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The mortality patterns in human populations reflect biological, social and medical factors affecting our lives,
and mathematical modelling is an important tool for the analysis of these patterns. It is known that the mor-
tality rate in all human populations increases with age after sexual maturity. This increase is predominantly
exponential and satisfies the Gompertz equation. Although the exponential growth of mortality rates is
observed over a wide range of ages, it excludes early- and late-life intervals. In this work we accept the
fact that the mortality rate is an exponential function of age and analyse possible mechanisms underlying
the deviations from the exponential law across the human lifespan. We consider the effect of heterogeneity
as well as stochastic factors in altering the exponential law and compare our results to publicly available
age-dependent mortality data for Swedish and US populations. In a model of heterogeneous populations
we study how differences in parameters of the Gompertz equation describing different subpopulations
account for mortality dynamics at different ages. Particularly, we show that the mortality data on Swedish
populations can be reproduced fairly well by a model comprising four subpopulations. We then analyse
the influence of stochastic effects on the mortality dynamics to show that they play a role only at early and
late ages, when only a few individuals contribute to mortality. We conclude that the deviations from expo-
nential law at young ages can be explained by heterogeneity, namely by the presence of a subpopulation
with high initial mortality rate presumably due to congenital defects, while those for old ages can be viewed
as fluctuations and explained by stochastic effects.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Analysis of the dynamics of humanmortality over the life course is
of great importance. Demographic comparisons between populations
may reveal clues into differences in causes of mortality that may be
related to intrinsic and extrinsic factors. Study of mortality dynamics
over age has a long story. Many researchers following the early works
of Lexis (1878) and Pearson (1897) have considered mortality at dif-
ferent age intervals to be affected by different factors, with ageing to
be at play only after sexual maturation (Gompertz, 1825). Early con-
siderations of age dependent mortality were rather philosophical:
according to Lexis (1878) everyone should live the same length of
erms of the Creative Commons
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time – the normal length of life – but some die earlier due to accidents.
He distinguished “normal” deaths which occur at the normal age of
death or are randomly distributed around that age, from premature
deaths of adults and, a fortiori, deaths of children. Pearson's (1897) ap-
proach was far more scientific: he considered death as a random event
and his statistical analysis of age distribution of death in England
(1871–1880) revealedfive different phases described by different prob-
abilities of death for five age groups. The reasons why probability of
death (or mortality rate) depends on age and should follow different
dynamics at different age intervals are not well understood. Recent
studies of mortality dynamics over the life course attempt to under-
stand themechanisms of age-relatedmortality based on the underlying
physiological, molecular and genetic processes. It is not surprising that
a number of studies have been conducted to analyse mortality data as
a function of age (de Magalhaes et al., 2005; Gavrilov and Gavrilova,
2003; Vaupel, 2005).

Mortality rate mi at age i is defined as number of deaths of indi-
viduals of age i (ΔNi) divided by the number of person-years (PYi)
calculated for individuals of age i in the population (Preston et al.,
2000). If an average person who died at age i have died a years
(0 b a b 1, i.e., a gives the fraction of a year) after his last birthday
served.
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mailto:jp@senescence.info
mailto:bnvasiev@liverpool.ac.uk
http://dx.doi.org/10.1016/j.exger.2013.05.054
http://www.sciencedirect.com/science/journal/05315565


Fig. 1. Mortality rate versus age for the United States population in the year 2002
(Panel A) and for the Swedish population in the year 2007 (Panel B). The data
presented in panel A is taken from the Centers for Disease Control and Prevention
(http://www.cdc.gov/nchs/deaths.htm) and the data in panel B from the Human
Mortality Database (http://www.mortality.org). Both panels represent the logarithm
of mortality rate versus the age i. The data for the Swedish population is given for all
ages while for the American population only selected ages are given. In both cases
the data after the age of 25–30 fits into a straight line, i.e. indicates an exponential
growth. The data for the Swedish population (which is more complete) shows the
deviation from the exponential growth (which even includes drops in mortality rate)
after the age of 100.
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then PYi = Ni − (1 − a)ΔNi where Ni is the number of individuals
who have reached age i. Thus:

mi ¼
ΔNi

Ni− 1−að ÞΔNi
or equally ΔNi ¼

miNi

1þ 1−að Þmi
: ð1Þ

If an average person who died at age i had died 6 months after his
birthday then a = 0.5. Observations on mortality in human popula-
tions indicate that a = 0.5 (with very high precision) for all ages
except for the age zero, i = 0, for which parameter a is considerably
smaller (typically a ≈ 0.35). Furthermore, the number of deaths of
people aged i can be represented as:

ΔNi ¼ Ni−Niþ1 ð2Þ

where Ni + 1 represents the number of people who has reached the
age i + 1.

Formost of the human lifespan the Gompertz equation (Gompertz,
1825) depicting the exponential increase in mortality with age fits the
data well and has been widely used. Mathematically the exponential
dynamics of mortality rate is represented as:

mi ¼ m0e
βi
; ð3Þ

where m0 is the initial mortality when i = 0 (can be derived from
the mortality at the age when mortality rates begin to climb) and pa-
rameter β defines the rate of demographic ageing or how quickly the
mortality rate is changing.

Combining Eqs. (1–3) we have:

Niþ1 ¼ Ni−ΔNi ¼ Ni−
miNi

1þ 0:5mi
¼ 1−0:5mi

1þ 0:5mi

� �
Ni ¼

1−0:5m0e
βi

1þ 0:5m0e
βi

 !
Ni:

ð4Þ

Eq. (4) shows how the number of individuals of age i + 1 is de-
fined by the number of individuals of age i. Using the derivation
from Eq. (4) multiple times we can find the size Ni as a function of
the initial size N0, initial mortality, m0, and parameter β:

Ni ¼
1−0:5m0e

β i−1ð Þ

1þ 0:5m0e
β i−1ð Þ

 !
Ni−1 ¼ :: ¼ N0∏

i−1

k¼0

1−0:5m0e
βk

1þ 0:5m0e
βk

 !
: ð5Þ

Eqs. (1–5) represent a discrete counterpart of the continuous
equations associated with the Gompertz law (Mueller et al., 1995).

