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Abstract

One of the fundamental problems of contemporary history is to understand the processes
governing the rise and fall of polities. The universality of boom-and-bust dynamics associated
with the life-cycle of polities tempts to treat the problem mathematically and thus brings it
to the framework of cliodynamics. Here we introduce a mathematical model of evolving polity
under assumption that its evolution is associated with interactions of certain groups of people,
forming the polity and differing by their psycho-ethic characteristics. The model is given in
terms of ordinary differential equations and the bust dynamics associated with the rise and
fall of polities is modelled as an excitation process, which is the non-linear phenomenon, well
known in mathematical biology. We consider the deterministic as well as the stochastic version
of the model which we fit to the time-scale of civilization’s lifespan. We also expand the model
to study interaction between two evolving polities. Investigation is performed using analytical
methods as well as numerical integration (i.e. MATLAB simulation).
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1 Introduction

From ancient times till 19th century historical processes have been considered as resulting from
actions of extraordinary people. The concept of natural laws underlying historical processes (in
terms of historical necessity as opposing to free will of heroes) was expressed by Leo Tolstoy in
the forth volume of “War and Peace” [20] and, to a certain extent, by Lion Feuchtwanger in his
historical novel “Raquel, the Jewess of Toledo” [5]. Cyclicity of historical processes indicated by
the rise and fall of civilizations was brought to consideration of scientists in early twentieth century
by Oswald Spengler [17]. Following his work, all history of mankind in the last 5 thousand years
can be viewed in terms of rises and falls of civilizations.

One of the challenges of contemporary science is to uncover social laws (or mechanisms) gov-
erning the dynamics of evolving polities, including multi-ethnic polities or civilizations. Arnold
Toynbee in his book “A study of History” [21] has analysed the formation of 26 civilization and
concluded that their success was ensured by leadership of a small group of elites. The idea that the
collective action of a group of people (sized between one individual and an entire polity) drives the
evolution of polity, was explored to a great extent by many researchers. Such collective action has
been viewed as grounded on collective solidarity [7], social cohesion (or collectivism) [22], social
capital (or social trust) [16] and other social or psycho-ethic characteristics of subgroups forming
polities.

Remarkably, the concept of collective solidarity was introduced by Arabic historian Ibn Khaldun
in the 15th century [11]. In his research he got far ahead of his time: on the basis of known history
of Maghreb, Arabic Spain and Middle East he concluded that the growth and evolution of a
polity is based on collective action of a certain subgroup of people having higher level of collective
solidarity, which he called “asabiya”. Ibn Khaldun stated that the level of asabiya is higher among
people inhabiting the geographic periphery of the polity rather than the inner land. The concept
of asabiya together with the above statement were used by Peter Turchin for the development of



mathematical model (the so-called Metaethnic Frontier Theory [23]) which allowed to reproduce
and explain the boom-and-bust dynamics of evolving polity. It is worth noting here that the models
based exclusively on geopolitical statements [1, 3] did not allow the reproduction of such dynamics.

One of contemporary metahistoric theories was suggested by Lev Gumilev [8, 9]. He considered
each civilization as a manifestation of particular ethnos, which, under certain conditions, appears
and builds civilization, but with time gets old and dies, causing the associated civilization to
disappear. According to Gumilev’s theory [8, 9] the driving force for formation of a new ethnos
comes from a certain group of people, whom he calls “passionaries” or people with drive. This
group is considered as a fraction of population habitating certain geographic territory, who express
high levels of passion and lead their fellows (i.e. tribesmen), forming the rest of the population to
expand and to build a new society (civilization).

According to Gumilev [8, 9] the formation and death of a civilization can be described by
the dynamics of civilization’s “passionary tension” or drive, which he illustrated by a “bust”
curve shown in Figure 1. It starts with a growing phase (rise of civilization) followed by plateau
(ackmatic phase), fast decline (breaking phase), slow decline (inertial obscuration) and low level
tail (obscuration or regeneration-relict). The entire process, which according to Gumilev takes
about 15 centuries, can be considered as a response to a disturbance, caused by initiation of a
small fraction of passionaries. Such response is known in physiology as excitation [13, pp.239-242],
that is when a small perturbation to the system results in a full-sized response.

CHANGES IN THE DRIVE OF AN ETHNIC SYSTEM
(GENERALISATION)
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Figure 1: Graphical illustration of the evolution of an ethnos (civilization) [8, p.240].

The aim of the current article is to develop a mathematical model which would explain the
boom-and-bust dynamics (which is evident from Figure 1) exhibited in the course of ethnogenesis.
We note that Gumilev’s theory led to the mathematical model presented in [10]. The main variable
describing the dynamics of the polity in this model was the so-called “passionary tension” similar
to the variable quantifying asabiya in Methaethnic Frontier Theory [23]. The main drawback of
the model presented in [10] is that it is given by a system of seven nonlinear differential equations
containing more than thirty variables. Although the authors were able to find a set of model
parameters that allowed them to reproduce the boom-and-dust dynamics, no further explanations



and investigations of this dynamics were made. Contrary to the previous studies we put an associ-
ation of the boom-and-bust dynamics with the type of system’s nonlinearity known as excitability.
The excitable dynamics in the model describing the ethnogenesis is the main theme of the current
work. We will build a mathematical model of ethnogenesis, which is based on the statements from
Gumilev’s theory.

e According to Gumilev there are three main subgroups in the population that have different
behavioural patterns and affect the evolution of the ethnos. The driving force for the growth
of populations and further improvements resulting in the rise of a civilization comes from
passionaries, whose idealistic motivations are grounded in altruism. The bulk of population
is represented by harmonious individuals who work on preservation of the current state of
the ethnos. There is also a destructive group of individuals, called subpassionaries (or people
with negative drive — vargants, mercenaries, degenerates), who are as active as passionaries
but whose actions are based on egoism rather than altruism.

e The formation of a new ethnos (or civilization) is associated with initiation of passionaries.
Gumilev describes conditions under which passionaries appear and take over the population,
but we will not go into details of these conditions and will postulate that at a certain time,
a small fraction of population is already represented by passionaries.

We will design a few models describing the ethnogenesis. In the first model we will consider
the population as consisting of two subgroups, namely, the passionaries and the remainder of
the population. This two-variable model will let us identify possible interactions between these
subgroups which allow the bust dynamics in the course of ethnogenesis. In the second version
of the model we will consider all three subgroups and analyse the interactions between them
which is consistent with the observed dynamics during ethnogenesis. In the follow up steps of our
research we will use the three-variable model for the study of the impact of noisy environment
on the ethnogenesis. Particularly we show that the noise is amplified by nonlinearities in the
model. Finally, we extend the three variable model (with noise) to consider interaction between
two ethnogenetic processes taking place simultaneously, with a certain time lag. This allows us to
model conflicting civilizations and to identify conditions when one of them takes over the other.

