U
Wdr

, are the swimming Péclet number, the ratio of

the Brownian diffusion rate to rotational diffusion, and the rotational flow Péclet number,
respectively. For this scaling, the no-flux boundary condition reduces to

∫ 2π

0

(

sin θψ − ǫd
∂ψ

∂y

)

dθ

∣

∣

∣

∣

y=±1

= 0 (2.12)

at the boundaries. This scaling will be used in section §3.1 to highlight the importance of
boundary conditions on the bulk flow, and why the choice of boundary conditions must
be treated with care.

2.2.2. Scaling II

For scaling II, we introduce the same length scale as previously, such that the bound-
aries remain unchanged at y = ±1, but introduce a new time scale TII = W

2U
. This leads

to an alternate dimensionless conservation equation

∂ψ

∂t
+ ν

∂

∂y
(sin θ ψ)−

1

PeT

∂2ψ

∂y2
+

∂

∂θ

(

y(1− β cos 2θ)ψ −
1

Pe

∂ψ

∂θ

)

= 0 (2.13)

with no-flux boundary condition
∫ 2π

0

(

ν sin θψ −
1

PeT

∂ψ

∂y

)

dθ

∣

∣

∣

∣

y=±1

= 0. (2.14)

Here, ν = Vs/U is the ratio of the swimming speed to the centreline velocity, Pe is
the same rotational Péclet number as defined previously, and PeT = WU/(2DT ) is the
translational Péclet number. Note here that the change in time scale focuses rotational
diffusion effects to a single dimensionless quantity Pe, leaving the other dimensionless
quantities independent of rotational diffusion.

2.3. Cell trajectories

These conservation equations can further be transformed to an individual-based
stochastic model, as there exists an established complete equivalence between forward
Fokker-Planck equations and diffusion processes with a drift coefficient µ(Xt, t) and
diffusion coefficient D(Xt, t) (Gardiner 2009). Hence, Fokker-Planck equations of the
form

∂ψ

∂t
(x, t) = −

n
∑

i=1

∂

∂xi

[

µi(x, t)ψ(x, t)

]

+

n
∑

i,j=1

∂2

∂xi∂xj

[

Dij(x, t)ψ(x, t)

]

(2.15)

have an equivalency to Itô SDEs of the form

dXt = µ(Xt, t)dt+ σ(Xt, t)dW t, (2.16)
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where Xt = (y(t), θ(t)) is the position and orientation vector, dt is the time step, dW t

is the Wiener process, µ(Xt, t) is a drift term, and the diffusion effects are captured in
σ(Xt, t) via the relation

D(Xt, t) =
σ(Xt, t)σ(Xt, t)

T

2
.

As the two-dimensional channel flow equations are of the form of equation 2.15, this allows
for transformation to Itô SDEs. We select scaling II for the analysis of cell trajectories,
and transform equation 2.13 into an Itô SDE with drift and diffusion terms

µ(y, θ, t) =

(

ν sin θ
y(1− β cos 2θ)

)

, (2.17a)

σ(y, θ, t) =





√

2

PeT
0

0
√

2

Pe



 , (2.17b)

because this formulation allows for the separation of rotational and translational diffusion
effects. Taking the limits of PeT , P e→ ∞ we can extract the case of a purely determin-
istic system without diffusion. Computationally, the diffusion effects can be switched off
by replacing the diagonal entries of the matrix by 0.
For the SDE, we consider three possible boundary conditions at walls y = ±1: specular

reflection, uniform random reflection and absorbing boundary. In the case of specular
reflection (boundary condition S), swimmers with angles of incidence θi instantaneously
reorient to θr = mod(2π−θi, 2π) such that θi, θr ∈ [0, 2π). For uniform random reflection
(boundary condition R)

θr =

{

π + π ·U (0, 1) if θi ∈ [0, π] at y = 1,

π ·U (0, 1) if θi ∈ [π, 2π] at y = −1,
(2.18)

where U (0, 1) is a uniformly distributed random number in the interval (0,1). Meanwhile,
for a perfectly absorbing boundary (boundary condition A) trajectories terminate upon
impact with a wall.
In order to visualise rotational diffusion and shape effects on downstream swimming,

consider example trajectories from the IBMwith boundary condition S, as shown in figure
2, with the addition of a x–direction advection term such that Xt = (y(t), θ(t), x(t)).
We neglect translational diffusion for simplicity since the focus of this paper is on the
transverse distribution, and as advection in the x–direction would dominate translational
diffusion. For this case we augment the drift and diffusion terms:

µ(y, θ, t) = Ẋt =









ν sin θ
y(1− β cos 2θ)

1− y2 + ν cos θ









, (2.19a)

σ(y, θ, t) =













√

2

PeT
0 0

0
√

2

Pe
0

0 0 0













. (2.19b)

Figures 2a–2c correspond to Pe = 104, and β = 0, 0.5, and 0.99, respectively. Spherical
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Trajectories for swimmers in x–y plane, as obtained with scaling II, with initial
positions x0 = 0 and y0 = −1,−0.6, 0, 0.6, 1 (given by the blue, red, green, purple, and
yellow lines, respectively), translational Péclet number PeT = 106, and velocity ratio
ν = 0.04. The translational diffusivity is neglected in the x–direction for simplicity, and
ẋ = (1 − y2) + ν cos θ, i.e. the x–component is comprised of swimming and advection
only. Figures with Pe = 104: (a) β = 0, (b) β = 0.5, and (c) β = 0.99. Figures with
Pe = 100: (d) β = 0, (e) β = 0.5, and (f) β = 0.99. Figures with Pe = 1: (g) β = 0, (h)
β = 0.5, and (i) β = 0.99.

swimmers in this low rotational diffusion regime are shown to swim in almost periodic
trajectories, as they are advected downstream. Slightly elongated swimmers (β = 0.5)
have longer periods of oscillation in the x–direction. Highly elongated swimmers (β =
0.99) traverse the furthest downstream during a single orbit as they are aligned with
the flow direction for long periods of time, which is a feature of Jeffrey orbits. Due to
the background flow velocities being greatest about y = 0, advection per oscillation is
strongest at the channel centre, and weakest at the walls. Similar dynamics exist for
Pe = 100 (figures 2d–2f) and Pe = 1 (figures 2g–2i), but increasing rotational diffusion
(i.e. decreasing Pe) distorts the trajectories and increases the noisiness of the trajectories
(comparable to purely Brownian noise).
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2.4. Numerical methods

2.4.1. SDE

To calculate the probability distribution ψ from the stochastic IBM in bounded do-
mains we run simulations for 106 stochastic swimmers which are uniformly initialized over
the domain (θ, y) ∈ [0, 2π)× [−1, 1] with sampling step size dt = 0.1, and normalization

condition
∫ 2π

0

∫ 1

−1
ψ(θ, y)dydθ = 4π. The probability distribution is calculated from the

end-states of all trajectories upon convergence (i.e. when doubling the run time does not
change the macroscopic properties of the probability distribution).
For the bounded domains the boundary conditions are as detailed in §2.3. with details

of the model and numerical method for the doubly periodic Poiseuille flow given in §3.2.1.

2.4.2. Continuum model

To solve the two-dimensional equilibrium continuummodel for the probability distribu-
tion ψ, we a use a Galerkin finite element method, as in Bearon & Hazel (2015) with the
C++ library oomph-lib Heil & Hazel (2006). In §3.1 we solve the problem with scaling
I by simplifying equation 2.11 to the time-independent equilibrium problem, multiplying
the equation by a y and θ dependent test function N(θ, y), integrating over the domain,
and integrating by parts, to obtain the weak solution

∫ 2π

0

∫ 1

−1

ǫ

[

sin θψ − ǫd
∂ψ

∂y

]

∂N

∂y
+

[

yPe(1 − β cos 2θ)ψ −
∂ψ

∂θ

]

∂N

∂θ
dydθ (2.20)

−

∫ 2π

0

ǫ

[(

sin θψ − ǫd
∂ψ

∂y

)

N

]1

−1

dθ −

∫ 1

−1

[(

yPe(1− β cos 2θ)ψ −
∂ψ

∂θ

)

N

]2π

0

= 0.

