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Abstract

In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique,

generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for

appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the

classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical

modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review

outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of

basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of

morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells,

referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical

models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful

mathematical modelling in developmental biology.
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Introduction

One can state that mathematical modelling in
developmental biology started with the publication of
the book ‘On growth and form’ by D’Arcy Thomson
(Thompson 1917). In this book, mathematics was used in a
very descriptive way for the analysis of various biological
shapes observed in nature. This, to a certain extent, was
dictated by the descriptive nature of biology at that time.
However, the use of mathematical methods in other
branches of biology, such as population dynamics and
demography, had started much earlier (the main contri-
butors here are Thomas Malthus in the 18th century, Pierre
Verhulst and Benjamin Gompertz in the 19th century) and
had become far more than just descriptive by the early
20th century. The book ‘Elements of physical biology’ by
Alfred Lotka (Lotka 1925), where mathematical language
is used to describe various aspects of population dynamics
and bioenergetics, is considered by many scientists as the
first book on mathematical biology: the use of mathemat-
ics in biology demonstrated in this book was, at least to
some extent, similar to its use in physics.

Developmental biology was rapidly advancing in the
late 19th and early 20th century. A number of scientists
had started experimenting with embryos and this caused
old paradigms, like ‘vitality’ and ‘entelechy’, to be left
behind, while experimentally observable processes and
objects had attracted attention. Studies of developmental
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and regenerative processes in lower organisms led to the
introduction of an important concept of a physiological
gradient to explain the difference in physiological
processes occurring in different locations in an organism
(Child 1911). Later on, experiments on embryos led to the
discovery of an important morphological object, termed
an ‘organising centre’ (Spemann 1927), which orchestrates
the behaviour of cells during gastrulation in the embryo.
Gastrulation, in turn, was defined as the stage in
embryonic development when the formation of first tissues
and setting of the preliminary body plan of the future
organism take place. The way the organising centre acts
and directs the behaviour of the developing embryo
appeared to be different between species (Wolpert et al.
2002), although it is always associated with the movement
of the organising centre and its impact on the movement
and differentiation of other cells comprising the embryo.

One of the main challenges in developmental biology
since the discovery of the organising centre is to explore
the mechanisms of cellular differentiation. Many efforts
have been made to check whether or not the cellular
differentiation takes place according to the develop-
mental programme each cell acquires from its maternal
cell, run by internal cellular clock. However, on the basis
of a vast amount of experimental observations, it was
concluded that embryonic cells differentiate according
to their location with respect to positional information
DOI: 10.1530/REP-12-0081
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provided by a so-called ‘morphogen gradient’. The term
‘morphogen gradient’ refers to a substance that is present
and non-uniformly distributed in the embryo. Often the
differentiated cells start to migrate resulting in the trans-
portation of the positional information across the
embryo. Despite the accumulation of an overwhelming
amount of data on cell movement patterns in developing
tissues of different geometry (Beloussov 1998), little is
known about the mechanisms governing the migration
and rearrangement of cells in embryonic tissue. One of the
commonly discussed mechanisms is chemotaxis when the
migration of a cell is driven by the gradient of a substance,
which is, in this case, called a chemotactic agent
(Dormann et al. 2002, Yang et al. 2002). Other known
mechanisms such as apical constriction (Odell et al. 1981,
Dawes-Hoang et al. 2005) or cellular intercalation
(Warga & Kimmel 1990) result in the deformation of
embryonic tissue and thus lead to the rearrangement of
cells with a net effect similar to migration of cells.

No mathematical formalism has been developed so far
to describe tissue dynamics due to apical constriction or
cellular intercalation. The contrary is true for chemo-
taxis, which has been studied mathematically by many
authors especially in the context chemotactic signalling
and motion of unicellular organisms (Keller & Segel
1971, Keller et al. 2003) including the aggregating
population of Dictyostelium discoideum amoebae.
Studies of the developmental cycle in D. discoideum
probably represent the best examples of the use of
mathematical modelling in developmental biology.
Here, we will give an overview of models and modelling
results from these studies.
Modelling morphogen gradients