2 Two-Variable Model

As a starting point we will consider the two-variable model:

i =xf(zx,y)
{ v =yg(x,y) M)

where variable x represents the size of the subpopulation formed by passionaries while y is the
size of the remaining population (which includes both harmonious people and subpassionaries).
Equation (1) is commonly used for modelling population dynamics in biology, where  and y are
considered as the sizes of two biological species. Using linear approximation of functions f(z,y)
and g(z,y) we get:
{ & = z(ap + a1z + 19); )
v =1y(bo + bry + dix),

which is a generalised representation of the Lotka-Volterra model [25, 26]. Commonly this model
is considered under the following condition for model parameters: ag > 0, by > 0 while a; < 0 and
b1 < 0 preventing unlimited growth of populations. After nondimensionalisation this equation is
commonly transferred into
{ i=z(l—z+ Pry); (3)
¥ =yl —y+ Bax),
where v defines the relative rate of change of y with respect to x [13, p.119]. If 81 o = 0 the two

equations are detached and both species exhibit logistic growth. Furthermore, depending on the
signs of these two parameters the model reproduces three types of interactions between populations



x and y, namely, predator-pray (81 > 0, Sz < 0), symbioses (8; > 0, B2 > 0) and competition
(81 <0, B2 < 0) [25]. The model allows four equilibria and in case of competitive Lotka-Volterra
model (81 < 0, B2 < 0) all four equilibria are meaningful and correspond to non-negative sizes
of populations. These are the trivial equilibrium (z = 0, y = 0), the extinction of y-population
(z # 0, y = 0), the extinction of z-population (z = 0, y # 0) and the co-existence (x # 0, y # 0).
Depending on model parameters, the solution of the system converges either to the co-existence of
species or to the case when one of them becomes extinct [13, pp.104-126].

In our case we would like for one of the variables, say x, to represent the size of the subpopulation
formed by passionaries, while y is the size of the remaining part of population (which would include
harmonious people and subpassionaries). We expect to observe the excitation dynamics. Since the
excitation in biology is known to be a non-linear process, we will need more than just a linear
expansion of functions f(z,y) and g(x,y) in (1). The simplest way is to add one quadratic term
into the first equation which transforms our system to

i = x(ap + a1z + a22® + c1y); (4)

There are up to six equilibria in this system of which two are always real:

(z1,91) = (0,0), (z2,92) = (0, —bo/b1).

These two equilibria are located on the vertical axis. Two more equilibria (if real) are located on

the horizontal axis:
—aq £ +v/a? — dapa
(3,4,Y3,4) = < L L 0 2,0> . (5)

a
2(12

And, finally, two remaining equilibria (if real) are represented by the points of intersection of the

line by + b1y + diz = 0 with parabola ag + a1z + ax? + c1y = 0. To set an excitable kinetics

in the system (4) we make sure that the equilibrium (x2,y2) is stable and located in the vicinity

of the parabola ag + a1z + ax? + c1y = 0. The excitable dynamics becomes more evident after
nondimensionalisation of the system (4) (so that ap = —1) and transferring it into the following

form:
{ i=a((1-2)(x—a)+ By —yo)); (6)
¥ =y(yo — y + Baz),

where parameters v, 51 and 2 have the same meaning as those in the equation (3), new parameter
« defines the excitation threshold of the system and yy defines the location of the equilibrium
(z2,y2) = (0,y0) which is stable if 8; and S2 have opposite signs. Note, that the parameters
a, yo and ~ should all be positive. It looks that, in any case, the system (6) with positive initial
conditions admits a unique bounded solution on the infinite horizon [0, o). For 81 < 0, 82 > 0, this
will follow from the investigation of the three-variable model (7). Concerning the equilibria in the
system (6), we note that the trivial steady state (z1,y1) = (0,0) is unstable (saddle). Furthermore,
if the parabola (1 —z)(x — a) + B1(y — yo) has real and non-negative roots, then the system (6) has
two meaningful equilibria located on the horizontal axis (same as given by (5)) and for the concave
up parabola the equilibrium which is closer to the origin (smaller z-coordinate) is the unstable
node, while the other one is a saddle. For simplicity, we consider the cases when the nullcline
represented by the parabola (1 —x)(z — «) + 81(y — yo) = 0 doesn’t intersect the one given by the
line yo — y + P2 = 0 and therefore we don’t have any extra equilibria.

The dynamics in the system (6) is illustrated by Figure 2. Null-clines of the system are shown
in blue on panel A. These null-clines indicate the excitable nature of the system (6) and this is
illustrated by a set of phase trajectories (shown in red) coursed by the perturbation of the system
from its stable equilibrium (x2,y2) = (0,y0). Any perturbation from this state results in the
relaxation of the system back to this equilibrium. However if the perturbation is above certain
threshold, for example, if the initial value of y is equal to yo and the initial value of x is above «,
then the perturbation increases further before the system relaxes back to the stable equilibrium
(z2,y2).

The dynamics of variables 2 and y over time for one of the phase trajectories (starting from
the point g = 0.1 and yg) is shown in panel B. Here we see that both variables increase and
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Figure 2: Illustration of the excitable dynamics observed in the system (6). Panel A: nullclines
2 = 0 and y = 0 are shown in blue and a set of phase trajectories with starting points = =
0.05,0.1,...,0.5 and y = yo are shown in red. Panel B: time evolution of both variables, z (blue
line) and y (red line) from the initial condition = 0.1, y = yo. Parameter values: o = 0.02,
Yo = 0057 ,81 = —1/3, ,82 = 2.5, Y= 0.1.

then decrease over time. We note a relatively fast dynamics of variable x (passionaries) with the
duration of the spike being about 60 time unites. We also note a slow relaxation of variable y (the
rest of population) which gets back to its equilibrium value with relaxation time of about 100 time
units.

In order to scale the model time units to real time we take into account that according to
Gumilev [8] the duration of passionary spike is about 900 years which should correspond to 60 time
units in the model. Thus one model time unit corresponds to 15 years. Furthermore, according
to Gumilev [8] the fraction of passionaries can only be up to 5-7% of the entire population. For
the set of parameter values used to produce Fig. 2, both variables have values roughly in the
range (0,1). If we consider variable = as representing 1% of y, the total number of nonpassionaries,
then at the top of the spike (which takes place at ¢t ~ 15 and where z ~ 1 and y ~ 0.2) the
passionaries constitute about 5% of the entire population. In other words, x = 1 corresponds, e.g.,
to the absolute value of K = 10,000 passionaries, while y = 1 corresponds to 100K = 1,000, 000
nonpassionaries. One can certainly take other values of K. Note also that on the time interval
(20, 30) of the most rapid growth of nonpassionaries (constituting the main part of the population)
their amount doubles. That corresponds to doubling time 106%00 = 150 years which is roughly in
line with observations of the maximal growth rate of human populations.

