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a b s t r a c t

We present a novel mathematical approach to model noise in dynamical systems. We do
so by considering the dynamics of a chain of diffusively coupled Nagumo cells affected
by noise. We show that the noise in a variable representing the transmembrane current
can be effectively modeled as fluctuations in the model parameters corresponding to
electric resistance and capacitance of the membrane. These fluctuations may account
for the interactions between the membrane and the surrounding (physiological) solution
as well as for the thermal effects. The proposed approach to model noise in a nerve
fibre is an alternative to the standard technique based on the consideration of additive
stochastic current perturbation (the Langevin type equations) and differs from it in
important mathematical aspects, particularly, it points out to the non-Markov dynamics
of transmembrane potential. Our scheme relates to a time scale which is shorter than the
relaxation times of involved physiological processes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A typical nerve fibre is coated inmyelin (themyelin sheath consists of a single Schwann cell which is wrapped about 100
times around the nerve fibre) with spatially periodic gaps, the nodes of Ranvier. The myelin sheath increases the membrane
resistance roughly 100 times and decreases the membrane capacitance by about the same factor. Typically, the width of
the Ranvier node is about 1 µm while the distance between nodes (the length of myelin sheath) is about 1.5 mm (which is
roughly 100 times thenerve fibre diameter). The transmembrane ion flowoccurs only at thenodes of Ranvierwhile thenodes
are diffusively coupled by the axial currents in the fibre. These currents allowapropagation of changes in the transmembrane
potential (action potential) fromnode to node. Thus,myelinated nerve fibres have a spatially discrete structure and there is a
strong biological reason for this: the propagation of action potential along a myelinated fibre is considerably faster compare
to that in nonmyelinated fibre. Because of the saltatory propagation of the action potential between the nodes its speed in
a myelinated fibre is about 100 m/s while the speed in a nonmyelinated fibre is 1 ÷ 5 m/s. For further details of the model,
physical parameters and an equivalent electric circuit we refer to [1].

Before the middle of the 20th century it was commonly accepted that the noise is destructive to neural encoding [2,
3]. The idea that the noise can play a positive role and enhance the neural functionality is relatively new. Today it is well
established that the noise plays a constructive role in the performance of the nerve system [4–8]. This new paradigm was
initiated by the research on stochastic resonance phenomena. It was shown that the stochastic resonance improves the
transfer of information [9,10].

In this Letter, we accomplish two goals. First, we propose and study the deterministic scheme for modeling the noise
in a nerve fibre. This scheme is based on the consideration of dynamical fluctuations in membrane affecting its electric
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characteristics through the negative feedback mechanism. Then, we ensure the ergodicity of the system by adjusting the
feedback control to the intensity of stochastic perturbations. In contrast to the random noise model (see Section 3) our
scheme operates with the only white noise process. Furthermore, our scheme is different from the standard one, based
on the additive stochastic current perturbation and represented by the Langevin type equation, and has advantages for
solving certain problems, including those that require consideration of time scales shorter compared to the time scales
of physiological processes such as the duration of the action potential. Electrical properties of the membrane such as
conductance and capacity represent its mean characteristics in interaction with the surrounding physiological solution
which is also described by the mean concentration of ions. This is an approximation. The description of noise in terms
of the random fluctuations in electric current across the membrane is a similar approximation. This approximation is a
fruitful approach but it has drawbacks. For example, temperature effects, protein motions, and thus fluctuations in electric
properties of the membrane are ignored. Interactions between the ions, water and proteins are ignored as well [1]. In short,
the traditional approach relates to a relatively large time scale where the average electrical properties of themembrane and
the surrounding physiological media are relevant. With our scheme, we intend to consider the noise and corresponding
dynamics on a shorter time scale, and thus to take into account interactions between the membrane and surrounding
solution. Since a detailed description of these interactions is not possible within a simple model, we represent them
as a feedback control which takes place under certain conditions. To do so we introduce new dynamical variables that
effectively relate the complex effect of interactions between the membrane, ion channels, salt solutions, and thermal factor
to fluctuations in the membrane electric characteristics.

