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Abstract

Propagating waves and stationary spots are widely known solutions for reaction-diffusion systems. Other kinds of
such as pulsating waves and self-replicating spots, have also recently been reported. The aim of this Letter is to ex
parameter space of an excitable system described by modified Fitz-Hugh–Nagumo equations and to classify patterns
in one- and two-dimensional media. This permits one to establish certain relations between already known patter
discover new patterns such as expanding rings (pulsating or asymptotically stationary) and streaming patterns.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A theoretical consideration of many natural sy
tems shows that they can be described by syst
of nonlinear reaction–diffusion equations. As a ge
eral rule equations forming large systems have sig
icantly different rates of change of variables and t
often allows one to reduce the number of equati
to two, with these two remaining equations still ca
turing the main phenomena observed in the orig
system. On the other hand, depending on the na
and the number of stationary spatially-homogene
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URL: http://www.maths.dundee.ac.uk/~bnvasiev.
0375-9601/$ – see front matter 2004 Elsevier B.V. All rights reserved
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solutions, reaction–diffusion systems can fall into d
ferent classes such as excitable (or threshold), o
latory and trigger (or multistable). Despite the diffe
ences between these classes (for example, hom
neous oscillations can be observed only in oscillat
systems while transitions from one steady state to
other are only observed in trigger systems) they h
a lot in common—solutions such as travelling wav
and stationary spots can be observed in all of th
systems (with an appropriate set of parameters)
this Letter we focus on patterns arising in two-varia
excitable system described by modified Fitz-Hug
Nagumo equations. We describe all one- and t
dimensional patterns arising in response to a sin
stimulation and classify them. The results presen
can be useful for understanding pattern-formation p
.
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nomena in hydrodynamic systems, nonlinear opt
autocatalytic chemical reactions and variety of biolo
ical systems including excitable tissues (muscles
nerves), developing biological systems (morphoge
sis, gastrulation) and many more [1,2].

2. The mathematical model

A general two-variable reaction–diffusion syste
can be represented as follows:

(1)
∂u

∂t
=Du�u− εuf (u, v),

(2)
∂v

∂t
=Dv�v + εφ(u, v),

where the functionsf (u, v) and φ(u, v) define the
kinetics of the dependent variablesu and v, εu and
ε specify the rate of kinetics terms andDu, Dv

are diffusion coefficients. For continuous system
rescaling of time and space allows elimination
one of the diffusion coefficients and one of theε-
parameters, so that we can putDu = 1 andεu = 1 for
a rescaled system. Patterns arising in the system
(2) with this constrain are studied in Sections 3–5.

Many important systems exhibiting pattern form
tion are essentially discrete. For example, morp
genetic patterns guiding embryogenesis take plac
media formed by cells. The cells are separated fr
each other by membranes which form considera
barriers for the diffusion of morphogens (norma
represented by protein molecules). This implies t
in a numerical study of these systems there is a lo
bound on the size of the space step used (define
cell size) and therefore the rescaling of space to sc
out the diffusion coefficient might not be possib
To study discrete patterns we will consider the s
tem (1), (2) with onlyεu = 1 and both diffusion co
efficients significantly reduced (this is equivalent to
large space step) so that this reflects the discrete
ture of the cell systems. The system (1), (2) in t
case can be viewed as a coupled map lattice and
terns formed in this system are studied in Section 6

For this study we usef (u, v) = kuu(u − u0)(u −
u1) + v and φ(u, v) = u − v. These kinetics term
are from the so-called Fitz-Hugh–Nagumo (FH
system, which is a widely known prototype mod
describing excitable media [3]. The variables of t
-

system can be referred as an activator (u—involved in
the increase of its own production) and an inhibi
(v—reduces the production rate of activator). T
diffusive spread of the inhibitor around the excit
area is often referred to as lateral inhibition [4] (
the standard FHN modelDv = 0). ku, kv are constants
related to the kinetics of the system (e.g., excita
bistable). For numerical integration of the system (
(2) we have used the Euler explicit method with cen
differencing for the diffusion terms and with no-flu
conditions on the boundaries of the medium. A
of numerical simulations carried out with various g
sizes and time steps showed that to achieve contin
and accuracy of the solution (whileDu = 1) we can
set the value of grid size to 0.4 and the time step
0.01 (or less whenDv > 4). Up to a 4-fold reduction
of these values always showed less than a 2% ch
in the velocity of propagating waves, periods a
amplitudes of pulsating waves and had negligi
effect on the location of boundaries of domains
the parameter space (see Figs. 1, 3). These valu
grid size and time step were also used for a numer
integration of the discrete system (whenDu < 1).
Unless specified otherwise the parameter values
were:Du = 1, Dv = 4, ε = 0.1, ku = 4.5, u1 = 1,
u0 = 0.05.

