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The widely-known Gompertz law of mortality states the exponential increase of mortality with age in human
populations. Such an exponential increase is observed at the adulthood span, roughly after the reproductive pe-
riod, while mortality data at young and extremely old ages deviate from it. The heterogeneity of human popula-
tions, i.e. the existence of subpopulations with different mortality dynamics, is a useful consideration that can
explain age-dependentmortality patterns across thewhole life-course. A simplemathematicalmodel combining
the heterogeneity of populations with an assumption that the mortality in each subpopulation grows exponen-
tially with age has been proven to be capable of reproducing the entire mortality pattern in a human population
including the observed peculiarities at early- and late-life intervals. In this work we fit this model to actual
(Swedish)mortality data for consecutive periods and consequently describe the evolution ofmortality dynamics
in terms of the evolution of themodel parameters over time.We have found that the evolution of the model pa-
rameters validates the applicability of the compensation law of mortality to each subpopulation separately. Fur-
thermore, our study has indicated that the population structure changes so that the population tends to become
more homogeneous over time. Finally, our analysis of the decrease of the overall mortality in a population over
time has shown that this decrease ismainly due to a change in the population structure and to a lesser extent to a
reduction of mortality in each of the subpopulations, the latter being represented by an alteration of the param-
eters that outline the exponential dynamics.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical modelling of biological processes such as longevity,
ageing and mortality is of interest for many scientists working on vari-
ous subjects including demography, biology, statistics and actuarial sci-
ences. The event of death and the forces that cause it have puzzled and
inspired many philosophers and scientists from the 17th century on-
wards. Great works such as those by Joseph Addison (1672–1719),
Karl Pearson (1857–1936) and Benjamin Gompertz (1779–1865) give
us insights on the development of the concept of mortality over the
past few centuries (see (Turner and Hanley, 2010) for a review). Addi-
son in his allegorical essay “The vision of Mirza” (Addison, 1711) imag-
ined the human life as a walkthrough over a bridge, “the bridge of
human life”, where hidden pitfalls open periodically and the people
above them fall down and disappear, the forces causing death being
then external. Almost two centuries after Addison, Pearson considered
death as a random event and decomposed the entire mortality curve
into five different phases, described by five different probability distri-
butions (Pearson, 1897). Pearson's concept can be represented with
humans crossing the bridge of life, where at each one of the five stages,
a marksman attempts to kill them. From one stage to the next the pre-
cision of the marksman's weapon improves (five different precisions
for the five different age groups) and consequently the chance of
death increases. On the other hand, the work by Gompertz (1825) is
of greater importance as he was the first who considered death to be
caused by internal forces in organisms and proposed a model for the
force of mortality. According to Gompertz, the mortality force increases
in a geometrical progression within a wide age-range of lifespan, that is
from sexual maturity to considerably old ages. This conception is con-
firmed by many observations and is known as the Gompertz law of
mortality. Mathematically, the Gompertz law represents the mortality
rate mx at age x, as an exponential function of age

mx ¼ m0e
βx ð1Þ

wherem0 is the initial mortality (can be considered as mortality rate at
age 0) and β is the mortality coefficient that gives the rate of change of
mortality with age (strictly speaking the age x in the Gompertz law can
only be varied in a certain range, i.e. between 20 and 80 years).

Observed mortality data and the theoretical force of mortality are
generally plotted in a semi-logarithmic scale where the exponential
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increase of mortality (Eq. (1)) is represented by a straight line. Graphi-
cally the actual mortality data generates patterns which have certain
common features as well as some quantitative differences as compared
to different cohorts and periods. A typicalmortality pattern (Fig. 1) orig-
inates from the initial mortality at age zero, falls down to a minimum
point (approximately at the age of 10), increases to a local maximum
(around the age of 25), then slightly decreases or remains constant and
after the age of 35–40 advances exponentially satisfying the Gompertz
law. At extreme old ages (above the age of 100) there is no common ev-
idence on how themortality curve behaves as the reported observations
are controversial and providedwith different explanations (Gavrilov and
Gavrilova, 2011; Greenwood and Irwin, 1939; Olshansky, 1998). Various
statements made about the mortality dynamics at old ages include
the mortality levelling-off or so-called “late-life mortality plateau”
(Curtsinger et al., 2006; Economos, 1979; Mueller and Rose, 1996),
the late-life mortality deceleration (Depoid, 1973; Gavrilov and
Gavrilova, 2001; Horiuchi and Wilmoth, 1998; Thatcher et al., 1998),
the decline (Kannisto et al., 1994; Vaupel et al., 1998) or fluctuations
at advanced ages (Avraam et al., 2013).

The high initial level of mortality is due to the fact that new-borns
are not particularly fit for the new environment they are born into
and therefore, a relatively high proportion of them are not able to sur-
vive. As the forces of mortality due to environmental factors decrease,
death rates decline. Mortality starts then to increase at the age of 10.
One can state that mortality should increase exponentially from this
age. However in actual mortality data the exponential increase of mor-
tality is observable only after the ages of 35–40 (Fig. 1) as between the
ages 10 and 35 it overlapswith a localmaximumon themortality curve.
This local maximum is apparent at the reproductive period of lifespan
and is commonly called “the accidental hump” as it is related to the ex-
ternal causes of deaths (mainly accidents and maternal deaths) due to
the risky behaviour of young adults.

Many studies have focused on the analysis of exponential increase of
mortality in the range of ages 30 and above. By comparing parame-
ters describing the exponential dynamics for data taken for different
human societies it was found that in developed countries initial mor-
tality, m0, is lower while the mortality coefficient, β, is higher than
these parameters describing data for less developed countries. This
phenomenon, namely the inverse relationship between initialmortality
and mortality coefficient appears to be fundamental (confirmed by all
available data) and called the “compensation law” or “compensation
effect” (Gavrilov and Gavrilova, 1979, 1991).

A number of mathematical models have been proposed to analyse
mortality dynamics and explain its deviations from the exponential
law at early and late life intervals. Some models postulate that a few
different processes take place in the population and affect its mortality
dynamics (Heligman and Pollard, 1980; Thiele, 1872), while others
Fig. 1.Mortality rates for the Swedish population in the period 1900 (p
The data are taken from the Human Mortality Database, http://www.m
analyse the impact of population heterogeneity on the dynamics of mor-
tality (Vaupel and Yashin, 1985; Vaupel et al., 1979). A model based on
the assumption that the mortality dynamics is indeed underlined by an
exponential law and deviations from this law are due to the heterogene-
ity of human populations has recently been proposed (Avraam et al.,
2013). It was shown that the observed age-specific mortality patterns
can be reproduced in a model of heterogeneous population consisting
of a few (up to four) subpopulations each following the exponential
law over all ages.

