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Abstract

Propagating waves and stationary spots are widely known solutions for reaction-diffusion systems. Other kinds of patterns,
such as pulsating waves and self-replicating spots, have also recently been reported. The aim of this Letter is to examine the
parameter space of an excitable system described by modified Fitz-Hugh—Nagumo equations and to classify patterns occurring
in one- and two-dimensional media. This permits one to establish certain relations between already known patterns and to
discover new patterns such as expanding rings (pulsating or asymptotically stationary) and streaming patterns.
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1. Introduction solutions, reaction—diffusion systems can fall into dif-
ferent classes such as excitable (or threshold), oscil-
latory and trigger (or multistable). Despite the differ-
ences between these classes (for example, homoge-
neous oscillations can be observed only in oscillatory
systems while transitions from one steady state to an-
other are only observed in trigger systems) they have
a lot in common—solutions such as travelling waves
and stationary spots can be observed in all of these
systems (with an appropriate set of parameters). In
this Letter we focus on patterns arising in two-variable
excitable system described by modified Fitz-Hugh—
Nagumo equations. We describe all one- and two-
dimensional patterns arising in response to a single
 E-mail address bnvasiev@maths.dundee.ac.uk (B.N. Vasiev). stimulation and classify them. The results presented
URL: http://www.maths.dundee.ac.uk/~bnvasiev can be useful for understanding pattern-formation phe-

A theoretical consideration of many natural sys-
tems shows that they can be described by systems
of nonlinear reaction—diffusion equations. As a gen-
eral rule equations forming large systems have signif-
icantly different rates of change of variables and this
often allows one to reduce the number of equations
to two, with these two remaining equations still cap-
turing the main phenomena observed in the original
system. On the other hand, depending on the nature
and the number of stationary spatially-homogeneous
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nomena in hydrodynamic systems, nonlinear optics, system can be referred as an activaterfnvolved in
autocatalytic chemical reactions and variety of biolog- the increase of its own production) and an inhibitor
ical systems including excitable tissues (muscles and (v—reduces the production rate of activator). The
nerves), developing biological systems (morphogene- diffusive spread of the inhibitor around the excited
sis, gastrulation) and many more [1,2]. area is often referred to as lateral inhibition [4] (in
the standard FHN modé}, = 0). k,, k,, are constants
related to the kinetics of the system (e.g., excitable,
2. Themathematical model bistable). For numerical integration of the system (1),
(2) we have used the Euler explicit method with central
A general two-variable reaction—diffusion system differencing for the diffusion terms and with no-flux

can be represented as follows: conditions on the boundaries of the medium. A set
of numerical simulations carried out with various grid
ou . - . D
— =D, Au—e, f(u,v), (1) sizes and time steps showed that to achieve continuity
ot and accuracy of the solution (while,, = 1) we can
v _ DyAv +€¢(u, v), ) set the value of grid size to 0.4 and the time step to
ot 0.01 (or less whem, > 4). Up to a 4-fold reduction
where the functionsf (u, v) and ¢ (u, v) define the of these values always showed less than a 2% change
kinetics of the dependent variablesand v, ¢, and in the velocity of propagating waves, periods and
€ specify the rate of kinetics terms andl,, D, amplitudes of pulsating waves and had negligible