3. One-dimensional patterns

Stimulation of the medium described by (1), (
results in the formation of different spatio-tempo
patterns. If the inhibitor diffusion is small compar
with that of the activator the stimulation causes
formation of propagating waves. If the inhibitor
diffusion is large stationary spots are formed. Patte
forming between these two extremes in a 1D med
were reported in [5]. Generally the parameter spac
the system (1), (2) can be divided into four doma
(R1–R4) corresponding to four different types
solutions (Fig. 1). R1 is a domain corresponding
propagating wave solutions (Fig. 1A); R2—a dom
where the patterns are unstable and the medium
rule returns to the homogeneous state (Fig. 1B,
R3—a domain where stable pulsating (or breathi
spots are observed (Fig. 1C); R4—a domain wh
stationary spots arise (Fig. 1D).
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Fig. 1. One-dimensional solutions of the system (1), (2). A–H
time–space plots (time: vertical axis, space: horizontal axis)
resenting the activator’s profile. Patterns are initiated by incre
ing the levels ofu and v in a small area located in the centre
the medium. A: propagating waves (R1 domain on I); C: puls
ing spot (R3); D: stationary spot (R4). Solutions in the domain
vanishing spot (B) and waves (E), self-replicating waves (F)
spots (G), waves reflecting upon collisions (H). I: location of the
mains R1, R2, R3 and R4 on the plane (ε−1, Dv ). A: size of the plot
100× 160,Dv = 1; B: 300× 240,Dv = 2; C: 400× 80,Dv = 3.2;
D: 400 × 80, Dv = 5; E: 100× 80, Dv = 2.7; F: 400× 240,
Dv = 2.1; G: 1000× 240,Dv = 4.05, ε = 16−1; H: 500× 120,
Dv = 1.967. Note that patterns shown in A–G are not sensitive
the medium size (provided it is large enough) and the size of
plots was varied only for demonstrational purposes.

Spatio-temporal patterns forming in domains R
R3 and R4 are relatively well known. Only one kind
nontrivial pattern (in response to a single initial stim
lation) can be observed in each of them (presente
panels A, C, and D of Fig. 1). However the situati
regarding the domain R2 is remarkably different. D
ferent kinds of unstable patterns can be observed th
For example, the pattern presented in Fig. 1E can
classified as an unstable propagating wave [3], w
the pattern in Fig. 1B as an unstable pulsating s
The amplitude of the latter’s pulsations is larger th
its size and this is the reason why it collapses. T
statement is supported by the observation that on
border between the domains R2 and R3 the amplit
of R3-spot pulsations is equal to its (mean) size [5]

In the vicinity of the borders of the R2 domain u
stable R2-patterns under some conditions do not
cay and become persistent. Examples of these pat
.

s

are presented in Fig. 1(F)–(H). Fig. 1F shows a p
tern of self-replicating waves while Fig. 1G show
self-replicating spots. Self-replicating waves are
served in the vicinity of the border with the R1 doma
while self-replicating spots are observed at the bor
with the R3 domain. Fig. 1H shows another exam
of a persistent pattern in the R2 domain formed
waves reflecting upon collisions with each other a
the boundaries of the medium. Persistent patterns
served in the R2 domain are not robust. Slight chan
in the model parameters, in initial conditions or in t
size of medium can dramatically change the ove
pattern.