Actual data on mortality in human populations can be found in
different formats. Most commonly it is represented as a logarithm of
mortality rate versus age (see Fig. 1) which can be interpolated by
a linear plot if it is given by the exponential function as in the case
of Eq. (3). Plots in Fig. 1 show that the mortality rate increases for
most ages and this increase is approximately exponential. The devia-
tions from the exponential law are observed in young (before 32) and
old (after 102 in panel B) ages. The mortality plateau at late ages
(Mueller and Rose, 1996; Pletcher and Curtsinger, 1998; Wachter,
1999) is one of particularly intriguing facets in human populations
as well as in other non-human species.

A number of mathematical models have been developed and used
to analyse observations on the mortality dynamics in human popula-
tions as well as in populations of other species (Vaupel, 2010; Yashin
et al., 2000). Various explanations have been put forward for the pe-
culiarities of mortality dynamics at young and old ages. For example,
the proposed explanations for the late-age plateau include an assump-
tion that the exponential law is not working at those ages and that the
mortality dynamics should be described by logistic, quadratic or other
mathematical functions (Gavrilov and Gavrilova, 2001; Kannisto et al.,
1994; Pham, 2011). It has also been shown that the deviations
from the exponential law can be explained by heterogeneity (Vaupel
and Yashin, 1985; Vaupel et al., 1979), while heterogeneity can be
explained and described using different models (Lebreton, 1996;
Steinsaltz and Wachter, 2006). However, we feel that the systematic
analysis of the mortality dynamics in heterogeneous populations is
incomplete. Particularly, it would make an important exercise to con-
struct a model of heterogeneous population with parameters fitting
real observations as this could provide clues regarding biological,
genetic and medical factors driving these mortality patterns. Another
reason for deviations of mortality dynamics from Gompertz law
can be associated with the random events affecting the longevity.
The role of stochastic effects on the mortality dynamics as mediated
by their impact on individual frailty have been addressed by many
authors (Vaupel, 2010; Weitz and Fraser, 2001). And again the results
of these studies have not been systematically compared with detailed
observations available nowadays.

In this work, we aim to model mortality across the whole lifespan
presuming that the rate of mortality changes over age according
to the Gompertz law. Although many other models have been used
to describe mortality dynamics over age (Pletcher, 1999) there is a
genuine feeling that the fundamental processes underlying mortality

http://www.cdc.gov/nchs/deaths.htm
http://www.mortality.org
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should result in exponential law (Yashin et al., 2000). Therefore we
analyse whether the deviations from Gompertz law can be explained
by the heterogeneity of populations while the mortality in each sub-
population is still described by the Gompertz law. Also assuming
that the mortality dynamics is described by Gompertz law we check
whether the deviations from this law can be explained by stochastic
effects. In order to perform this analysis we developed mathematical
models comprising the heterogeneity of the population and/or sto-
chastic effects. We also aim to derive likely Gompertz parameters for
the model so that it would fit the observation data used in this study
and infer clues about biological, social or biomedical processes at
work. We first focus on the young ages and then on the old ages to
model and analyse the irregularities in the mortality dynamics using
data both from Sweden and the US. This allows us to explain these
irregularities and to reproduce the observed data in the model.

2. Study of heterogeneous populations

2.1. Mathematical model of heterogeneous populations

Each human population can be seen as consisting of a number of
subpopulations which differ genetically and/or by life style (for exam-
ple associated with gender or occupation). The parameters defining
the mortality dynamics (m0,β in Eq. (3)) of each subpopulation can
be different, reflecting the variations in the genotype and life style
(see (Vaupel et al., 1998) and references therein). Therefore, we can
model the whole heterogeneous population in the following way.
We consider the population as consisting of n subpopulations and as-
sume that the mortality rate in each subpopulation is defined by the
Gompertz equation, although the equation parameters are different
for different subpopulations (Vaupel, 2010). Let us use the notation
Nj0 for the initial size, mj0 for the initial mortality rate, and βj for the
rate of mortality dynamics of subpopulation j. According to the
Gompertz law the mortality rate of subpopulation j is:

mji ¼ mj0e
βj i: ð6Þ

If the entire population consists of n subpopulations then Eq. (1)
can be rewritten as:

mi ¼
ΔN1i þ ΔN2i þ ⋯þ ΔNni

N1i þ N2i þ ⋯þ Nni−0:5 ΔN1i þ ΔN2i þ ⋯þ ΔNnið Þ

¼

Xn
j¼1

ΔNji

Xn
j¼1

Nji−0:5
Xn
j¼1

ΔNji

ð7Þ

where sub-index i denotes the age and sub-index j — the subpopula-
tion. Taking into account Eqs. (1) and (6), Eq. (7) can be rewritten as:

mi ¼

Xn
j¼1

Njimj0e
βj i

1þ 0:5mj0e
βj i

Xn
j¼1

Nji−0:5
Xn
j¼1

Njimj0e
βj i

1þ 0:5mj0e
βj i

: ð8Þ

In this equation the actual sizes of subpopulations can be replaced
by their fractions. That is, we can define ρji as the fraction formed by
subpopulation j over the total population at any age i:

ρji ¼
Nji

Ni
¼ Nji

N1i þ N2i þ ⋯þ Nni
with

Xn
j¼1

ρji ¼ 1: ð9Þ
Then the Eq. (8) can be rewritten as:

mi ¼

Xn
j¼1

ρjimj0e
βj i

1þ 0:5mj0e
βj i

1−0:5
Xn
j¼1

ρjimj0e
βj i

1þ 0:5mj0e
βj i

: ð10Þ

The fractions ρji in Eq. (10) are defined by the initial fractions ρjo
by the equation similar to Eq. (5):

ρji ¼
ρj0∏

i−1

k¼0

1−0:5mj0e
βjk

1þ 0:5mj0e
βjk

 !