Time evolution of mortality dynamics in human populations is of
great scientific interest and has practical implementations especially
for actuaries,whouse extrapolationmethods toprojectmortality trends
in order to estimate future life expectancy (Booth and Tickle, 2008;
Pitacco, 2004), and to price several longevity products. An example of
mathematical study of this evolution can be found in Gaille (2012),
where the analysis of the evolution of the parameters of two convention-
al models (Heligman–Pollard and Lee–Carter) is used to forecast the
Swiss mortality rates and to study the impact of longevity on Swiss pen-
sion funds. Mathematical analysis of the evolution ofmortality dynamics
could also be useful for demographers (to derive inferences on the pop-
ulation variance) and for biologists (to understand genetics underlying
the evolutionary process of ageing).

In this work we aim to describe the evolution of mortality dynamics
as time evolution of the parameters in the model of a heterogeneous
population (Avraam et al., 2013) so that we could gain insights in the
processes governing mortality reductions over the past century. We in-
troduce our model in Section 2 and used mortality data in Section 3. In
Section 4 we fit the model to various mortality data (cut at a certain
age or including/excluding the extrinsic death factors) for consecutive
periods and analyse the evolution of the model parameters. The results
demonstrate that the population's structure is altered through time and
a relative homogenization of the population occurs, explaining an im-
portant part of mortality reductions during the 20th century. The anal-
ysis also indicates that changes in the initial mortality and mortality
coefficient of the exponential law for all subpopulations are in line
with the compensation law. Discussion of presented results is provided
in Section 5.

2. Mathematical model and fitting procedure

In this work we use a previously proposed model (Avraam et al.,
2013) where a human population is considered as heterogeneous and
composed of a number of subpopulations. The subpopulations are as-
sumed to obey an exponential law, as given by Eq. (1), but differ in
their mortality parameters (initial mortality, m0, and mortality coeffi-
cient, β). Themortality of the entire population ismodelled as amixture
of weighted exponential terms. Theweights represent the relative sizes
anel A) and 2000 (panel B) presented in a semi-logarithmic scale.
ortality.org.
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(fractions) of the subpopulations; they depend on age x and their sum is
equal to unity at any age. Assuming that the entire population consists
of n subpopulations, the total mortality rate is expressed as:

mx ¼
Xn

j¼1

ρjxmjx ¼
Xn

j¼1

ρjxmj0e
β jx ð2Þ

where ρjx ¼ Njx=∑
n

j¼1
Njx is the fraction or proportion representing the

size, Njx, of the j-th subpopulation with respect to the whole population

size,∑
n

j¼1
Njx, at age x, andmjx is the exponential function for the j-th sub-

population with initial mortalitymj0 andmortality coefficient βj. Eq. (2)
expresses the mortality rate of the entire heterogeneous population at
age x within a cohort (with Njx representing person-years, Avraam
et al., 2013) or time-period with the assumption that the population is
stationary and its size and age-structure do not change over time.

Log-linear regression analysis is performed to fit themodel given by
Eq. (2) to mortality data. The Least Squares Method is used to estimate
the free (unknown) parameters thatminimize the sum of squared resid-
uals (a residual is the difference between the theoretical and observed
value). Bayesian Information Criterion (BIC) (Schwarz, 1978) is used in
order to select the optimal model, that is, to find the number of subpop-
ulations in themodel having the bestfit to the dataset. The BIC is given by

BIC ¼ nd ln σ̂2
e

� �
þ k ln ndð Þ ð3Þ

where nd is the number of data points, σ̂2
e is the sum of squared residuals

divided by the number of data points and k is the number of free param-
eters. The number of free parameters for n subpopulations is given by
k = 3n − 1. The optimal model is the one with the lowest BIC.

3. Data

In this study we used two series of datasets. The first series repre-
sents the Swedish mortality (combined for males and females) for a
period-interval of one century 1900–2000, provided by the Human
Mortality Database (http://www.mortality.org). These datasets provide
single age mortality rates resulting from all causes of death. The second
series of datasets is from theWorld Health Organization (WHO), which
maintains a comprehensive cause-of-death mortality database (http://
www.who.int). This database provides the sizes of mid-year popula-
tions and number of deaths by cause for various countries over the
last 50 to 60 years. We obtained data for Sweden (males' population)
from 1951 to 2010. The data are generally divided into five-year age-
groups. Thus, our database is composed of nineteen groups, the first
for infants less than one year old, a second for children aged one to
four, thereafter in groups of five years, ending with the group aged 85
and above. The database of the WHO needs to be adjusted in order to
analyse data consistently over time (proportional distribution of the
number of deaths of unknown age; adjustments due to the changes of
the International Classification of Diseases (ICD) over time (Table 1)).
Details on these adjustments can be found in Gaille and Sherris (2011)
and Arnold (-Gaille) and Sherris (2013). This database allows us to dis-
tinguish between extrinsic mortality and intrinsic mortality.
Table 1
International Classification of Diseases (ICD) codification. The classification is regularly
reviewed and updated and consequently it has evolved from ICD 7 in the 1950's to ICD
10 which is used nowadays.

Causes of death ICD 7
(1951–1968)

ICD 8
(1969–1986)

ICD 9
(1987–1996)

ICD 10
(1997–2010)

External causes A138–A150 A138–A150 B47–B56 V00–Y89
Infectious and
parasitic diseases

A001–A043 A001–A044 B01–B07 A00–B99
To justify our interest in the relative impacts of intrinsic and extrinsic
factors to mortality dynamics we refer to the original Gompertz work
where he mentioned two different mortality groups: a first mortality
group related to chance, without previous disposition to death or deterio-
ration; a second mortality group referring to deterioration, or an in-
creased inability to withstand destruction (Gompertz, 1825). Today, the
distinction is usually made between intrinsic and extrinsic causes of
death, the intrinsic causes being related to Gompertz's inability to op-
pose destruction. More specifically, the extrinsic causes of death repre-
sent external or environmental factors that produce death, while the
intrinsic causes of death represent biological forces that lead to death,
namely ageing or senescent (Carnes and Olshansky, 1997; Makeham,
1867; Shryock et al., 1975). Makeham (1867) suggested that the
Gompertz law will fit much better with mortality due to biological
causes (intrinsic causes). It is therefore interesting in our exponential
modelling approach to apply our model to intrinsic causes of death.
The extrinsic causes of death usually include the external causes of
death (such as accidents, homicide and suicide) and the infectious and
parasitic diseases, even if some studies recommend the inclusion of
some other causes (see e.g. the classifications in Carnes et al., 2006
and a review in Carnes andOlshansky, 1997). TheWHOdatabase allows
us to analyse the mortality pattern excluding these extrinsic causes of
death and then to focus on themortality dynamics due to intrinsic mor-
tality. Table 1 provides the ICD codes for the extrinsic causes we
excluded.