For the wall bounded domain, we impose the normalisation constraint
∫ 2π

0

∫ 1

−1
ψ(θ, y)dydθ =

4π.
The equations are discretized using finite elements on a grid nθ × ny, where nθ = 100

and ny = 1000, as doubling grid points has shown negligible change in distributions.
The elements in the θ–direction are uniformly distributed and the elements in the y–
direction are non-uniform to allow for higher resolutions near the wall. A piece-wise
linear scaling is implemented to restrict half the elements to |y| > 0.99. Simple periodic
boundary conditions are applied in the θ–direction to ensure the angles of orientation
wrap around. Similarly, the weak solution for the wall-bounded case, with scaling II,
takes the form
∫ 2π

0

∫ 1

−1

[

ν sin θψ −
1

PeT

∂ψ

∂y

]

∂N

∂y
+

[

y(1− β cos 2θ)ψ −
1

Pe

∂ψ

∂θ

]

∂N

∂θ
dydθ = 0 (2.21)

−

∫ 2π

0

[(

ν sin θψ −
1

PeT

∂ψ

∂y

)

N

]1

−1

dθ −

∫ 1

−1

[(

y(1− β cos 2θ)ψ −
1

Pe

∂ψ

∂θ

)

N

]2π

0

= 0.

with the same normalisation constraint. For scaling II, the finite element problems are
discretized on a grid of nθ × ny, with nθ and ny varying dependent on the boundary
condition type and Péclet number of interest.
In the continuum model different boundary conditions will be applied, ranging from a

pointwise constraint on the flux (constraint P) to Dirichlet constraints on ψ (constraints
D1 and D2), as detailed in §3.1. For constraint P no-flux is satisfied by implementing
the natural finite element boundary condition at the walls i.e. at y = ±1 the terms
corresponding to vertical flux are omitted, when applying the integration by parts. For
constraints D1 and D2 the boundary values of ψ are pinned, and the values of the
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constants emerge upon the enforcement of the normalisation condition. Furthermore, a
doubly periodic Poiseuille flow model DP will be detailed in §3.2.1.

3. Results

3.1. The importance of boundary conditions

To highlight the non-uniqueness of constraints that satisfy no-flux, let us use scaling
I (§2.2.1) when considering a wall-bounded problem. Let Jθ(y) be the integrand of the
no-flux integral given in equation 2.12 at boundary y with orientation θ such that

Jθ(y) = sin θψ − ǫd
∂ψ

∂y
. (3.1)

We define the no-flux boundary condition as follows:
∫ 2π

0

Jθ(y = ±1)dθ = 0. (3.2)

We introduce three example boundary constraints: (P) a pointwise boundary constraint
at y = ±1 such that Jθ(y = ±1) = 0 for all θ, (D1) a Dirichlet boundary constraint
ψ(±1, θ) = C0 for all θ, and (D2) a different Dirichlet boundary constraint such that
ψ(−1, θ) = C1, ψ(1, θ) = C2, and C1 6= C2 for all θ. In figure 3a we consider boundary
constraint P . For the case of a long, slender swimmer with shape parameter β = 0.99, in
the absence of background flows (Pe = 0), the implementation of this boundary condition
leads to a uniform cell distribution over most of the domain, except over a boundary
layer near the walls. In these boundary layers, there exist large, unrealistic regions of
accumulation several orders of magnitude higher than in the bulk. These artifacts arise

when implementing a pointwise condition, because
∂ψ

∂y
= 0 for most of the domain, but

for sin θψ = ǫd
∂ψ

∂y
to be satisfied for ψ 6= 0, where ǫ = 0.2 and d = 10−4 (see table 1), a

sharp gradient in y must develop near the boundary to match when sin θ 6= 0.
We consider an alternative boundary constraint D1 in figure 3b where we apply a

Dirichlet boundary condition such that ψ(θ,±1) = 1 for all θ. The resulting uniform
distribution spans the full domain, satisfying a zero distribution gradient in both y and
θ, and the no-flux boundary integral. This is in agreement with the physically intuitive
cell distribution for a suspension of swimmers in the absence of external stimuli (like
chemotaxis and phototaxis), hydrodynamic wall interactions, and without the presence
of background shear introducing preferred directions of orientation. But what happens
when we introduce other Dirichlet boundary conditions? In figure 3c we impose boundary
constraint D2 where the boundaries are pinned to different values, ψ(θ,−1) = 2/3 and
ψ(θ, 1) = 4/3. This introduces a gradient which spans the entire phase space and is
no longer restricted to a thin boundary layer. This artificial gradient highlights the
crucial nature of the choice of boundary conditions when modelling equilibrium systems
for suspensions of swimmers via continuum methods, as these can affect the the bulk
dynamics of the entire system.
While it is true that the boundary conditions can affect the bulk flow dynamics, the

coupled nature of the model also leads to the bulk flow affecting boundary distributions.
In figures 3d–3i we introduce linearly varying background shear flows with pointwise
boundary conditions (constraint P), with Pe = 2 in figures 3d, 3g; Pe = 6 in figures 3e,
3h; and Pe = 10 in figures 3f, 3i. The introduction of a background flow leads to regions of
cell accumulation and depletion (which will be discussed in more detail in §3.2) in most of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Figure highlighting the effects of boundary conditions on bulk flow and shear
on the stationary probability distribution with scaling I. Probability distributions ψ for
Poiseuille flow in bounded domain θ × y ∈ [0, 2π)× [−1, 1], for β = 0.99, nθ = 100, ny =
1000. Pe = 0 for (a)-(c) with boundary constraints P , D1, and D2, respectively. The
emerging boundary conditions in (b) correspond to ψ(θ,±1) = 1 and for (c) ψ(θ,−1) =
2/3 and ψ(θ, 1) = 4/3. (d)&(g): Boundary condition P for Pe = 2; (e)&(h): Boundary
condition P for Pe = 6; and (f)&(i): Boundary condition P for Pe = 10.

the bulk. However, near the wall, the behaviour deviates from the observed accumulation
region distributions and a boundary layer develops. In the boundary layers, there are large
peaks of accumulation, allowing us to quantify the boundary layer by three features:
the height of the peaks (level of cell accumulation), the span (width) of the peaks in
orientation space, and the thickness of the boundary layers in y–space. The height of the
peaks decrease monotonically with increase in flow rate (reflected here by an increase in
Pe), from O(104) in figure 3a (Pe = 0) to O(103) in figures 3f,3i (Pe = 10). Meanwhile,
the orientation width of the peaks at half the peak-heights w(ψpeak/2, P e) decreases
with increased Pe, as w(ψpeak/2, 0) = 1.7, w(ψpeak/2, 2) = 0.94, w(ψpeak/2, 6) = 0.57,
and w(ψpeak/2, 10) = 0.5. Finally, we find that increases in background flow lead to a
decrease in boundary layers thickness (in y–space) as the bulk flow dynamics dominate
boundary effects. By defining the boundary layer thickness as the layer over which there
is a 10% deviation in cell concentration n(y) we find the boundary layer thicknesses to
be BL(Pe = 2) = 0.04, BL(Pe = 6) = 0.035, and BL(Pe = 10) = 0.015.
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(a)

(b)

(c)

Figure 4: A comparison of the bulk dynamics in a continuum double-Poiseuille model, to
a stochastic bounded simulation with wall-bounded specular reflection with scaling II, for
Pe = 10, β = 0.99, ν = 0.04, and PeT = 106. (a) Finite element continuum simulation
for (nθ = 100, ny = 500) double-Poiseuille bivariate ψ distribution for flow with periodic
boundaries; (b) IBM stochastic bivariate ψ distribution for single Poiseuille flow with
point-wise no-flux conditions at y = ±1; (c) Flow profile for double-Poiseuille flow in (a).