For the dynamics illustrated by Figure 2 it is essential that 5, < 0 and [2 > 0, that is,
passionaries are suppressed by the rest of the population while their own impact to non-passionaries
is positive. It appears that such relationships between passionaries and non-passionaries is not the
only one allowing excitable dynamics. An alternative case when $; > 0 and (32 < 0, that is,
passionaries are activated by non-passionaries which are in turn suppressed by the passionaries
can also result in the exciatable dynamics. This scenario is illustrated in Figure 3 which similarly
to the Figure 2 shows the dynamics of the system (6) but with swapped signs of the parameters
B1 and By and with yo = 1 (rather than yy = 0.05 in Figure 2). Panel A shows null-clines of
the system and typical phase trajectories obtained from the over-threshold perturbation of the
steady equilibrium (xs,y2) = (0,yp). Perturbation is made by an increase of the z-value over the
threshold, @ = 0.02. Time dependence of the variables x and y for one of the phase trajectories is
shown on panel B. Now we see that x and y change in opposite directions: initially x is increasing
(for ¢ < 28) and y is decreasing (for ¢ < 44) and later both variables inverse their rate of change.
Furthermore, here y9 = 1 and the entire dynamics can be seen as change in fraction of passionaries
over time for the population of a roughly constant size. Similarly to the case shown in Fig. 2,
model time unit corresponds to 15 years.




passionaries

0.9 non-passionaries

08
06

N\

0.5

041

non-passionaries

02

0 —
\ 01
0.2 o
0.2 0 0.2 0.4 0.6 0.8 1 1.2 o 20 40 60 80 100
passionaries Time

Figure 3: Illustration of the excitable dynamics in the system (6). Panel A: nullclines # = 0 and
¢ = 0 are shown in blue and a set of phase trajectories with starting points zo = 0.05,0.1,...,0.5
and yo are shown in red. Panel B: time evolution of both variables, x (blue line) and y (red
line) from the initial condition x = 0.1, y = yg. Parameter values: « = 0.02, yo = 1, 81 = 1/3,
Bo = —2.5, v=0.1.

There is an important difference between the dynamics shown in Figures 2 and 3. In Figure 2
the spike in variable x is followed by the spike in the variable y, that is, an increase in number of
passionaries is followed by the increase of the size of remaining population. As for the dynamics
shown in Figure 3 we notice that the increase in number of passionaries is followed by the decrease
of the size of remaining population. We know that an increase in number of pasionaries results
in the expansion of the polity and correspondingly to the growth of the population. Hence the
dynamics shown in Figure 2 looks natural if the variable y represents harmonious people. However
if the variable y is associated with subpassionaries then the dynamics in Figure 3 is not impossible
as subpassionaries may be suppressed by the passionaries. Up to now the variable y was considered
as including both, harmonious people and subpassionaries. In order to consider their dynamics
separately we will modify our model by allocating variables to each of these two subpopulations.

3 Three-Variable Model

Gumilev in his theory of ethnogenesis considers three types of individuals who constitute ethnos
and whose behaviour has an impact on the ethnogenetic process. To follow this concept we extend
the two-variable model described by the system (6) by including extra variable z, so that the
variables, x, y and z, represent the sizes of subpopulations of passionaries (), harmonious people
(y) and subpassionaries (z). Furthermore, we will presume that the dynamics of subpassionaries
is similar to that of passionaries that is, their rate of change has quadratic dependence on their
own sizes. However passionaries and subpassionaries differ by their relationships with harmonious
people and each others. So, our three-variable system can be represented as the following:

& =yz[(1 —z)(r — a1) + Bi2(y — yo) + Bi3(z — 20)];
U = 72y(yo — y + P21z + P23(z — 20)); (7)
%2 =y32[(20 — 2)(2 — a2) + Ba12 + P32(y — yo)]

with the initial condition z(0),y(0),2(0) > 0. Since its right-hand part is locally Lipschitz, the
system (7) admits the unique local solution [19, Theorem 2.2.]. It looks that in general it can be
extended to the unique bounded solution on the infinite horizon [0, co).

Excitable dynamics can be observed in the system (7) under different kinds of interactions
between the variables. In general, the steady states of the system (7) with x = 0 are as follows:

e (z1,91,21) = (0,0,0);



o (x2,y2,22) = (0,y0 — B2320,0);

o (r34,Y3,.4,234) = (0,Y3,4, 234), where y3 4 and z3 4 are the two solutions to equations

{ Yo — Y + P23z — z0) = 0;
(20 — 2)(z — a2) + B32(y — yo) = 0.

o (256,956, 256) = (0,0, 25,6), where z5 ¢ are the two solutions to equation
(20 — 2)(2 — a2) — B32y0 = 0.

In the case illustrated in Fig. 4, passionaries are suppressed by harmonious people (812 < 0)
and promoted by subpassionaries (813 > 0); harmonious people are promoted by passionaries
(B21 > 0) as well as by subpassionaries (823 > 0); subpassionaries are promoted by passionaries
(#31 > 0) and do not depend on harmonious people (832 = 0). For the set of parameter values
used in the simulation shown in Fig. 4, there are eight real-valued steady states, with seven
among them that have non-negative coordinates. All the steady states with non-zero component
x are unstable. Among the six steady states enlisted above, (z1,y1,21) = (0,0,0), (x3,y3,23) =
(0,0.064,0.11), (x5,ys5,25) = (0,0,0.22) and (z¢, ys, 26) = (0,0,0.11) are unstable, and the steady
states (z2,¥s2,22) = (0,0.053,0) and (x4,y4, 24) = (0,0.075,0.22) are stable. In Fig. 4 the stable
steady states are shown with big spots, and the unstable steady state (zs,ys, z3) = (0,0.064,0.11)
between them is indicated as the short line.
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Figure 4: Illustration of the excitable dynamics in the system (7). Panel A: nullclines & = 0
and y = 0 at z = 2y are shown in blue and a set of phase trajectories with starting points
x(0) = 0.04,0.07,0.1,0.4 and y(0) = 0.053, z(0) = 0.05 are shown in red. Panel B: time evolution
of all three variables, = (blue line), y (red line) and z (black line) from the initial condition
z(0) = 0.07, y(0) = 0.053, z(0) = 0.05. Parameter values: a3 = 0.03, ap = 0.11, yo = 0.075,
20 = 0.22, 12 = —6, P13 = 0.6, B21 = 0.2, B2z = 0.1, B31 = 0.5, 832 = 0, 71 = 1, 12 = 0.7,
Y3 = 0.2.