4. Results

In this section we fit the model proposed in Section 2 to the data de-
scribed in Section 3 in order to describe time-dependence of mortality
patterns in terms of the evolution of the model parameters. In order to
better capture the direction of the trend of each parameter over time,
the evolution of each parameter is displayed with the most representa-
tive trendlinewithin the examined time range. Two differentmonoton-
ic functions (linear and exponential) are compared through the BIC
(which, in the case of these two functions, works in the same way as
R2) statistics. These two functions were chosen due to their interpret-
ability with respect to the compensation effect of mortality, as further
explained in the following sections.

We start our analysis with data which can be fitted by amodel com-
prising a small number of subpopulations and proceedwith the analysis
of more-and-more complete datasets. In Section 4.1 we consider the
Swedish data for ages 40+,which is fitted by a one-subpopulation (ho-
mogeneous) model. In Section 4.2 we extend the considered data by in-
cluding ages 20+ which are best fitted by a model comprising two
subpopulations. In Section 4.3 we consider mortality data for all ages
but excluding extrinsic death factors which are also best fitted by a
model comprising two subpopulations. In Section 4.4 we consider the
complete mortality dataset for Sweden which has a best fit to a model
comprising four subpopulations. Moving from a smaller to a larger
number of subpopulations we make a comprehensive analysis of the
evolution of the model parameters. This analysis reveals two effects
that take place in the population through time that are compensation
and homogenization, which are summarized in Sections 4.5 and 4.6
respectively.

4.1. Evolution of mortality parameters for ages 40+

As mentioned earlier the exponential increase of mortality with age
is evident in themortality pattern at adulthood span after the reproduc-
tive period. It follows that themortality data from age 40 are best fitted
by a model of homogeneous population. Our analysis shows that at the
beginning of the century, the data for ages 40+ slightly diverge from a
pure exponential growth. An example is the 1900 period dataset
shown in Fig. 2A. For those data, the BIC criterion indicates that a
two-subpopulation model (BIC = −184.73) fits the data better than

http://www.mortality.org
http://www.who.int
http://www.who.int


Fig. 2.Homogeneous model (solid line) fitted to the 1900 (panel A) and 2000 (panel B) period Swedish data (dots) from age 40 and above. Themortality parameters as estimated by the
Least Squares Method are:m0 = 0.000189, β = 0.0818 for panel A and m0 = 0.000015, β = 0.1033 for panel B.
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the homogeneousmodel (BIC=−164.08). On the other hand,more re-
cent data indicate a stronger merge to the exponential growth and
therefore the homogeneous model fits the data better than that involv-
ing two subpopulations. For example, the BIC numbers for homoge-
neous and two-subpopulation models fitting the data shown in Fig. 2B
are −319.88 and −319.07 respectively. It is therefore evident that
the fit of the homogeneous model to the data for consecutive years
gets better over time (one can read it by comparing panels A and B in
Fig. 2). This is mainly due to the extended impact that the accidental
hump had on themortality pattern at the beginning of the 20th century
(Fig. 2A). At that time the number of deaths caused by external factors,
such as accidents, was considerably larger (as a result of poor education,
inadequate transportation system, unsafe labour environment, lack of
contraceptives, etc.) and therefore the accidental hump had a larger
amplitude and impacted a wider age range. Over time the magnitude
of the accidental hump decreased and at present it affects a smaller
range of age groups. It is not surprising that some studies predict that
the accidental hump will be less noticeable and even probably disap-
pear in the coming years (Gaille, 2012). Despite this observation, we
only consider the model of homogeneous population (described by
the exponential law) to fit the Swedish data fromage 40 for consecutive
years, in order to be consistent in our first step and to study the evolu-
tion of mortality parameters.

As the mortality patterns evolve over time, the model parameters
that provide the best fit to the actual data at different periods change.
Fig. 3. Evolution of the parameters of the homogeneous model fitted to the Swedish mortality
exponentially decreasing trend for the initial mortality and panel B — a linearly increasing tren
trendlines by solid lines. Error bars represent the standard deviations of estimated parameters
Fig. 3 presents the evolution of the mortality parameters estimated by
fitting the homogeneousmodel (as represented by Eq. (1)) to the Swed-
ishmortality rates from age 40 and for every five years over the periods
1900 to 2000. The initial mortality shows an exponentially decreasing
trend over time (Fig. 3A) while the mortality coefficient a linearly in-
creasing trend (Fig. 3B). The decline of initial mortality is of no surprise,
especially in developed countries where medicine and hygiene levels
have improved rapidly over the last century. On the other hand the in-
crease in the mortality coefficient is harder to explain. This phenome-
non is known as the compensation law of mortality. This law states
that a high initial mortality rate in a population is compensated with a
low rate of mortality increase with age, or similarly a low initial mortal-
ity rate is compensated with a high rate of mortality increase with age
(Gavrilov and Gavrilova, 1979, 1991, 2006; Strehler, 1978; Strehler
and Mildvan, 1960; Yashin et al., 2000). The compensation law is also
known as the “late-life mortality convergence”, because mortality tra-
jectories between different populations converge to a specific point.
The age at which the mortality trajectories converge is the age at
which the last survivor dies and therefore we will call it “the target
lifespan”. Similarly, the mortality at which the mortality trajectories
converge will be called “the target mortality rate”.