The model developed here differs from the Langevin type model in the following mathematically important aspect. The
noise in ourmodel affects the dynamics of transmembrane potential indirectly through the associated fluctuations inmodel
parameters (describing the membrane) which appear after the integration. This can be understood as providing a memory
effect, that is, the perturbed dynamics in transmembrane potential is non-Markov. The follow up question is under what
limiting conditions our model transforms into the Langevin type model. Even if we do not deal with this problem here, we
have to point out a possibility to provide the proper investigation by following [11,12].

2. Initial setup

We consider a lattice of diffusively coupled Nagumo cells described, in the absence of a noise, by the equations, u̇i =

l△ui + f (ui), i ∈ Z is a spacial index, where f (u):R → R has a bistable character, for example f (u) = −ku(u − α)(u − 1),
0 < α < 1, k > 0; ∆ui ≡ ui+1 − 2ui + ui−1 is the standard three-point discretization of the Laplacian (discrete Laplacian),
and l > 0 is a coefficient of the diffusive coupling. Furthermore, the ‘‘potential’’ V (u) is defined by the differential equation,
V ′(u) = −f (u), V (0) = 0. In these equations, the variable u corresponds to the transmembrane electric potential, k-to the
membrane conductance and α-to the threshold potential. If i ∈ I ⊂ Z and I is bounded, we introduce boundary conditions,
for example of the Neumann type. The introduced lattice system is a well-known model for the study of propagation of the
action potential along a nerve fibre, although it has also been used for a study of other phenomena [13–15].

For what follows, it is convenient to represent the Nagumo equations in variational form. To do sowe define the ‘‘energy’’
functional,V[u] =


{i}[

1
2 l(∇ui)

2
+V (ui)], where∇ui = ui −ui−1 is the discrete gradient. Hereafter we adopt the following

notations for partial derivatives: ∂
∂ui

≡ ∂i, ∂2

∂u2i
≡ ∂2

i ,
∂
∂t ≡ ∂t , and so on. Using these notations we rewrite the lattice of

diffusively coupled Nagumo equations in the gradient form,
u̇i = −∂iV[u], i ∈ Z. (1)

Furthermore we can show that V[u] is the Lyapunov functional: V̇[u] = −


{i} (∂iV[u])2 ≤ 0.
Steady states of Eqs. (1) are the extrema of functional V[u]. The minima and maxima of V[u] correspond respectively

to stable and unstable solutions of Eq. (1). Let the time averaging for a continuous function A(u) define as A(u) =

limT→∞
1
T

 T
0 A(u(t))dt . Assuming that V[u] > −∞ and applying the time averaging to V̇[u] = −


{i} (∂iV[u])2 (V[u] >

−∞) we get:
{i}

(∂iV[u])2 = lim
T→∞

1
T

 T

0


{i}

(∂iV[u])2 dt = lim
T→∞

1
T

 T

0
V̇[u]dt

= lim
T→∞

1
T

(V[u(T )] − V[u(0)]) = 0. (2)

Thus the system spends almost all time at the extreme states of V[u]. These extrema are solutions of the discrete lattice
equation, l△ui − ∂iV[u] = 0, i ∈ Z. This equation is supposed to be equipped with boundary conditions. Here we assume
that ∇ui → 0 as i → ±∞.

3. Random noise

To model the influence of noise on deterministic system (1), it is widely accepted in the literature that the noise
is implemented in (1) by the additive stochastic currents, ξi(t), i ∈ Z, where {ξi(t)}i∈Z is the set of independent
standard generalized Gaussian δ-correlated processes completely characterized by the first two cumulants, ⟨ξi(t)⟩ = 0
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and

ξi(t)ξj(t ′)


= δijδ(t − t ′); ⟨· · ·⟩ means averaging over all realizations of the random perturbations. The set of stochastic

differential equations corresponding to (1) takes the form, u̇i = l△ui+f (ui)+
√
2Dξi(t) = −∂iV[u]+

√
2Dξi(t), i ∈ Z, where

D is the noise intensity (we suppose that noise does not depend on node). It is convenient for what follows to represent this
set as

u̇i = −λ∂iV[u] +
√
2λDξi(t), i ∈ Z, (3)

where the reference time scale λ is explicitly introduced. By rescaling the time in (3), t → λ−1t , and taking into account the
scaling property of white noise, we return to the case λ = 1.