are diffusion coefficients. For continuous systems, effect on the location of boundaries of domains in
rescaling of time and space allows elimination of the parameter space (see Figs. 1, 3). These values of
one of the diffusion coefficients and one of the grid size and time step were also used for a numerical
parameters, so that we can gt = 1 ande, = 1 for integration of the discrete system (whdp, < 1).
a rescaled system. Patterns arising in the system (1),Unless specified otherwise the parameter values used
(2) with this constrain are studied in Sections 3-5. were:D, =1, D, =4,¢=0.1,k, =45, u1 =1,
Many important systems exhibiting pattern forma- ug = 0.05.
tion are essentially discrete. For example, morpho-
genetic patterns guiding embryogenesis take place in
media formed by cells. The cells are separated from
each other by membranes which form considerable
barriers for the diffusion of morphogens (normally
represented by protein molecules). This implies that ~ Stimulation of the medium described by (1), (2)
in a numerical study of these systems there is a lower results in the formation of different spatio-temporal
bound on the size of the space step used (defined bypatterns. If the inhibitor diffusion is small compared
cell size) and therefore the rescaling of space to scale-with that of the activator the stimulation causes the
out the diffusion coefficient might not be possible. formation of propagating waves. If the inhibitor’s
To study discrete patterns we will consider the sys- diffusion is large stationary spots are formed. Patterns
tem (1), (2) with onlye, = 1 and both diffusion co-  forming between these two extremes in a 1D medium
efficients significantly reduced (this is equivalent to a were reported in [5]. Generally the parameter space of
large space step) so that this reflects the discrete na-the system (1), (2) can be divided into four domains
ture of the cell systems. The system (1), (2) in this (R1-R4) corresponding to four different types of
case can be viewed as a coupled map lattice and pat-solutions (Fig. 1). R1 is a domain corresponding to
terns formed in this system are studied in Section 6.  propagating wave solutions (Fig. 1A); R2—a domain
For this study we us¢ (u, v) = k,u(u — uo)(u — where the patterns are unstable and the medium as a
u1) +v and ¢ (u,v) = u — v. These kinetics terms  rule returns to the homogeneous state (Fig. 1B, E);
are from the so-called Fitz-Hugh—Nagumo (FHN) R3—a domain where stable pulsating (or breathing)
system, which is a widely known prototype model spots are observed (Fig. 1C); R4—a domain where
describing excitable media [3]. The variables of this stationary spots arise (Fig. 1D).

3. One-dimensional patterns



~

0
|

Fig. 1. One-dimensional solutions of the system (1), (2). A-H are
time—space plots (time: vertical axis, space: horizontal axis) rep-
resenting the activator's profile. Patterns are initiated by increas-
ing the levels ofu and v in a small area located in the centre of
the medium. A: propagating waves (R1 domain on [); C: pulsat-
ing spot (R3); D: stationary spot (R4). Solutions in the domain R2:
vanishing spot (B) and waves (E), self-replicating waves (F) and
spots (G), waves reflecting upon collisions (H). I: location of the do-
mains R1, R2, R3 and R4 on the plaéf, Dy). A: size of the plot
100x 160, D, =1; B: 300x 240, D, = 2; C: 400x 80, D, = 3.2;

D: 400 x 80, D, = 5; E: 100x 80, D, = 2.7; F: 400x 240,

D, = 2.1; G: 1000x 240, D, = 4.05, ¢ = 16 1; H: 500 x 120,

D, = 1.967. Note that patterns shown in A-G are not sensitive to
the medium size (provided it is large enough) and the size of the
plots was varied only for demonstrational purposes.

Spatio-temporal patterns forming in domains R1,
R3 and R4 are relatively well known. Only one kind of
nontrivial pattern (in response to a single initial stimu-
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are presented in Fig. 1(F)—(H). Fig. 1F shows a pat-
tern of self-replicating waves while Fig. 1G shows
self-replicating spots. Self-replicating waves are ob-
served in the vicinity of the border with the R1 domain
while self-replicating spots are observed at the border
with the R3 domain. Fig. 1H shows another example
of a persistent pattern in the R2 domain formed by
waves reflecting upon collisions with each other and
the boundaries of the medium. Persistent patterns ob-
served in the R2 domain are not robust. Slight changes
in the model parameters, in initial conditions or in the
size of medium can dramatically change the overall
pattern.

For an analytical estimation of the bifurcation
values ofD1 and D3 let us consider the concentration
profiles of u and v in the stationary spot and the
propagating wave (Fig. 2B and D). The valuygof the
inhibitor on the walls of the stationary spot (Fig. 2B)

are defined by the conditiorf;‘_+ f(u,vo)du =0
where u~ and «* are the minimal and maximal
roots of the equatiory (u, vg) = 0 [6]. Contrary to
the stationary spot the profiles af and v for the
propagating wave are not symmetric (Fig. 2D). The
link between the valuest andv~ of inhibitor on the
wave front and back are defined by the condition

uj uf,
ff(u,v‘)du:—/f(u,v“‘)du,
uy uy,

where the integration limits are equal to minimal

and maximal roots of the corresponding algebraic
equationsf(u,v™) =0 and f(u,v") = 0 [3]. The

lation) can be observed in each of them (presented onvalue vg is unique for the given kinetics terms while

panels A, C, and D of Fig. 1). However the situation
regarding the domain R2 is remarkably different. Dif-

ferent kinds of unstable patterns can be observed there.

the valuess™ andv~ can vary and define the velocity
of the wavec.
To simplify our analysis we replace bathprofiles

For example, the pattern presented in Fig. 1E can be by rectangular functionszu = 1 in the excited re-
classified as an unstable propagating wave [3], while gion andu = 0 in the rest of the medium (Fig. 2C

the pattern in Fig. 1B as an unstable pulsating spot.

