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A Hydrodynamic model for Dictyostelium discoideum Mound Formation
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Coordinated cell movement is the major mechanism controlling the multicellular morphogenesis of the
slime mould Dictyostelium discoideum. Single cells aggregate chemotactically in response to propagating
waves of cAMP to form a multicellular organism. Here we present a model to describe the formation
of these multicellular aggregates. Cell movement is modelled as the flow of a compressible fluid
controlled by cAMP-induced chemotactic forces, frictional and adhesion forces and internal pressure.
The model can simulate the whole early process of development from isolated single cells, formation
of bifurcating aggregation streams and formation of a three-dimensional aggregate with a single set of
parameters. Direct comparison of simulations with experimental images of successive aggregation stages
show a striking agreement. The model can also mimic alternative modes of morphogenesis frequently
observed after disturbance of cAMP signalling or cell motility by chemicals or mutations.
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Introduction

Dictyostelium morphogenesis is initiated by chemo-
tactic aggregation of free living single amoebae into
multicellular aggregates (mounds) (Loomis, 1982;
Firtel, 1995; Chen et al., 1996). During further
development the initially homogenous cell population
differentiates into several cell types and forms a
fruiting body consisting of stalk and spore cells.
Aggregation is mediated over large distances by
travelling waves of the chemo-attractant 3'–5'cyclic-
Adenosine-mono-phosphate (cAMP) emitted period-
ically by the aggregation centre. The cells respond to
these cAMP waves with periodic chemotactic motion
towards the signal source. In the course of
aggregation the cells encounter a diverse range
conditions. Initially the cells are widely dispersed over
the substrate and cell density is low. After 10–15
waves the cells begin to concentrate and form
aggregation streams in which they form cell–cell
contacts. Due to the progressive accumulation of
cells, the aggregate extends upwards from the

substrate and forms a three-dimensional hemispheri-
cal structure, the mound.

There have been a number of models describing
early Dictyostelium development, i.e. the two-dimen-
sional aggregation of randomly distributed cells in
aggregation streams. In one class of models the
amoebae are described as cellular automata (Vasieva
et al., 1994), in hybrid models the cells are described
as automata, but the chemical reaction kinetics are
treated as continuous (Kessley & Levine, 1993), while
in still other models the cells are treated as a
continuous density function (Vasiev et al., 1994;
Höfer et al., 1995). These models have been studied
numerically and analytically and the principal
mechanisms responsible for stream formation are
now clear (Levine & Reynolds, 1991; Vasiev et al.,
1994).

There is good experimental evidence that the same
principles that control aggregation, cAMP wave
propagation, and chemotactic cell movement also
control the formation and morphogenesis of the
mound (Siegert & Weijer, 1995). However, mound
formation has not yet been modelled in any detail as
cells reach high densities in the mound and a good
description of cell movement should take cell–cell
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interactions into account. The models mentioned
above do not consider these interactions and, as a
result the final structures obtained are either a flat
collection of cells or regions occur where cell density
tends to infinity. An early ingenious approach to
model cell movement at high cell density was
suggested by Odell & Bonner (1986), who attempted
to model cell movement during slug migration as a
fluid flow using Navier–Stokes equations. We show
here that a similar approach can be used to describe
early development until mound formation. Our model
is based on chemotactic signal propagation in an
excitable medium (Tyson et al., 1989; Tang &
Othmer, 1995; Siegert & Weijer, 1995) and chemotac-
tic cell movement is modelled as the flow of a
compressible fluid. The system is self-organizing,
going from randomly distributed single cells via
bifurcating aggregation streams to the formation of a
three-dimensional mound.

Model

To model the excitable cAMP kinetics we use the
FitzHugh–Nagumo equations:

1g/1t=DDg− ar(kgg(g−0.05)(g−1)+ krr) (1)

1r/1t=(g− r)/t (2)

where g defines the level of extracellular cAMP, and
r the state of the cAMP receptors. D is the diffusion
coefficient for cAMP; t is a time scaling factor for the
variables r and g; kg and kr define the rate of
production and hydrolysis of cAMP by one cell.
Locally, the cAMP kinetics is proportional to the
density of cells r (Kessler & Levine, 1993; Vasiev et al.
1994). Factor a defines the fraction of cells involved
in the production and decay of cAMP.