Xn
s¼1

ρs0∏
i−1

k¼0

1−0:5ms0e
βsk

1þ 0:5ms0e
βsk

 ! ! : ð11Þ

Wewill use Eqs. (10–11) to define themortality rate of the hetero-
geneous population as a function of age i and to examine the effect of
model parameters on the dynamics of the mortality over age in the
heterogeneous population. The continuous counterpart of Eq. (10)
can be found in Vaupel and Yashin (1985).

2.2. Mortality dynamics in the model of heterogeneous populations

We start our study by considering a heterogeneous population
consisting of two subpopulations (Fig. 2). The mortality of each sub-
population is described by Eq. (3) with parameters specific to the
subpopulation. We can use Eq. (8) or Eq. (10) to analyse how the
values of model parameters describing each subpopulation, namely
initial sizes, N10 and N20 (or initial fractions ρ10 and ρ20), initial mor-
talities, m10 and m20, and parameters β1 and β2, defining ageing of
subpopulations, affect the dynamics of the mortality rate of the entire
population. Fig. 2A shows the influence of the initial mortality rate of
a subpopulation on the dynamics of the total mortality rate. Here we
consider the case when the subpopulations have equal initial sizes
and equal slopes of ageing, i.e., β1 = β2. We can see that the value
of the mortality rate for the entire population is initially in between
(exactly in the middle for age i = 0) the mortality rates of the two
subpopulations, but in the long run merges with the subpopulation
that has the lower initial mortality. An increase in the difference in the
initial mortality of subpopulations reduces the time needed for these
to merge. The plot of mortality rate versus age has a single minimum
that shifts down to smaller ages as the higher initial mortality is in-
creased (compare red, green and blue solid lines in Fig. 2A).

We have also checked how the difference in the ageing slopes, β1

and β2, of subpopulations influences the dynamics of the mortality
rate of a heterogeneous population (Fig. 2B). If the ageing slopes of
subpopulations are different then the mortality rate of the entire pop-
ulation has a value in between the mortality rates of subpopulations.
The total mortality increases at young ages, decreases for a short age
interval and then increases again for old ages. In the long run the total
mortality saturates to the level of the mortality rate of the subpopula-
tion with the lower ageing coefficient, β. Generally, the graph of total
mortality rate has a maximum and a minimum. They both are shifting
to old ages when the difference between ageing slopes of subpopula-
tions decrease.

The effect of variation in the initial sizes of subpopulations on
the mortality dynamics of a heterogeneous population is shown in
Fig. 2C. We have checked a general case of two subpopulations with
different initial mortality rates (m10 = 0.15, m20 = 0.02) and differ-
ent mortality coefficients (β1 = 0.0357, β2 = 0.0556) and varied
the initial fractions ρ10 and ρ20 (ρ20 = 1 − ρ10) of the subpopula-
tions. The curves for the total mortality of the entire population
(Fig. 2C) confirm the conclusions made after the analysis of the first
two cases (shown in Fig. 2A and B). Generally, there is a single



Fig. 2. The effect of varying model parameters on the mortality dynamics of a hetero-
geneous population consisting of two subpopulations.

A: The effect of varying the initial mortality rate for one of the subpopulations.
Subpopulations have equal initial sizes (ρ10 = ρ20 = 0.5) and equal ageing slopes
(β1 = β2 = 0.039). The initial mortalitym10 takes the values 0.5, 0.25 and 0.15 for
the blue, green and red dashed lines, respectively, while the initial mortality
m20 = 0.02 is constant. The total mortality of the entire population is represented
by a solid line with the colour of the corresponding dashed line (indicating the
value of m10).

B: The effect of varying the ageing slope. Subpopulations have equal initial sizes
ρ10 = ρ20 = 0.5 and equal initial mortality rates m10 = m20 = 0.03. The rate of
ageing β1 takes the values 0.2, 0.1 and 0.067 for the blue, green and red dashed
lines, respectively, while β2 = 0.033 is constant. The total mortality of the entire
population is represented by a solid line with the colour of the corresponding
dashed line (indicating the value of β1).

C: The effect of varying the initial size of the subpopulation. Two subpopulations
(dashed lines) with different ageing slopes (β1 = 0.036, β2 = 0.056) and different
initial mortality rates (m10 = 0.15, m20 = 0.02) are considered. Blue, green and
red lines show the total mortality of a whole population where the initial fraction
ρ10 is 0.9, 0.99 and 0.999 correspondingly.
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minimum on the plot of the total mortality rate and this minimum
shifts to old ages with the increase of the initial fraction of subpopu-
lation 1 which displays both a higher initial mortality level and a
slower mortality increase with age (i.e., lower β).

The analysis of simulations with varying parameters presented in
Fig. 2 can be used for reproduction of two sets of mortality data
presented in Fig. 1. Data on panel A of Fig. 1 is represented by a few
points while data on panel B is much more detailed. We have picked
up these two sets of data to demonstrate that the technique we use
for fitting model parameters to observation data works equally well
for sparse and extensive data sets. Fig. 1A gives the mortality data
for the USA in the year 2002 taken from the Centres for Disease Con-
trol and Prevention http://www.cdc.gov/nchs/deaths.htm. Note, that
this data could be interpolated either by a plot which has a single
minimum (skipping the point at age 20) or by a plot with two mini-
ma. Our analysis (Fig. 2) indicates that in order to reproduce a plot
of mortality rate with a single extreme point we need to consider
two subpopulations. Since each subpopulation is described by three
model parameters (initial mortality, m0, rate of ageing, β, and frac-
tion, ρ) and ρ1 + ρ2 = 1we need to find values of five parameters
to fit the data in Fig. 1A. In the general case of n subpopulations the
number of free (unknown) parameters is k = 3n − 1.