The inverse relationship between the mortality parameters of the
modelled homogeneous population is shown in panel A of Fig. 4. This
plot confirms that a high initial rate of mortality is associated with a
lowmortality coefficient. It is apparent that there is a linear relationship
rates from age 40, for the periods 1900 to 2000 with five-year intervals. Panel A shows an
d for the mortality coefficient. In both plots the parameters are presented by dots and the
.
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Fig. 4. Compensation effect in 40+mortality dynamics. Panel A shows the inverse relationship between the parameters of the fitted homogeneous model to the Swedish mortality rates
for ages 40+ for the period data in the interval 1900–2000. The relationship between the logarithmof the initialmortality and themortality coefficient is shown to be linear. Panel B shows
the convergence of the exponential functions fitted to the Swedish data for ages 40+ and for different periods. Both plots are set in a semi-logarithmic scale.
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between the logarithm ofm0 and parameter β. This relationship, known
as Strehler and Mildvan correlation, can be expressed mathematically
as:

ln m0ð Þ ¼ ln Mð Þ−βX ð4Þ

whereX is the target lifespan andM is the targetmortality rate (Gavrilov
and Gavrilova, 2006; Strehler, 1978; Strehler andMildvan, 1960; Yashin
et al., 2000). From Eq. (4) it follows that if the mortality coefficient is an
increasing linear function of time (like the trendline in Fig. 3B), then the
initial mortality declines exponentially (like the trendline in Fig. 3A). It
should be noted here that Strehler and Mildvan (1960) used different
notations and interpretations for the terms X and M but the essential
meaning of the model was the same as above.

In panel B of Fig. 4, the trajectories of the homogeneousmodelfitted to
the Swedish data at four different years are plotted in the same semi-
logarithmic plot. The mortality convergence is evident. The coordinates
of the intersection point to which mortality trajectories are converging
represent the target lifespan and target mortality rate. With a pure form
of the compensation effect, all the exponential trajectories should cross
that point. Even if the mortality trajectories do not cross strictly at one
specific point within the area formed around the error bars of the point
(X,M) the compensation effect is still valid in its weak form. The error
bars of X andM represent the standard deviations of their values as esti-
mated by themethod described in Reed (1989). Themortality trajectories
Fig. 5.Heterogeneousmodelfitted tomortality data for ages 20+.A two-subpopulationmodel i
(panel B). Dashed lines represent themortality rates of each subpopulation (exponential functio
model of heterogeneous population. Themodel parameters as estimated by the Least SquaresM
2nd subpopulation m20 = 0.000063, β2 = 0.0951, ρ20 = 0.71589 and for panel B: 1st subpop
β2 = 0.10377, ρ20 = 0.96886. (For interpretation of the references to color in this figure legen
that fit the Swedish data above age 40 for different years should theoret-
ically intersect at the point (X= 103.6± 6.1,M= 0.791± 0.463) with a
pure compensation effect. The coordinates (X andM) of this point define
(as stated by Eq. (4)) the trendline (shown as a solid line) in panel A of
Fig. 4.

This first analysis showed that the compensation effect is evident in
the Swedish population for ages above 40 when different periods are
compared, although it is in itsweak form.Wearenow interested in study-
ing this effect for a wider age range and for heterogeneous populations,
that is when a population is composed of a set of subpopulations.
4.2. Evolution of mortality parameters for ages 20+

It appears that a two-subpopulationmodel is the best fit for Swedish
mortality data which are cut at age 20. The mortality pattern above age
20 includes a part of the accidental hump (usually a piece of its right
tail) and the exponential rise of mortality at older ages. There is a local
minimum in between these two parts and therefore two subpopula-
tions should be involved to reproduce the mortality pattern observed
above age 20. Fig. 5 presents examples of mortality data and fitted
models for 1900 and 2000. The mortality dynamics of the two subpop-
ulations are shown by dashed lines while the mortality of the entire
population as calculated by Eq. (2) is shown by the red solid curve.
The first subpopulation having higher initial mortality is frailer than
the other and thus is producing decline in mortality at the right tail of
sfitted to Swedish (males and females) data (dots) for theperiods 1900 (panel A) and 2000
ns)while the solid (red) curve is themortality of thewhole population as described by the
ethod are for panel A: 1st subpopulationm10= 0.01742, β1= 0.0278, ρ10= 0.28411 and
ulation m10 = 0.09361, β1 = 0, ρ10 = 0.03114 and 2nd subpopulation m20 = 0.000015,
d, the reader is referred to the web version of this article.)

image of Fig.�4
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the accidental hump while the second subpopulation is responsible for
the exponential growth of the entire population mortality after the re-
productive period. For clarity and consistency purposes, in the remain-
ing part of this study the first subpopulation represents the one with
the highest initial mortality level (j = 1), the second is the one with
the second highest initial mortality level (j = 2), etc.

An interesting observation from Fig. 5A is that the heterogeneous
model explains the decline of mortality at advanced ages observed in
1900 (local maximum at age ~98). This behaviour is observed when
the mortality trajectories of the two subpopulations are crossing and a
considerable number of individuals of the frailest subpopulation (the
subpopulation having the highest initial mortality) are still alive at that
point. The mortality cross-section (or crossover as called in Vaupel and
Yashin, 1985) occurs when one of the subpopulations has a lower mor-
tality rate than the other subpopulation at younger ages, but higher at
Fig. 6. Evolution of the parameters of a two-subpopulationmodel fitted to the Swedishmortality
mortality coefficient (β) and initial fraction (ρ0)) associatedwith the first subpopulationwhile t
model parameters and their standard deviations as estimated by the Least Squares Method an
older ages. The two mortality trajectories of the subpopulations fitted
to the Swedish 1900 period data (Fig. 5A) cross each other at age 83,
that is when 104 individuals of the first subpopulation (0.78% of the
total population) are still alive at that age, while few of them remain
alive at the local maximum age (age 98). For the 2000 period data
(Fig. 5B) the trajectories cross at age 84. The only individual of the frailest
subpopulation alive at that age (0.002% of the total population at age 84)
dies a couple of years after the point of intersection and therefore we
don't observe the decline ofmortality at advanced ages on this panel. An-
other observation from Fig. 5 is about the constant mortality of the
frailest subpopulation in panel B. For that particular period, the frailest
subpopulationwith zero-slope (β1=0) appears to be optimal. This hap-
pens due to the constraint we set in the model, namely, that the mortal-
ity coefficients can't be negative. Without this constraint the best fitted
models can involve negative mortality coefficients, which means that
rates for ages 20+. Panels A, C and E showevolution of parameters (initialmortality (m0),
he panels B, D and F—with the second. The circle points with error bars correspond to the
d the solid curves show trendlines for the evolution of the parameters over time.

image of Fig.�6
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the models incorporate a process opposite to senescence. Thus here and
later, some of our best fits will have a mortality coefficient equal to zero
for the frailest subpopulation.

The time-evolution ofmortality parameters in themodel of a hetero-
geneous population fitted to the Swedish data for ages above 20 is
shown in Fig. 6. The initial mortality rate m10, parameter β1 and initial
fraction ρ10 of the first (frailest) subpopulation are shown in panels A,
C and E respectively. Similarly the evolution of mortality parameters
of the second (most robust) subpopulation is shown in panels B, D
and F. Although the parameters are widely dispersed and presented re-
sults contain high standard errors, the shown trendlines reliably indi-
cate the direction of trends.