The excitation appears, starting in the neighbourhood of the stable point (z2,ys,22)
= (0,0.053,0) which is shown as the lower spot on the vertical axis. We assigned the initial
values z(0) = 0.05 (to give a push from the ‘cemetery’ z = 0), y(0) = 0.053; 2(0) varies from 0.04
to 0.4. If the initial push z(0) is below or slightly above the threshold «;j, the system quickly re-
turns back to the state (za, yo, 22). But larger (still small enough) initial perturbation results in the
excitation leading to the second stable point (x4, y4, 24) = (0,0.075,0.22) shown as the upper spot
on the vertical axis. Depending on the value of z(0), the trajectory approaches the limit (x4, y4, 24)
either from below or from above. Even a small over-threshold perturbation z(0) = 0.07 > oy grows
up to around z = 0.5 before it relaxes back to lim;_, . z(t) = 0. Qualitatively, the picture is similar
to that presented in Fig. 2. Again, one model time unit corresponds to 15 years.
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Figure 5: Illustration of the excitable dynamics in the system (7). Panel A: nullclines & = 0
and y = 0 at z = 2y are shown in blue and a set of phase trajectories with starting points
x(0) = 0.04,0.07,0.1,0.4 and y(0) = 0.075, 2(0) = 0.05 are shown in red. Panel B: time evolution
of all three variables, = (blue line), y (red line) and z (black line) from the initial condition
z(0) = 0.07, y(0) = 0.075, z(0) = 0.05. Parameter values: «; = 0.03, ap = 0.11, yo = 0.075,
20 = 0., f12 = =6, 13 = 0.6, P21 = 0.2, B23 = 0.1, B31 = 0.5, B32 =0, 71 =1, 72 = 0.7, 73 = 0.2.

As a special case, one can put zp = 0 leaving the other parameters the same. For this set of
parameter values, used in the simulation shown in Fig. 5, there is only one stable steady state
(z,y,2) = (0,0.075,0): all three previous equilibria (234, Y234, 22,3.4) now coincide. The system
again exhibits excitable kinetics: over-threshold perturbation of = (z > «1) grows up to around
x = 0.2 before it relaxes back to equilibrium.

An alternative dynamics for the system (7) is shown in Fig 6. Here the interactions between the
variables is slightly different from those used for the dynamics illustrated in Fig 4. The difference
is that harmonious people are suppressed (rather than promoted) by subpassionaries (823 < 0)
and subpassionaries are promoted (rather than suppressed) by passionaries (831 < 0). For the
set of parameter values used in the simulation shown in Fig. 6 there are two stable steady states
(z2,y2,22) = (0,0.12,0) and (z4,y4,24) = (0,90, 20): the enumeration is in accordance with the
expressions below equation (7). The system at the steady state (x4,ya,24) exhibits excitable
kinetics: over-threshold perturbation of & (x > ;) grows up to around z = 0.7 before it relaxes
back to the equilibrium (z4,y4,24). As we have two stable states, the relaxation can bring the
system to another steady state (x2,ys, 22), and this is observed in the system with slightly different
set of parameter values. Qualitatively, the dynamics illustrated in Fig 6 is similar to that presented
in Fig. 3.

One can see that in Fig. 6 the number of subpassionaries dramatically decreases before going
back to the equilibrium. This perhaps does not often occur in reality. The dynamic in Fig. 5
looks more reasonable. But the growth of the passionaries subpopulation (from 0.07 to 0.2) is
not as impressive as in Fig. 4 (from 0.07 to 0.49). Therefore, in further simulations, we take the
parameter values from the latter case (Fig. 4). If S12 < 0, f32 < 0 the existence of the unique
bounded solution to the system (7) will follow from the investigation of the stochastic version of
the model: see Proposition 4.1 and its proof, especially, Remark 7.2.

4 Ethnogenesis in Noisy Environment

In order to study the impact of noise on the ethnogenetic process we will modify the three-variable
model by adding extra (stochastic) terms to the system (7). To justify the modification which we
are about to impose, let us consider the following change of variables:

v1 = Inx, vy = Iny, vy = Ilnz. (8)
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Figure 6: Illustration of the excitable dynamics in the system (7). Panel A: nullclines & = 0
and 2 = 0 at y = yo are shown in blue and a set of phase trajectories with starting points
z(0) = 0.05,0.1,0.2,0.5 and y(0) = yo, 2(0) = zo are shown in red. Panel B: time evolution of all
three variables,  (blue line), y (red line) and z (black line) from the initial condition z(0) = 0.1,
y(0) = yo, 2(0) = 2z9. Parameter values: a3 = 0.03, as = 0.1, yo = 0.075, 29 = 0.6, 12 = —0.06,
Biz = 0.6, B21 = 1.25, Baz = —0.075, B31 = —0.5, B32 =0, v1 = 2, 72 = 20, 73 = 0.6.

With these variables the equations (7) transform into

vy =1 [(1—e")(e" —a1) + Biz(e¥ —yo) + F13(e”® — 20)];
Vg = Y2[yo — €2 + Ba1e" + PBag(e” — 20)]; (9)
U = y3[(20 — €”%)(e” — aa) + P31€"" + B32(e”> — o)),

with the initial conditions v;(0) = Inz(0), v2(0) = Iny(0), v3(0) = 2(0). Note that v1,vs and vg
may be negative and the initial conditions z(0), y(0), 2(0) > 0 are assumed to be fixed.
The natural way to define the stochastic version is to introduce stochastic differential equations

dVi = m[(1—€e"1)(eV — 1) 4 Bra(e"> —yo) + Pis(e"® — zo)]dt + o1dW7;
dVa = 7a[yo — €V2 + B21"t + Boz(€¥* — 20)|dt + g2dWo;

dVs = y3[(20 — €V2)(e"® — ) + B31€"* + Baa (€2 — yo)|dt + o3dWs;
Vi(0) = v1(0),  V2(0) = v2(0),  V3(0) = v3(0),

(10)

which we understand in the sense of the Ito stochastic calculus [14]. Here Wi, Wy and W3

are mutually independent standard Brownian motions on the complete filtered probability space
(Q,F, (Ft)t>0, P), and 01,092,035 > 0. After that,

X =e", Y =e"2, Z=e"

will be the random processes representing the sizes of the subpopulations of passionaries, harmo-
nious people and subpassionaries respectively.

According to Proposition 4.1, the random processes (V1, Vs, Vs) and (XY, Z) do exist. Obvi-
ously, X (t),Y(¢),Z(t) > 0, but one cannot say much about the densities of the random variables
X(t),Y(t) and Z(t). If X(t) ==, Y(t) =y and Z(t) = z, then at the end of a small time interval
[t,t + A], roughly speaking, we have

X(t+A) = (x4 Az)e 21 Y(t+A) = (y+ Ay)e®>2V2 ) Z(t 4+ A) = (2 4 Az)e?38Ws,

Here (Ax, Ay, Az) are the (deterministic) increments according to the differential equations (7),
and 0;AW; ~ N(0,02A). Thus, X(t+A), Y(t+A) and Z(t+ A) have approximately log-normal
(sometimes called Galton) distributions with densities

1 _ (nu-—In(z+Ax))? 1 _ (Inu-—In(y+Ay))?

filu) = ——ce A u> 0 fo(u) = e I u> 0

uoeV2TA
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u > 0 correspondingly.

and f3(u) = ———e
fa(u) uo3V2rA
Note that X,Y and Z satisfy stochastic differential equations

2
dX =7 X[(1 - X)(X —a1) + Br2(Y — o) 4‘2313(2 —20) + Fdt + o1 XdWy;
dY = %Y [yo — Y + B21.X + Bas(Z — 29) + F]dt + 02Y dWoa;

dZ = ’)/3Z[(ZO — Z)(Z — Ckz) + 831X + BSQ(Y — yo) + %g]dt + 03 ZdW3;
X(0)==(0), Y(0)=y(0), Z(0)==2(0).