The amplitude of the latter’s pulsations is larger than

and E). This approximation can be justified by the
fact that R1-R4 solutions are also observed in the sys-

its size and this is the reason why it collapses. This tem (1), (2) wheref (i, v) is a piecewise linear func-
statement is supported by the observation that on thetion [5] such that:-profiles in corresponding solutions
border between the domains R2 and R3 the amplitude are almost rectangular. Now we can derive the ana-

of R3-spot pulsations is equal to its (mean) size [5].
In the vicinity of the borders of the R2 domain un-

stable R2-patterns under some conditions do not de-

lytic expression for they-profile in a stationary spot
by solving the linear equatio®,v” + ¢(u —v) =0
whenu =1 for |x| <a and u = 0 for |x|>a

cay and become persistent. Examples of these patternsvith boundary conditions/(—oco) = v(c0) = 0 as-
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Fig. 2. Null-clines (f (u, v) = 0 and¢ (u, v) = 0) of the system (1), (2) are shown in A. The profilesiafdark) andv (light) for a stationary
spot and propagating wave (moving right) are shown in B and D. To simplify the analysis of these solutions prafile® oéplaced by

a rectangular function of the excited area, iwe= 1 inside the spot (and the wave) am@- O in the rest of the medium (see C and E). Then
vg is the value ofv on the borders of the stationary spet; andv~ are the values ob on the front and the back of the wave. Null-cline
f(u,v) =0 defines the valuemax (A) such that if the value ob exceedwmayx inside the spot or wave, they become unstable and break into
pieces [6]. For the functiorf («, v) defined in Section 2yg = 0.31, vymax= 0.62.

suming that € C1(—o0, 00) andv(—a) = v(a) = vo.
The solution is a symmetric function(x) = 1 +

(vo — 1) cosh(Ax)/coshra), for [x| <a andv(x) =
voexpi(a — |x])], for |x| > a, wherei = /e/D,.
The requirement that’(x) is continuous atx| = a,
gives the relationshipx = 0.5In(1 — 2vp) 1, i.e., the
productaa is constant. Note that the maximum value
of inhibitor, v(0) = 1— /1 — 2vg, depends only ong.
The stationary spot can be initiated provided that this
value is smaller thanmay 0N Fig. 2A [6].

Let us assume that the symmetric variations in the
size of the spot and in the value of the inhibitor on
the spot's “wall” affect each other according to the
systemda/dt = b118a + b126v anddv/dt = b18a +
b228v. The stationary spot is stable if for the Jaco-
bian matrixB, associated with this system, dB} > 0
and t(B) < 0. Since D, = D3 corresponds to the
stationary—pulsating spot transition, this bifurcation
pointis associated withtB) = b11+ b2 = 0. Forb11,
we can writeb11 = ¢’ (vg)v'(a) wherec(v) is a veloc-
ity of the spot’s “wall” as a function of the inhibitor
concentration. The derivativ€(v) is negative ¢ in-
creases with a decreasewd3]) and its exact value can
be found from Eq. (1). Furthev, (a) = —Avg and thus
b11 = Avg|c’(vo)|. Itis easy to see thabr, = D, A —¢,
where A is the Laplacian operator. The spatial dis-
tribution of the perturbation of can be represented
as a serie3 "2, cx cogkx), which gives for modé,

A = —k2. Therefore the condition for each mode to
become unstable is () = Avo|cy| — Dyk? — € > 0.
This indicates that the most sensitive mode corre-
sponds tok = 0 or whendv(x) = dv is a con-

stant. Finally for the bifurcation poinDz we have
tr(B) = Auvglcy| — € = 0 or taking into account that