To find values for the free parameters that could minimize the
sum of squared residuals (residual is a difference between the theo-
retical prediction and the observation data) and therefore to fit the
data we have used the least squares (LS) method. This method was
implemented using nonlinear regression algorithm (provided by the
command DataFit in Maple which is included in the DirectSearch
package). Using the LS method we have fitted parameters of the
models for heterogeneous populations consisting of two (Fig. 3A)
and three (Fig. 3B) subpopulations with the US data in Fig. 1A. The
next task is to find out which of these two models is a better fit. The
criterion we used for evaluation of how well the model fits the data
is the Bayesian Information Criterion (BIC) (Schwarz, 1978) which is
given by the formula:

BIC ¼ nd ln σ̂ 2
e

� �
þ k ln ndð Þ

where nd is the number of data, σ̂ 2
e is the sum of squared residuals di-

vided by the number of data and k is the number of free parameters.
The model with the lower value of BIC implies better fit to the data.
Therefore, according to the BIC, the heterogeneous model with three
subpopulations (BIC = −44.06) fits the US data better than the
model with 2 subpopulations (BIC = −13.01). For the particular US
data we cannot consider a population composed of four subpopula-
tions because in that case we will need to calculate 11 free parame-
ters while there are only 9 data points.

Now let us consider the data on the death rates in Sweden for the
year 2007 presented in Fig. 1B (taken from the Human Mortality
Database: http://www.mortality.org). This data is considerably more
detailed compared to the US data presented in Fig. 1A. From Fig. 1B
we see that themortality rate is initially about 0.0025, and then declines
to a minimum point at the age of 10 years, then increases until a local
maximum value at the age of 25 years, drops slightly and advances
exponentially (along a straight line on a logarithmic scale) from the
age of 30 to about 100 years. At advanced ages, i.e., after approximately
100 years, the mortality data don't follow themonotonically increasing
line. This can be explained either by fluctuations in mortality data or by
the fact that the mortality rate starts to decline with age.

Fig. 4 shows three models of heterogeneous populations composed
of 3 (panel A), 4 (panel B) and 5 (panel C) subpopulations fitting the
data on the Swedish population presented in Fig. 1B. Compared by
eye the plots on panels B and C seem to be better fits than the plot on
panel A. The Bayesian Information Criterion indicates (see Fig. 4 legend)

http://www.cdc.gov/nchs/deaths.htm
http://www.mortality.org


Fig. 3. Fitting the heterogeneous model to the US mortality data using the Least Squares
Method. The data is denoted by the circle symbols, the mortality rates of modelled sub-
populations are given by the black dashed lines and the mortality of the whole popula-
tion by the solid black curve.

A: The heterogeneous population composed by two subpopulations. Model
parameters:

1st subpopulation: m10 = 1.052, ρ10 = 0.00978, β1 = 0.0488;
2nd subpopulation: m20 = 0.00001133, ρ20 = 0.99022, β2 = 0.0753.
Sum of squared residuals: 0.625592.

B: The heterogeneous population composed by three subpopulations. Model
parameters:

1st subpopulation: m10 = 0.9748, ρ10 = 0.01038, β1 = 0.065;
2nd subpopulation: m20 = 0.000345, ρ20 = 0.02486, β2 = 0.223;
3rd subpopulation: m30 = 0.0000475, ρ30 = 0.96476, β3 = 0.0885.
Sum of squared residuals: 0.009544.
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that the four-subpopulation model (panel B) fits to the data slightly
better than the five-subpopulation model (panel C).

So far we assumed that a = 0.5 (see Eq. (1) for all subpopula-
tions in the heterogeneous model. Observations indicate that this
is indeed true for all ages except the very first year (i = 0) for
which the value of parameter a is significantly smaller. We have
taken this observation into account by introducing an extra subpop-
ulation for which the parameter a was predefined for age 0 to
fit its observed value. The combination of Gompertz law and small
parameter a causes this extra subpopulation to die entirely within
the first year (at age 0), and therefore this subpopulation affects
only the first (i = 0) modelled point. This lets us use the following
improved procedure for fitting the heterogeneous population model
to the observation data. We remove the first data point (i = 0)
from consideration and find the best four-subpopulation fit for the
remaining data similar to what was done for Fig. 4B. Then we add
an extra subpopulation for which parameter a is small (i.e., a = 0.3
which is close to the observed value of a for age 0). As this subpopula-
tion entirely disappears during the 1st year, we just need to adjust
its size to have an ideal fit to the first data point (i = 0) which was
removed from consideration earlier. Fig. 5A shows the outcome of
the model, designed to fit the 2007 data for the Swedish population.
It turns that this new model fits the data much better than models
designed for Fig. 4.

We have used the procedure described above to fit a model com-
prising five-subpopulations to Swedish 1751 data (Fig. 5B). Although
the 1751 data are considerably different from the 2007 data, the
designed model also fits it remarkably well. A comparison of models
for 1751 and 2007 data indicates that basically all parameters for all
subpopulations did change over two-and-a-half century period. The
most striking changes are the much higher initial mortality, m10, in
the main subpopulation in 1751 (>10 fold higher), and the fact that
the main subpopulation, which comprises over 99% of the population
in 2007, makes up less than half of the whole population in 1751.
The latter observation also means that the other subpopulations
(i.e., those with higher mortality) in 1751 were much larger. The
detailed study of the evolution of model parameters could be done
by making fits to the data for intermediate years, however this falls
outside the scope of this study.