In system (3) the dissipative processes and random perturbations equilibrate each other. For the ‘‘energy’’, V[u], we
obtain the stochastic differential equation (we specify this equation in the sense of Stratonovich (e.g. [16])),

V̇[u] = −λ

{i}

(∂iV[u])2 +
√
2Dλ


{i}

∂iV[u]ξi(t). (4)

Eq. (4) defines how the noise affects the ‘‘energy’’ and gives the rate of its (stochastic) fluctuations. Assume that V[u] >

−∞. Then after averaging over all realizations of the random perturbations we obtain the relation, −


{i} (∂iV[u])2

+

D


{i} ∂2
i V[u]


= 0, that does not depend on λ; we assume ⟨V [u]⟩ = const . This relation can be derived either by

elementary calculations or by applying Novikov’s formula [17]. This is an important relation that connects the noise
intensity to the configurational ensemble averages and thus can be considered as the definition of noise intensity. In
what follows we conjecture that the similar formula involving the time averaging instead of the ensemble averaging,
−


{i} (∂iV[u])2 + D


{i} ∂2
i V[u] = 0, is valid and thus defines the noise intensity in the framework of deterministic

dynamics. In order to deepen the conjecture and to describe the dynamics of deterministic fluctuations, we have to further
presume that the rate of dynamic fluctuations (r.d.f.) can be represented in the form:

r.d.f. ∼ −


{i}

(∂iV[u])2 + D

{i}

∂2
i V[u], (5)

that is, instead of the random perturbations (that are not present in deterministic dynamics) we have to consider dynamic
fluctuations of an appropriate variable. Indeed, in the absence of random perturbations we have to adopt another way to
properly perturb the system. Fluctuations in the electric characteristics of membrane are conjugate to the fluctuations in
electric current across the membrane. Thus it is reasonable to consider a certain electric characteristic of the membrane,
supposedly RC (where R is resistance and C is capacitance), that defines the time scale and allows this characteristic to
dynamically fluctuate.

The intensity D of random noise is commonly considered as an independent parameter. Indeed, the Fokker–Planck
operator corresponding to (3) has the form,F ∗ρ ≡ −


(i) ∂i (∂iV[u]ρ)+D


(i) ∂2

i ρ. The Fokker–Planck equation associated
with F ∗, ∂tρ = F ∗ρ, allows the invariant solution, ρ∞ [u] ∼ exp


−D−1V[u]


. We prove the identity, F ∗ρ∞ [u] ≡ 0,

by straightforward calculation. It is known that this distribution and the corresponding probabilistic measure, dµ ∼

exp

−D−1V[u]


(i) dui, are typically unique for dynamics (3). In short, the stochastic dynamics (3) is typically ergodic.

This means that for every continuous function A,

A(u)dµ = limT→∞

1
T

 T
0 A(u(t))dt , almost for sure for all initial values

u(0). The invariant measure relates to the infinite time interval. Thus, the variable that scales the time does not affect the
measure. The invariant (equilibrium) distribution ρ∞ demonstrates the explicit dependence on the noise intensity, D. The
only constraint on D arises when we presume a nondestructive role of the noise. Namely, in the case of a cubic nonlinearity
of f (u), the general form of V (u) is the double-well. The noise can induce transitions from one well to another. The rate of
these transitions depends on D and it is expected to be a slow enough process.