While it is easy to discern that the constant boundary conditions in figure 3b are
reasonable conditions for the case of no shear, the matter of discerning sensible continuum
boundary conditions for sheared flows is less obvious. In the next sections we will
determine a systematic, sensible approach to selecting continuum boundary conditions
for sheared flows, and study the contributions of diffusion effects. For clarity, and to allow
for the study of diffusion effects, we will only use systems with scaling II from here on.

3.2. What is a sensible no-flux boundary condition for the continuum model?

As highlighted in figure 3, there is no unique formulation for implementing an integral
no-flux boundary condition, and it is necessary to carefully select additional boundary
constraints. We will consider an IBM with specular reflection (IBM condition S) and
examine what continuum approaches/boundary conditions best fit it. In particular we
will investigate the approach of using a double periodic Poiseuille flow DP . In the
literature, double-Poiseuille flows have been used for studying low and high shear trap-
ping of bacterial suspensions to circumvent the problem of explicitly implementing a
boundary (Vennamneni et al. 2020). Further IBM boundary conditions such as uniform
random reflection (condition R) and perfectly absorbing boundaries (condition A) will
be explored in the next section (§3.3).
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3.2.1. Doubly periodic Poiseuille flow

As the doubly periodic Poiseuille flow serves as a potential alternative for capturing
the bulk flow in the bounded domain, we adapt the finite element model with a doubly
periodic flow profile as shown in figure 4c. For this, the background fluid flow, u, for
domain y ∈ [−3, 1], becomes

u =

{

(1− y2)î for y > −1

−(1− (y + 2)2)î for y < −1
(3.3)

such that the background flow for y ∈ [−1, 1] is identical to the background flow for a
simple Poiseuille flow in the channel as derived with scaling II. For this extended domain
we implement periodic boundary conditions DP

ψ(θ,−3) = ψ(θ, 1), (3.4a)

ψ(0, y) = ψ(2π, y), (3.4b)

and normalisation condition
∫ 2π

0

∫ 2

−2
ψ(θ, y)dydθ = 8π. The double-Poiseuille flow profile

is C0 continuous in shear and C1 continuous in velocity at y = ±1. While the introduction
of the doubly periodic Poiseuille flow velocity profile introduces a discontinuity in the
second derivative of the flow velocity in y about y = −1, this does not lead to any
difficulties with the finite element discretisation, as the implementation only requires
continuity of the first derivative.
Comparing the subdomain for the finite element double-Poiseuille model θ ∈ [0, 2π], y ∈

[−1, 1] in figure 4a to the bounded, stochastic IBM with boundary condition S in figure
4b, for Pe = 10, PeT = 106, ν = 0.04 and β = 0.99, we find similar bulk-flow dynamics
with regions of cell accumulation above y = −1, at angles slightly greater than θ =
0, π. Meanwhile, just below y = 1, near the ‘upper wall,’ there also exist two areas of
accumulation of equal intensity, but of flipped geometry, for angles just below θ = 2π
and θ = π. In both cases, these areas of accumulation correspond to swimmers oriented
close to the horizontal, but pointing into the wall and out of the wall, respectively.
While this qualitatively suggests consistency in the bulk flow dynamics observed via

the double-Poiseuille continuum model with the bounded stochastic IBM model, further
study is required to determine if the equilibrium distributions obtained from the double-
Poiseuille models at y = ±1 compare closely with the observed bounded Stochastic IBM
Eulerian solutions captured with specular reflective boundaries S. Before examining in
detail the comparison between the two models (figures 7 and 8), we first consider the
effects of diffusion on the system (figures 5 and 6).
In figure 5 we highlight the roles of translational and rotational diffusion on the

equilibrium distribution, and the origin of the macroscopic regions of accumulation and
depletion. In all figures, individual trajectories in time (white lines) are highlighted
via dots with a gradient from black to white. We begin by considering the full IBM
problem in figure 5a, with diffusion effects quantified by Pe = 10 (rotational diffusion)
and PeT = 1000 (translational diffusion). The lowest trajectory in figure 5a highlights
a cell trajectory which enters a region of accumulation close to the bottom wall, while
oriented parallel to the flow direction (θ = π). The cell moves up and down the channel
height, while approximately maintaining its orientation parallel to the flow direction
due to translational diffusion effects. Meanwhile, in the presence of only rotational
diffusion (figure 5b), there is little y–variation in the lowest trajectory, but there is some
orientational variation with the clumping and widening of cell positions measured at equal
time separations, due to rotational diffusion counteracting and enhancing reorientations
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Figure 5: (a)–(c): Example trajectories of cells swimming in sheared flow in θ-y phase
space (white lines), with snapshots in time given by dots along each trajectory (black
to white in time). Cell trajectories are overlaid over bivariate probability distribution
ψ, as obtained from IBMs with specular reflection boundary conditions (condition S)
for β = 0.99 and ν = 0.04. (a): IBM with Pe = 10 and PeT = 103; (b): IBM with
only rotational diffusion effects Pe = 10; (c): Fully deterministic IBM without diffusion
effects. The red line separates between different modes of swimming and the yellow
line separates between swimmers which interact with the bottom wall in the absence
of diffusion and those which do not; (d) Divergence of macroscopic deterministic drift
effects, χ = −div(µ), highlighting regions of expected inwards (χ > 0) and outward cell
flux (χ < 0), i.e. expected regions of accumulation and depletion, respectively.

due to Jeffery orbits, respectively. The removal of translational diffusion effects also allows
for slightly sharper regions of accumulation than in figure 5a, as seen by slightly larger
values of ψ in the areas of accumulation. In figure 5c, we consider the fully deterministic
case, where no rotational or translational diffusion affects the swimmer. Any cell which
enters the region of accumulation will exit it along predetermined pathlines, and only
after the completion of a full orbit can a cell revisit the region of accumulation. The
accumulation measured in that case is solely by virtue of cells spending longer periods
aligned with the flow direction as described by Jeffery orbits.

In figure 5a, the macroscopic areas of accumulation are dependent on both the shape
and the motility of the swimmers. The fluid itself is incompressible and cannot by
itself cause the stratification between regions of accumulation and depletion. Taking the
negative divergence of the deterministic dynamics (the drift component of the SDE with
µ defined in §2.3), χ = −∇y,θ ·µ = −2βy sin 2θ, we can quantify a measure of the inward
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Figure 6: Stacked probability distribution of angle of incidence for particles striking the
lower wall (y = −1), for ν = 0.04 and PeT = 106. The blue distribution corresponds
to particles which are expected to strike the wall in the absence of diffusive effects
(originating in region 1), and the red, correspond to particles that would not strike
the bottom wall in the absence of diffusive effects (originating in region 2). The overall
envelope characterises the distribution of cells striking the bottom wall and integrates
to 1. For β = 0.99, (a)Pe = 104, (b)Pe = 100, and (c)Pe = 1. (d) Ratio of cell–wall
interactions with cells originating in region 1 to total cell–wall interactions, for varying
β and Péclet numbers.