Fig. 6 indicates that the inverse relationship between the initialmor-
tality rate and the mortality coefficient is observed for both subpopula-
tions. We therefore conclude that the compensation law holds for each
subpopulation, although in thefirst subpopulation it is reversed as com-
pared to that in the second subpopulation. Indeed, in the most robust
(second) subpopulation the initial mortality declines over time while
its mortality coefficient increases (similar results as in Section 4.1). At
the same time the initial mortality of the frailest (first) subpopulation
increases while its mortality coefficient decreases.

It is also interesting to note in Fig. 6 that the frailest subpopulation
shows an important volatility especially for more recent years, when
this subpopulation does not considerably affect the population mortali-
ty pattern above age 20. Specifically, the fraction of the frailest subpop-
ulation becomes very small (close to zero) from around 1960. Thus, the
mortality of the entire population is mainly reflecting the mortality of
themost robust subpopulation. The parameter values of the frailest sub-
population do not have an important impact on the entire population
mortality schedule, and thus, awide range of parameter values provides
a good fit.

A new and interesting observation related to the structure of hetero-
geneous populations can be drawn from panels E and F in Fig. 6. The
fraction ρ10 of the frailest subpopulation declines exponentially over
time while the fraction ρ20 of the most robust subpopulation increases
accordingly. The frailest subpopulation represented 0.28% of the total
population in 1900, while it only represented 0.03% in 2000. The popu-
lation is then becoming more homogeneous over time. This important
observation will be further discussed in the upcoming sections.

4.3. Evolution of mortality parameters for all ages excluding the extrinsic
causes of death

As mentioned in Section 3, the causes of death can be grouped into
two categories: intrinsic and extrinsic. The intrinsic causes are related
Fig. 7.Heterogeneousmodel fitted tomortality datawhich exclude extrinsic causes of death. A t
A) and 2010 (panel B). Dashed lines represent themortality rates of each subpopulation (expon
by themodel of heterogeneous population. Themodel parameters as estimated by the Least Squ
2nd subpopulation m20 = 0.000062, β2 = 0.0908, ρ20 = 0.96676 and for panel B: 1st subpop
β2 = 0.103, ρ20 = 0.99605.
to the inability of biological organisms to oppose destruction. Makeham
(1867) suggested, among others, that the Gompertz law fits much better
with mortality due to biological causes, this section focuses on the evolu-
tion ofmortality due to intrinsic causes. Since the extrinsic causes of death
include the external causes of death, the localmaximum in the adulthood
period (at approximately age 20 for the Swedish data in Fig. 1), that is, the
accidental hump is removed. Results in this section are based onmortality
rates for Swedish males found on the WHO website, as mentioned in
Section 3.

Fig. 7 presents observed Swedish male mortality (dots) excluding
extrinsic causes of deaths for the periods 1951 (panel A) and 2010
(panel B). The high level of infant mortality reflects mainly the deaths
due to severe birth defects, malformations, preterm births, the sudden
infant death syndrome, etc. Therefore the mortality trajectory drops
down to aminimumpoint and after the age of 10 increases exponential-
ly. Thus, by excluding the accidental hump we observe that the expo-
nential rise of mortality becomes apparent at the early stage of human
life, just after age 10, and the pattern of mortality has a single minimum
at that age. Therefore, amodel of a heterogeneous population composed
of two subpopulations should be sufficient to reproduce the actual data.
Our studies show that a two-subpopulation model is indeed commonly
a best fit for these data, although in some cases BIC values indicate that
three-subpopulation models are more accurate. In this section we will
fit all the consecutive periods with the two-subpopulation model for
consistency. In the two-subpopulation model (see Fig. 7), the mortality
dynamics of the first subpopulation explains the high infant mortality
and the mortality decline at young ages, while the second subpopula-
tion describes the exponential rise of mortality after the age of 10.

The second subpopulation represents a bigger proportion of the total
population than the first subpopulation. The first subpopulation has
usually a zero-slope coefficient and a high initial mortality, close to 1.
Thus, the first-subpopulation individuals die at the very young ages
due to the high level of initial mortality. By the age of 10, the first sub-
population is completely eliminated. Consequently, after the age of 10,
the mortality rate of the entire population increases exponentially ac-
cording to the mortality dynamics of the second subpopulation.

The time evolution of parameters of the two-subpopulationmodel is
shown in Fig. 8. The fitted model parameters are presented with circle
points with error bars, while the solid lines represent trendlines. We
found that while the model parameters m10 and β1 describing the first
subpopulation do not show any trend, the evolution of the other model
parameters follows a trend. Although the estimation of model parame-
ters comes with considerably large error bars the trendlines can be
reliably approximated by linear or exponential functions. The frailest
subpopulation has a zero-constant mortality coefficient (Fig. 8C) and
wo-subpopulationmodel is fitted to Swedishmale data (dots) for the periods 1951 (panel
ential functions)while the solid curve is themortality of thewhole population as described
aresMethod are for panel A: 1st subpopulationm10= 0.99013,β1=0, ρ10= 0.03324 and
ulation m10 = 0.97567, β1 = 0, ρ10 = 0.00395 and 2nd subpopulation m20 = 0.000014,
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Fig. 8. Evolution of the parameters of a two-subpopulationmodel fitted to the Swedishmalemortality rates for all ages and excluding extrinsic causes of death. Panels A, C and E show evo-
lution of parameters (initial mortality (m0), mortality coefficient (β) and initial fraction (ρ0)) associatedwith thefirst subpopulationwhile the panels B, D and F—with the second. The circle
points (with error bars) give the model parameters as estimated by the Least Squares Method and the solid curves show trendlines for the evolution of the parameters over time.
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an approximately constant (slightly decreasing) initialmortality (Fig. 8A).
The second subpopulation has an exponentially decreasing initial mor-
tality (Fig. 8B) and an exponentially increasing mortality coefficient
(Fig. 8D). The fraction of the first subpopulation declines exponentially
over time (Fig. 8E), while the fraction of the second subpopulation is in-
creasing accordingly (Fig. 8F). The first subpopulation can be considered
as static, with a constant initial mortality and a constant mortality coef-
ficient. Only its proportion to the entire population is changing over
time. An analysis of the compensation effect requires then an analysis
of the mortality dynamics for the second subpopulation only.