Cell movement is described by the Navier–Stokes
equation (Landau & Lifshitz, 1963):

r[1V/1t+(V9)V]=Fch +Ffr + hDV

+(j+ h/3)graddivV+Fad −gradr (3)

The left-hand side of the equation describes the
acceleration of the cells under the influence of various
forces described in the right-hand side of the
equation. V is the velocity of the cells. Fch is the
chemotactic force which is active on the front of
cAMP waves, Ffr is a friction force responsible for
slowing down cell movement. The third and fourth
terms on the right-hand side describe cell–cell friction:
h and j are viscosity coefficients. Fad takes into
account cell–cell and cell–substrate adhesion forces, r

is the pressure between the cells caused by the

chemotactic accumulation of the cells (see appendix B
for details).

The change in cell density over time is calculated
from the equation of conservation of mass (Landau
& Lifshitz, 1963; Murray, 1989):

1r/1t=DrDr− div(rV) (4)

The first term on the right-hand side of the equation
describes the random motion of the cells, while the
second term describes co-ordinated movement.

Calculations were performed in a three-dimen-
sional 100×100×20 array using the explicit
method, that is, forward time-centred space method
for the diffusion term and the upwind method for the
advective term (details in Appendix A). Both methods
are stable with given space and time steps
(hx =0.4; ht =0.01), diffusion coefficients (D=0.1;
Dr =0.0005) and maximal value of chemotactic flow
(max=V=Q 5. in all the computations). For the cAMP
concentration field we used von Neumann’s ‘‘no flux’’
boundary conditions at the boundary of the medium
as well as at the free boundary of the mound. The
same conditions have also been imposed on the cell
density field. The value of the cells velocity was set to
zero at the medium boundary as well as in the space
outside of the free boundary of the mound (see
Appendix B for details about the definition of the
mounds free boundary).

To describe the excitable medium we have used the
following basic set of parameters t=5.; kg =10.5;
kr =3; a=1.; D=0.1. The refractoriness of the
medium where the density of cells is still uniform
(r=0.5) is equal to 20 time units and the velocity of
the cAMP waves is 0.3 space units per time unit. Since
in natural populations of aggregating Dictyostelium
cells the refractoriness is about 5 min and the velocity
of cAMP waves is 600 mm/min (Siegert & Weijer,
1989) our time unit is 15 s and the space unit is
500 mm. Values of the chemotactic and frictional
forces (given in Appendix B) have been chosen such
that the cells’ average velocity at the stage of stream
formation was 2–4% of the cAMP wave velocity. The
‘‘diffusion’’ coefficient in (4) has been chosen such
that the formation of aggregation streams takes place
after propagation of 15–20 cAMP waves, similar to
experimental observations (Siegert & Weijer, 1989).
For example, an increase in the rate of the cells’
random motion (Dr =0.001) leads to an increase in
stream formation time (about 25 cAMP waves).
Values of the pressure and adhesive forces have been
chosen such that we obtain roughly hemispherical
mounds (see Appendix C).

We have used two versions of the model
corresponding to non-viscous and viscous cell flows.
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We assumed that initial stage of aggregation where
the cells are still mostly single, i.e. where there are few
cell–cell interactions, can be best described by a
non-viscous flow model, while later, at the mound
stage where cell–cell interactions are prominent, can
best be described by a viscous flow model. For a more
further description of the properties of these two
models see Appendices B and C.

Results

 

Using the model for non-viscous cell flows we
simulated morphogenesis up to the mound stage. We
initiate a spiral cAMP wave in the centre of a
two-dimensional field of randomly distributed cells
[Fig. 1(A)]. This wave causes periodic changes in cell
movement and results in the formation of aggregation
streams [Fig. 1(B)]. Bifurcating aggregation streams
form due to the dependence of wave propagation
speed on the cell density (Levine & Reynolds, 1991;
Vasiev et al., 1994). As more cells move towards the
centre, a hemispherical mound forms [Fig. 1(C,D)].
The pressure p developing between the cells as a result
of chemotactic accumulation of the cells is responsible
for mound formation. It increases during aggregation
and forces the cells up into the third dimension. The
aggregation patterns observed in the simulations are
remarkably similar to those from real experiments
[compare Fig. 1(A–D) with Fig. 1(E–H)]. Exper-
iments have shown that during aggregation there is a
decrease in the period and propagation speed of
cAMP waves, which results in a decrease in the
wavelength of the spiral wave (Gross et al., 1976;
Siegert & Weijer, 1989). This behaviour is also
observed in the model calculations [Fig. 1 (A–D)].

       



In experiments we often observed the formation of
a cell-free region around which the tip of the cAMP
spiral rotated (Siegert & Weijer 1989). This region
delineates the core of the cAMP spiral wave. During
development this cell-free region gradually collapses,
a behaviour seen also in the simulations [Fig.
1(A–D)]. The occurrence and collapse of the cell-free
region can be explained by the dependence of the size
of the spiral core on the excitability of the medium.
Initially, during early aggregation, cell density is low,
therefore the medium has a low excitability and the
core of the spiral is large. Cells in the core of the spiral
wave move outward towards the tip of the spiral

resulting in the formation of a cell-free region. During
later aggregation more cells enter the aggregation
streams and accumulate on a loop around the core.
This increase in local cell density leads to an increase
in the excitability, leading to a decrease of the
diameter of the spiral core until the cell-free region
disappears completely.