The classical illustration of how a morphogen can
provide positional information is given by the French
Flag model suggested by Lewis Wolpert (Wolpert 1969).
This model demonstrates how a simple, linear concen-
tration profile of a morphogen (Fig. 1A) can define
domains of cellular determination in an otherwise
homogeneous tissue. The linear concentration profiles
can form naturally in various settings. The simplest case
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is when the production and degradation of the
morphogen take place outside the tissue on its opposing
sides and the morphogen passively diffuses along the
tissue, from the side where it is produced to the side
where it is degraded. Mathematically, the stationary
concentration profile of the morphogen in this system
should obey the so-called Laplace’s equation with
Dirichlet boundary conditions, which for a tissue
represented by a one-dimensional domain of length L,
is given by the following mathematical formulation:

D
d2u

dx2
Z 0; uð0ÞZ u1; uðLÞZ u2 (1)

where u represents the concentration of the morphogen,
D represents the diffusion coefficient and u1 and
u2 represent the buffered (fixed) concentrations of
morphogen on the boundaries of the tissue, xZ0 and
xZL. The advantage of a linear profile, the solution of
equation (1), is that it scales with the size of the tissue.
This means that if, for example, we double the size of the
tissue, then the sizes of all domains of cellular
determination (as defined by the threshold concentration
values T1 and T2, see Fig. 1A) will also double.

However, the experimental observations do not
always confirm the linear shape of a morphogen
gradient. Most commonly, measurements point to an
exponential shape, as in the case of the transcriptional
factor Bicoid in the early embryo of the fruit fly
Drosophila melanogaster (Driever & Nüsslein-Volhard
1988, Gregor et al. 2007). Formation of the exponential
profile can be shown mathematically under the assump-
tion that the morphogen not only diffuses but also
degrades inside the domain. The concentration of
morphogen can be buffered (fixed) on the boundaries
of the tissue (similar to the above case expressed in
equation (1)). Alternatively, we can assume that the
tissue is isolated (no flow on the boundaries) and the
production of the morphogen takes place in a restricted
area inside the domain (Fig. 1B). These assumptions are
perfectly reasonable for many studied cases. For
example, the maternal Bicoid mRNA in D. melanogaster
embryo is localised in a small region on its apical side;
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the Bicoid protein produced in this region diffusively
spreads and decays along the entire embryo. A stationary
concentration profile of the morphogen in this system
will satisfy the following equation:

D
d2u

dx2
CpðxÞKku Z 0;

du

dx
Z 0 for x Z 0;L;

pðxÞZ
p for 0%x%a

0 for a!x%L

( (2)

where the term p(x) defines the production of a protein in
the apical (left-side) region of size a and the term -ku is its
degradation. The main problem with the exponential (or
nearly exponential as in Fig. 1B) profile, as described by
the solution of equation (2), is that it does not scale. For
example, if, in the case shown in Fig. 1B, we increase the
size of the domain from L to 2L, the sizes of blue and
white sub-domains will not change while the red sub-
domain will increase to cover all added L units of length.
This property of the solution of equation (2) contradicts
the observation that the exponential gradient of Bicoid in
D. melanogaster embryo scales with the size of the
embryo with very high precision (Gregor et al. 2008).

The models represented by equations (1) and (2) fall
into the class of linear models (that is, the variable u and
its derivative appear only in their first power). Since the
introduction of a classical predator–prey model (Lotka
1925), many non-linear models have been developed
and used for studies in mathematical biology. Contrary to
linear models, which have a limited range of possible
solutions, non-linear models can be used to reproduce
virtually any kind of known dynamics in concentration
fields of morphogens. This is especially true if more than
one morphogen is considered and the model is
represented by a set of reaction–diffusion equations.
The dynamics of two interacting morphogens can be
described by the following reaction–diffusion equations:

vu

vt
Z

v2u

vx2
C f ðu; vÞ;

vu

vx
Z 0 for x Z 0; L

vv

vt
ZD

v2v

vx2 C3gðu; vÞ;
vv

vx
Z 0 for x Z 0; L

8>>>><
>>>>:

(3)

These equations state that the rates of change of
morphogen concentrations are defined by two pro-
cesses, diffusion (first term on the right-hand side) and
reaction (second term) with the latter accounting for the
production and decay of morphogens. In the classical
FitzHugh-Nagumo (FHN) model (Nagumo et al. 1962),
the kinetics in the first equation has cubic non-linearity
f(u,v)Zkuu(uKa)(uK1)Kv, and the kinetics in the
second equation are linear g(u,v)ZkvuKvCb and the
second variable (v) does not diffuse, DZ0. The FHN
model was originally designed as a generic model for
signal propagation along a nerve fibre. Its modification,
www.reproduction-online.org
which takes into account the diffusion of second variable
(Ds0), also serves as a generic model for morpho-
genetic pattern formation (Vasiev 2004). The morphogen,
with concentration u, is called the activator as it promotes
its own production and the production of the second
morphogen, the inhibitor. The inhibitor promotes the
degradation of the activator. Parameters D and 3 define
the rates of diffusion and kinetics of the inhibitor res-
pectively compared with the rates of activator. Model (3)
has a rich set of solutions, including stationary patterns
and travelling waves that can be obtained by varying the
values of parameters D and 3 (Vasiev 2004).