Derivation of (11) can be found in [14] where it is stated as Theorem 4.2.1. Here and below, capital
letters denote random variables and processes.

In what follows, all the coefficients in (7), (9), (10) and (11) are assumed to be positive apart
from 512 S 0 and ng S 0.

(11)

Proposition 4.1. Stochastic differential equations (10) (and hence (11)) have a unique strong
continuous solution on the time horizon [0,00).

The proof is presented in the Appendix. Note that the standard theory of stochastic differential
equations is developed only for linear equations. In the recent works (see, e.g., [26] and references
therein), theorems similar to Proposition 4.1 were proved for specific quadratic equations describ-
ing population dynamics, using the Lyapunov function. Equations (11) are of the third order and
require special reasoning. Proposition 4.1 implies that, under positive initial conditions, the ordi-
nary differential equations (7) (and hence (6)) have a unique solution such that x(t), y(t), z(¢t) > 0
for all t > 0: see Remark 7.2.
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Figure 7: Stochastic dynamics of the ethnogenesis: examples of the solution to stochastic differ-
ential equations (11). Parameter values: a3 = 0.03, ae = 0.11, yo = 0.075, zp = 0.22, f15 = —6,
613 = 0.6, 621 = 0.2, 623 = 0.1, 531 = 0.57 632 = 0, Y1 = 1, Y2 = 0.7, Y3 = 0.2, Initial con-
ditions: X (0) = 0.07, Y(0) = 0.053, Z(0) = 0.05. Panel A: 01 = 09 = o3 = 0.05. Panel B:
01 =09 =03 =0.1.

Examples of the stochastic dynamics exhibited in the system (11) are shown in Fig. 7. The
values of model parameters used for this illustration are identical to those in Fig. 4. The amplitude
of noise in Panel B is twice higher than in Panel A. Solid lines in both panels show the stochastic
dynamics for three subgroups composing the population. For comparison, we also provide the
deterministic curves which are represented by dashed lines (note, that they are identical to the
lines shown in Fig. 4, panel B). It is evident that the stochastic dynamics is significantly different
from the deterministic one. One can see from Panel A that the accumulation of noise results in
a much higher bust in the level of passionaries: the amplitude of the bust in the stochastic case
is about 0.7 against 0.5 in the deterministic one. Also in Panel A we see that the noise causes
significant change in the level of subpassionaries: at t=100 this level in stochastic case is over 0.3
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while it should be about 0.13 in the deterministic case. The impact of noise is even more evident
from Panel B where the amplitude of noise is twice higher than in Panel A. We can see that the
increase in the level of noise not only increases the discrepancy with the deterministic case (the
amplitude of bust in Panel B is over 0.8) but also results in the occurrence of a new bust. While
the first bust in Panel B was initiated manually, the second bust appears due to the stochastic
effects in the system. This observation leads us to the conclusion that the ethnogenesis can be
initiated by the noise in the environment surrounding the population.

5 Interaction of Ethnogenetic Processes

We conclude our study with modelling the interaction between two ethnoses, following the same
ethnogenetic processes, which however are shifted over time. The (random) sizes of subpopulations
of passionaries, harmonious people and subpassionaries for the first ethnos are denoted as X7,
Y1 and Z;, while for the second ethnos as Xs, Yo and Z5. We assume that, being isolated, the
ethnoses are identical, described by the stochastic differential equations like (11), but influenced by
six mutually independent Brownian motions Wy, Wa, ..., Wgs. We introduce the time lag between
two ethnogenetic processes, such that the first one starts at T' = 0, the second ethnos appears T;
time units later than the first one, and communication begins T time units later, at the moment
Ty + T». For simplicity, we also assume that communication is only among the passionaries, and
they suppress each other.
Therefore, we investigate the following system of six stochastic differential equations

dX; = mXai[(1 = X1)(X1 —a1) + Bi2(Y1 — o) + B13(Z1 — 20) + U;
—c1l{t > T1 + To} Xo]dt 4+ 01 X1dWr;
dYr = 7Yilyo — Y1+ B21 X1 + Ba3(Z1 — z0) + %g]dt + 02Y1621W2;
dZy = vZi[(20 — Z1)(Z1 — az) + B31.X1 + Ba2(Y1 — o) + F]dt + 03 Z1dWs;
X1(0) = x(0), Y1(0) =y(0),  Z1(0) = 2(0);
dX, = I{t> Tl}{’Yle[(l — Xo) (X2 — 1) + Pr2(Ya — yo) + B13(Z2 — 20) + %?
—eI{t > Ty + To} Xy dt + 01X2dW4};
4, = It > Ti}{rYalyo — Yo+ Bor Xo + Bas(Zs — 20) + Zdt + 73 YzdWs |
dZ; = Wt >Ti}37322[(20 — Z2)(Z2 — a2) + P31 X2 + B32(Ya — o) + %g]dt + 03W6}§
X2(0) = Xo(Th) =x(0), Y2(0) =Ya(T1) =y(0), Z2(0) = Z2(T1) = 2(0).

(12)
The meaning of all the parameters is the same as in the previous models (i.e. model (11)). Two
new parameters (c¢1,co > 0) define the strength of suppressive interactions between passionaries
in the two ethnic groups. This system of stochastic differential equations has a unique strong
continuous solution on the time horizon [0, 00). The proof of this statement is similar to the proof
of Proposition 4.1.