Similarly to the case of the 20+ data shown in Fig. 6 we observe the
decline of the initial mortality rate of the second (most robust) subpop-
ulation and the increase of its parameter β and thus the inverse relation-
ship between the two parameters is again observed, reflecting the
compensation law of mortality.

As in the previous section, the heterogeneity in human populations
is decreasing. The fraction ρ10 declines over time and tends to zero
while the fraction ρ20 converges to 1. This could be interpreted as a re-
duction in the number of vulnerable new-borns who fail to survive in
the new environment. This reduction can be viewed as a consequence
of hygiene,medical and lifestyle improvements, etc. Since these individ-
uals are no longer affected by fatal diseases at early ages, they are trans-
ferred to the most robust subpopulation and thus add to the mortality
dynamics in the same way as other individuals in the most robust
subpopulation.

The decrease in human heterogeneity leads to a very interesting ob-
servation: the decline inmortality rates of the entire population is partly
due to the decreasing proportion of the population related to the first
subpopulation. Indeed, the change over time in the structure of the
population, that is the change in the fractions of the first and second
subpopulations, explains most of the mortality decline of the entire
population. Most of the past mortality decline is thus not due to a de-
cline in the mortality of each subpopulation (reflected with changes in
the mortality parameters), but due to a change in the structure of the
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population. This result will be further discussed in the following
sections.

4.4. Evolution of mortality parameters for all ages including all causes of
death

In this section we will consider the model of heterogeneous popula-
tions as fitted to themortality data on the entire age range including all
causes of death. Swedish data for 1900–2000 have been used, as in
Sections 4.1 and 4.2. According to BIC values a model consisting of
four subpopulations is typically a best fit for these data (Avraam et al.,
2013). Fig. 9 shows the fitted model for the first and the last periods
under observation, that are 1900 (panel A) and 2000 (panel B).

The first subpopulation (with the highest initial mortality) describes
the high infantmortality of the entire population and the deepmortality
decline over thefirst fewyears. The second subpopulation has an impact
on mortality in the age range from two (when first subpopulation is al-
most gone) to 10when this subpopulation has also practically vanished.
The third subpopulation describes the accidental hump which occurs
due to the accidentalmortality for young adult males and the accidental
in addition to maternal mortality for young adult females. The last sub-
population (with the lowest initial mortality but the biggest initial size)
explains the exponential mortality trajectory of the entire population
after the reproductive period.

Fig. 9 illustrates that the parameters of the four subpopulations are
changing over time. Indeed, the points of intersections and the slopes
of the dashed lines are different in panels A and B. Details are provided
in Fig. 10, where the time evolution of each parameter is shown. The
plot has four columns, each column presenting the parameters of one
subpopulation.

Fig. 10 shows that the initial mortality of the first subpopulation in-
creases while the initial mortalities of the other three subpopulations
decrease over time (provided linear trends are not particularly accurate
but confidently indicate the increasing/decreasing behaviour of data).
The mortality coefficient of the first subpopulation (parameter β1) is
zero for almost all years. Since the parameter β1 only affects the first
few years of life, its value does not significantly influence the mortality
pattern of the entire population (any value of the mortality coefficient
combined with high level of initial mortality can reproduce the sharp
initial decline of the mortality pattern). The mortality coefficients of
the other three subpopulations (parameters β2, β3 and β4) increase (ap-
proximately linearly) over time, which (taking into account the decrease
Fig. 9.Heterogeneousmodel fitted tomortality data including extrinsic causes of death. A four-s
periods 1900 (panel A) and 2000 (panel B). Dashed lines represent themortality rates of each su
population as described by the model of heterogeneous population. The model parameters as e
β1 = 0, ρ10= 0.09936, 2nd subpopulationm20 = 0.31023, β2 = 0.10653, ρ20= 0.0536, 3rd su
0.00009, β4 = 0.09065, ρ40 = 0.66775 and for Panel B: 1st subpopulationm10= 1.69434, β1 =
subpopulationm30 = 0.00103, β3 = 0.23672, ρ30 = 0.0045 and 4th subpopulationm40 = 0.0
figure legend, the reader is referred to the web version of this article.)
in the initial mortality) confirms the validity of the compensation law of
mortality for the last three subpopulations. Fig. 10 also reveals a very in-
teresting observation, namely damped oscillations of initial mortality,
m40, and mortality coefficient, β4, for the fourth subpopulation. These os-
cillations can reflect the effect of periodically changing external (e.g. cli-
matic) factors on the mortality of the population, while their damping
may indicate the evolution of the population's resistance to these factors.
Finally, the homogenisation effect is also shown in Fig. 10. As in previous
sections, themost robust subpopulation (fourth subpopulation) is contin-
uously growing and becoming amore important fraction of the total pop-
ulation, while the initial fractions of the first three subpopulations decline
exponentially over time. At the year 1900, the proportion of themain sub-
population was 67% of the total population while this proportion in-
creased to 99% in the year 2000.

4.5. Compensation effect

The inverse relationship between the time evolution of the initial
mortality and the time evolution of the mortality coefficient was ob-
served in previous sections for most subpopulations. A complementary
phenomenon is the convergence of the mortality trajectories for each
subpopulation. This convergence is manifested by the intersection
of mortality trajectories (see Fig. 4B) which, in the ideal case (a pure
formof compensation effect), takes place in the samepoint for all trajec-
tories, the coordinates of this point giving the target lifespan and target
mortality, i.e. the age and the level of mortality at which the last survi-
vors in the subpopulation of interest die (Gavrilov and Gavrilova,
1979, 1991, 2006; Strehler, 1978; Strehler and Mildvan, 1960; Yashin
et al., 2000). The target lifespans for the individuals of each subpopula-
tion are found through the Strehler and Mildvan correlation (Eq. (4)).
The target lifespans resulting from the preceding four sections are esti-
mated as:

1. For homogeneous population fitting the Swedish data above age 40
(Section 4.1): 103.6 years;

2. Two subpopulations reproducing the Swedish mortality patterns for
ages above 20 (Section 4.2): 16.7 and 106 years respectively;

3. Two subpopulations reproducing the Swedishmalemortality patterns
excluding the extrinsic mortality (Section 4.3): 0.2 and 102.6 years
respectively;

4. Four subpopulations representing Swedish entire mortality schedule
(Section 4.4): 0.3, 3.5, 12.9 and 106.8 years respectively.
ubpopulationmodel is fitted to Swedish (males and females)mortality rates (dots) for the
bpopulation (exponential functions)while the red solid curve is themortality of thewhole
stimated by the Least Squares Method are for Panel A: 1st subpopulationm10 = 1.50935,
bpopulationm30 = 0.01229, β3 = 0.05188, ρ30 = 0.17929 and 4th subpopulationm40=
0, ρ10 = 0.00331, 2nd subpopulationm20 = 0.02771, β2 = 0.61132, ρ20 = 0.00028, 3rd

00017, β4 = 0.10179, ρ40 = 0.99191. (For interpretation of the references to color in this
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Fig. 10. Evolution of the parameters of the four-subpopulationmodel fitted to Swedishmortality for each year over the periods 1900–2000. Each of column shows evolution of parameters
(initial mortality (m0), mortality coefficient (β) and initial fraction (ρ0)) associatedwith one of the subpopulations. The dot points (with error bars) give themodel parameters as estimat-
ed by the Least Squares Method and the solid curves show trendlines for the evolution of the parameters over time.