For an analytical estimation of the bifurcatio
values ofD1 andD3 let us consider the concentratio
profiles of u and v in the stationary spot and th
propagating wave (Fig. 2B and D). The valuev0 of the
inhibitor on the walls of the stationary spot (Fig. 2

are defined by the condition
∫ u+
u− f (u, v0) du = 0

where u− and u+ are the minimal and maxima
roots of the equationf (u, v0) = 0 [6]. Contrary to
the stationary spot the profiles ofu and v for the
propagating wave are not symmetric (Fig. 2D). T
link between the valuesv+ andv− of inhibitor on the
wave front and back are defined by the condition

u+
b∫

u−
b

f (u, v−) du= −
u+
f r∫

u−
f r

f (u, v+) du,

where the integration limits are equal to minim
and maximal roots of the corresponding algebr
equationsf (u, v−) = 0 andf (u, v+) = 0 [3]. The
valuev0 is unique for the given kinetics terms whi
the valuesv+ andv− can vary and define the veloci
of the wave,c.

To simplify our analysis we replace bothu-profiles
by rectangular functions:u = 1 in the excited re-
gion andu = 0 in the rest of the medium (Fig. 2
and E). This approximation can be justified by t
fact that R1–R4 solutions are also observed in the
tem (1), (2) wheref (u, v) is a piecewise linear func
tion [5] such thatu-profiles in corresponding solution
are almost rectangular. Now we can derive the a
lytic expression for thev-profile in a stationary spo
by solving the linear equationDvv

′′ + ε(u− v) = 0
when u = 1 for |x| � a and u = 0 for |x|> a

with boundary conditionsv(−∞) = v(∞) = 0 as-
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Fig. 2. Null-clines (f (u, v)= 0 andφ(u,v) = 0) of the system (1), (2) are shown in A. The profiles ofu (dark) andv (light) for a stationary
spot and propagating wave (moving right) are shown in B and D. To simplify the analysis of these solutions profiles ofu are replaced by
a rectangular function of the excited area, i.e.,u = 1 inside the spot (and the wave) andu = 0 in the rest of the medium (see C and E). Th
v0 is the value ofv on the borders of the stationary spot,v+ andv− are the values ofv on the front and the back of the wave. Null-clin
f (u, v) = 0 defines the valuevmax (A) such that if the value ofv exceedsvmax inside the spot or wave, they become unstable and break
pieces [6]. For the functionf (u, v) defined in Section 2,v0 = 0.31,vmax= 0.62.
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suming thatv ∈C1(−∞,∞) andv(−a)= v(a)= v0.
The solution is a symmetric functionv(x) = 1 +
(v0 − 1)cosh(λx)/cosh(λa), for |x| � a andv(x) =
v0 exp[λ(a − |x|)], for |x| > a, whereλ = √

ε/Dv .
The requirement thatv′(x) is continuous at|x| = a,
gives the relationshipaλ= 0.5 ln(1− 2v0)

−1, i.e., the
productaλ is constant. Note that the maximum val
of inhibitor,v(0)= 1−√

1− 2v0, depends only onv0.
The stationary spot can be initiated provided that
value is smaller thanvmax on Fig. 2A [6].

Let us assume that the symmetric variations in
size of the spot and in the value of the inhibitor
the spot’s “wall” affect each other according to t
systemda/dt = b11δa + b12δv anddv/dt = b21δa +
b22δv. The stationary spot is stable if for the Jac
bian matrixB, associated with this system, det(B) > 0
and tr(B) < 0. SinceDv = D3 corresponds to th
stationary–pulsating spot transition, this bifurcat
point is associated with tr(B)= b11+b22 = 0. Forb11,
we can writeb11 = c′(v0)v

′(a) wherec(v) is a veloc-
ity of the spot’s “wall” as a function of the inhibito
concentration. The derivativec′(v) is negative (c in-
creases with a decrease ofv [3]) and its exact value ca
be found from Eq. (1). Further,v′(a)= −λv0 and thus
b11 = λv0|c′(v0)|. It is easy to see thatb22 =Dv�−ε,
where� is the Laplacian operator. The spatial d
tribution of the perturbation ofv can be represente
as a series

∑∞
i=0 ck cos(kx), which gives for modek,

�= −k2. Therefore the condition for each mode
become unstable is tr(B)= λv0|cv| −Dvk

2 − ε > 0.
This indicates that the most sensitive mode co
sponds tok = 0 or when δv(x) = δv is a con-
stant. Finally for the bifurcation pointD3 we have
tr(B) = λv0|cv| − ε = 0 or taking into account tha
λ= √

ε/Dv :