Nowwe can pose a problem: given a probabilitymeasure dµ (or an augmentedmeasure on an extended phase space); it is
required to find the dynamics such that limT→∞

1
T

 T
0 A(u(t))dt =


A(u)dµ for every continuous function A. We consider

this problem as a dynamic modeling of noise with dµ ∼ exp

−D−1V[u]


(i) dui representing the invariant (ergodic)

measure for the dynamics.

4. Deterministic modeling of noise

Now we will put together the above observations, namely, that the rate of feedback control of dynamic fluctuations and
the invariant measure depend on the noise intensity, —with the aim to derive a model of deterministic noise of intensity D
in a nerve fibre. The requirements are:

• Dynamics of the variable u depends on external dynamic variables (e.g., λ is endowed with its own equation of motion);
• Rate of deterministic dynamic fluctuations is directly related to (5) (e.g., the rate of fluctuations is a measure of the

influence of environment on electrical characteristics of the membrane);
• Measure dµ ∼ exp


−D−1V[u]


(i) dui is invariant for the dynamics;

• Dynamics is ergodic.
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In otherwords,wewill sample the invariantmeasure, dµ ∼ exp

−D−1V[u]


(i) dui, by themethodproposed in [18,19]

and thus to incorporate the noise intensity into the dynamics in accordancewith (5). This procedure is quite reasonable since
it involves dynamical fluctuations of themembrane electrical characteristics. To correctly sample the invariantmeasure, the
dynamics must be ergodic.

Consider the dynamics in the extended phase space ({ui} , λ, {ηi}),

u̇i = −λ∂iV[u] + ηi, λ̇ = g(u), η̇i = hi(u), i ∈ Z; (6)

where the functions g(u) and hi(u) are to be determined. The extra dynamical variables λ and ηi model the environment
and thus they represent the noise effect on the Nagumo dynamics.

Remark. The term ηi in the dynamical equations (6) is important. Indeed, assume that ηi ≡ 0. Then, at the equilibrium
∂iV[u] = 0, the evolution comes to halt and no longer fluctuates, irrespective of the time dependence of λ. For initial
conditions with ∂iV[u] ≠ 0 after a time variable rescaling, it is a gradient flow as defined in [20], and all phase space
trajectories move along paths with equilibrium points at either end. This dynamics is not ergodic. For a further discussion
we refer to [18,19].

To determine the functions g(u) and hi(u), we calculate, in the analogy with (4),

V̇[u] = −λ

{i}

(∂iV[u])2 +


(i)

ηi∂iV[u]. (7)

With respect to the second term on r.h.s. of (7) we put the following requirement to the time average,


(i) ηi∂iV[u] = 0. A
series of η-dynamics satisfies this condition. Two principal limit cases are: the fluctuations of current in different nodes are
independent or synchronous. Correspondingly we endow variables {ηi} with the following dynamical equations,

η̇i ∼ ∂iV[u], i ∈ Z, and η̇i ∼


(j)

∂jV[u], ∀i ∈ Z. (8)

However, with regard to the first term in r.h.s. of (7), we cannot repeat the trick and set λ̇ ∼


{i} (∂iV[u])2, since this results
in no noise effect. To overcome this difficulty, we implement the conjecture (5) into λ-dynamics and (7), and explicitly set

λ̇ ∼


{i}

(∂iV[u])2 − D

{i}

∂2
i V[u]. (9)

Lemma 1. Assume λ to be a bounded variable, its dynamics is given by (9) and


(i) ηi∂iV[u] = 0 (e.g. one of dynamical

equations (8)). Then λ


{i} ∂2
i V[u] = 0.