flux at any point in the phase space as shown in figure 5d. The regions of outward flux
and inward flux, given in blue and yellow, respectively, roughly correspond to the areas of
depletion and accumulation found from the individual and continuum models. In reality
the drift related fluxes are balanced by diffusion. The thickness and position of the areas
of accumulation are also dependent on the diffusion effects. In figure 5b, we find that in
the absence of translational diffusion, the width of the peaks decreases. Meanwhile, in
the absence of all diffusion (figure 5c), there are only thin areas of accumulation about
θ = 0, π which correspond to the cusps of the deterministic trajectories. In this case,
maximal accumulation occur at θ = π just within the cusp of the red separatrix which
separates cell between those which completely 2π rotations per trajectories and those
which only wobble in orientation (see Rusconi et al. (2014)). We can further separate
the regions with trajectories that will interact with the lower wall, and those that will
not, by the yellow line. We call the area of guaranteed interactions (below the yellow
line) ‘Region 1’, and the area above ‘Region 2’. In the absence of diffusion, all cell
trajectories are predetermined, and only Region 1 cells interact with the walls. However,
with increasing diffusion, larger quantities of microswimmers cross the streamlines, and
more cells from Region 2 interact with the walls. The shift in interactions is captured
in figure 6 for fixed IBM runtime Tsim = 600 through stacked probability distributions,
where the total number of wall interactions across 51 bins are normalised to 1. For the
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case of Pe = 104 with β = 0.99, the orientation distribution peaks tend toward θ → π as
β → 1. In this low rotational diffusion case, over 80% of all wall interaction originate from
region 1, and this percentage decreases monotonically with Pe, irrespective of swimmer
shape (see figures 6a,d). An increase in rotational diffusivity, corresponding to Pe = 1
(figure 6c) shifts the peak of the distribution θpeak → 3π/2, and the size of the peak
decreases with a decrease in β (see figure 16).
Next, we consider the comparative distributions obtained from the doubly periodic

IBM (figure 7a), the doubly periodic continuum model (figure 7b), and the wall-bounded
IBM with specular reflection S (figure 7c). We compare the cell concentration distribu-
tions of swimmers, n(y), across the channel height y ∈ [−1, 1] for β = 0.99, for different
values of rotational diffusion (Pe = 1, 10, 100, 104). Direct comparison of the three models
for β = 0.99 show clear agreement in the cell concentrations and accumulations, except
some depletion of the cell concentration at the walls for the specular reflection IBM. The
observed depletion is a numerical artifact of specular reflection in the IBM, in which the
finite time step causes cell trajectory overshoots, leading to some cell depletion about
θ = 0 for y = −1 and θ = π at y = 1, as seen in figures 5a and 5b (see Appendix A for
details). We note that the depletion of cells is most pronounced for intermediate values
of Pe. For high Pe the migration of cells towards the channel centre due to low shear
trapping (Vennamneni et al. 2020) results in low cell concentrations at the wall, therefore
minimising the effect that overshooting may have on the cell distribution concentration.
Meanwhile, for low Pe, the high rotational diffusion results in any artificial depletion
being largely counteracted, thereby reducing the dip in cell concentrations. Finally, for
intermediate values of Pe high shear trapping ensures a high enough concentration of
cells near the walls for a dip to be noticeable, and the rotational diffusion effects are not
sufficiently large to counteract the cell depletion due to overshooting. Nevertheless, the
observed structures and positions of cell distributions obtained across all three models are
in good agreements across the studied range of rotational diffusions, with clear centreline
cell depletion measured for medium to high rotational effects (low to medium Péclet
numbers) which are observed in experiments (Rusconi et al. (2014)) as well as numerical
and analytical studies (Bearon & Hazel (2015); Vennamneni et al. (2020)). Meanwhile, in
the limiting case of low diffusive effects (Pe = 104) tending towards a purely deterministic
case, cells are mostly trapped in fixed trajectories with peaks in cell accumulation at the
cusps of the separatrices between continuously rotating and oscillating trajectories as
highlighted in red in figure 5c and predicted by Rusconi et al. (2014) and Zöttl & Stark
(2013). The strong agreement in the bulk flow and near the walls suggests that the doubly
periodic Poiseuille continuum model might be a sensible modification for capturing the
cell distributions of swimmers undergoing specular reflection at the walls.
While the cell concentration distribution n(y) tells us about the agreement in the

relationship between the three models in terms of cell accumulation, it does not allow
for any insight into the orientations of the swimmers at or near the walls. In figure 8 we
compare the probability density distributions ψ(θ, y) for the doubly periodic Poiseuille
flow continuum model (figures 8a–8c), the IBM specular reflection model (figures 8d–
8f), and the IBM double periodic Poiseuille flow case (figures 8g–8i), for Péclet numbers
Pe = 1 (figures 8a, 8d, 8g), Pe = 10 (figures 8b, 8e, 8h), and Pe = 100 (figures 8c, 8f, 8i).
For direct comparison between the doubly Poiseuille models we plot the distributions at
y = −1, given by solid lines, for shape parameter β = 0, 0.5, 0.99. To provide a comparison
between the continuum model and the IBM we need to account for the numerical cell
depletion due to numerical overshooting for long run-times. To capture near-wall cell
distributions at T = 600, we plot the probability distributions near the walls just beyond
the numerically artificial depletion area at y = −1 + 3ǫ for ǫ = 0.04, as dashed lines.
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Figure 7: Cell number density distributions for (a): IBM with doubly periodic Poiseuille
flow; (b): the distribution of continuum modelling with doubly periodic Poiseuille; and
(c): the IBM distribution with a wall bounded boundary condition. For shape parameters
β = 0.99 with Pe = 104 (blue), Pe = 100 (red), Pe = 10 (yellow) and Pe = 1 (purple).

We note that across the continuum models for spherical swimmers (β = 0 given by the
blue lines), the orientation distribution is constant, indicating that surface interactions
in the absence of hydrodynamic wall interactions, show no preferential orientation. This
uniformity is due to spherical swimmers undergoing a constant rate of reorientation in
sheared flows as spheres have no preferred direction. This is confirmed further by both
IBM models, which despite noisiness, do not display any preferential wall interactions
orientations for all considered orientational Péclet numbers.
For the case of high rotational diffusion, Pe = 1, we note that all distributions for

non-spherical swimmers peak at approximately θ = π/4 and θ = 5π/4 (with troughs
at approximately θ = 3π/4 and θ = 7π/4) across all models, with peak concentrations
increasing with cell elongation. As the rotational diffusion decreases, corresponding to
an increase in the rotational Péclet number, the peaks shift towards θ = 0 and θ = π for
all β, with peaks clearly sharpening for the case of β = 0.99.
While the peaks for β = 0.5 were ψpeak ≈ 1.3 at Pe = 1, for Pe = 10 this rises

to ψpeak ≈ 1.5, and for Pe = 100 decreases to ψpeak ≈ 1. The shift in peaks has
a two-fold origin: the relative roles of deterministic versus diffusion effects, and the
shift in the bulk cell distributions due to high- and low-shear trapping. In the former
case, as rotational diffusion effects decrease (increase from Pe = 1 to Pe = 10) the
decrease in randomness leads to decreased orientational spreading and sharper peaks.
The slight elongation of cells (β = 0.5) also results in cells spending more time aligned
parallel to the flow direction. Meanwhile high- and low-shear trapping are phenomena
observed by Vennamneni et al. (2020), where high-shear trapping refers to the shape
and rotational diffusion dependent migration of cells towards channel walls and similarly
low-shear trapping refers to the migration of swimmers towards the centreline. In our
studies, both high-shear trapping and low-shear trapping are captured for β = 0.99, as
evidenced by the high-shear trapping leading the peak of the wall distribution increasing
from ψpeak ≈ 1.6 to ψpeak ≈ 4 to ψpeak ≈ 8, for Pe = 1, 10, 100, respectively, before a
transition to low-shear trapping for Pe = 104 in figure 7 as the cells move away from the
walls.
We further compare the profiles across the different models. For a small Péclet number