(3)D3 = (cvv0)
2ε−1,

i.e., D3 is proportional toε−1. This confirms results
obtained in [6,7] where more complicated metho
were used to analyse more general systems. To an
the condition det(B) > 0 we shall find expressions fo
b12 andb21. It is easy to see thatb12 = c′(v0) and the
expression forb21 = ε(v0(a + δa)− v(a + δa)), i.e.,
b21 depends on the difference between the valuev
at the front of stationary spot with sizea + δa, which
is v0(a + δa) = v0 + (1 − 2v0)λδa, and the value o
v at distanceδa from the front of stationary spot o
size a, v(a + δa) = v0(1 − λδa). Thusb21 = ε(1 −
v0)λ and the condition det(B) = b11b22 − b12b21> 0
transforms into 2v0 < 1. The sign of det(B), which is
positive if v0 < 0.5, does not depend onDv andε.

To estimateD1 we shall find conditions when th
system (1), (2) has a travelling wave solution. In
similar manner to the case of a stationary spot
replace theu-profile by the rectangular wave an
look for a solutionv(x − ct) = v(z) to the equation
Dvv

′′ + cv′ + ε(u− v) = 0 under the same condition
as above except forv(a) = v+ and v(−a) = v−
(see Fig. 2E). The solution isv(z) = v0 exp[λ1(z −
a)] for z > a, v(z) = v1 exp[λ2(z + a)] for z <

−a and v(z) = 1 − λ2 exp[λ1(z + a)]/(λ2 − λ1) +
λ1 exp[λ2(z− a)]/(λ2 − λ1) for |z| � a whereλ1,2 =
(−c ∓

√
c2 + 4εDv )/(2Dv). Parametersc anda are

defined byv+ and v− according to the following
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equations:v+ = λ2[1 − exp(2λ1a)]/(λ2 − λ1) and
v− = λ1[exp(−2λ2a) − 1]/(λ2 − λ1). Note that the
size of wave,a, must be big enough forv− > v0 (see
Fig. 2A). To find conditions for the existence of
propagating wave solution we rewrite the express
for v− asv−(λ2 − λ1)/λ1 + 1 = exp(−2λ2a). Since
0 < exp(−2λ2a) < 1 we conclude−1 < v−(λ2 −
λ1)/λ1 < 0. From the last inequality, after putting th
expressions forλ1 andλ2 we deriveDvε < c2v−(1−
v−)/(2v− − 1)2. Since the velocity of the wave,c,
can vary in a limited range andc = O(1) [3] and
v− =O(1) (Fig. 2A), we can expect that:

(4)D1 ∝ ε−1.

This result was also obtained in [6] where a pro
agating wave solution of (1), (2) was studied us
analogies with mechanical systems. Our numerica
sults confirm both conditions (3), (4). Moreover, a
cording to our simulations all three threshold valu
for inhibitor diffusion,D1, D2 andD3, separating do
mains R1–R4, can be approximated as linear fu
tions ofε−1 (Fig. 1I). No analytical estimations ofD2
were reported so far, but from the linearity ofD2(ε

−1)

we can gain some information. As was noted bef
at Dv = D2 the amplitude of spot pulsations,A, is
equal to its mean size,S. The last seem to comply wit
S ∼ √

Dv/ε (similar to the size of a stationary spo
Thus forD2 to be a linear function ofε−1, the ampli-
tudeA must be proportional toε−1.