One of the best-known examples of the phenomena
observed in non-linear systems is the so-called diffusion-
driven instability (or ‘Turing instability’) (Turing 1952),
which provides a possible mechanism of morphogen
gradient formation from an initially uniform state.
According to this mechanism, a spatially periodic
pattern can spontaneously arise under certain conditions
due to the intrinsic noise in the system. Figure 1C shows
a periodic stationary pattern that has emerged in system
(3) from nearly homogeneous (noisy) initial conditions.
This pattern, which could represent a morphogen
gradient, only occurs when the inhibitor diffuses quickly
and has slow kinetics (i.e. the product D3 is above a
certain threshold (Vasiev 2004)). The later condition is
often stated only in terms of the diffusion coefficient D,
which should be sufficiently large, DO1/3, meaning that
the diffusion of the inhibitor must be considerably larger
than that of the activator. This difference in diffusion rates
was phrased as ‘long-range inhibitor and local activator’ in
classical works of Gierer and Meinhardt where Turing
instability was brought forward to explain various
biological patterning processes including the regeneration
of fresh-water polyp hydra (Meinhardt 2008, 2009). Recent
experimental studies of pigmentation patterns of fish
(Yamaguchi et al. 2007) have directly confirmed that
these patterns occur due to Turing instability. However, the
Turing patterns fail the scaling test: the distance between
spikes (Fig. 1C) in the model is only defined by the values
of two parameters: diffusion, D, and kinetics rate, 3, of
the inhibitor. This means that the number of spikes
should increase with an increase in the size of the medium.

In models represented by equations (1), (2) and (3),
formation of the gradient is conditioned by diffusion of
the morphogen. A number of mathematical studies have
addressed the formation of gradients in the absence of
morphogen diffusion, for example due to proliferation
(Ibanes et al. 2006, Chisholm et al. 2010) or migration
(Harrison et al. 2011) of cells. Non-diffusive patterning
mechanisms can be provided by direct contacts between
cells, of which the classical example is Delta-Notch
signalling associated with the binding of non-diffusive
Delta to the Notch receptor of neighbouring cells
(Collier et al. 1996). Cell determination patterns due to
contact signalling can be studied using the cellular
automaton models, represented by sets of rules defining
Reproduction (2013) 145 R175–R184



R178 O Vasieva and others
the interactions and states of cells or using so-called
hybrid models combining cellular automata with
differential equation (Ghosh & Tomlin 2004).
Robustness and scaling of morphogen gradient

The shape of a developing biological structure often
demonstrates remarkable robustness with respect to
various changes in its developmental conditions. Scaling
is a particular case of robustness and there are many
instances recorded (including classical experiments of
Hans Driesch (Sander 1992)) where perfectly capable
organisms emerge from embryos of different sizes.
Robustness and scaling of biological patterns increas-
ingly attract the attention of mathematical biologists
(Umulis 2009, de Lachapelle & Bergmann 2010).

Possible mechanisms ensuring the robustness of
dorso-ventral patterning to changes in production rates
of involved proteins (BMPand Sog) in the D. melanogaster
embryo have been revealed using mathematical model-
ling (Eldar et al. 2002). In the model, it was assumed that
BMP is produced on the dorsal side of the embryo, Sog is
produced on the ventral side, Sog inhibits BMP, and BMP
and Sog interact to form the BMP–Sog complex. It was
shown that if the BMP–Sog complex is highly diffusive so
that the diffusion and degradation of the BMP–Sog
complex considerably enhances the dorso-ventral
transportation of the BMP (the term used by authors is
‘shuttling’), then the BMP gradient is robust with respect
to the changes in its kinetics. A modification of this
model (Ben-Zvi et al. 2008) with two additional
equations describing the dynamics of BMP ligand
Admp, which also forms a highly mobile complex with
the BMP inhibitor, was used to demonstrate that a
shuttling mechanism can also explain scaling of BMP
gradient in the Xenopus embryo.