3. Study of fluctuations in mortality dynamics

The important observation we can make is that all models
designed so far fail to describe the noisy pattern of observed data in
early and late ages. This section will be devoted to the analysis of
noise in mortality dynamics.

3.1. Modelling the stochastic effects

Assume that the probability to die, qi, within a year for any individ-
ual depends only on his age. Then the number of death of individuals
of age i is ΔNi = qi Ni where Ni is the number of people who reached
their i-th birthday. Combining this with Eq. (1) we get qi ¼ mi

1þ0:5mi

where mi is presumed to follow the Gompertz law (Eq. 3). Further-
more, taking into account that if qi is the probability to die then the
probability to survive is pi = 1 − qi, we can find the probability that
k out of Ni individuals survive (while Ni − k individuals die) within
a one-year interval. To find this probability we consider the following
binomial expansion:

1 ¼ qi þ 1−qið Þ½ �Ni ¼
XNi

k¼0

Ni!

k! Ni−kð Þ! qi
Ni−k 1−qið Þk: ð12Þ

Here the right-hand-side contains Ni + 1 terms (corresponding to
values of k from 0 to Ni), each giving the probability for k individuals
to survive or, correspondingly, the probability that Ni + 1 = Ni − k.
Therefore we can use formulas for the mean and the variance of the
stochastic process described by the binomial distribution and con-
clude that the mean value of ΔNi is 〈ΔNi〉 = Niqi and its variance,
σ2 = Niqi(1 − qi) (see Allen, 2010; Morgan, 2000; Ross, 2002). The
mortality error, Δm, can be defined as the standard deviation of
the number of deaths divided by the mean number of person years
lived at age i:

Δmi ¼
σ
PYih i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Niqi 1−qið Þp

Ni−0:5Niqi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi 1−0:5mið Þ

Ni

s
: ð13Þ

The fluctuations in mortality are observable when the mortality
error is high relative to the mean mortality or when the relative
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mortality error defined as the mortality error divided by the mean
mortality is above some threshold, Th:

Δmi

mi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−0:5mi

Nimi

s
> Th: ð14Þ

Eq. (14) can be extended to the case of a heterogeneous population:
the number Ni would represent the total size of the population (sum of
all subpopulation sizes) and mi represent the overall mortality of the
heterogeneous population given by Eq. (10). The variables describing
subpopulations in a heterogeneous population are independent and
therefore the total variance, σ2, for the whole population is a sum of
the variances,σj

2, of the constituent subpopulations. Therefore, themor-
tality error for the entire heterogeneous population can be written in
the form:

Δmi

mi
¼

Xn
j¼1

σ2
ji

0
@

1
A1=2

PYih imi
¼

Xn
j¼1

Njiqji 1−qji
� �0

@
1
A1=2

mi

Xn
j¼1

Nji−0:5Njiqji
� � ð15Þ

where mi is defined by Eq. 10).

3.2. Numerical implementations of the stochastic model

The direct implementation of Eq. (12) for computer simulations
requires the comparison of random computer-generated numbers
with terms on the RHS of Eq. (12). The binomial coefficients in
Eq. (12) are found using the Pascal triangle. This algorithm is perfectly
adequate if the size of the population is relatively small. However,
for large populations, say when Ni > 100, we have to operate with
extremely small numbers (like qiNi where qi b 1) as well as extremely
large numbers (like Ni !) hitting in both cases the computer limita-
tions associated with handling real and integer numbers.

To overcome this difficulty we have used an alternative numerical
algorithm which does not require Eq. (12). It is slow compared to the
above algorithm but allows the consideration of populations of prac-
tically any size. If the number of individuals of age i is Ni then in order
to find Ni + 1 we order the computer program to generate a set of Ni

random numbers (each represented by a real number which is not
less than zero and not more than one), i.e., one random number per
each individual. Each of the generated random numbers is compared
with the probability, qi; qi ¼ mi

1þ0:5mi
where mi is defined by Eq. 3. The

probability a random computer-generated number to be less than qi
is equal to qi. Therefore, every time when the random number is less
than qi we conclude that one individual dies. Comparing Ni random
numbers with qi lets us make a decision (dies or stays alive) on each
of Ni individuals and obtain the number of individuals Ni + 1 who
Fig. 4. Fitting the heterogeneous model to the Swedish mortality data using the Least
Squares Method. The data is denoted by the circle symbols, the mortality rates of
modelled subpopulations are given by the dashed lines and the mortality rates of the
whole population by the solid curve.

A: The heterogeneous population composed by three subpopulations. Model
parameters:

1st subpopulation: m10 = 0.7211, ρ10 = 0.00198, β1 = 0.67 ⁎ 10−5.
2nd subpopulation: m20 = 0.001169, ρ20 = 0.00483, β2 = 0.2129;
3rd subpopulation: m30 = 0.00001317, ρ30 = 0.99319, β3 = 0.1041
Sum of squared residuals: 5.715275; BIC = −287.7033.

B: The heterogeneous population composed by four subpopulations. Model
parameters:

1st subpopulation: m10 = 1.6139, ρ10 = 0.00266, β1 = 0.67 ⁎ 10−5.
2nd subpopulation: m20 = 0.108, ρ20 = 0.00057, β2 = 0.2685;
3rd subpopulation: m30 = 0.00052, ρ30 = 0.00460, β3 = 0.2558;
4th subpopulation: m40 = 0.000013146, ρ40 = 0.99217, β4 = 0.1041;
Sum of squared residuals: 3.229884; BIC = −336.3785.