A= 4/€/Dy:
D3 = (cyv0)%e 2, (3

i.e., D3 is proportional toe 1. This confirms results
obtained in [6,7] where more complicated methods
were used to analyse more general systems. To analyse
the condition d&tB) > 0 we shall find expressions for
b12 andby1. Itis easy to see that s = ¢'(vg) and the
expression fobz1 = €(vo(a + §a) — v(a + 8a)), i.e.,

b1 depends on the difference between the value of
at the front of stationary spot with size+ §a, which

is vo(a + 8a) = vg + (1 — 2vg)Ada, and the value of

v at distancea from the front of stationary spot of
sizea, v(a + da) = vg(1 — Ada). Thusbr; = e(1 —
vo)A and the condition déB) = b11b22 — b12b21 > 0
transforms into 2o < 1. The sign of d€iB), which is
positive if vg < 0.5, does not depend an, ande.

To estimateD; we shall find conditions when the
system (1), (2) has a travelling wave solution. In a
similar manner to the case of a stationary spot we
replace theu-profile by the rectangular wave and
look for a solutionv(x — ct) = v(z) to the equation
Dyv" + cv’' + €(u — v) = 0 under the same conditions
as above except for(a) = v™ and v(—a) = v~
(see Fig. 2E). The solution is(z) = voexgii(z —

a)] for z > a, v(z) = viexgra(z + a)] for z <
—a andv(z) = 1 — rpexpgri(z + @)]l/(A2 — A1) +
Arexgrz(z —a)l/ (A2 — A1) for |z] < a wherers 2 =
(—c F /c2+4eD,)/(2D,). Parameters anda are
defined byv* and v~ according to the following
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equations:v™ = A2[1 — exp(2h1a)]/(A2 — A1) and

vT = Ai[exp(—2i2a) — 1]/(A2 — A1). Note that the
size of wavea, must be big enough far- > vg (see
Fig. 2A). To find conditions for the existence of a B C
propagating wave solution we rewrite the expression
for v asv™ (A2 — A1)/A1 + 1 = exp(—2X2a). Since
0 < exp(—2r2a) < 1 we conclude—1 < v~ (A2 —
A1)/21 < 0. From the last inequality, after putting the
expressions fok1 andi, we deriveD,e < c2v~(1— D E F
v7)/(2v~ — 1)2. Since the velocity of the wave;, D
can vary in a limited range and= 0(1) [3] and 4.8 Lo el m=Dy ewD,
v~ = 0(1) (Fig. 2A), we can expect that: B
_1 '/?3 Qg[(
Dypoxe . (4) . r..@éf. Sey
This result was also obtained in [6] where a prop- 2.8 """/0:[1; -
agating wave solution of (1), (2) was studied using R2 (Set . e
analogies with mechanical systems. Our numerical re- b Set /I)
sults confirm both conditions (3), (4). Moreover, ac- R1 Rk —R3(set )
cording to our simulations all three threshold values ( g Rl

for inhibitor diffusion, D1, D> and D3, separating do-

mains R1-R4, can be approximated as linear func- G o.07 0.16 0.25
tions ofe~* (Fig. 11). No analytical estimations db, Fig. 3. A-F: time—space plots of cross-sections of radially symmet-
were reported so far, but from the linearity (e 1) ric patterns. Unstable (A, plot size 16040, D, = 1.7, ¢ = 0.2),

we can gain some information. As was noted before pulsating (B, 400« 40, Dy = 1.95, ¢ = 0.2) and stationary (C,

at D, = D> the amplitude of spot pulsationd, is 400x 60, Dy =25, € = 0.2) spots form set | solutions, which are
ltoi . Thel | ith similar to 1D patterns shown in Fig. 1B-D. Unstable (D, 60820,

equal to its mean sizé, The last seem to comply wit Dy = 2.6), pulsating (E, 1006 280, D, = 3) and asymptotically

S~ /Dy/e (similar to the size of a stationary spot).  stable (F, 600« 200, D, = 5) rings form set Il solutions. G: plane

Thus for D, to be a linear function of 1, the ampli- (Dy, €) as divided into domains corresponding to different solu-

tude A must be proportional te— L. tions. Transition lines between propagating waves and set || R2-R4
solutions coincide with transition lines between R1-R4 solutions in
1D-system (i.e.D1—Dj3 lines in Fig. 11). Areas where set | R3 and

. . . . R4 solutions can be initialised are located between bold lines.
4. Radially symmetric two-dimensional patterns