27D. Avraam et al. / Experimental Gerontology 60 (2014) 18–30
Fig. 11, showing the points of intersections for mortality trajectories
of different subpopulations on the planemortality/lifespan, summarizes
these results. The intersection points are given by markers whose
colours are the same for the “same” subpopulations in the four fitted
models which can be distinguished by the shape of the markers: trian-
gles for the two subpopulations representing the Swedish mortality at
age 20+; squares for the two subpopulations reproducing the Swedish
male mortality excluding the extrinsic death factors; circles for the four
subpopulations reflecting the Swedish mortality for all ages and causes.
For example, the first subpopulation of themodel representing Swedish
mortality at age 20+ explains the decline of mortality in the right tail of
the accidental hump and thus, the intersection point for it has the same
colour (blue) as the point for the third subpopulation of the four-
subpopulation model which is also responsible for the accidental
hump. Similarly the lifespan of the first subpopulation, reflecting the
Swedish male mortality excluding the extrinsic causes of death, ex-
plains the sharp initial decline in themortality pattern, and thus the in-
tersection point for it has the same colour (green) as the point for the
first subpopulation in the four-subpopulation model for Swedish mor-
tality (green square and green circle points respectively in Fig. 11).
Finally the red colour represents the exponential rise of mortality after
sexual maturity and thus the homogeneous population representing
the Swedish mortality for age 40 and above is shown by the red
rhombus, the second subpopulation of the model representing the
Swedish mortality at age 20+ is shown by the red triangle, while the
second subpopulation reflecting the Swedish male mortality excluding
the extrinsic causes of death is represented by the red square point,
and the fourth subpopulation in the four-subpopulationmodel is repre-
sented by a red circle point. Samples of hypotheticalmortality dynamics
for each subpopulation of the four-subpopulation model are given by
dashed lines.

The most interesting observation from Fig. 11 is that the markers of
the same colour are located close to each other. Thus, the four models
studied in Sections 4.1–4.4, even if they were applied to different age
ranges and datasets, provide similar results by indicating the existence
of almost identical subpopulations. Therefore, the target lifespan for
the total population in Sweden is reflected through the target lifespan
for the most robust subpopulation (which appears in all four models)
and thus lies between ages 102 and 107.

4.6. The role of homogenization in the evolution of mortality dynamics

Previous results lead to the following crucial conclusion: the reduc-
tion of mortality over time is not only affected by the change of mortal-
ity dynamics in each subpopulation but it is also a consequence of the
change in the structure of the population. In Fig. 12 the patterns formed
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Fig. 11. Compensation effect in heterogeneous models. The coordinates of coloured
markers give the target lifespan and target mortality for each subpopulation of each
model considered in Sections 4.1–4.4. The rhombus (red) marker corresponds to the ho-
mogeneous population fitted to the Swedishmortality fromage 40 and above. The two tri-
angle markers (red and blue) correspond to the subpopulations of the two-subpopulation
model representing the Swedish mortality from age 20 and above. The two square
markers (red and green) correspond to the subpopulations of the two-subpopulation
model fitted to the Swedish male mortality excluding the extrinsic causes of death. The
four circlemarkers correspond to the four subpopulations of themodel fitted to the entire
Swedish dataset. The colour used to draw a marker is the same for the subpopulations in
different models having an impact in the same age interval: green is for infant mortality,
black for child mortality, blue for the accidental hump and red for the exponential growth
ofmortality after the reproductive period. Error bars representing the standard deviations
for the coordinates of the marker representing the most robust subpopulation in four-
subpopulation model are shown. Error bars for the three other subpopulations of this
model cannot be shown since they are smaller than the size of markers used in the figure.
Sample mortality trajectories are presented in each intersection point of the four-
subpopulation model to show the convergence of mortality at these points.
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by the model fitted to the 1900 (solid red curve) and 2000 (solid blue
curve) Swedish data are shown in the same semi-logarithmic plot. The
dashed blue curve in between them depicts an artificial pattern that is
produced with the model composed by four subpopulations, using the
initial mortalities and mortality coefficients obtained by fitting the 1900
period data and the initial fractions of the subpopulations reproducing
Fig. 12. Reduction in the Swedishmortality rates within one century (from 1900 to 2000).
The patterns formed by the four-subpopulationmodel fitted to the 1900 (red solid curve)
and 2000 (blue solid curve) Swedishmortality rates are plotted in a semi-logarithmic plot.
The dashed blue curve indicates an artificial pattern formed by the four-subpopulation
model with the initial mortalities and mortality coefficients estimated by fitting the
1900 period data and the fractions estimated by fitting the 2000 data.
the 2000 period data. It is then apparent that a reduction of mortality
within one century is a result of

1. the alteration in population structure, that are changes in subpopula-
tion's fractions, especially at young ages (difference between solid
red and dashed blue curves in Fig. 12) and

2. the alteration of the exponential dynamics of the subpopulations,
that are changes in initial mortalities,mj0 and mortality coefficients,
βj (difference between dashed blue and solid blue curves in Fig. 12).

Looking at Fig. 12we can also conclude that thedecrease inmortality
at younger ages is mostly due to the homogenization of the population
while at older ages is entirely due to changes in the mortality parame-
ters of the most robust subpopulation.