Two examples of dynamics in the interacting ethnoses, described by the system (12), is given
in Fig.8. Only the bust dynamics exhibited by the passionaries in both ethnoses is shown on this
figure, with the solid lines showing stochastic dynamics, dashed - deterministic (o1 = 09 = 03 = 0)
and dotted - the deterministic dynamics in the case of non-interacting ethnoses (¢; = ¢z = 0).
Dotted lines have identical shapes and this indicates that the two ethnogenetic processes, in the
absence of noise and interaction between the ethnoses, are identical. While the dashed blue line is
almost identical to the dotted blue line, the dashed red line is considerably lower than the dotted
red line, and this indicates that, in the absence of noise, the younger ethnos (dashed red line) is
suppressed by the older ethnos (dashed blue line). Finally we note that the solid blue line in Panel
A is higher than the dashed blue line, while the solid red line is lower than the dashed red line.
This observation illustrated the impact of the noise to the dynamics of the interacting ethnoses,
which in this particular case results in the amplification of the suppression of the younger ethnos

11
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Figure 8: Stochastic dynamics of communicating ethnoses. Parameter values: «; = 0.03, as =
0.11, Yo = 0.075, 20 = 0.22, ﬁ12 = —67 613 = 0.6, 521 = 0.2, 523 = 0.1, 531 = 0.57 ﬁgg = 0, Y1 = 1,
Yo =0.7,v3 = 0.2, ¢y = co = 0.22, 07 = 09 = 03 = 0.04. The black vertical lines show the moment
of birth of the younger ethnos and the moment when the communication begins. Initial conditions:
X (0) =0.07, Y(0) =0.053, Z(0) = 0.05.

by the older one. Looking at the shapes of the solid and dashed lines on Panel B we come to the
conclusion that the noise can also result in the suppression of the older ethnos by the younger one.
Comparing dynamics presented in Panels A and B we note that the dynamics exhibited by two
interacting ethnoses is greatly affected by the noise, although, as numerous simulations confirm,
the scenario from Panel A is more likely to take place.

6 Summary and Discussion

In this work we have presented the mathematical model of ethnogenesis which we have developed
on the basis of the paradigm of ”passionary tension” introduced by Gumilev [9]. According to
Gumilev, passionary tension can occur in certain polities as a result of formation and growth of a
subgroup of positively motivated people, whom Gumilev called ”passionaries”. One of the main
points made by Gumilev is that the measure of passionary tension in the polity is given by its size,
i.e. the size of population or territory. As the quantitative data on the territorial expansion and
collapse of past civilizations are much better known than on their population sizes, it makes sense
to use the size of area taken by a polity as a measure of the passionary tension in this polity.

The model we have presented here is based on the consideration of the internal structure of
the polity with the dynamics of this structure described by ordinary differential equations. The
main point about the polity’s internal structure is that there is a subgroup of people, namely,
passionaries, and the size of this subgroup gives a measure of the passionary tension in the polity,
which in turn can be considered as the measure of the size of territory occupied by the polity. This
approach allows to consider the interaction of the given polity with its neighbours indirectly: the
polity’s geopolitical success is proportional to the number of passionaries in it.

The main feature of the model we have presented here is that it produces the excitable dynamics
in the structure of the evolving polity. That is, when the polity is in equilibrium (in homoeostatic
state) there are no passionaries in it. However, if there appear a small number of passionaries, this
number grows up to considerable level and then declines back to zero. Thus, formation of busts,
describing the raise and fall of civilizations, is considered here as an excitation process. Using
different versions of the model we have performed the following studies:

e In the two-variable model given by (6) we explored the types of interactions between the
passionaries and the rest of the population resulting in the excitable kinetics. Two types of
such interactions are illustrated in Figures 2 and 3.
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e In the three-variable model given by (7) we explored the types of interactions between three
groups allowing to observe the excitable kinetics. Three types of such interactions are illus-
trated in Figures 4, 5 and 6.

e In the stochastic model given by (11) we have found that the noise, when imposed into the
model equations, tends to amplify and results in significant variations in the amplitude of
the bust in the system (see Figure 7). One can conclude that such noise probably adds to
the variation of the territorial size and duration of life of different civilizations.

e In the model of interacting polities given by (12) we studied the interaction of the polities
of different age undergoing ethnogenesis. We found that if they interact in a way that
passionaries from one polity suppress the passionaries from the other, then the older polity
will be more successful, if the success is measured by the number of passionaries in the polity.
However, this is not necessarily the case when we impose the noise (see Figure 8).

It is evident that most of recent theoretical studies of ethnogenesis are focused on civiliza-
tions/polities which evolve under no (or negligible) influence of their neighbours. The core state-
ments in Gumilev’s theory are about polities which grow into civilizations despite external impacts
from neighbouring polities. Also, Gumilev defines civilization as meta-ethnic polity which is formed
in the course of expansion of a core ethnic group and which he calls “super-ethnos”. The main
focus in our study is on the dynamics of an isolated polity or the polity under negligible external
impact. The presented model is probably the simplest model which reproduces boom-and-bust
dynamics and gives it a fairly simple explanation in terms of excitability.

We scaled our model to fit to the lifespan of civilizations which, according to Gumilev, varies
between twelve and fifteen centuries. Other researchers who studied the cyclic dynamics of large
polities (i.e. empires) have concluded that their lifespan can be considerably shorter [18]. We
believe that our model can be fitted and applied to such short-living polities too. An interesting
problem lies on the other side of time scale, that is, whether our model can make sense and be
applied to the dynamics of global civilization. Today there is no information about whether the
global civilization has the boom-and-bust dynamics, and we can speculate that the time scale for
such dynamics would probably be 100,000-1,000,000 years, not 1,500 as in the case of civilizations,
considered by Gumilev.

The most intriguing questions concerning Gumilev’s theory are “What is passionarity?” and
“How does it evolve on a populational level?”. Peter Turchin has explained, at least verbally, an
increase of asabiya on frontiers [24]. As Ibn Khaldun’s concepts of asabiya is similar to Gumilev’s
concept of passionarity one could use Turchin’s verbal explanations for developing a mathematical
model to reproduce the selection of passionaries on frontiers versus the selection of harmonious
people in inner lands. Mathematical studies of development of other psycho-ethic characterises,
such as altruism, on populational level are known [2] and can be used as sample studies. Another
important question is how universal is the impact of passionarity on the dynamics of polities across
different societies. Gumilev stated his theory as universal and valid across all times and continents.
However, recent studies indicate that psychological states of people, such as human reflection, is
different between Western and Eastern societies [12] and thus the impact of passionarity can vary
across different societies.

The presented model can be extended in various ways for further studies. One of such studies
can focus on the interaction of polities under a range of different assumptions about the ways these
polities interact. Another direction for future research is to extend the model in order to fit it to
available observation data.
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7 Appendix

Proof of Proposition 4.1. Similarly to Fig. 4, panel A, we present the nullclines # =0 and 2 =0
at y = 0 in Fig. 9, panel A. Fix a point (a,c) € Ry x Ry such that

(1—a)(a—a1) — Biayo + Pi3(z — 20) <0 for all z < ¢;
(20 — ¢)(c — az) + B317 — B32y0 < 0 for all z < a.

The half-open rectangle (0,a] x (0, ¢] is shown with the green lines. Clearly, it is always possible
to increase simultaneously a and ¢, so we assume that a,c > 1, 0 < z(0) < ¢ and 0 < 2z(0) < c.
Roughly speaking, the point (a,c) is outside the ‘internal part’ of both parabolas.