It is a well-established fact that the Bicoid gradient in
D. melanogaster embryo is exponential and it scales with
the size of the embryo (Gregor et al. 2008). Formation of
the Bicoid gradient has been addressed in a number of
modelling studies (Grimm et al. 2010). Its exponential
profile can easily be modelled but the real challenge is to
explain its scaling. It is known that Bicoid molecules are
partly located in the syncytium (freely diffuse) and are
partly bound by nuclei. A mathematical model combing
this observation (so-called ‘nuclear-trapping’ model), with
the assumption that Bicoid is predominantly degraded in
nuclei rather than in syncytium, was designed to
reproduce the Bicoid gradient scaling (Umulis 2009).
However, there are two difficulties associated with this
mechanism of scaling. First, the total amount of Bicoid
strongly depends on the density of nuclei, thus after each
nuclear division (every 10 min), the concentration of
Bicoid should significantly reduce. This contradicts to the
experimental observations indicating that the Bicoid
gradient is stable over cell cycles 10–14 (Gregor et al.
2007). Another argument is more philosophical: it is very
Reproduction (2013) 145 R175–R184
unlikely that the degradation in nuclei is stronger than in
syncytium, simply because there is no ‘degradation
machinery’ associated with the nucleus.

Scaling of morphogen gradients can result from the non-
linear interactions of involved morphogens. For example,
one can imagine that the scaling of the Bicoid gradient is
possible because Bicoid and Caudal, which are expressed
in the opposite sides of embryo, mutually affect their
diffusion and/or degradation rates in some particular way.
Possible non-linear interactions between morphogens
resulting in gradient scaling have recently been addressed
in a framework of the expansion–repression model
(Ben-Zvi & Barkai 2010). In this model, one morphogen
(‘repressor’) reduces the production rate of another
morphogen (‘expander’), which, in turn, reduces the
degradation rate of the repressor. This model is indeed
capable of reproducing the scaling of a morphogen,
although the biological interpretation of particular kinetics
used in the model is neither simple nor intuitive.

One of the mechanisms of scaling (which is also
behind the expansion–repression model (Ben-Zvi &
Barkai 2010)) can be illustrated in a simple setting.
Assume that the production rate of a certain morphogen
is constant and it degrades uniformly in the medium.
Also assume that the morphogen diffuses quickly so that
its level is roughly the same over the entire medium.
If v denotes the concentration of the morphogen and it
degrades with rate kvv at each ‘point’, then the total
degradation rate over the medium of size L is kvvL. If the
total production rate over the entire medium is p (and
constant), then balance is achieved if pZkvvL, indicating
that the concentration, v, is inversely proportional to the
size of the medium vZp/kvL. Furthermore, assume that
there is another morphogen whose degradation is
affected by the first morphogen so that its concentration
u is given by the equation:

D
d2u

dx2
Kkuv

2u Z 0; uð0ÞZ u0; uðLÞZ 0: (4)

Generally (if v is constant), the solution of equation (4)
is given by a superposition of two exponents. However, if
the medium is sufficiently large, the concentration
profile u(x) can be approximated by a single exponent:

uðxÞZ uoexp K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuv

2

D
x

r !
Z uoexp K

ffiffiffiffiffiffiffiffiffiffiffi
ku
D

vx

r !

Z uoexp K

ffiffiffiffiffiffi
ku
D

r
p

kvL
x

 !

Z uoexp K

ffiffiffiffiffiffi
ku
D

r
p

kv
x

 !
(5)

which appears to be a function of relative position, xZx/
L, rather than actual position, x, and therefore scales with
the size of the medium.
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All the above models of morphogen gradient
formation treat involved processes as continuous in
space and in time. However, the scaling of biological
structures could be due to their discrete nature, that is, the
scaling could be conditioned by the interactions between
entities, such as cells or nuclei. Thus, it may be more
informative to model the system as spatially discrete. In
other words, if we measure the size of the embryo by the
number of nuclei along its length, rather than in
millimetres, then embryos of different physical length
are equal if they contain the same number of nuclei (i.e.
at the same stage of development). The discrete approach
provided by hybrid models (continuous in time and
discrete in space) have been used by many authors
(Jaeger 2009). For example, the gene circuit model that
clearly postulates that the embryo consists of nuclear
divisions, each represented by a single nucleus and
surrounding syncytium, has been used to model gap
domain formation (Jaeger et al. 2004). In this model, the
pattern of gap gene expression scales with the number of
nuclei rather than with the physical size of the embryo
and thus reflects the segmentation scaling.
Modelling cell movement