C: The heterogeneous population composed by five subpopulations. Model
parameters:

1st subpopulation: m10 = 1.986, ρ10 = 0.002, β1 = 0.67 ⁎ 10−5.
2nd subpopulation: m20 = 0.859, ρ20 = 0.00074, β2 = 0.4254;
3rd subpopulation: m30 = 0.088, ρ30 = 0.00052, β3 = 0.3041;
4th subpopulation: m40 = 0.0005207, ρ40 = 0.00459, β4 = 0.2558;
5th subpopulation: m50 = 0.00001316, ρ50 = 0.99215, β5 = 0.1041;
Sum of squared residuals: 3.173179; BIC = −324.2254.



Fig. 5. Extension of the four-subpopulation heterogeneous model with extra-subpopulation
to fit parameter a (in equation 1) in the Swedish mortality data for 2007 (panel A) and for
1751 (panel B). Since a = 0.5 at all ages except for the age zero the fitting was done in 2
steps. 1. The four-subpopulation model is composed to fit all data except the very 1st
point; 2. Extra (fifth) population was added to fit parameter a (see Eq. (1)) and number of
deaths for the 1st point. The data is denoted by the circle symbols, the mortality rates of
modelled subpopulations are given by the dashed lines and the mortality rates of the
whole population by the solid curve.

A: The heterogeneous population composed by five subpopulations. Model
parameters:

1st subpopulation: m10 = 3.28, ρ10 = 0.00122, β1 = 0.0066, a10 = 0.3.
2nd subpopulation: m20 = 0.8477, ρ20 = 0.00072, β2 = 0.4324;
3rd subpopulation: m30 = 0.08824, ρ30 = 0.00052, β3 = 0.3034;
4th subpopulation: m40 = 0.0005179, ρ40 = 0.00459, β4 = 0.2561;
5th subpopulation: m50 = 0.000013163, ρ50 = 0.99295, β5 = 0.1041;
Sum of squared residuals: 3.173157; BIC = −324.2261.

B: The heterogeneous population composed by five subpopulations. Model
parameters:

1st subpopulation: m10 = 2.544, ρ10 = 0.13045, β1 = 0.1473, a10 = 0.32.
2nd subpopulation: m20 = 0.2054, ρ20 = 0.13239, β2 = 0.2222;
3rd subpopulation: m30 = 0.007861, ρ30 = 0.28278, β3 = 0.045;
4th subpopulation: m40 = 0.000862, ρ40 = 0.00587, β4 = 0.4975;
5th subpopulation: m50 = 0.0001501, ρ50 = 0.44851, β5 = 0.0853;
Sum of squared residuals: 4.814607; BIC = −270.3817.

Fig. 6. The mortality dynamics in a stochastic model of a homogenous population.
Implementation of stochasticity: the mortality rate (calculated according to the
Gompertz law) is converted to a probability, q, for each individual to die. Whether the
actual death event takes place or not is decided according to a computer-generated ran-
dom number. Each plot shows the mortality dynamics for three populations having
different initial mortality rates (m0 = 0.0001, m0 = 0.001, and m0 = 0.01 shown by the
dotted, dashed and solid lines respectively). Each panel corresponds to the different initial
size of population: 106 on panel A, 105 on panel B and 104 on panel C. Each population
has mortality coefficient, β = 0.1.

807D. Avraam et al. / Experimental Gerontology 48 (2013) 801–811
reach age i + 1. This procedure can also be extended to consider het-
erogeneous populations.

3.3. Fluctuations in the mortality dynamics in stochastic model

We have checked how the stochasticity affects the dynamics
of mortality, which is presumed to follow the Gompertz law. Fig. 6
indicates that the amplitude of fluctuations depends on the model pa-
rameters such as the size of the population and its initial mortality.
We can also see that fluctuations can appear and disappear in



Fig. 7. Correlation between the fluctuations in mortality dynamics and the relative
mortality error. Three graphs of mortality data from Figure 6B (solid lines) with the
corresponding graphs of relative mortality error (dashed lines) are presented in
three panels. When the relative mortality error is above the threshold (the dashed
line is above the horizontal line) there are fluctuations in the mortality graphs, while
when the error is below the threshold (dashed line below the threshold line), the fluc-
tuations are not observed. Vertical lines indicate the ages when the error curves inter-
sect the threshold line and the arrows show on what side of the vertical line the
fluctuations are observed.
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different parts of the same mortality plot. The fluctuations are gener-
ally observed at early and advanced ages. The occurrences of the fluc-
tuations in Fig. 6 can be explained by Eq. (14), namely, we can claim
that if the fluctuations in the mortality plot are due to stochastic ef-
fects, then they should become observable when the relative mortal-
ity error is high enough. Eq. (14) indicates that this error is inversely
proportional to the mortality rate and to the size of the population.
This implies that deviations from the theoretical mortality data can
be observed on two sides of the mortality patterns, at the initial
ages where the mortality, mi, is small and at advanced ages where
the number of individuals, Ni, is small. In both cases the fluctuations
become observable since the total number of deaths is relatively
small.

Eq. (14) states that the relative mortality error should be above
a certain threshold (Th) for the fluctuations in mortality of a popula-
tion to become observable. Fig. 7 shows the graphs of the relative
mortality error (dashed lines) calculated for the mortality data (solid
lines) presented in Fig. 6B. An analysis of these graphs indicates that
the threshold value, Th, can be estimated by a number between 0.05
and 0.1 to reflect the transitions from observable to unobservable
(and back) fluctuations on the mortality plots. As an example, the
case of Th = 0.06 is shown in Fig. 7 where a horizontal solid black
line represents this threshold. Intersections of the graphs of relative
mortality error with this horizontal line correspond to the transitions
from fluctuating to non-fluctuating behaviour in the mortality plots.