The similar picture in the variables (8) is given in Fig. 9, panel B: the images of the parabolas,
shown with the blue lines, represent the nullclines ¥; = 0 and 03 = 0 of equation (9) in the limiting
case when vy — —o0.

v3=Infz)=In(c)
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Figure 9: Panel A: nullclines # = 0 and 2 = 0 at y = 0 are shown in blue. Panel B: nullclines
1 = 0 and ©3 = 0 at vo9 — —oo are shown in blue. The dotted blue line corresponds to the part of
the parabola z = 0 with negative values of . Parameter values: a; = 0.03, ag = 0.11, yo = 0.075,

29 = 0.22, B12 = —6, B13 = 0.6, B21 = 0.2, B3 = 0.1, 31 = 0.5, B30 = 0,71 = 1, 12 = 0.7, 73 = 0.2.

In the space R3, consider the infinite closed prism II defined by
—o0 < vy <lna, — 00 < vy <Inb, — oo < w3 <lIng,

where
b > yo + Bara + Bas(c — 20)- (13)
Without loss of generality, we assume that y(0) < b and b > 1.

Remark 7.1. For such a prism, we have the following.

o If x = a, then the square bracket in the first equation (7) is negative for all z < ¢ and all
y > 0. (Recall that B12 < 0.) Therefore, if v1 = Ina, then the square bracket in the first
equation (9) and (10) is negative for all vs <lInc and all v3 > —o0.

o Similarly, if z = ¢ then the square bracket in the third equation (7) is negative for all v < a
and all y > 0. (Recall that B2 < 0.) Therefore, if vs = Ilnc, then the square bracket in the
third equation (9) and (10) is negative for all v <lna and all v3 > —oc0.

o Ify = b, then the square bracket in the second equation (7) is negative for all x < a and
z < c¢. Therefore, if vo = Inb, then the square bracket in the second equation (9) and (10) is
negative for all v1 <lna and all v3 < lInc.
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Now we modify the equations (10) outside II: if (vy, va, v3) = m(01, 02, 03) for some m > 1 with
(01, 02,03) € OII, then we put

fi(vi,v2,v3) == 7 [(1 — 67?1)(6{’1 — o)+ 512(67&2 —yo) + Bis(e®™ — 20)];
fa(v1,v2,v3) 1= Y2[yo — €2 + Pare™ + Bas(e™ — zo)]dt;
f3(v1,v2,v3) :=y3[(20 — €"3)(€"® — az) + Pg1"" + P32(€”? — yo)]dt

and introduce stochastic differential equations (further, SDEs)

dVi = f1(V1, Va, V3)dt + o1dW7;
dVa = f2(V1, Va, V3)dt + o2dWo;
dVs = f3(V1, Va, V3)dt + o3dWs,
V1 (0) = V1 (O), %(0) = 122(0), Vg(O) = Ug(O).

(14)

They satisfy all the conditions which guarantee the existence of the unique continuous strong
solution [4, Remark 14.21] or [14, Theorem 5.2.1]: all the functions fi, fo and f5 are bounded and
Lipschitz in R3.

Remark 7.2. Ifo; = 02 = 03 = 0, we have just the system of ordinary differential equations which
is uniquely solvable on the time horizon [0, 00) [19, Corollary 2.6.]. This solution (v1(t),va(t),vs(t))
can never leave the prism II because on the boundary Ina for the component vy (Inb for ve and Inc
for vs) the derivative 01 is negative (03 < 0 and v3 < 0 correspondingly): see Remark 7.1.

Finally, within the prism 11, the vector (v1(t), va(t), v3(t)) satisfies differential equations (9) and
the functions z(t) := '@, y(t) := €W and z := ") are well defined on the infinite horizon
[0,00), satisfy equations (7) and are strictly positive. As was noted below (7), these equations
cannot have other solutions.

In the stochastic version with o1, 09,03 > 0, the solution to SDE (14) can exit any one prism
on a finite time interval. We need to define a sequence of increasing prisms {II;}$°, coming from
a carefully selected sequence {(a;,b;,c;)}32,. Namely, we require that, for a preliminarily fixed
k > 0, the following condition is satisfied.

Condition 7.1. For each i > 0 for all

ai—1 <z < ay, 0<y<b, 0<z<g¢
(or  O<z<ay, bi—1 <y <y, 0<z<g
or  0<z<a;, 0<y<b, c1<2z<c¢)

the square bracket in the first (second, third) equation (7) is negative and a; > a;_1€* (b; > b;_1e¥,
c; > ci_1€* correspondingly). As the result, for all (vi,ve,v3) € I; with vy € [Ina;_1,Ina;] (with
vy € [Inb;_q,Ind;], vs € [Inc;_1,In¢;]) the square bracket in the first (correspondingly, second,
third) equation (9) and (10) is negative.

Additionally, Ina; > Ina;—; +k (Inb; > Inb;—1 +k, Inc; > Inc;_1 + k) and z(0) < ag,y(0) <
bo, Z(O) < Cp.

Clearly, under this condition,
1Hf{|’L_I:Z — ﬁi+1| : ’LTZ S 81_[“ ’L_L'i+1 c 8H¢+1} >k > 0.

Let us explain why Condition 7.1 can be satisfied for an arbitrarily fixed k£ > 0.
Along with the parabolas as in Fig. 9, panel A, we introduce the expanded graphs (shown in
Fig. 10, panel A with the dashed blue lines) of the functions

-1

U Fck [(1—2)(z— a1) — B12yo — P1320] ;
o 5%; [(z0 — 2)(z — a2) — B32yo] -
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The right-hand parts become bigger than z and z for big enough x and z correspondingly, and one
can choose ag = c¢g such that

ap=cop < (1 —2)(z—a1) — Prayo — B1320];

[3136k
ag =cy < @ [(z0 — 2)(2 — a2) — B32y0]
and agp > x(0), co > 2(0).

After that, the whole red square in Fig. 10, panel A, with a; = age® and ¢; = cpeF = ay, is within

the area where the square brackets in the first and third equations (7) are negative. The image of
Fig. 10, panel A on the plain (vq,v3) is given in Fig. 10, panel B. It remains to take

bo > max{yo + 2101 + Pa23(c1 — 20), y(0)}.
In general, for all ¢+ > 1, we put

a; = ai—leka Ci = Ci—lek
and bi = max{yo + Barai+1 + Baa(cit1 — 20), bi—1e"}.

The obtained sequence {(a;, b;, ¢;)}52, satisfies Condition 7.1.
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Figure 10: Construction of the first prisms IIy and I1;. Parameter values are as in Fig. 9; k = 0.75.