In the previous sections, we have considered mathemat-
ical models for stationary morphogen gradients.
However, morphogen gradients are typically dynamic,
and in many cases, their dynamics are conditioned by
the movement of cells (Fig. 2A). Gastrulation in the chick
embryo is a good example for which detailed data on the
dynamics of gene expression patterns and cell move-
ment is available (Bachvarova 1999, Stern 2004, Chuai
& Weijer 2009a). Extensive cell motion observed during
gastrulation in the epiblast can be considered as having
three distinct parts: i) cell motion along the embryo
midline, associated with progression and regression of
the primitive streak; ii) lateral movement of cells on both
sides of the midline, which is vortex-shaped at early
gastrulation and forms lateral flows toward the midline at
later stages and iii) transformation of cells approaching
the midline from epithelial cells to the mesenchyme
forming a sink in the epiblast along its midline and giving
rise to outward lateral flows formed by mesenchyme
cells. As the movement involves different cell groups
that express different genes, the forming morphogenetic
patterns are dynamic and change following the
relocation of domains of transcription. Furthermore,
the movement of cells can, in turn, be affected by
morphogen concentrations, for example if the move-
ment is chemotactic and morphogens act as chemotactic
agents. These possibilities have recently been explored
in studies combining mathematical modelling and
experiments (Vasiev et al. 2010, Harrison et al. 2011).

Two different interpretations of cell movement data
during gastrulation in the chick embryo have been
reported: one pointing to the cellular intercalation
www.reproduction-online.org
mechanism (Voiculescu et al. 2007) and the other to
the chemotactic mechanism (Yang et al. 2002). We feel
that the general reasoning would be in favour of the
chemotactic mechanism. This mechanism can explain
the formation of a compact group of moving cells (i.e.
follicle cells in the D. melanogaster embryo or Hensen’s
node in the chick embryo), while formation of such
groups due to cellular interaction is problematic, if not
impossible. However, there are many other cases, such
as movement of cells in the zebrafish dorsal mesoderm
or during the germ band elongation in D. melanogaster
embryo (Montell 2008), that are better explained by a
cellular interaction mechanism.

The interplay between the dynamics of morphogen
gradients and chemotactic cell movement has recently
been addressed in mathematical studies (Vasiev et al.
2010, Harrison et al. 2011). The simplest scenario to
consider is when the cells forming the moving group
transcribe a gene that is not transcribed in the
surrounding tissue. Then this group of cells (which will
be referred as the domain of transcription, DoT) can be
represented mathematically by a segment of line (of
length a), which is also moving (Fig. 2B). If u represents
the concentration of transcribed mRNA, then we can
presume that uZ1 inside the DoT and uZ0 outside.
Furthermore, one can assume that the protein, which is
associated with the transcribed gene and produced
inside the DoT, can diffuse into surrounding tissue and
degrade. The concentration profile, v(x), of the protein is
stationary from the perspective of the moving DoT (i.e. in
the moving frame of reference) and satisfies the following
equation:

D
d2v

dx2
Ks

dv

dx
Ck1uKk2v Z 0; vðGNÞZ 0

where u Z
1 for 0%x%a

0 for x!0 and xOa

( (6)