In practice, the term 1 − mi in the numerator of the expression
for the relative mortality error in Eq. (14) can be omitted (replaced
by 1, as mi is very small) at the transition point at young ages, and
Th = 0.06 would represent the reciprocal of the square root of the
product Nimi, Th ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nimi

p
, or we could say that the young-age

transition takes place when Nimi = 1/Th2 ≈ 300. The transition point
at advanced age takes place when the mortality mi is not very small
and therefore some estimate of the size of population at this transition
point can be made. For example, assuming that the transition takes
place when mi = 0.6 we get for the size of the population Ni ≈ 180
(this is a case for the plot shown in Fig. 7A, when the fluctuations
for the advanced ages start at age i = 41 for which the mortality
mi = 0.6 and the number of individuals Ni = 149).

Fig. 8 gives a few illustrations of the transition from non-fluctuating
to fluctuating dynamics of mortality rate at advanced ages. The graph of
mortality dynamics according to the Gompertz law is shown by the
solid line while mortality in the stochastic model is shown by dashed
line. Increase of the size of the population results in the disappearance
of the fluctuations at early ages and further to the occurrence of fluctua-
tions (the transition point) at progressivelymore advanced ages. Further-
more, despite the big differences in the initial sizes of the populations in
all three shown simulations, the fluctuations start to become observable
at the age represented by 150–180 individuals. The fluctuations affect
the mortality dynamics in a random and unpredictable way which
makes the shapes of mortality graphs after the transition points to be
considerably different in all presented simulations.

3.4. Fitting models to the observation data

Fig. 4 demonstrates that the model of a heterogeneous population
indeed reproduces the dynamics of observedmortality data very well.
However the observation data has a feature which is not captured by
themodel, namely the fluctuations. The noisy background ofmortality
records is especially expressed at young and old ages. Many authors
have treated the noise at old ages as a deviation from the exponential
law (Vaupel et al., 1998) either by considering this deviation as a pla-
teau on the graph or even as a decline in mortality (Partridge and
Mangel, 1999). Fig. 9A shows part of the data from Fig. 1B which is re-
lated to the elderly ages (solid black line). This data represent period
data for the Swedish population for the year 2007 obtained from the
Human Mortality Database (http://www.mortality.org). Dashed lines
on the same panel in Fig. 9 give parts of the period data for a few
other years (1994, 2001, 2009) which are taken from the same data-
base. The plots indicate that the mortality dynamics for all shown
cases exhibit roughly the same growing pattern and in all cases the
fluctuations appear after the age of 102.

In order to check whether these fluctuations can be explained by
the stochasticity in the dynamics of mortality we have performed
computer simulations. Each time, we used the same model parame-
ters (initial size of the population, and Gompertz parameters in
Eq. (3)) but seeded different sets of random numbers to reproduce

http://www.mortality.org


Fig. 9. Plots of mortality dynamics for the advanced ages in period data for Swedish
population (A) in the stochastic model (B). The solid black line on both panels is the
plot of the mortality rate for the advanced ages of the Swedish population in the
year 2007 (part of the data from Fig. 1B). The red, blue and green dashed curves on
panel A correspond to the period data on mortality for the Swedish population in
1994, 2001 and 2009. The red, blue and green dashed curves on panel B correspond
to three simulations of mortality dynamics in the stochastic model for the different
sets of random computer-generated numbers. All plots (period data and simulations)
show the deviation from exponential growth in a very similar way, i.e., deviations
are represented by fluctuations which start at age 102. Model parameters: N90 =
18660 m90 = 0.172479, β = 0.0926.

Fig. 8. Variations in the mortality dynamics due to stochastic effects. Plots of theoretical
mortality (solid line) and actual mortality (dashed curve) for a population with initial mor-
tality rate m0 = 0.15 and mortality coefficient β = 0.033 are shown. The initial size
of the population is 104 in panel A, 105 in panel B and 106 individuals in panel C.
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death events. The initial mortality, m0, and initial size of the popula-
tion in the model was chosen to fit the first data point (at age 90)
for the Swedish data for year 2007 and the rate of ageing β to fit the
slope of the data points. Fig. 9B gives a few examples of computer
simulated mortality dynamics (dashed lines) as compared with the
actual data (black solid line). We can see that the simulations repro-
duce the data fairly well in a qualitative manner. However, the simu-
lated mortality dynamics follows considerably different plots for
different sets of random numbers generated by the computer. We
can see that fluctuations on all presented plots (for simulated data
as well as for the data taken from the database) take place after the
age of 102 (when about 150 survivors are left in the population)
and these fluctuations are the main reason for the deviation from
the Gompertz dynamics.
4. Model combining the heterogeneity of population with
stochastic effects

Up to now we have considered either heterogeneous or stochastic
models. Now we can combine these two models to reproduce the
entire set of mortality data for the Swedish population presented
in Fig. 1B. We have already modelled this data assuming that the
Swedish population is heterogeneous and comprised of four sub-
populations (Fig. 4B). Now we expand that model and introduce
the stochastic effect to the mortality description of all four subpopula-
tions. Fig. 10 shows the results of this simulation. We see that the
simulated data (red triangles) exhibit noise, which is very reminiscent
of the noise in the real data (blue circles). The noise in both cases is
enhanced for young and advanced ages. We have calculated the rela-
tive mortality error in simulations (dashed line) and identified its
threshold value (Th = 0.05 shown by the horizontal solid line) such
that the fluctuations (noise) in the mortality are visible if the error is
above this threshold. This is observed in two domains indicated by I
(up to the age of 53) and III (above the age of 102) in the figure.
The relative mortality error in the domain II (between the ages of 53
and 102) is less than the threshold and correspondingly the noise
in the mortality data (both actual and simulated) is negligible in this
domain.