4. Radially symmetric two-dimensional patterns

The next step in our study is the investigation
two-dimensional solutions of (1), (2). This study w
be performed in two steps. First we focus on ra
ally symmetric patterns. Cross-sections of these
terns can be obtained in a quasi-one-dimensional
tem (1), (2) where the diffusion terms are rewritten
cording to the transformation from Cartesian to po
coordinates, i.e.,�(= ∂2/∂x2 + ∂2/∂y2)= ∂2/∂r2 +
r−1∂/∂r. We have found that four basic types of 1
solutions can also be initiated in this system (sho
in Fig. 1A–D). Propagating wave solutions are o
served in the domain which exactly corresponds to
R1-domain in the 1D-system (Fig. 1I). The only n
table difference is that the R1 solution in the quasi-1
system is a concentric wave whose velocity,c, changes
Fig. 3. A–F: time–space plots of cross-sections of radially symm
ric patterns. Unstable (A, plot size 100× 40, Dv = 1.7, ε = 0.2),
pulsating (B, 400× 40, Dv = 1.95, ε = 0.2) and stationary (C
400× 60,Dv = 2.5, ε = 0.2) spots form set I solutions, which a
similar to 1D patterns shown in Fig. 1B–D. Unstable (D, 600×320,
Dv = 2.6), pulsating (E, 1000× 280,Dv = 3) and asymptotically
stable (F, 600× 200,Dv = 5) rings form set II solutions. G: plan
(Dv , ε) as divided into domains corresponding to different so
tions. Transition lines between propagating waves and set II R2
solutions coincide with transition lines between R1–R4 solution
1D-system (i.e.,D1–D3 lines in Fig. 1I). Areas where set I R3 an
R4 solutions can be initialised are located between bold lines.

over time, or, more precisely, with its radius accord
to the eikonal equation,c = c0 − Deff ∗ k, wherek is
the curvature of the wave-front;c0 is the velocity of a
planar wave, andDeff is an effective diffusion coeffi
cient, which is a function of the model parameters [

Similar to the 1D-system there is a domain (R
in a parameter space of the quasi-1D-system wh
no stable solutions can be initiated. Two kinds
unstable patterns have been observed here (Fig.
D). In the quasi-1D-system no persistent patterns
those presented in Fig. 1F–H can be initialised. T
R2-domain in the quasi-1D-system coincides with
R2-domain in the 1D-system (Fig. 3G). Pulsating a
stationary spots can also be initiated in the qu
1D-system (Fig. 3G). However, the domains for th
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solutions are found to be different from the R3 a
R4 domains in the 1D-system. The values ofD2
andD3 in the quasi-1D-system are smaller (bord
between domains R2, R3 and R4 are shifted do
when compared with those for the 1D-system (
Fig. 3G). In addition these spots can be initiated o
in the area under the linear plotDv(ε) presented in
Fig. 3G.

In the quasi-1D-system we have observed n
kinds of solutions which do not arise in the 1D-syste
These solutions are represented by concentric pr
gating waves which slow down over time (Fig. 3D
F). We will call these decelerating waves “expan
ing rings” to distinguish them from propagating wav
(or R1-solutions). Considering the pattern shown
Fig. 3D as an unstable expanding ring we will d
scribe three kinds of expanding rings: unstable, pul
ing and asymptotically stationary (Fig. 3D–F). We w
call expanding rings ‘set II solutions’ to distinguis
them from ‘set I solutions’ shown in Fig. 3A–C an
representing unstable, pulsating and stationary sp
Thus, each set contains 3 kinds of solutions, wh
by analogy with 1D-solutions, we will call R2, R3 an
R4 solutions. The domains where R2, R3 and R4 ri
can be initiated coincide with R2, R3 and R4 doma
for the 1D-system shown in Fig. 1I. Expanding rin
of R2 and R3 type pulsate (Fig. 3D, E). The amp
tude of these pulsations increases with increasing
radius. R2 rings vanish due to the high amplitude
pulsations (Fig. 3D). R3 and R4 rings asymptotica
stabilize over time (Fig. 3E, F). As the radius of t
ring increases, the velocity of the ring expansion sa
rates atc = 0 and the amplitude of pulsations (of R
ring) at the value of that for pulsating spots in the c
responding 1D system. Time–space plots of R3
R4 rings (Fig. 3E, F) show that the time of expans
and the ring radius are linked by a parabolic lawt
is proportional tor2 (checked by polynomial interpo
lation of time–space plots of the fronts of the ring
This indicates that the eikonal equation for these ri
is c = Ak, i.e., c0 = 0 (planar waves do not propa
gate) and the effective diffusionDeff = −A is nega-
tive.

We emphasize that the domains where R3
R4 rings can be initiated coincide correspondin
with R3 and R4 domains in the 1D-system. The d
mains where R3 and R4 spots can be initialised
much smaller and their borders (shown by bold lin
in Fig. 3G) do not coincide with those of any d
mains in the 1D-system. Note that these domains c
tain multiple attractors. Depending on the stimu
tion procedure in these domains we can initialise
ther spots (pulsating or stationary) or rings (puls
ing or asymptotically stationary) (Fig. 3G). Gene
ally it appears that the stimulation procedure mus
carefully tuned to get pulsating or stationary spo
while expanding rings represent more robust so
tions.