The next step in our study is the investigation of overtime, or, more precisely, with its radius according
two-dimensional solutions of (1), (2). This study will to the eikonal equation, = co — Deff * k, wherek is
be performed in two steps. First we focus on radi- the curvature of the wave-frontj is the velocity of a
ally symmetric patterns. Cross-sections of these pat- planar wave, andes is an effective diffusion coeffi-
terns can be obtained in a quasi-one-dimensional sys-cient, which is a function of the model parameters [9].
tem (1), (2) where the diffusion terms are rewritten ac- Similar to the 1D-system there is a domain (R2)
cording to the transformation from Cartesian to polar in a parameter space of the quasi-1D-system where
coordinates, i.e A(= 82/0x2 + 82/9y?) = 0%/0r2 + no stable solutions can be initiated. Two kinds of
r~13/9r. We have found that four basic types of 1D- unstable patterns have been observed here (Fig. 3A,
solutions can also be initiated in this system (shown D). In the quasi-1D-system no persistent patterns like
in Fig. 1A-D). Propagating wave solutions are ob- those presented in Fig. 1F-H can be initialised. The
served in the domain which exactly corresponds to the R2-domain in the quasi-1D-system coincides with the
R1-domain in the 1D-system (Fig. 1I). The only no- R2-domain in the 1D-system (Fig. 3G). Pulsating and
table difference is that the R1 solution in the quasi-1D- stationary spots can also be initiated in the quasi-
system is a concentric wave whose velogitxghanges 1D-system (Fig. 3G). However, the domains for these
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solutions are found to be different from the R3 and in Fig. 3G) do not coincide with those of any do-
R4 domains in the 1D-system. The values B mains in the 1D-system. Note that these domains con-
and D3 in the quasi-1D-system are smaller (borders tain multiple attractors. Depending on the stimula-
between domains R2, R3 and R4 are shifted down) tion procedure in these domains we can initialise ei-
when compared with those for the 1D-system (see ther spots (pulsating or stationary) or rings (pulsat-
Fig. 3G). In addition these spots can be initiated only ing or asymptotically stationary) (Fig. 3G). Gener-
in the area under the linear pl@,(¢) presented in ally it appears that the stimulation procedure must be
Fig. 3G. carefully tuned to get pulsating or stationary spots,
In the quasi-1D-system we have observed new while expanding rings represent more robust solu-
kinds of solutions which do not arise in the 1D-system. tions.
These solutions are represented by concentric propa- To explain the transition between sets | and Il so-
gating waves which slow down over time (Fig. 3D— lutions let us consider a radially symmetric station-
F). We will call these decelerating waves “expand- ary spot, whose:-profile is represented by the char-
ing rings” to distinguish them from propagating waves acteristic function of excited area (Fig. 2C). The
(or R1-solutions). Considering the pattern shown in profile in this spot is given by a solution of the cylin-
Fig. 3D as an unstable expanding ring we will de- drical equationD,v,, + Dyvy/x + €(u — v) = 0,
scribe three kinds of expanding rings: unstable, pulsat- where u = 1 for |x| < a andu = 0 for |x| > a,
ing and asymptotically stationary (Fig. 3D-F). We will v € C1(—o00, 0), v(—00) = v(c0) = 0 andv(—a) =
call expanding rings ‘set Il solutions’ to distinguish wv(a). The solution is a symmetric function(x) =
them from ‘set | solutions’ shown in Fig. 3A—C and 1+ (v(a) — 1) Ip(Ax)/Io(Aa) for |x| < a andv(x) =
representing unstable, pulsating and stationary spots.v(a) Ko(Ax)/Ko(ra) for |x| > a, where Iy and Ko
Thus, each set contains 3 kinds of solutions, which, are modified Bessel functions and= /¢/D,. Con-
by analogy with 1D-solutions, we will call R2, R3and trary to the 1D-spot whera(a) = vo iS constant,
R4 solutions. The domains where R2, R3 and R4 rings the valuewv(a) for a 2D-spot depends on its size,
can be initiated coincide with R2, R3 and R4 domains namelyv(a) corresponds to the value™ in the front
for the 1D-system shown in Fig. 1l. Expanding rings of 1D-wave propagating with the speedsuch that
of R2 and R3 type pulsate (Fig. 3D, E). The ampli- ¢ + D,/a = 0 [8]. Similarly, the maximum value of
tude of these pulsations increases with increasing ring the inhibitor, which is achieved at = 0, v(0) =
radius. R2 rings vanish due to the high amplitude of 1 — (1 — v(a))/Io(Aa), now depends on andi. Ac-
pulsations (Fig. 3D). R3 and R4 rings asymptotically cording to our simulations(0) increases with a de-
stabilize over time (Fig. 3E, F). As the radius of the crease of. and there is a critical value of such
ring increases, the velocity of the ring expansion satu- thatv(0) = vmax. At this point the spot becomes un-
rates att = 0 and the amplitude of pulsations (of R3- stable [6]. Indeedp(0) > vmax causes the deforma-
ring) at the value of that for pulsating spots in the cor- tion of the spot: the medium around= 0 relaxes
responding 1D system. Time—space plots of R3 and and the spot transforms into the ring. The value.of
R4 rings (Fig. 3E, F) show that the time of expansion corresponding t@(0) = vmax €xplains the restriction
and the ring radius are linked by a parabolic law: for the formation of spots given by the linear plot in
is proportional ta-2 (checked by polynomial interpo-  Fig. 3G.A = \/€/D, is constant along this line. The
lation of time—space plots of the fronts of the rings). size of the spot along this line is also constant and cor-
This indicates that the eikonal equation for these rings responds to the maximal size of the stable spot in the
is ¢ = Ak, i.e., co = 0 (planar waves do not propa- medium.
gate) and the effective diffusioPef = —A IS nega- Transition lines between stationary and pulsating
tive. spot solutions as well as between pulsating spot
We emphasize that the domains where R3 and and unstable solutions in a quasi-1D system do not
R4 rings can be initiated coincide correspondingly coincide with corresponding lines in a 1D-system.
with R3 and R4 domains in the 1D-system. The do- This can be explained by differences of therofiles
mains where R3 and R4 spots can be initialised are in 1D- and quasi-1D spots. Indeed, the valugs)
much smaller and their borders (shown by bold lines andv’(a) on the “wall” of spot in these two cases are
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different giving different values abs (see Eq. (3)) for
stationary spots to become unstable. A reductiobpf ° I
most likely has a similar nature.
A
5. General two-dimensional patterns O Q @
We now study general 2D-patterns arising in the g