The SDE (14), for the prism II;, in its vector form means that

t
7i(tw) :g(o)+/ P(Vi(s,w))ds +EW (1) as. (15)
0
for all ¢ > 0. Here the functions f' = (fi, fi, fi) are constructed, as described above, for the
g1 0 0
prism II;. The vector notations are conventional, = = 0 o9 0 |. Similarly, we write down
0 0 g3
equations (10) as
t
V(t,w) :17(0)+/ F(V(s,w))ds +EW(t,w)  a.s. (16)
0

for all ¢ > 0. Note that, if a random process Z(t,w) satisfies equation (15), then Vi(t,w) = Z(t,w)
for all ¢ > 0 almost surely. (The processes Vi and Z are ‘indistinguishable’, often called ’versions’
or 'modifications’ [14].)

Suppose 7 > 0 is arbitrarily fixed, construct the process V on [0, 7], which satisfies equation
(16), and prove that it is unique. The idea is as follows.
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e The process V will be a combination of the processes Vi

e Between the prisms Il;_1 and I1;, the process Vi s pushed back to the prism I1;_1, and the
chance for it to reach the boundary of the prism II; is smaller than a constant € < 1.

e Hence, almost surely, there is j > 0 such that the process Vi lives in the prism 11;, where it

3
18 unique and coincides with V.

After that, one can extend the unique solution of equation (16) to infinite horizon [0, c0). Below,
we omit some technical details. The more detailed proof can be found in [15].
We introduce ‘debutes’

Di(w) :=inf{0<t<7: Vit,w) el \IL}, i=0,1,...
and the (measurable) sets

Qi ={weQ: Diw)>71}, i=0,1,....
On each set €, for all s < 7, Vi(s,w) € II; meaning that f#(Vi(s,w)) = f(Vi(s,w)) and, by (15),
for all ¢ < 7, for P-almost all w € ;,

t

Vi(t,w) = 7(0) + i F(Vi(s,w))ds +EW (t,w). (17)

For 0 < s < 7, we put

V(s,w) = V%s,w) on Qo and

— .

Vis,w) = Vi(s,w) on U;;%)Qj NnQ; fori=1,2,....

As the result, the continuous process V is built on U2 082
First, we are going to show show that

P ([j QZ) =1 (18)
i=0
For i > 1, let us introduce debutes
Dii (W) :=mf{0<t<7: Vit,w) el \T;_1}
and the corresponding subsets
Qi1 ={weQ: D;;_1(w)>T1}

For each ¢ > 1, within the prism II;_;, the SDE (15) for the processes Vi and Vi1 is the same.
Therefore, one can show that V¢ = V! for all t € [0, 7] almost surely on ; ;1 UQ;_1, and

P(Qi1 A1) = 0. (19)

Moreover, for each i = 0,1,2,..., V =Viforall t € [0, 7] almost surely on ;.
Let ¢ > 1 be arbitrarily fixed and explain why

P(8) < eP(Qi-1), (20)

for an i-independent constant ¢ < 1, provided k as in Condition 7.1 is big enough:

1 /OO Ha <l o193 (21)
T € 9 =L 49
%=, y<g
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Suppose that w € Q; and Vi (D;(w),w) = Inay, i.e.
we€ By ={w: V}(Di(w),w) =Ina;}.

Other cases when Ina; is replaced with Inb; or In¢;, leading to the sets Es and FE3, can be

studied similarly. Clearly Q; C Q-1 and, for w € ;, 0 < D;;—1(w) < D;(w) < 7. Let
U(w) = Vi(Dm_l(w), w) € ;4. Since w € Fy, we introduce

T;(w) :=sup{t € [D;i_1(w), Di(w)] : Vi(t,w) <lna;_1}.

1092 -

4
In a e
w
100 |—| 5
1 = 3
q 5
g B 2
Emaaf U 3 g
£ \ g
w
£ 2
[=]
he}
c
]
o

i
1084 [ ‘ ‘ ‘
In a; "L\( ),

109 1.085 11 1105 111 1.115 112

Vi =In(X)

Figure 11: Small fragment of the motion of Vi phase trajectories on panel A and time trajectories
on Panel B. The black spots correspond to the time moments D; ; 1, T; and D;; U= ¢;—_1. The
red arrows at the spots on panel A show the direction of the movement of the phase trajectories
at the time moments D, ;_;, T; and D;. Parameter values: a; = 0.03, ap = 0.11, yo = 0.075,
20 = 0.22, B12 = =6, B13 = 0.6, B21 = 0.2, B23 = 0.1, B31 = 0.5, B33 = 0,71 = 1,72 = 0.7, 73 = 0.2,

o1 =09 =03 = 1.

These objects are illustrated in Fig. 11: the process Vi leaves the prism II;_; for the first
time when V§(D;;—1) = lnc;_1, it leaves the prism II; when V{(D;) = Ina;, and between the
time moments 7; and D;, the first component satisfies inequalities Ina; 1 < V{ < Ina; and
Vi(T;) =Ina;_;. Now

D; .
na; = Vi(D;)=V{(T}) + /T AV (5))ds + o1 [W1(Dy)) = WA(T;)]
< Ilnaj_q1 + o1 [Wi(D;) — Wi(T;)]

because fi < 0 within the prism II; (see Condition 7.1). Therefore, on the time interval [T}, D;] C
[0, 7] the Brownian motion has the variation bigger than o% because Ina; > Ina;_1 + k. According

to (21), we deduce that, for each @ € 9II;_; (the value of U(w)),

1
o< =
3

P(Qli) < P(EAUE,UEs|u) <e:=30<1

s
5

=
I

and
P@) = | P@I0() dPw) < eP(@i).

Qi1

Inequality (20) now follows from (19).
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Using (20), we have
oo N
P (ﬂo Q) = lim P ((19) < lim P(Qy) < lim eVP(Q) = 0.

Therefore, P (J;2, Qi) = 1—P (2, ) = 1, and equality (18) is proved. The more rigorous and
detailed reasoning can be found in [15].

According to (17), the constructed continuous process V (£, w) satisfies equation (16) (and (10))
for all ¢t € [0, 7] a.s., i.e., it is a strong continuous solution to those SDEs. If Z is another strong
continuous solution, then it is bounded on [0, 7] and hence belongs to some prism II;. As the result,
Z=V,=Vioralltel0r]as on€ ie Z=V foralltel07] as. on UiZ i and on Q (see
(18)). For more accurate reasoning see [15].

Finally, extension to the infinite horizon [0, 00) of the solution V to the SDE (16) (and (10)) is
trivial. Take an increasing sequence {7;}32,, 7; > 0, with lim;_, o 7; = oo, construct the solutions
Vi to SDE (16) (and (10)) on the intervals [0, 7;] and put

V(t,w) = V7 (t,w){t € [1,_1,7;)},

where 79 := 0. If there is another process Z satisfying this property then, due to the uniqueness
of V7, Z(t,w) =V (t,w) for all t € [rj_1,7;) a.s., j = 1,2,.... Hence 2(t,w) = V(t,w) for all
t € [0,00) a.s.

The proof is completed.
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