To explain the transition between sets I and II
lutions let us consider a radially symmetric statio
ary spot, whoseu-profile is represented by the cha
acteristic function of excited area (Fig. 2C). Thev-
profile in this spot is given by a solution of the cyli
drical equationDvvxx + Dvvx/x + ε(u − v) = 0,
where u = 1 for |x| � a and u = 0 for |x| > a,
v ∈ C1(−∞,∞), v(−∞) = v(∞) = 0 andv(−a) =
v(a). The solution is a symmetric functionv(x) =
1 + (v(a) − 1)I0(λx)/I0(λa) for |x| � a andv(x) =
v(a)K0(λx)/K0(λa) for |x| > a, where I0 and K0
are modified Bessel functions andλ = √

ε/Dv . Con-
trary to the 1D-spot wherev(a) = v0 is constant,
the valuev(a) for a 2D-spot depends on its siz
namelyv(a) corresponds to the valuev+ in the front
of 1D-wave propagating with the speedc such that
c + Dv/a = 0 [8]. Similarly, the maximum value o
the inhibitor, which is achieved atx = 0, v(0) =
1 − (1 − v(a))/I0(λa), now depends ona andλ. Ac-
cording to our simulationsv(0) increases with a de
crease ofλ and there is a critical value ofλ such
that v(0) = vmax. At this point the spot becomes u
stable [6]. Indeed,v(0) > vmax causes the deforma
tion of the spot: the medium aroundx = 0 relaxes
and the spot transforms into the ring. The value oλ
corresponding tov(0) = vmax explains the restriction
for the formation of spots given by the linear plot
Fig. 3G.λ = √

ε/Dv is constant along this line. Th
size of the spot along this line is also constant and
responds to the maximal size of the stable spot in
medium.

Transition lines between stationary and pulsat
spot solutions as well as between pulsating s
and unstable solutions in a quasi-1D system do
coincide with corresponding lines in a 1D-syste
This can be explained by differences of thev-profiles
in 1D- and quasi-1D spots. Indeed, the valuesv(a)

andv′(a) on the “wall” of spot in these two cases a
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different giving different values ofD3 (see Eq. (3)) for
stationary spots to become unstable. A reduction ofD2
most likely has a similar nature.

5. General two-dimensional patterns

We now study general 2D-patterns arising in
system (1), (2) where the Laplacian� = ∂2/∂x2 +
∂2/∂y2. The radially symmetric 2D-patterns studi
in the previous section can be initiated in this syst
provided that they are stable. Unstable patterns, w
are sensitive to noise applied to the system (an
to anisotropy induced by the integration schem
evolve by becoming radially asymmetric into ne
kinds of patterns. Thus, our next task is to stu
which of the radially symmetric patterns show angu
instability and into what kinds of patterns do th
evolve under the influence of noise. The effect of no
was modelled by additional termsr1(x, t) andr2(x, t)
on the right-hand side of Eqs. (1), (2):

(5)
∂u

∂t
=Du�u− εuf (u, v)+ r1(x, t),

(6)
∂v

∂t
=Dv�v + εφ(u, v)+ r2(x, t).

The terms r1(x, t) and r2(x, t) represent a white
noise characterised by the amplitude and time
space steps, these values are set to 0.01, 1.0 and
2.0, respectively. Our control simulations with up
five-fold variations of these values have shown
changes in the noise-sensitivity of the original patte
although the rate of noise driven transformations
altered significantly. Numerical investigation of th
1D-medium described by the system (5), (6) sho
that:

(1) Propagating waves (R1-solution) are stable: no
applied to the system just slightly increases th
velocity (the effect reported in [10]).

(2) Pulsating and stationary spots (R3 and R4 s
tions) are also noise-insensitive.