Pe = 1 (see figures 8a and 8d) the profiles at ynear (the dashed lines) are in good
agreement, with similar peak magnitudes and spreads. Although the IBM distributions
for β = 0 are noisy about ψpeak = 1 for all Péclet values, they are in agreement with the
doubly Poiseuille cases in figures 8a–8f. For Pe = 100 (figures 8c and 8f) for the case of
β = 0.99, while the central peaks about θ = π are of similar height, the central peak about
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Figure 8: Comparing the distributions at the wall for varying Pe and β, between the
doubly periodic continuum model and the wall-bounded specular reflection IBM for ν =
0.04 and β = 0, 0.5, 0.99. The probability distributions ψ at y = −1 (solid lines) and
y = −1 + 3ǫ (dashed lines) for the double-Poiseuille continuum model, for (a) Pe = 1
(nθ = 100, ny = 500); (b) Pe = 10 (nθ = 200, ny = 500); and (c) Pe = 100 (nθ = 400,
ny = 200). The probability distributions ψ near the bottom wall y = −1+3ǫ for the wall-
bounded IBM with specular reflection, for (d) Pe = 1; (e) Pe = 10; and (f) Pe = 100.
The probability distributions ψ at the centreline at y = −1 for the doubly periodic
Poiseuille IBM, for (g) Pe = 1; (h) Pe = 10; and (i) Pe = 100.

θ = 0 is slightly larger in the individual based model, as the overshooting of particles
from bounded trajectories is depleting the peak profile about θ = 0. The depletion of the
peak is, however, minor as the rotational diffusion is sufficiently large to feed more cells
into the depletion areas. It is further worth noting that at Pe = 100 overshooting in long
time distributions is only significant at ynear for elongated swimmers as the deterministic
trajectories of elongated swimmers point more sharply away from the wall about θ = 0,
leading to an increased radius of depletion compared to more spherical swimmers.

We further seek to confirm that the discrepancy between the models is due to cell
leaking leading to depletion, and that the IBM system can effectively capture dynamic
equilibria found via our continuum model, we run further double-Poiseuille simulations,
this time for the IBM in figures 8g–8i, corresponding to Pe = 1, 10, 100. After allowing
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for sufficiently long runtimes, we find that the probability distributions at y = −1 (solid
lines) match with those obtained from the continuum model 8a–8c.
Comparing across all models, we find a remarkably good fit in the probability distribu-

tions within the studied range of rotational diffusion strengths and elongations. We see
that all peak height and width distributions are in agreement across the three models,
with only a slight discrepancy between the peak heights at Pe = 100 for β = 0.99 in the
specular reflection IBM due to the aforementioned overshooting, indicating the onset of
the limitations of the stochastic specular reflection IBM occurs at high Pe and strong
elongation.
The good fit between the specular reflection IBM and the doubly periodic Poiseuille

continuum model raises the question of how the doubly periodic model’s symmetry

constraints on ψ and
∂ψ

∂y
at y = ±1 compare to the literature (Jiang & Chen 2019,

2020). From figure 8, we note that at the walls, the cell probability density distributions
satisfy ψ(θ,±1) = ψ(θ + π,±1). With the periodic boundary, the derivative satisfies
∂ψ

∂y
(θ,±1) = −

∂ψ

∂y
(θ + π,±1). The combination of these symmetries ensure that the

flux condition Jθ(±1) = −Jθ+π(±1) and the integral no-flux boundary condition and
impermeability are satisfied for the equilibrium problem. We note that this observed
boundary flux relationship differs from Jiang & Chen (2019, 2021), in which for their
time evolving continuum models with non-uniform initial condition, the flux condition
itself was prescribed to be specular, by imposing the equivalent of Jθ(±1) = −J2π−θ(±1),

through the constraints ψ(θ,±1) = ψ(2π − θ,±1) and
∂ψ

∂y
(θ,±1) = −

∂ψ

∂y
(2π − θ,±1),

in our coordinate system. We note that their imposed conditions satisfy the no-flux
condition, and though the bulk results are consistent across their and our models, we
do not find agreement between their imposed wall behaviours and those that emerge
in our equilibrium studies. We find from our IBMs that imposing specular reflection
in instantaneous wall interactions does not result in a long-term distribution in the
equilibrium solution which satisfies ψ(θ,±1) = ψ(2π − θ,±1). Therefore, the boundary
conditions used by Jiang & Chen (2019, 2021) are not consistent with the distribution
that naturally emerges from our IBM with specular reflection and that also emerges as
the ‘boundary solution’ in the doubly Poiseuille periodic continuum model.

3.3. Further boundary conditions

While we have shown that the dynamics from specular reflection are well captured
by a continuum approximation with doubly periodic boundary conditions, we know that
microswimmers’ surface interactions are not perfect specular reflections. A swimmer near
the wall may remain oriented upstream for a significant period of time, it may attach
to the surface, or it may leave the surface at varying outgoing angles which may be
independent of the incident angles. Keeping this in mind, we consider the effects of
two further wall-interaction models: perfectly random reflections (§3.3.1) and perfect
absorption (§3.3.2)

3.3.1. Random reflections (boundary condition R)

In this section we consider the effects of random uniform reflections at the boundaries
on the equilibrium dynamics of microswimmer suspensions. Suppose we have a random
uniform reflection out of the wall for each incident swimmer, independent of the angle
of incidence, as described by equation 2.18. In figures 9a–9c, we see the bivariate cell
probability density distribution ψ for β = 0.99 for varying rotational Péclet numbers. By
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inspection, the bulk flow distributions are similar to those found via the doubly periodic
continuum model and the specular reflection IBM, with areas of cell accumulations which
sharpen with increased Pe. However, from figure 9c we clearly note the appearance of
secondary peaks at y = ±0.93 for Pe = 104, and also note a smaller peak for Pe =
100 (figure 9b). No clear peak is visible for Pe = 1, as rotational effects dominate
the deterministic secondary structures. We note further, that the upper bound of the
aforementioned secondary peaks are bounded at θ = 0 by the cusp of the deterministic
trajectory originating from y = −1 and θ = π (the yellow separatrix from figure 5c).
Noting that the secondary peaks are wholly introduced by the uniform reflective

conditions, we seek to determine the appropriate continuum model boundary condition
to obtain the corresponding bulk dynamics. To capture the uniformity of reflection, and
lack of orientation preference upon reflection, we consider a continuum model with
a constant Dirichlet wall-boundary condition (constraint D1 introduced in §3.1) such
that ψ is the same constant on both walls and the value of this constant emerges when
enforcing the normalising condition. From figures 9d–9f we find that the same secondary
peaks, indicating that slightly away from the wall there is an enhanced number of cells
swimming downstream.
To further confirm the suitability of comparing the IBMwith random uniform reflection

to the continuummodel with a constant Dirichlet boundary condition, we consider the cell
number density distributions in figure 10. Comparing figures 10a and 10b for β = 0.99, we
find that both profiles for Pe = 104 (the blue lines) have the same primary peaks about
y = ±0.5 as observed for the IBM with specular reflection, but we also get a significant
peak in density about y = ±0.93 in both figures. While there are discrepancies in the
size of the secondary peaks found via the IBM, we note that their size is limited by the
finite time steps. Too large time steps result in cells overshooting and depleting away
from the secondary peaks. We find that there is a computational trade off in the total
runtime required to capture the macroscopic effects (such as the peaks and troughs)
and the smallness of timesteps required to capture the slim secondary peaks. We further
note that in both the continuum and IBM models the minimum cell densities occur at
y ≈ ±0.85. We similarly find the distributions for Pe = 100 to be a good match with the
previous models (figure 7) except at the locations of the secondary peaks. Meanwhile,
for Pe = 1, there is no significant secondary peak as expected.