where the first term describes diffusion of the protein,
the second term takes into account the movement of
DoT, the third and fourth terms explain production and
decay of the protein respectively. The solution of
equation (6) is plotted in Fig. 2B; it produces an
asymmetric gradient, with its maximum concentration
shifted to the back of the moving DoT. This concentration
profile can explain the movement of the DoT provided
that the cells forming the DoT are chemotactically
repelled by the protein. Indeed, the concentration of
protein is lower on the front of DoT than on its back (the
difference is denoted by Dv in Fig. 2B), and if the protein
acts as a chemorepellent on cells comprising the DoT,
then the net repulsion could keep the DoT moving to the
right. In fact, each cell would experience a different
chemotactic signal corresponding to the local gradient of
chemotactic agent, which could even force cells to move
in opposite directions. However, if we assume that the
Reproduction (2013) 145 R175–R184
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Figure 2 Dynamics of morphogen gradient and movement of cells. (A) Fibroblast growth factor (FGF8, red) and retinoic acid (RA, blue) are expressed
in neighbouring domains with the border moving in an anterior-to-posterior direction (Diez del Corral et al. 2003). The border follows the stem zone,
which moves during the primitive streak regression in the chick embryo. (B) Illustration of the solution to equation (6). The domain of transcription
(DoT) is represented by the red bar. The graph of the propagating morphogen gradient (solution of equation (6)) is shown by the solid red line. The
difference, Dv, between the morphogen concentration on the front and back of the moving DoT indicates that this gradient can provide the
chemotactic signal causing the DoTs migration. (C) Moving DoT in the cellular Potts model. The DoT (group of green transparent cells) moves in the
tissue (red transparent cells) and is repelled by the chemotactic agent (concentration shown by grey shadows) produced in the DoT. (D) Simulation of
the primitive streak extension in the chick embryo (Vasiev et al. 2010). Yellow cells form streak tip, blue – Koller’s sickle, red – area pellucida and
green – area opaca. Primitive streak extension is associated with posterior-to-anterior movement of streak tip cells (left-to-right in panel). Four
possible chemotactic mechanisms can explain this motion (see text).
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cells forming DoT are bound by strong adhesive forces
and act as a coherent group, then the net velocity of
the DoT would be defined only by the difference
in concentration of the chemotactic agent on its
boundaries. This hypothesis was confirmed using
cellular Potts model (Harrison et al. 2011), which has
become a widely adopted model for the simulation of
biological tissues (Merks & Glazier 2005). The snapshot
of simulated tissue in Fig. 2C shows the group of cells
representing the DoT (shown in green) and placed in a
tissue comprising another type of cell (shown in red). The
DoT moves (to the right) as cells forming the DoT are
repelled by the protein produced by themselves. This
demonstrates an important chemotactic scenario associ-
ated with the ability of a coherent group of cells to move
due to self-repulsion.

Analysis of chemotactic scenarios that can explain
formation of the primitive streak in chick embryo (Vasiev
et al. 2010) has indicated that they always came in pairs.
That is, if a certain movement pattern can be explained
by chemotaxis, then it will have at least two expla-
nations. For example, we just saw that the DoT can move
Reproduction (2013) 145 R175–R184
if the cells comprising the DoT produce a self-repellent.
The counterpart explanation is the following: the DoT
will show the same movement pattern if the cells
comprising the surrounding tissue produce a protein
that acts as chemoattractant to the cells forming the DoT.
Furthermore, movement patterns can be explained even
by more than two chemotactic mechanisms if more than
two cell types are involved in the scenario. This
statement can be illustrated by the simulations of
primitive streak extension (Vasiev et al. 2010).
Figure 2D gives a snapshot from one of these simulations
with green cells comprising the area opaca, red cells –
area pellucida, blue cells – Koller’s sickle and yellow
cells – cells forming the streak tip (which is as a fraction
of Koller’s sickle transforming later into the Hensen’s
node). Primitive streak extension is associated with the
posterior-to-anterior movement of streak tip cells
(yellow) that are followed by the cells comprising
Koller’s sickle (blue cells). It was assumed that the
movement of yellow cells is active (chemotactic) while
the movement of blue cells (which passively follow the
yellow cells) is conditioned by strong adhesive ties
www.reproduction-online.org
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between the yellow and blue cells. Movement of the
yellow cells can be explained by their interactions with
the red cells: that is, either the red cells produce an
attractant for the yellow cells or (the counterpart
explanation) the yellow cells produce a repellent for
the red cells. Two more explanations are associated with
the interaction of yellow and blue cells: either yellow
cells produce an attractant for blue cells or blue cells
produce a repellent for yellow cells. All four mechanisms
have been confirmed to reproduce the primitive streak
extension in numerical simulations. In order to discrimi-
nate these mechanisms, more sophisticated scenarios
including the interaction between two primitive streaks
have been simulated (Vasiev et al. 2010). Analysis of the
patterns formed by interacting primitive streaks, which
form under alternative assumptions, has led to the
conclusion that the mechanism involving the repulsion
of streak tip cells (yellow) by cells forming Koller’s sickle
(blue) fits much better with experimental observations.
Modelling D. discoideum development