system (1), (2) where the Laplaciak = 32/9x2 + . .,
92/9y2. The radially symmetric 2D-patterns studied . ) ‘;l P }

in the previous section can be initiated in this system 9 . LA ¢
provided _that they are stable_. Unstable patterns, which .J‘ “‘ f.
are sensitive to noise applied to the system (and/or | @ e o

to anisotropy induced by the integration scheme), 4.8 D,

evolve by becoming radially asymmetric into new
kinds of patterns. Thus, our next task is to study A P
which of the radially symmetric patterns show angular §
instability and into what kinds of patterns do they

evolve under the influence of noise. The effect of noise =
was modelled by additional terms(x, r) andra(x, 1)
on the right-hand side of Egs. (1), (2): 0.8
M 0.1 0.2 0.3 0.4

8_“ = DyAu — e, f(u,v) +ri(x, 1), (5) Fig. 4. Twol—dimensional patterns arising in the system_(l),_(Z).
ot A-D: evolution of unstable stationary spot (set | R4-solution) into
9 the labyrinthine pattern. Snapshots are taken at times 0, 200, 1000
— =DyAv+€p(u,v) +ra(x,t). (6) and 3000 correspondently. E-H: transformation of an expanding
ot ring (set Il R4-solution) into the labyrinthine pattern (250, 400,

. 500, 1500). I-L: transformation of unstable expanding ring (set
The termsri(x,r) and r2(x, 1) represent a white R2-solution) into self-replicating spots (150, 300, 500, 1000).

noise characterised by the amplitude and time and Al simulations are performed in the 120 120 medium. M:

space steps, these values are set .@1,010 and plane €, D,) as divided into domains corresponding to different

2.0, respectlvely Our control simulations with up to 2D-solutions. A solid bold line separates stationary spots from

five-fold variations of these values have shown no labyrinthine patterns. All other lines are taken from Fig. 3G.
Abbreviations: W propagating waves, S.S. stationary spots, P.S.

changes in the noise-sensitivity of the original pattern, pulsating spots.