5. Discussion and conclusion

Investigations of human mortality dynamics have practical
implementations as they may help find ways to increase our lifespan.
These investigations also have a fundamental value as they help to un-
derstand biological processes and genetics underlying the process of
ageing. One of the importantways to conduct such investigations is rep-
resented by mathematical modelling. Various assumptions have to be
made to design a mathematical model, especially if one aims to model
all relevant features observed in the mortality pattern of the entire
lifespan. One of the commonly used assumptions is that a population
is heterogeneous and composed of several subpopulations having dif-
ferent mortality dynamics (Rossolini and Piantanelli, 2001; Vaupel,
2010). The possible interpretation of themodel parameters is extremely
important to conduct deeper analyses and for forecasting purposes
(Booth and Tickle, 2008). The time evolution of the parameters of a
model fitted to several observed periods provides then important in-
sights in potential future evolutions. Such studies have been performed
using various models of mortality dynamics (Bell, 1997; Felipe et al.,
2002; Gaille, 2012; Gaille and Sherris, 2011; Lee and Carter, 1992;
McNown and Rogers, 1989, 1992; Njenga and Sherris, 2011; Tabeau
et al., 2001).

In this work we have analysed the evolution of the parameters in a
model of heterogeneity of human populations where each subpopula-
tion follows an exponential law of mortality (Avraam et al., 2013). We
fitted themodel to four different datasets. First, the homogeneous expo-
nential law was fitted to Swedish mortality rates for ages above 40 for
the periods 1900 to 2000. Second, the model of heterogeneous popula-
tion with two subpopulations was fitted to the Swedish mortality rates
for ages 20 plus. Third, the two-subpopulation model was fitted to
Swedish male mortality rates over the entire lifespan, excluding deaths
due to extrinsic factors, for the periods 1951 to 2010. Fourth, the model
of heterogeneous population with four subpopulationswas fitted to the
entire lifespan dataset of the Swedish population for the periods
1900–2000. Our model fitting approach results in four main findings.

The first remarkable observation concerns the model used, that is
the best fit to the mortality dynamics for the most complete mortality
data is given by the four-subpopulation model. The novel result associ-
atedwith thismodel is given by the second subpopulationwhich distin-
guishes the impact of child mortality from infant mortality to the entire
mortality pattern. Occurrence of the subpopulationwhich counts for the
child mortality makes our model different from other notable models
(such asHeligman–Pollard)where themortality dynamics is commonly
decomposed to only three stages corresponding to early childhood, ac-
cidental mortality and late-life adulthood.

Second, our model does not capture the “late-life mortality pla-
teau” which was reported by many researches as described in the
Introduction section. We have fitted the model to each year within
the 20th century and only a few of the fits have captured the mortal-
ity deceleration at older ages. It turns out that the deviations in mor-
tality dynamics from the exponential increase at older ages are not
always significant enough to be captured by our model. As we use
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the BIC for evaluation of how themodel fits the data, the best fit becomes
very sensitive to the number of subpopulations in themodel. For example
five-subpopulation model is worse than four-subpopulation as it has
more model parameters although in terms of standard error it fits data
better. To analyse the dynamics of mortality at old ages it is more appro-
priate to consider a shorter range of ages for example 80+. We have
checked and confirm that the best fit for this range of ages is commonly
given by two subpopulations and the model reproduces mortality decel-
eration around the age of 100.

Third, the compensation law of mortality is confirmed at the sub-
population level. The inverse relationship (negative correlation) be-
tween the mortality parameters is shown with the reduction of the
initial mortality and the increase of the mortality coefficient over time
in almost all subpopulations. The only exception is regarding the frailest
subpopulation, which has an approximately constant initial mortality
and a constant mortality coefficient. The frailest subpopulation, namely
the subpopulation with the highest initial mortality rate, represents a
small proportion of the entire population and disappears after a couple
of years (the individuals belonging to that subpopulation die a fewyears
after their birth). Therefore, except for the very young ages, this sub-
population has a negligible impact on the mortality pattern. It is also
interesting to note by comparing Figs. 6 and 8 that the evolution of
the parameters of the two-subpopulation model for ages above 20
(Section 4.2) is similar in many ways to the evolution of the param-
eters of the two-subpopulation model excluding the extrinsic causes
of death (Section 4.3). It is related to the fact that in both models, the
most robust subpopulation explains the exponential rise of mortality
over the adulthood period in the entire population and the frailest sub-
population describes a decline in the mortality pattern at young ages.
Indeed, in the two-subpopulation model for ages 20+, the frailest sub-
population represents the decline forming the right tail of the accidental
hump (Fig. 5), while in the two-subpopulation model excluding extrin-
sic mortality, the frailest subpopulation is responsible for the initial de-
cline of mortality at very young ages (Fig. 7).

Our forthmain finding is the homogenization of the population over
time. Indeed, we have shown that the fractions of all subpopulations
except for the most robust decline over time. We have found that the
fraction of the most robust subpopulation gradually increases being
equivalent to 67% of the total population in 1900 and 99% in 2000 for
the Swedish data. The homogenisation we report here is related to the
evolution of mortality in developed countries and does not directly re-
flect the variations in genotype in the population. It rather reflects the
fact that in course of time, with improvements in medical service and
life conditions, the variations in genotype of people become less impor-
tant in terms of their duration of life. Contemporary genetic studies
(Cavalli-Sforza and Feldman, 2003) indicate that the genetic variability
in human populations is increasing over time. This increase is rather ex-
plainedby the fact that themortality is gradually reducing and therefore
not all of thosewho recently survive and give offspring (i.e. bring diver-
sity into a gene pool) would be able to do so in the past.

In a view of the outlined above findingwe can state that themortality
decrease over the last century can be decomposed into two components:
first, a mortality decline due to changes in the structure of the population
or its homogenization (decrease from the red solid curve to the blue
dashed curve in Fig. 12) and second, a decrease due to a mortality re-
duction in the subpopulations (decline from the blue dashed curve to
the blue solid curve in Fig. 12), which is reflected with a change in the
mortality parameters of each subpopulation. The implications are re-
markably important for potential future mortality improvements:
once the homogenization process is over, that is themortality of the en-
tire population will only reflect the mortality of the healthiest sub-
population, the potential for future decrease in mortality will be
relatively small compared to what we observed over the last centu-
ry. New developments in mortality forecasting approaches should
consider this aspect to avoid overestimation of future mortality
improvements.
To conclude, the above findings can be used in a future work to fur-
ther enhance ourmethodological approach. It would be of great interest
to fit amortality surface (rather than a line) over the plane given by two
variables: age and time. Fitting a surface is a difficult task requiring
further assumptions about its structure. This structure can now be pos-
tulated as based on the assumptions that the evolutions of initial mor-
tality, m0, is represented by a linear function while the evolution of
mortality coefficient, β, by an exponent. This approach would allow us
to obtain further results on the mortality structure of human popula-
tions, and thus could confirm, enhance and develop further the results
presented here.
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