Proof. First we multiply (9) by λ and take into account Eq. (7). Then we apply the time averaging to the resulted equation.
Thus we easily accomplish the lemma. Indeed,

0 = −λ


{i}

(∂iV[u])2 − D

{i}

∂2
i V[u]


= −V̇[u] +


(i)

ηi∂iV[u] − Dλ

{i}

∂2
i V[u] = Dλ


{i}

∂2
i V[u]. �

This lemma, together with the Eqs. (7)–(9), allows us to determine functions the g(u) and hi(u) explicitly,

g =
1
Qλ


(i)


(∂iV[u])2 − D∂2

i V[u]

, hi = −

1
Qη

∂iV[u] or hi = −
1
Qη


(j)

∂jV[u], i ∈ Z, (10)

where Qλ and Qη are parameters. Variables ηi and corresponding functions hi are not unique and dynamical equations can
be simplified.

To verify the requirement on the invariant measure, we prove the following theorem.

Theorem 2. Assume the extended dynamics in form (6) where functions g and hi are given by (10), Qλ > 0 and Qη > 0. Then
the augmented measure,

dµ ∼ exp{−D−1V[u]} exp


−D−1


1
2
Qλλ

2
+

1
2
Qη


(i)

η2
i


(i)

duidλdηi = ρ∞


(i)

duidλdηi, (11)

is invariant for the extended dynamics.

Remark. It should be noted that the η-dynamics is not unique and allows a variety of η-factors of the augmented measure,
although they all are Gaussian. E.g., with the synchronous dynamical fluctuations, η̇ = −

1
Qη


(j) ∂jV[u], we arrive at

exp[{−D−1 1
2Qηη

2
}]dη.
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a b

Fig. 1. Probability distributions of variable u in Eqs. (12): exact analytical distribution is given by the solid line and shown as dashed background. Densities
are calculated as normalized sojourn distributions. Probability distributions are shown: (a) for α = 0.25 and (b) for α = 0.5.

Proof. The Liouville operator corresponding to the dynamics in the extended phase space (6) has the form, L∗ρ =

−


(i) ∂i [(−λ∂iV[u] + ηi)ρ] − ∂λ[g(u)ρ] −


(i) ∂ηi [hi(u)ρ], and the Liouville equation reads ∂tρ = L∗ρ. Therefore, to
prove the theoremwehave to prove the identity,L∗ρ∞ ≡ 0, thatmeans the dynamics (6) preserves the augmentedmeasure
(11). A straightforward calculation of all partial derivatives that are involved in L∗ρ∞ with further simplification brings to
the required identity, L∗ρ∞ ≡ 0. The theorem is proved. �

From the perspective of numerical simulations and further mathematical analysis, e.g. the Hamiltonian representation of
the proposed dynamics, it is important to find a first integral of motion. We accomplish this task with the following lemma.

Lemma 3. Let the dynamical system (6) and (10) be augmented with the redundant dynamical variable ζ , ζ̇ = −λ


{i} ∂2
i V[u].

Then I = V[u] +
1
2Qλλ

2
+

1
2Qη


(i) η2

i − Dζ is the first integral of the augmented dynamical system.

Proof. We derive İ = 0 by direct calculation. �

Remark. Since the origin of coordinates of the redundant variable ζ is arbitrary, it is always possible for an arbitrary fixed
trajectory to set I = 0. I is an apparent control parameter in numerical simulations. Besides, I is related to ρ∞ and thus it
can be considered from the perspective of Hamiltonian reformulation of dynamics on the level set I = 0 [18]. However we
do not consider this problem here.

We can now ask whether the dynamics (6) and (10) is ergodic. There is no a definite answer to this question.
Following [18]we can apply the Frobenius theoremof differential geometry [21] but this provideswith a partial answer only.
Here, in order to provide ergodicity, we adopt the method proposed in [18] and rigorously investigated in [22]. Namely, we
add a Gaussian random noise to the λ-dynamics. In contrast to the model outlined in Section 3, where stochastic currents
are added at each node, this approach relies on single and indirect stochastic perturbation that affects the dynamics in
transmembrane potential through electric characteristics of the membrane after integration providing a memory effect,
that is, the perturbed dynamics in u is non-Markov. Experiments [22] reveal that, in context of the molecular dynamics, it
results in a relatively weak perturbance effect on deterministic dynamics. Thus, we reformulate λ-dynamics (6) in the form,

u̇i = −λ∂iV[u] + ηi, λ̇ = g(u) − γ λ +


2γDQ−1

λ ξ(t), η̇i = hi(u), i ∈ Z, (12)

where γ > 0 is a parameter.