(3) The noise does not alter the behaviour of v
ishing waves (R2-solutions shown in Fig. 1B, E
however, persistent R2-solutions (Fig. 1F–H) c
significantly be affected by noise.
Fig. 4. Two-dimensional patterns arising in the system (1),
A–D: evolution of unstable stationary spot (set I R4-solution) i
the labyrinthine pattern. Snapshots are taken at times 0, 200,
and 3000 correspondently. E–H: transformation of an expan
ring (set II R4-solution) into the labyrinthine pattern (250, 40
500, 1500). I–L: transformation of unstable expanding ring
II R2-solution) into self-replicating spots (150, 300, 500, 100
All simulations are performed in the 120× 120 medium. M:
plane (ε,Dv ) as divided into domains corresponding to differe
2D-solutions. A solid bold line separates stationary spots f
labyrinthine patterns. All other lines are taken from Fig. 3
Abbreviations: W propagating waves, S.S. stationary spots,
pulsating spots.

Investigation of 2D-patterns shows that propag
ing waves and vanishing spots (i.e., R1 and set I R2
lutions) are noise-insensitive. Pulsating and station
spots (set I R3- and R4-solutions) are stable provi
that they are small. In our model medium (describ
by the functionsf (u, v) andφ(u, v)) spots are stabl
provided that they are smaller than 16 space units
unstable otherwise. This size of the spot is achie
along the bold solid line shown in Fig. 4M, spots a
stable only on the side of this line corresponding
smaller values ofDv . Under the influence of noise
unstable stationary spots transform into what is s
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as “labyrinthine patterns” (Fig. 4A–D). These tran
formations are slow (compared to all processes c
sidered so far) and the final patterns are stationary.
appearance of the labyrinthine patterns varies dep
ing on the model parameters. An increase ofDv adds
more branches (free ends) in the “labyrinthine wall
A decrease inε can cause division of the original sp
into a few pieces (self-replication) and correspo
ingly the “walls of the labyrinth” will be formed by
a few disconnected lines.

Expanding rings (set II R3–R4 solutions) are a
noise sensitive and transform into the labyrinth
patterns (Fig. 4E–H). This transformation starts o
when their expansion velocity is small enough (i.
it might take a while before the ring expands, slo
down and starts to deform). Vanishing expanding ri
(R2 solutions) generally disappear too quickly to sh
any noise sensitivity. However, R2-solutions close
the boundary with the R3 domain can exhibit a se
replicating phenomenon: an expanding ring can div
into a few spots, each of which can give rise to n
spots and so on (Fig. 4I–L). These self-replicat
spots can

(a) all vanish over time (the medium relaxes into
homogeneous state);

(b) elongate and give rise to a labyrinthine patt
formed by disconnected “walls”; and

(c) show chaotic and endlessly oscillating patterns

6. Discrete systems

In this section we consider phenomena obser
in the discrete system described by Eqs. (1),
We assume that diffusion coefficientDu is small
compare to the kinetics termf (u, v) and will consider
patterns arising in this system. To check the effec
discreteness on the location of domains in the 1
system we have produced plots ofD1/Du, D2/Du,
andD3/Du versusDu (Fig. 5A). One can see tha
these critical values start to change and all drop w
the value ofDu gets small enough (Du < 0.5) and
discreteness starts to play a role. The types of
patterns observed in discrete systems are the sam
in continuous systems. However, we have observ
few phenomena specific to discrete systems:
s

Fig. 5. A: location of the domains R1, R2, R3 and R4 on
plane (Du, Dv/Du). B: in a discrete system whenDu < 0.15 R2
and R3 domains are missing and propagating waves can trans
directly into stationary spots. C: pulsating and stationary spots
be observed on the same point in parameter space. B: size o
plot 200× 120,Du = 1/8,Dv/Du = 1.7; C: 500× 40,Du = 1/8,
Dv/Du = 2.5.

(1) A significant decrease ofDu can result in the los
of pulsating wave solutions, which can be resto
by simultaneous reduction ofε. This is similar to
what we see in Fig. 1I: the lines forD2 andD3
intersect atε = 1/3 and no pulsating spots can
observed whenε � 1/3.

(2) Transitions between solutions become more c
plicated. For example, atDv = D1, propagating
waves can directly transform into stationary sp
(Fig. 5B).

(3) Different patterns can be observed in the sa
medium. Fig. 5C shows stationary and pulsat
spots coexisting in the same medium (this coe
tence is not due to the interactions of spots si
a single pulsating spot or a single stationary s
can be initiated in this medium).