In the previous section, we have addressed hypothetical
mechanisms of movement of cells during gastrulation in
the chick embryo. Despite the fact that expression
patterns of a number of genes associated with morpho-
logical structures like Koller’s sickle or primitive streak
tip are known (Bachvarova 1999) and even the candidate
chemotactic agents have been identified (Chuai &
Weijer 2009b), we have no solid experimental evidence
confirming any of those mechanisms. However, there is
a biological process, namely the aggregation of
D. discoideum amoebae, which involves chemotactic
movement of cells and which has been studied in far
more detail (Cohen 1971, Parent & Devreotes 1999,
Dormann et al. 2002). D. discoideum amoebae
cooperate and show striking social behaviour when
they are deprived of food. Starving cells communicate by
means of a chemical signal to synchronise their
otherwise random and unorganised motion.
D. discoideum is a relatively simple organism for

which the signalling molecule (cAMP), signalling
Figure 3 Streaming patterns formed in an aggregating Dictyostelium discoid
to form a mound). (B, C, and D) Results generated by a cellular automaton mo
and a hydrodynamic model (Vasiev et al. 1997) respectively.
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machinery and cellular chemotactic response to cAMP
are well studied. It is known that cells communicate by
means of travelling waves of cAMP. A number of models
have been suggested to describe these waves (Martiel &
Goldbeter 1987, Tang & Othmer 1995) falling into the
class of models given by equation (3). The aggregation of
chemotactically moving cells is commonly described by
the Keller–Segel equation (Keller & Segel 1971):

vr

vt
ZDDrKVðrVÞ (7)

which states how the rate of change of the density of
cells, r, is defined by the random motion of cells (the first
term in the right-hand side) and the chemotactic motion
(second term). The velocity of chemotactic motion,
V, is proportional to the gradient of chemotactic agent,
u, VZc7u.

A particular feature of aggregating D. discoideum cells
is that they form streams (Fig. 3A). The mechanism of
stream formation had puzzled researches for several
decades and was uncovered by means of mathematical
modelling. A cellular automaton model (Vasieva et al.
1994) gave the simplest answer to this question. In this
model, it was postulated that aggregating cells could be
in three states: resting, excited or refractory. Resting cells
get excited when they receive a signal from a locally
signalling cell and also respond by moving (a fixed
distance) towards it. Excited cells send the signal to all
cells in their vicinity, defined as a circle of a predefined
radius. Excited cells stay excited for a few time steps and
then become refractory. Refractory cells do not react to
any signal and turn into resting cells after a predefined
number of time steps have elapsed. Initially, cells are
randomly placed in the model medium and one cell is
periodically stimulated (excited). This cell passes the
excitation to the neighbouring cells, which pass it further
on, causing the excitation to propagate. In this model, it
is possible to identify paths of excitation from the
(externally) stimulated cell to all other cells in the
medium. The collection of all such paths forms a
branching pattern and cellular streams develop along
its branches. Furthermore, the model has demonstrated
eum population. (A) Experiment data (roughly 105 cells gather together
del (Vasieva et al. 1994), a reaction–diffusion model (Vasiev et al. 1994)

Reproduction (2013) 145 R175–R184



R182 O Vasieva and others
that the irregularities in the initial distribution of cells can
cause breaks in the propagating waves of excitation
leading to the formation of rotating spiral-shaped waves
of excitation, associated with vortex-shaped cell move-
ments and curved cellular streams (Vasieva et al. 1994).

A more formal mathematical explanation of streaming
was given using a model that combines amended
equation (3), describing cAMP waves, and equation
(7), describing the dynamics of cell density (Vasiev et al.
1994). It was shown that the aggregation streams form
only when the velocity of cAMP waves increases with
the density of cells. This condition amplifies the (initial)
heterogeneity in the distribution of cells over the
aggregating field, that is, dense cell spots get denser
after propagation of each successive excitation wave. In
addition, these spots elongate while moving towards the
aggregation centre or the source of excitation waves. The
movement, deformation and collisions of initially denser
spots cause the formation of merging streams in the
aggregation field. Simulations have confirmed that there
should be some initial heterogeneity in the cellular
density, for example due to random fluctuations, for the
streaming patterns to form. The experimental obser-
vations on the dependence of the speed of cAMP waves
on density of cells was controversial at the time
(Hashimoto et al. 1975), but this theoretical result has
helped in design of experiments that have confirmed that
indeed the cAMP waves move faster as cell density
increases (vanOss et al. 1996).