Theorem 4. Assume stochastically perturbed extended dynamics in the form (12)where the functions g and h are given by (10),
Qλ > 0, Qη > 0. Then the augmented measure (11) is invariant for this dynamics.

Proof. The Fokker–Planck operator corresponding to (12) has the form, F ∗ρ = L∗ρ + γ ∂λ


λ + DQ−1

λ ∂λ


ρ

, and the

Fokker–Planck equation reads ∂tρ = F ∗ρ. After a series of routine calculations we arrive at F ∗ρ∞ ≡ 0. Thus the
stochastically perturbed dynamics (12) preserves the augmented measure (11). �

Dynamics (12) can be shown to be ergodic [22].
Test simulations. Single cell dynamics.

Low dimensional systems often reveal the ergodicity problem in a dynamical sampling of probability distribution. For
this reason, it is important to test the capability of the presented noise modelingmethod to generate the right statistics for a
single Nagumo cell. For this test we choose the function f (u) = −4u(u−α)(u−1) and parametersD = 0.04, γ = 1,Qλ = 1,
and Qη = 2 for t = 106. Fig. 1 shows the probability distribution of variable u simulated numerically using the dynamical
Eqs. (12) and compared with the exact analytical solution. Their solid agreement brings a severe test of our approach.
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0 cell 128 0
0 00

index 128 0 cell 128a

timetime time

999.8 999.8 999.8

–0.25 –0.25 –0.251.25 1.25 1.25

b c

Fig. 2. Numerical simulations of the fibre dynamics (12). The fibre has 128 cells. The amplitude of the u-variable is shown by a shadow of gray ranging from
white (u < −0.25) to black (u > 1.25). The horizontal axis corresponds to position along the fibre and the vertical axis corresponds to time. Simulations
are performed at three noise intensities: (a) D = 0, (b) D = 0.003, and (c) D = 0.03.

Test simulations. Fibre dynamics.
Nowwe simulate dynamics of a fibre consisting of 128 cells. In dynamical Eqs. (12)we fix the following global parameters:

α = 0.25 γ = 0.1, Qλ = 1, Qη = 2, l = 0.065, and f (u) is the same as in the single cell simulations; the specific initial
conditions are {ui}

64
i=1 = 0.24, {ui}

128
i=65 = 1.01. Here we test the failure of excitation propagation along the fibre. Fig. 2 shows

(a) a kink pinning in the absence of noise (D = 0); (b) a front propagation (depinning) in the presence of a small intensity
noise (D = 0.003); (c) development of large amplitude spatiotemporal fluctuations from a germ kink in the presence of an
intensive noise (D = 0.03).

5. Conclusion

We have presented a novel mathematical approach to model noise in dynamical systems. To develop this approach,
we have considered dynamics of a chain of diffusively coupled Nagumo cells affected by noise. The effect of noise was
considered at a time scale which is shorter than that in the Langevin type stochastic perturbation approach. Besides, the
noise in our approach is associated with the dynamics of transmembrane potential as related to the interactions between
themembrane and the surrounding salt solution aswell as to the thermal effects. It is a feature of our approach that the noise
does not directly affect the dynamics in transmembrane potential, but does so through the noise in electric characteristics
of themembrane after integration. This can be understood as amemory effect indicating that the perturbed dynamics of the
transmembrane potential is non-Markov. Our scheme provides a potential for investigation of effects arising due to mutual
influence of the membrane together with its proteins and surrounding salt solution.

Additionally, let us note that the ability to dynamically generate the probability density exp

−D−1V[u]


also allows

to sample an arbitrary probability density r[u]. The ansatz is to set V[u] = −D ln{r[u]}. This is potentially important for
dynamical modeling of a given spatial pattern.
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