although the rate of noise driven transformations has

altered significantly. Numerical investigation of the
1D-medium described by the system (5), (6) shows  |nyestigation of 2D-patterns shows that propagat-
that: ing waves and vanishing spots (i.e., R1 and set | R2 so-
lutions) are noise-insensitive. Pulsating and stationary
(1) Propagating waves (R1-solution) are stable: noise spots (set | R3- and R4-solutions) are stable provided
applied to the system just slightly increases their that they are small. In our model medium (described

velocity (the effect reported in [10]). by the functionsf («, v) and¢ (u, v)) spots are stable
(2) Pulsating and stationary spots (R3 and R4 solu- provided that they are smaller than 16 space units and
tions) are also noise-insensitive. unstable otherwise. This size of the spot is achieved

(3) The noise does not alter the behaviour of van- ajong the bold solid line shown in Fig. 4M, spots are
ishing waves (R2-solutions shown in Fig. 1B, E), stable only on the side of this line corresponding to
however, persistent R2-solutions (Fig. 1F-H) can smaller values ofD,. Under the influence of noise,
significantly be affected by noise. unstable stationary spots transform into what is seen
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as “labyrinthine patterns” (Fig. 4A-D). These trans-
formations are slow (compared to all processes con-
sidered so far) and the final patterns are stationary. The

appearance of the labyrinthine patterns varies depend—2

ing on the model parameters. An increasépfadds
more branches (free ends) in the “labyrinthine walls”.
A decrease ir can cause division of the original spot
into a few pieces (self-replication) and correspond-
ingly the “walls of the labyrinth” will be formed by

a few disconnected lines.

Expanding rings (set Il R3—R4 solutions) are also
noise sensitive and transform into the labyrinthine
patterns (Fig. 4E—H). This transformation starts only
when their expansion velocity is small enough (i.e.,
it might take a while before the ring expands, slows
down and starts to deform). Vanishing expanding rings
(R2 solutions) generally disappear too quickly to show
any noise sensitivity. However, R2-solutions close to
the boundary with the R3 domain can exhibit a self-
replicating phenomenon: an expanding ring can divide
into a few spots, each of which can give rise to new
spots and so on (Fig. 41-L). These self-replicating
spots can

(a) all vanish over time (the medium relaxes into the
homogeneous state);

(b) elongate and give rise to a labyrinthine pattern
formed by disconnected “walls”; and

(c) show chaotic and endlessly oscillating patterns.

6. Discrete systems

In this section we consider phenomena observed
in the discrete system described by Egs. (1), (2).
We assume that diffusion coefficier?, is small
compare to the kinetics tergfi(u, v) and will consider
patterns arising in this system. To check the effect of
discreteness on the location of domains in the 1D-
system we have produced plots bt/D,, D2/D,,
and D3/ D, versusD, (Fig. 5A). One can see that

201
4 D/D, R4
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1 = 'DU
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Fig. 5. A: location of the domains R1, R2, R3 and R4 on the
plane ©,, Dy/D,). B: in a discrete system wheh, < 0.15 R2

and R3 domains are missing and propagating waves can transform
directly into stationary spots. C: pulsating and stationary spots can
be observed on the same point in parameter space. B: size of the
plot 200x 120, D, =1/8, D, /D, = 1.7; C: 500x 40, D, = 1/8,
Dy/D, =2.5.

(1) A significant decrease db, can result in the loss

of pulsating wave solutions, which can be restored
by simultaneous reduction ef This is similar to
what we see in Fig. 1l: the lines fdp, and D3
intersect at = 1/3 and no pulsating spots can be
observed whem > 1/3.

Transitions between solutions become more com-
plicated. For example, ab, = D1, propagating
waves can directly transform into stationary spots
(Fig. 5B).

Different patterns can be observed in the same
medium. Fig. 5C shows stationary and pulsating
spots coexisting in the same medium (this coexis-
tence is not due to the interactions of spots since
a single pulsating spot or a single stationary spot
can be initiated in this medium).