The hydrodynamic model, which was later developed
to study three-dimensional processes associated with
further steps of D. discoideum development, has also
reproduced the formation of cellular streams as they
merge into a three-dimensional mound (Fig. 3D). This
model has been used to analyse cellular flows in the
D. discoideum mound and slug. In particular, the model
could reproduce, by means of computer simulations, the
circular motion of cells in the mound and in the tip of the
slug, as conditioned by the chemotactic signal delivered
by a rotating scroll wave of cAMP. This model has also
revealed the mechanisms of cell sorting in the mound
(Vasiev & Weijer 1999) and explained patterns formed
by cellular flows in the migrating slug (Bretschneider
et al. 1999). In experimental conditions, cells in the
mound differentiate into prestalk and prespore cells in a
salt-and-pepper manner. However, these two cell types
sort out so that prestalk cells collect at the tip of the
mound. Model simulations have shown that two critical
differences between prespore and prestalk cells allow
sorting to occur in this particular way. First, prestalk cells
move faster than prespore cells and this allows the
prespore cells to accumulate along the vertical midline
of the hemispherical mound. The chemotactic signal
delivered by the scroll wave has a component pointing to
the midline of the mound, both prestalk and prespore
cells tend to move to the midline but faster prestalk cells
win the competition. As prestalk cells collect along the
Reproduction (2013) 145 R175–R184
midline, they are pushed up by other cells that are also
forced to move to the centre of the mound. Thus, the
prestalk cells start to collect on the top of the
hemispherical mound and now the second difference
between prestalk and prespore cells starts to play a role.
Prestalk cells produce more cAMP than prespore cells
and the heterogeneity in the mound, due to initial cell
sorting, causes the scroll wave to twist so that its rotation
is now combined with downward propagation. As a
consequence, all cells are forced to move up but again as
the prestalk cells move faster they accumulate at the top
of the mound completing the sorting process (Vasiev &
Weijer 1999).
Conclusions

In this review, we have focused on a few illustrative
examples of mathematical models used for the analysis
of morphogen gradients and cellular motion. Many other
models and modelling approaches that have played a
significant role in understanding developmental pro-
cesses have been left out of this review. For instance,
mathematical modelling is an important component in
studies of mechanical forces that are associated with
migration of cells and tissue deformation during
morphogenesis (Beloussov 1998). Typical examples of
such studies are given by a theoretical analysis of the
hyper-restoration hypothesis (Taber 2008) and compu-
tational modelling of mechanical feedback in deformed
tissue (Ramasubramanian & Taber 2008) both high-
lighting the role of stress perturbations in developing
tissue during morphogenesis.

All our examples of mathematical models for gradient
formation addressed the case of a stationary gradient.
However, there are experimental studies that indicate
that it can take a considerable amount of time for the
morphogen gradients to stabilise and positional infor-
mation must therefore be provided by a dynamic
gradient (Drocco et al. 2011). Mathematical models
addressing properties of pre-steady-state morphogen
gradients (including their scaling) have started to appear
(Bergmann et al. 2007) and we can expect significant
progress in this area in the near future. There are many
indications that positional information is provided by (or
interpreted according to) a signal that is integrated over
time, rather than by its present value (Dessaud et al.
2010). This important observation has not been explored
by means of mathematical modelling so far.

Our examples of mathematical modelling of cellular
motion were limited to the case of chemotaxis. The
models designed for the analysis of gastrulation in chick
embryo have allowed us to check and confirm that
several chemotactic mechanisms can equally explain
movement patterns in the epiblast. These models also
suggested how the mechanisms can be discriminated
experimentally. However, we cannot exclude the
possibility that the rearrangement of cells in tissues
www.reproduction-online.org
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could be conditioned by anisotropy in adhesive
properties of cells along their surface, that is, by various
cellular intercalation mechanisms. The explanations
based on these mechanisms are always given on a
semi-intuitive level (Meinhardt 2006) and so far there
have been no serious attempts to model them
mathematically.

Mathematical modelling in developmental biology is
one of the fundamental and harmonic examples of
systemic knowledge integration. It helps in discovery of
biophysical mechanisms of development and allows a
rigorous check of hypotheses concerning these
mechanisms as they emerge from experimental obser-
vations. Mathematical modelling also helps to generate
new hypotheses and design new experiments. Ideally,
there would be iterative relationships between experi-
mental observations and mathematical modelling allow-
ing for their cross-validation so that our understanding of
biological development goes beyond collection of
experimental data on one side and idealistic ungrounded
theoretical models on the other. Mathematical model-
ling in developmental biology is gradually evolving from
exploring possible mechanisms of processes causing the
break in symmetry and scaling, to more narrow
quantitative descriptions of the processes that can be
validated experimentally. It is evident that mathematical
modelling plays an important role and brings significant
insights into developmental biology. It is also evident
that modelling will play even more crucial role in
biological studies in the future.
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