Fig. 10. Fitting the mortality data of the Swedish heterogeneous population with
stochastic simulations. The blue circles represent the mortality data for the Swedish
population from Fig. 1B while red triangles represent the simulation data. The model
combining heterogeneity (the version used in Fig. 4B) and stochasticity (implemented
in the same way as in Figs. 6–9) has been used. The graph of the relative mortality error
for the simulated data is shown by the dashed line, the threshold level (Th = 0.05) is
shown by the horizontal line. Vertical lines indicate ages at which the error graph
crosses the threshold level. They divide the plot into 3 domains: domains I and III
where the relative mortality error is above the threshold line (the fluctuations in
both data sets are observed) and domain II where the relative mortality error is
below the threshold line and both data sets are relatively free from the noise.
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5. Discussion

Modelling the dynamics of humanmortality has long been a focus of
research. It could help understand the human ageing process and causes
of mortality, possibly providing insights that may help to improve
human health and to extend lifetime. Not surprisingly, a number of
studies have assessed the impact of heterogeneity on the dynamics of
mortality, in particular at later ages (Rossolini and Piantanelli, 2001;
Vaupel, 2010; Vaupel et al., 1979). In this work we have developed a
mathematical model which lets us reproduce and analyse the mortality
dynamics across the entire human life span. Our model combines
heterogeneity of population with stochastic effects and the model pa-
rameters can be easily tuned so that the simulated data fits well the
actual data on mortality dynamics, as shown in Figs. 4, 9 and 10.

We have shown that our model is capable of reproducing the actu-
al data on human population mortality fairly well. We had to consider
only five subpopulations to reproduce with sufficient accuracy the
detailed period data for Swedish populations in 1751 and 2007.
Even though this is an underestimate of actual heterogeneity of
human populations, it shows how a simple mathematical model can
represent actual human mortality well. One intriguing observation
from the values of model parameters is that the main subpopulation
makes up over 99% of the whole population (Fig. 4), meaning that
in modern populations heterogeneity is actually relatively low. A
comparison of model parameters for 1751 and 2007 data (Fig. 5)
shows that model parameters such as initial mortality, m0, and rate
of ageing, β, have dramatically changed, which is not surprising
since the conditions of life have also dramatically changed. A more in-
teresting point is that initial fractions of subpopulations, ρ, have also
changed considerably. This, most likely, indicates that advances in
medicine and hygiene over the last 250 years have caused fewer indi-
viduals to be susceptible or to be exposed to diseases, and infectious
diseases in particular, essentially shifting individuals across the sub-
population. This argument can be rephrased in the following way.
Each of the five considered subpopulations (say 1st level subpopula-
tions) is also heterogeneous and composed of subpopulations (say
2nd level subpopulations). An improvement in life style over the
last 250 years has caused for some of the 2nd level subpopulations
to move across the 1st level subpopulations and contribute to the
longer lasting fractions. This rearrangement has changed the fraction
balance between the 1st level subpopulations.

Our simulations and analysis indicate that the contributions
of heterogeneity and stochasticity are different at different ages. The
effect of heterogeneity is profound when fractions formed by subpop-
ulations are far from being zero or one. Our model suggests that at
early ages a small subpopulation with high initial mortality explains
the decline in mortality as this subpopulation gradually disappears.
Generally, with an increased age the faster-ageing subpopulations are
eliminated and the population starts to act more-and-more homoge-
neously as it would be composed by a single (having lowest mortality)
subpopulation.

The leading causes of death in infants are congenital malformations,
disorders related to short gestation and low birth weight, and sudden
infant death syndrome (Kung et al., 2007). Therefore, a small subpopu-
lation (the initial fraction comprised by the 1st subpopulation in the
simulation shown in Fig. 4B, ρ1 = 0.00266 which is 0.27% of the total
population) with high initial mortality is in line with epidemiological
data. On the other hand, it is not clear what the phenomenological dif-
ferences between other modelled subpopulations are. Our preliminary
simulations indicate that fitting the model to describe the mortality
dynamics for males or for females will also require four subpopulations
(roughly the same as in Fig. 4B) in both cases. Whether the modelled
subpopulations are associated with different social groups has to be
analysed in a follow-up study.

We also can identify a subpopulation (subpopulation 3 in Fig. 4B)
which lets us reproduce the mortality peak at about age 20.While this
fits the data well, this subpopulation can be considered somewhat
artificial because this mortality peak in the teenage years is likely
due to behaviour rather than intrinsic biological properties of a subset
of individuals. It is possible, in fact, that the increase in mortality in
teenage years is age-specific (goes up and down at a specific age
range) and cannot be modelled by Gompertz law. Nonetheless, we
speculate that risk-taking behaviour in a subset of individuals could
make up such a hypothetical subpopulation.

In line with the results obtained earlier (Rossolini and Piantanelli,
2001; Vaupel, 2010; Vaupel et al., 1979) we conclude that the hetero-
geneity of a population is sufficient to explain the mortality plateaus
observed at later ages. In addition, the size of the population declines
with age and the effects of stochasticity become more pronounced. It
seems that at later ages when the population is small the stochastic
effects can explain the observed mortality plateaus as well as the
high-amplitude fluctuations (high noise) in the mortality dynamics.
Likewise, at earlier ages, when the number of death events is small,
stochastic effects are also noticeable and cause the high-amplitude
fluctuations in the mortality dynamics.

In conclusion, the assumption that the populations are heteroge-
neous and the mortality dynamics of each subpopulation follows the
Gompertz equation with different parameters can account for ob-
served deviations of themortality dynamics (for the entire life course)
from the Gompertz law. We also found that stochastic effects are im-
portant when relatively few individuals contribute to mortality. Our
demographic modelling across the lifespan combining the effects of
heterogeneity and stochasticity was successfully tested in simulations
of human mortality data from populations in Sweden and the US.
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