3.3.2. Perfectly absorbing boundary (boundary condition A)

Our final boundary condition of interest is the case of perfect wall-attachment, i.e.
any swimmer that encounters the wall will adhere to it. For ease of comparing the effect
on the bulk dynamics we allow for specular reflection at the top wall (y = 1) while
enforcing a perfectly absorbing bottom wall, such that cell trajectories are terminated
upon contact with the bottom wall (y = −1). We begin by considering a snapshot of
the bivariate probability density distributions ψ at time T = 600. It is worth noting
that given the presence of diffusive effects, given sufficient time, all cells will attach
to the bottom wall. In figure 11a (β = −0.99 and Pe = 1), the distributions show clear
depletion near the bottom wall, as all cells which have been able to encounter the bottom
have attached. In figure 11b (for Pe = 100) fewer cells are captured by the bottom wall
by time T = 600, however, there is a clear depletion, and the accumulation band in the
bottom half contains approximately 75% the number of cells as their upper-half channel
specular-reflecting counterparts. Finally, figure 11c (for Pe = 104) mainly has depletion of
cells originating below the deterministic separatrix for wall interactions, as cell diffusion
is very small.
In figures 11d-11f, we consider the normalised orientation distributions of the cells
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Figure 9: Comparison of snapshots of bivariate probability density distributions for IBMs
at T = 600 with random wall reflections (a)–(c), to equilibrium probability density
distributions for continuum models with constant boundary condition. (a)&(d): Pe = 1,
(b)&(e): Pe = 100; and (c)&(f): Pe = 104.
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Figure 10: Cell density distributions for (a): IBM with uniform random wall reflection;
and (b): the distribution of continuum model with constant wall distribution. For shape
parameters β = 0.99 with Pe = 104 (blue), Pe = 100 (red), Pe = 10 (yellow) and Pe = 1
(purple).

which have been absorbed at the bottom wall. In figure 11d we find that in the presence
of high diffusion, the wall encounter probability distributions are wide, centred about
θpeak = 3π/2, and the distributions remain unchanged for T = 50, 100, 600. For Pe = 100
in figure 11e, the peak near θ = π continuously increases in time. This localised increase is
due to swimmers crossing the yellow deterministic separatrix in figure 11c. The rotational
diffusion is sufficiently weak that deterministic effects dominate and cells are quickly
captured by the absorbing condition just above θ = π. Finally, for figure 11f, we note a
similar increase in the peak near θ = π. In fact, across figures 11d-f, we find that the
peak orientations at which absorptions occurs shifts from θpeak = 3π/2 towards θpeak = π
with decreasing rotational diffusion.
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Figure 11: A snapshot of the effects of a perfectly absorbing wall condition at the bottom
wall for an IBM (with dynamics at top wall prescribed by specular reflection) on the
bulk dynamics ((a)–(c)) at Trun = 600 and on normalised wall orientation probability
distributions for β = 0.99 ((d)–(f))for runtimes Trun = 50, 100, 600. The black dashed
lines correspond to wall distributions for β = 0.99 as calculated by the accumulation
index (see §3.4). (a)&(d):Pe = 1, (b)&(e):Pe = 100 and (c)&(f):Pe = 104,

3.4. Deterministic wall approach and underlying dynamics

While in the previous sections (§3.1, §3.2, §3.3) we considered the equilibrium distri-
butions of a dilute suspension of swimmers in a pressure driven channel flow and the
effects of diffusion on wall interaction orientations, in this section we will be focusing on
individual deterministic trajectories in such a channel, and how the underlying dynamics
of swimmers of different shapes and shears impact their orientations at wall-approach
in the θ-y space. This is of particular interest as the individual dynamics inform how
suspension interact with the walls, and sheds insights into why swimmers of different
geometries are more likely to interact with the walls with different preferred orientations
and thereby affect their likelihood of wall attachment and biofilm formation. For this,
we consider the deterministic problem, in which we keep the purely deterministic drift
term and remove diffusion dynamics, such that

dy

dt
= ν sin θ, (3.5)

dθ

dt
= y(1− β cos 2θ). (3.6)

From this, we derive constants of motion for the dynamics (similar to Zöttl & Stark
(2013)), by eliminating time dependence and solving

dy

dθ
=

dy

dt
dθ

dt

=
ν sin θ

y(2− β cos 2θ)
. (3.7)
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Figure 12: Deterministic dynamics and the accumulation index. (a) Schematic of the
accumulation index; (b) Streamlines at constants of motion for ν = 0.04, β = 0, 0.5, 0.99
(solid black, dashed blue, and dash-dotted red, respectively); (c) Streamlines at constants
of motion for ν = 0.1, β = 0, 0.5, 0.99 (solid black, dashed blue, and dash-dotted
red, respectively); (d) Accumulation index (proportion of initially uniformly distributed
cells in the phase space that are incident upon the bottom wall at angles θ) for
β = 0, 0.2, 0.5, 0.7, 0.99, for ν = 0.04; (e) Distribution of wall interactions with absorbing
boundary conditions (solid lines) for Pe = 104 for β = 0, 0.5, 0.99 with Trun = 5, 6,
and 50, respectively, and the corresponding accumulation index distributions (dashed
lines); and (f) Proportion of total area of phase space incident on the bottom wall
∫ 2π

0
AI(θ;β, ν) dθ as a function of shape, β, for various swimming speeds, ν.

We find constants of motion, H , with y, θ, β and ν dependence, such that

H =
y2

2ν
+

1
√

2β(1 + β)
arctanh

(
√

2β

1 + β
cos θ

)

+ Constant. (3.8)

From this we derive the trajectories y(θ;H, β, ν) in phase space θ–y, for any particle with
initial condition (θ0, y0) and corresponding constant of motion H :

y(θ;H, β, ν) =

√

√

√

√2ν

(

H −
1

√

2β(1 + β)
arctanh

(
√

2β

1 + β
cos θ

))

. (3.9)

From the trajectories we extract information regarding the expected wall interactions,
trajectory times, and develop a novel accumulation index determining the distribution of
expected wall interactions in the case of a uniformly seeded domain. Example trajectories
are shown in figure 12b for ν = 0.04, where β = 0, 0.5 and 0.99. The trajectories of
deterministic swimmers can be split into two groups: trajectories which interact with the
walls and trajectories which do not. Our interest lies in the former, and we note that each
of the wall-interacting trajectories hits the wall at a different angle. The shape of the
trajectories themselves are dependent upon the elongation of the swimmers as highlighted
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in figures 12b and 12c, where the black lines correspond to spherical swimmers (β = 0),
the blue-dashed lines correspond to swimmers with shape parameter β = 0.5, and the
red dash-dotted lines correspond to β = 0.99. Elongated swimmers undergo increasing
strain effects, such that swimmers spend extended times oriented with the flow direction

(θ = 0, π). With increased elongation, the reorientation in phase-space

(

∂y

∂θ

)

steepen

about θ = 0 and θ = π, thus leading to a change in total area enclosed by trajectories
through θ = π, y = ±1 and the cell trajectories upon wall approach.

Supposing there is an initial, uniform distribution over the entire phase plane θ × y ∈
[0, 2π)× [−1, 1], the accumulation index, AI , is defined as

∫ θ+δθ

θ

AI(θ
′) dθ′ =

IW (θ, θ + δθ)

N
, (3.10)

where IW (θ, θ + δθ) is the total number of swimmers that interact with the bottom
wall at y = −1 with orientations ranging in [θ, θ + δθ] (see schematic in figure 12a),
and N is the total number of swimmers. The accumulation indices for orientations of
incidence captured in figure 12d correspond to the velocity ratio ν = 0.04. We find that
the distributions for various elongations (β = 0, 0.5, 0.99) follow the same trends despite
a difference in scaling. For a fixed centreline flow velocity, the increased accumulation
index for ν = 0.1 results from the increased swimming velocity Vs enabling swimmers
to traverse larger vertical distances prior to shear-induced reorientation. This, in turn,
allows larger proportions of swimmers in an initially uniformly distributed domain to
interact with the walls.