()

3)

All results concerning quasi-1D- and 2D-patterns

these critical values start to change and all drop when are qualitatively the same in discrete and continu-
the value ofD, gets small enoughLy, < 0.5) and ous systems. Both sets of radially-symmetric solu-
discreteness starts to play a role. The types of 1D- tions are observed in a discrete system, although sta-
patterns observed in discrete systems are the same aionary spots can now be initiated in a wider range
in continuous systems. However, we have observed aof model parameters. We have found a new radially-
few phenomena specific to discrete systems: symmetric pattern which can be initiated in a discrete
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to establish a link between 1D- and 2D-patterns and
%% consequently to explore transitions between 2D-pa-

tterns. Analysing different types of radially-symmetric

c 2D-patterns, we divided them into two sets. Set | is

represented by patterns which are exactly the same
EE;; Gs-hz?sm:tltit?:qecg a igga&i)n@: pag(e)gn (ig)aIZDsd(;zcr(%tie ;zztem- as R1-R4 type patterns in 1D-medium. Set Il solu-
1= 1pooo (D) are shown. Size of the medium 1220, D, — 1/8, tions represgnteo! by expanc_img rings corresponding to
Dy = 5/8, ¢ = 0.25. R2-R4 solutions in 1D-medium (Fig. 3D-F). We have

found that the transition points between set Il solu-

tions are exactly the same as those between the cor-
system. This pattern is observed when the diffusion yesponding 1D-solutions. The domains where set | so-
of the activator is very smalll§, < 0.1) and repre-  |ytions can be initialised are smaller, and their transi-
sented by a stationary (not expanding) ring. Noise sen- tion points do not coincide with any transition points
sitivity of 2D-patterns in discrete systems is very sim- petween 1D-solutions.
ilar to that in continuous systems, although the ap- o study general 2D-patterns we assumed that these
pearance of labyrinthine patterns can be very differ- patterns are derivations from radially-symmetric pat-
ent. Fig. 6 shows the evolution of a typical labyrinthine  terns affected by noise and instability. We have found
pattern in a discrete system. This pattern can be con-pat pulsating and stationary spots can exist in a
sidered as a “streaming pattern” growing from the 2p-medium provided that they are small. Large spots
centre. A decrease i, and an increase in the dif-  are sensitive to noise and evolve into labyrinthine
ference betwee, and D, transforms the shape of  patterns (Fig. 4A-D). Pulsating and expanding rings
labyrinthine patterns so that they look more and more zre found to be always noise-sensitive. They also
like snowflakes. evolve into labyrinthine patterns (Fig. 4E—H). Vanish-
ing expanding rings (set Il R2-solutions) most com-
monly vanish but sometimes transform either into self-
replicating spots (Fig. 41-L) or into labyrinthine pat-
terns.

In this Letter we have studied 1D- and 2D-solutions The types of patterns and the transitions between
arising in the excitable system (1), (2) and established them observed in discrete systems are mostly the same
links between them. Four basic types of 1D-solutions as those in continuous systems. Notable phenomena
(Fig. 1A-D) have been reported and studied earlier specific to discrete systems are the coexistence of
[3-7]. We have explored different R2 type persistent differenttypes of solutions (Fig. 5C) and the formation
patterns (Fig. 1F—H) and identified their relationships of streaming patterns (Fig. 6). Streaming patterns have
with other types of 1D-patterns. The transitions caused previously been found in a framework of cellular-
by instability of propagating waves and stationary automata models [16,17], where their formation was

&

A B

7. Discussion

spots in a 1D-medium (represented By and D3
lines in Fig. 1I) are relatively well-studied [5-7].
Here we have examined numerically how transition

considered as a particular case of diffusion-limited
aggregation.
We believe that we have explored all 1D- and

points depend on model parameters. To explain these2D-patterns which can be initiated in the modified
observations we have presented a simple model, whichFitz-Hugh—Nagumo system (1), (2). In addition we
allowed us to make analytical estimations for the have identified all transitions and links between them.
bifurcation values; and Ds. The present study can be extended by consider-
2D-patterns such as stationary spots (Fig. 4A), ing patterns and their transitions in other models
self-replicating stripes and spots (Fig. 4D, F) and (e.g., Gierer—Meinhardt, Turing pre-pattern) and other
labyrinthine patterns (Fig. 4B, E) have also been re- classes of systems (oscillatory, trigger). On the other
ported and studied earlier [11-14]. However the tran- hand the results presented here give rise to many prob-
sitions between them are mostly unknown [15]. Our lems in transitions between solutions and the stability
study of radially-symmetric 2D patterns was designed of solutions which may be addressed analytically.
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