All results concerning quasi-1D- and 2D-patter
are qualitatively the same in discrete and conti
ous systems. Both sets of radially-symmetric so
tions are observed in a discrete system, although
tionary spots can now be initiated in a wider ran
of model parameters. We have found a new radia
symmetric pattern which can be initiated in a discr
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Fig. 6. Formation of a streaming pattern in a 2D discrete sys
Snapshots at timest = 100 (A), t = 300 (B), t = 500 (C) and
t = 1000 (D) are shown. Size of the medium 120× 120,Du = 1/8,
Dv = 5/8, ε = 0.25.

system. This pattern is observed when the diffus
of the activator is very small (Du < 0.1) and repre-
sented by a stationary (not expanding) ring. Noise s
sitivity of 2D-patterns in discrete systems is very si
ilar to that in continuous systems, although the
pearance of labyrinthine patterns can be very dif
ent. Fig. 6 shows the evolution of a typical labyrinthi
pattern in a discrete system. This pattern can be c
sidered as a “streaming pattern” growing from t
centre. A decrease inDu and an increase in the di
ference betweenDu andDv transforms the shape o
labyrinthine patterns so that they look more and m
like snowflakes.

7. Discussion

In this Letter we have studied 1D- and 2D-solutio
arising in the excitable system (1), (2) and establis
links between them. Four basic types of 1D-solutio
(Fig. 1A–D) have been reported and studied ear
[3–7]. We have explored different R2 type persist
patterns (Fig. 1F–H) and identified their relationsh
with other types of 1D-patterns. The transitions cau
by instability of propagating waves and stationa
spots in a 1D-medium (represented byD1 and D3
lines in Fig. 1I) are relatively well-studied [5–7
Here we have examined numerically how transit
points depend on model parameters. To explain th
observations we have presented a simple model, w
allowed us to make analytical estimations for t
bifurcation valuesD1 andD3.

2D-patterns such as stationary spots (Fig. 4
self-replicating stripes and spots (Fig. 4D, F) a
labyrinthine patterns (Fig. 4B, E) have also been
ported and studied earlier [11–14]. However the tr
sitions between them are mostly unknown [15]. O
study of radially-symmetric 2D patterns was design
to establish a link between 1D- and 2D-patterns
consequently to explore transitions between 2D-
tterns. Analysing different types of radially-symmet
2D-patterns, we divided them into two sets. Set
represented by patterns which are exactly the s
as R1–R4 type patterns in 1D-medium. Set II so
tions represented by expanding rings correspondin
R2–R4 solutions in 1D-medium (Fig. 3D–F). We ha
found that the transition points between set II so
tions are exactly the same as those between the
responding 1D-solutions. The domains where set I
lutions can be initialised are smaller, and their tran
tion points do not coincide with any transition poin
between 1D-solutions.

To study general 2D-patterns we assumed that th
patterns are derivations from radially-symmetric p
terns affected by noise and instability. We have fou
that pulsating and stationary spots can exist in
2D-medium provided that they are small. Large sp
are sensitive to noise and evolve into labyrinth
patterns (Fig. 4A–D). Pulsating and expanding rin
are found to be always noise-sensitive. They a
evolve into labyrinthine patterns (Fig. 4E–H). Vanis
ing expanding rings (set II R2-solutions) most co
monly vanish but sometimes transform either into s
replicating spots (Fig. 4I–L) or into labyrinthine pa
terns.

The types of patterns and the transitions betw
them observed in discrete systems are mostly the s
as those in continuous systems. Notable phenom
specific to discrete systems are the coexistenc
different types of solutions (Fig. 5C) and the formati
of streaming patterns (Fig. 6). Streaming patterns h
previously been found in a framework of cellula
automata models [16,17], where their formation w
considered as a particular case of diffusion-limi
aggregation.

We believe that we have explored all 1D- a
2D-patterns which can be initiated in the modifi
Fitz-Hugh–Nagumo system (1), (2). In addition w
have identified all transitions and links between the
The present study can be extended by consi
ing patterns and their transitions in other mod
(e.g., Gierer–Meinhardt, Turing pre-pattern) and ot
classes of systems (oscillatory, trigger). On the ot
hand the results presented here give rise to many p
lems in transitions between solutions and the stab
of solutions which may be addressed analytically.
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