Further points of interest include the orientation θpeak at which maximal wall in-
teractions occur. In the accumulation index (figure 12d) there is a shift in the peak
interaction orientation θpeak from θpeak ≈ 3π/2 to θpeak ≈ π, with cell elongation. We
find similar shape-based shifts in peak wall-interaction orientation with the absorbing
boundary condition in figure 12e.

The absorbing boundary condition distributions are shown to be in agreement with
the accumulation index in the case of small rotational diffusion for shape dependent run
times Trun that are sufficiently long to allow cells to encounter the walls. The run times
required for optimum matching are shape dependent as elongation affects the duration
of Jeffery orbits. The Jeffery orbits, in turn, affect the time it takes for cells with specific
initial positions and orientations to to swim and rotate before cells encountering the
walls. It is also necessary to limit the simulation run times for matching as the clear shape
dependent shift in peak interaction orientations (figure 12e) disappears for sufficiently
long run times, highlighting the transience of the accumulation index distribution. For low
rotational effects (figure 11), for the case of the absorbing boundary condition, the long
term peak continuously increases about θ = π. Here, the diffusion effects are sufficiently
small that once any cells diffuse into Region 1, the deterministic component dominates
and they strike the wall close to θ = π. Similar peaks have been observed to grow about
θ = π for less elongated swimmers in the long-term. The balance between diffusion
and advective domination may also be the underlying reason for shape independence in
peak wall interactions observed for non-spherical swimmers in the reflective boundary
case (see figures 8c, 8f, and 8i). In figure 12f, the total proportion of swimmers which

interact with the bottom wall
∫ 2π

0
AI(θ) dθ are shown for a range of shape factors and

velocity ratios. For small swimming velocities, for swimmers of all considered shape
factors, only a small proportion of swimmers are expected to interact with the lower wall
due to deterministic effects. The proportion of wall interactions increases monotonically
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(a) (b) (c)

Figure 13: Shape dependence of time taken for trajectories beginning at (θ0, y0) to reach
an absorbing wall condition at y = −1, θ ∈ [π, 2π). From this we can extrapolate the
total number of wall interactions by swimmers in the ‘trapped’ domain over a fixed total
runtime. For ν = 0.04, (a) β = 0, (b) β = 0.5, (a) β = 0.99.

with swimming velocity, and increases fastest for β > 0.9, with over 70% of swimmers
interacting with the bottom wall for ν > 0.3.
While swimmer shape affects the orientations at which swimmers are most likely to

interact with the bottom wall we find that all particle trajectories are not of equal time
duration. While separate identical particles on the same trajectories will have the same
orbit duration in the deterministic problem, identical particles on different trajectories
will have different orbit durations dependent on cell shape and velocity ratio ν. In figure
13, the colour maps highlight the time taken for a trajectory starting at position (θ0, y0) to
terminate at the bottom wall (i.e. at y = −1, θ ∈ [π, 2π]) via an absorbing wall boundary
condition. The longest trajectories have durations ranging from T ≈ 6, for β = 0, to
T ≈ 45, for β = 0.99, indicating that slender, elongated cells can take over seven times
longer to complete a single full orbit, compared to spherical cells. This indicates, that
the former has over seven times fewer opportunities for wall interactions over a fixed
runtime. Although a larger proportion of cells are likely to come into contact with walls
at orientation θpeak (as in figure 12d), the particles initially oriented about θ = π have
the longest orbit durations, while cells about θ = 0 have the shortest trajectories. When
considering a Lagrangian perspective, this acts as a limiting factor for the number of
wall interactions per interaction orientation. The number of orbits which a particle can
undergo over a fixed runtime Trun is of biological interest, as it affects the probability
of biofilm formation due to increased opportunities for cell attachment. Finally, we note
that to match the accumulation index and the perfectly absorbing boundary A (as shown
in figure 12e) we took the asymptotic limit to the deterministic problem (Pe → ∞) for
run-times as calculated in figure 13.

4. Conclusions

Using a finite element framework for studying the equilibirium distributions of dilute
suspensions of microswimmers we have ascertained that the choice in boundary conditions
in continuum modelling is crucial as there exists a coupled relationship between the bulk
flow cell dynamics and the boundary dynamics. Though it is known in general that the
no-flux boundary condition is non-unique, we note that the choice of constraints in the
continuum approximation corresponds to specific different reflective dynamics. We find
that a doubly periodic Poiseuille continuum approximation yields a good approximation
of wall-bounded Poiseuille dynamics with specular reflection, while a constant boundary
approximation in the continuum model yields good agreement with random reflection
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models. The former is especially noteworthy as this offers justification for the use of
doubly periodic Poiseuille flow models like Vennamneni et al. (2020) to capture simple
bounded domains with a reflective wall condition. Both results further justify the use of
these continuum approximations in the study of wall interactions for the case of dilute
microswimmer suspensions.
The shape of the swimmers and rotational diffusion experienced by the swimmers is

shown to significantly affect the orientation distributions. From a Eulerian perspective,
there are no-prefered cell orientations for spherical cells, while more elongated swimmers
exhibit a clear preference for orientation up and downstream. This preference has smallest
orientational spread for β = 0.99, for which the distributions are most peaked near
θ = 0, π, with 40% of cells interacting with the walls with incidence angles θ ∈
[π − 0.25, π + 0.5]. From a Langrangian perspective, this is a result of Jeffery orbits
realigning elongated swimmers with non-uniform angular velocity with the flow direction.
On decreasing the rotational Péclet number, Pe, the spread of maximum wall incidence
shifts from θpeak = π to θpeak = 3π/2 as diffusion dominates deterministic dynamics. For
the case of an absorbing boundary condition, when decreasing the rotational diffusion,
the wall-incidence distributions tend towards the distributions as captured by the novel
accumulation index for shape-dependent limited runtimes.
The deterministic dynamics of individual trajectory dynamics in the phase plane θ–

y capture the shift in peak orientation distribution from θpeak = 3π/2 to θpeak = π
for spherical to highly elongated swimmers via the accumulation index. The perpen-
dicular approach of spherical swimmers towards surfaces and the parallel approach of
elongated swimmers towards walls, have been observed for both Chlamydomonas and
bacteria, respectively, in experiments and numerical studies which include hydrodynamic
interactions. Our results suggest that the orientational preferences are enhanced by the
fundamental bulk behaviours of different shaped swimmers.

We find that in the absence of diffusion, elongated particles take over seven times as
long before interacting with the wall compared to a spherical swimmer. It is possible
that elongated swimmers, therefore, must maximise each opportunity they have near
the wall. Once near a wall, elongation leads to increased resistance to random Brownian
rotation allowing swimmers to remain oriented parallel to flows for longer periods which
improves their chemotactic sampling accuracy. Additionally, longer periods of alignment
with walls allow for longer periods of mechanosensing, which increases the chances of
surface attachment being initiated.

While we have considered multiple idealised wall interaction models, true biological
wall interactions do not follow pin-ball dynamics, uniformly random reflections, or perfect
absorption. For microswimmers in nature, there exist further variables which affect the
likelihood of attachment and reorientation like pili attachment location (Melville & Craig
2013; Jain et al. 2012; Proft & Baker 2009), chemical signals (Wadhams & Armitage
2004), hydrodynamic stresses (Boyle & Lappin-Scott 2006; Conrad & Poling-Skutvik
2018) and cell deformability (Yoshida & Onoe 2020). Further experimental data
regarding pili, and observed attachment rates at different cell orientations are required
to refine the models to specific swimmer types and to draw further conclusions regarding
the likelihood and speed of initial biofilm formation.
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Figure 14: Figures to highlight the sensitivity of the IBM to finite time steps, and how
these affect the observed boundary interactions. IBM Poiseuille flow, for β = 0.99, ν =
0.04. Purely deterministic IBM for T = 600 in (a) & (b), with (a): dt = 10−3 and (b):
dt = 0.1. (c): Schematic of trajectory of particle at bottom wall in continuous time (blue
dotted line) highlighting the trajectory deviation for particles of finite time step. Red
particle on the right overshoots the wall, and is reflected to the red particle on the left.
(d): ψ distribution at θ = 0 for varying y for dt=0.1 (blue line) and dt=0.001 (red line).
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Appendix A. IBM with specular reflection: Origin of the wall

depletion region

For the case of the stochastic individual based model regions of accumulation occur
in the θ–y phase space, as observed for the doubly periodic Poiseuille flow and the wall-
bounded formulation in section 3.2. However, in the case of the wall-bounded distribution
with specular reflection at the walls, a drop in cell accumulation occurs around θ = 0
at y = −1, and θ = 2π at y = 1 which increases with increased run time. This drop
in accumulation is found to be a numerical artefact due to the discrete nature of the
numerical method in the IBM.
To illustrate this, consider the case of a purely deterministic system such that the cells

must all follow predetermined trajectories. However, time is a discrete variable in the
differential equation. Over a run time T = 600, we find a 50% cell depletion in a radius
of 2ǫ(= 0.08) about (θ, y) = (0,−1), when increasing step size from dt = 10−3 to dt = 0.1
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as seen in figures 14a and 14b. As shown in the schematic in figure 14c, if a swimmer
(the blue particle) begins on a deterministic trajectory given by the dotted blue line,
due to distrete step sizes, the swimmer will gradually stray further from the continuous
trajectory with consecutive steps. This effect is compounded when the last step in the
orbit overshoot (see the red particle on the right), and undergo specular reflection (the
red particle on the left) to a position firmly outside its previous deterministic trajectory.
With each cycle of reflection, the particle moves further from θ = 0, and create an
artificial cell depletion region. In figure 14d we consider the distribution ψ in space y at
θ = 0, and find stark cell depletion after time T = 600 for dt = 0.1 at the walls. As these
cells move away from the wall due to numerical leaking, they accumulate and form an
artificially large peak around y = ±0.86 for T = 600.

Appendix B. Two-phase cell density distribution

For the case of low rotational diffusion dynamics (high Pe) with high elongation (β =
0.99), the individual based method does not reach equilibrium by T = 600 (irrespective of
boundary condition). For the case of the doubly periodic Poiseuille flow IBM, we instead
find that the distribution reaches an intermediate phase distribution, during which cells
accumulate in regions of almost uniform distribution concentration from y = −1.5 to
y = −0.5 in figure 15a(i). After this initial, intermediate distribution, after an extended
run time, translational and rotation diffusion effects cause cells to disperse away from
y = −1 and accumulate near y = −0.4 and y = −2 at θ = π. This is also seen in the
gradual decrease in intensity at the centre of accumulation bands in y from figures 15a(ii)
to 15a(iv). Similarly, for θ = 0 cells disperse away from y = −1 to peaks at y = 0 and
y = −1.4.
The gradual decrease in cells at the walls is also evidenced by taking a cross section of

the probability distribution ψ at y = −1 (figure 15b), highlighting the time dependent
monotic decrease in the amplitude of the distributions.

Appendix C. Cell wall interaction origins

In the idealised case, in the absence of all diffusion, the trajectories of cells with specular
reflection are predetermined. However, microswimmers like bacteria will experience diffu-
sive effects in sufficciently weak flows, and therefore cross the deterministic streamlines.
For a fixed simulation runtime, Tsim = 600 we quantify the effect of increased diffusion
on the cells interacting with the walls (figure 16). For this we consider stacked probability
distributions which distinguish between cell–wall interactions based on initial positions
(θ0, y0). Suppose the phase space domain can be split into two regions via a separatrix
(e.g. the yellow separatrix in figure 5c for β = 0.99): the lower region where all cells (in
the absence of diffusion) must interact with the wall, and upper region where all cells
will not interact with the wall. The particles which originate in the region where the
deterministic trajectories expected to have deterministic wall interactions are tracked as
‘region 1’ particles given in blue and those which would not, are tracked as ‘region 2’
particles given in red.
For Pe = 104 (figures 16a, 16d and 16g), for β = 0, 0.5, 0.99, respectively, the

orientation distribution peaks tend toward θ → π as β → 1. While the transition for
the low rotational diffusion case is comparable to the shift in peak captured via the
accumulation index, the tails for larger θ are flatter, and the peak for β = 0 (figure 16a)
occur at lower incident orientations, again caused by numerical leaking. For low diffusion,
over 80% of all wall interaction originate from region 1, and decrease monotonically with
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Figure 15: Two stage dynamics of IBM for β = 0.99, ν = 0.04, Pe = 104, Pe = 106. (a)
Time lapse bivariate probability density distributions highlighting transition from initial
formation of bands of accumulation, to cell depletion of cells at (θ, y) = (π,−1) due to
long time diffusive effects. (b) Probability density distribution cross section at y = −1 in
time, highlighting cell depletion in time.

Pe, irrespective of swimmer shape (see figure 12f). An increase in rotational diffusivity
(figures 16b, 16e, and 16h) shift the peaks of the distribution θpeak → 3π/2, and decreases
the size of the peak with a decrease in β. A symmetric distribution about θ = 3π/2 is
only possible as β → 0, Pe→ 0.
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Figure 16: The impact of rotational diffusion the distributions of micro-swimmers which
interact with the wall, and how the Péclet number affects what proportion of swimmers
originate in region 1 (below the yellow deterministic separatrix from figure 5c). i.e.
How important are these deterministically ‘trapped’ areas in the presence of rotational
diffusion? Stacked probability distribution of angle of incidence for particles striking the
lower wall (y = −1), for ν = 0.04 and PeT = 106. The blue distribution correspond
to particles which are expected to strike the wall in the absence of diffusive effects, and
the red, correspond to particles who would not strike the bottom wall in the absence
of diffusive effects. For β = 0, (a)Pe = 10000, (b)Pe = 100, and (c)Pe = 1; for
β = 0.5, (d)Pe = 10000, (e)Pe = 100, and (f)Pe = 1; and for β = 0.99, (g)Pe = 10000,
(h)Pe = 100, and (i)Pe = 1. (j) Proportion of wall interactions from region 1 for varying
β and Péclet numbers.
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Altshuler, Ernesto & Clément, Éric 2020 E. coli “super-contaminates” narrow ducts
fostered by broad run-time distribution. Science advances 6 (11), eaay0155.

Frankel, I & Brenner, Howard 1993 Taylor dispersion of orientable brownian particles in
unbounded homogeneous shear flows. J. Fluid Mech. 255, 129–156.

Frymier, Paul D, Ford, Roseanne M, Berg, Howard C & Cummings, Peter T 1995
Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Nat.
Acad. Sciences 92 (13), 6195–6199.

Fung, Lloyd, Bearon, Rachel N & Hwang, Yongyun 2020 Bifurcation and stability of
downflowing gyrotactic micro-organism suspensions in a vertical pipe. J. Fluid Mech.
902.

Fung, Lloyd, Bearon, Rachel N & Hwang, Yongyun 2021 A local approximation model
for macro-scale transport of biased active brownian particles in a flowing suspension.
ArXiv preprint .

Gardiner, Crispin W 2009 Handbook of Stochastic Methods: For the Natural and Social
Sciences. springer.
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