Decreasing the excitability in the computer
simulations by varying the rate of cAMP production
leads to a large cell-free region in the centre of the
aggregates [Fig. 2(A,B)]. Decreasing excitability
experimentally by inhibiting cAMP production with
caffeine (Brenner & Thoms, 1984; Siegert & Weijer,
1989) also leads to a large cell-free region in the centre
of the aggregate [Fig. 2(C,D)]. Unexpectedly the
simulations also showed that large cell-free cores
appear if the movement velocity of the cells is
increased [Fig. 2(E,F)]. We suspect that an increase in
movement velocity leads to a decrease in the local cell
density in the front of the wave thereby decreasing the
excitability of the medium. Although there is not yet
any experimental evidence for this mechanism of
formation of cell-free cores it is worth investigating
this possibility experimentally in mutants with
impaired cell movement.

 

The simulations show that in mound the spiral tip
(scroll filament) is located in the centre and the
mound is stationary [Fig. 3(A)]. However, if the
excitability of the medium is decreased, the spiral
becomes non-stationary and drifts away from the
centre of the mound [Fig. 3(B)]. The spiral tip
describes a meandering motion. As a consequence the
mound begins to move over the surface on a circular
trajectory. This circular motion is seen as meandering
of the mound position in a time–space plot [Fig. 3(C)].
Stationary mounds are normally observed in the wild
type strains [Fig. 3(D)] and the tip of the spiral wave,
visualized as an optical density wave, is stably located
in the centre of such mounds leading to rotational cell
movement (Siegert et al., 1994; Siegert & Weijer,
1995). We have also observed non-stationary mounds
in a streamer mutant (Streamer F), which is defective
in cGMP phosphodiesterase (Ross & Newell, 1981).
We therefore investigated the propagation of
darkfield waves in these mutants and found that the
tip of the spiral is located laterally in the mound [Fig.
3(E)] as in the simulations. The circular movement of
the mound, as in the simulations, is seen as a
meandering of the mounds position in the time–space
plot [Fig. 3(F)].
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    

If in simulations the kinetics of the cAMP signal is
gradually decreased further the meandering stops and
the mounds transforms into a ring-shaped structure
with increasing diameter [compare Fig. 3(B) with Fig.
4(A–C)]. The cAMP spiral core increases and the cells
inside the spiral core follow the tip and move from the
centre as during aggregation. As a result the mound
gradually transforms to a ring with nearly no cells in
the centre. The cAMP waves continue to rotate
around the ring giving rise to counter-rotational cell
movement. We found that mounds of the streamer F
mutant can also open up and transform into a ring
[Fig. 4(D–F)] similar to the simulations. Although
there is as yet no experimental evidence that streamer
F mounds have a reduced excitability in vivo the
model calculations suggest this to be the case and this
should be investigated experimentally.

To model changes in the population excitability we
varied parameter kg (Fig. 2). Decrease of this
parameter simulates the decrease in amount of cAMP
released by cells, as is the case with caffeine. In the
simulations presented in Figs 3 and 4 we have
decreased the excitability of the medium by decrease
of the model parameter a, which describes the
fraction of cells releasing cAMP. This could reflect
differentiation of cells into relaying and non-relaying
cell types (Bretschneider et al., 1995). However the
main effect of the variations of these two parameters
(kg and a) is a change in the medium’s excitability,

therefore both parameters can be used to reproduce
all the phenomena reported here.

Discussion

   

   

Slime mould morphogenesis results from propa-
gation of cAMP waves which control the chemotactic
movement of individual amoebae. To describe the
behaviour of this population of cells some simplifying
assumptions have to be made. The main assumption
made in this paper is that cell movement can be
considered as the flow of a liquid. In this approach the
cell–cell interactions are taken into account by
pressure, adhesion and viscosity terms. There are
several arguments for why it is reasonable to view a
population of cells as a continuous liquid. During
early aggregation when the cells are still single, they
exhibit directed motion during the rising phase of the
wave and random motion during the rest of the time.
As soon as the cells enter aggregation streams their
rate of movement becomes almost constant in time,
despite the periodic nature of the chemotactic signal
(Siegert & Weijer, 1995; Rietdorf et al., 1996). The
cells do not slow down significantly between
chemotactic waves. This implies that there are strong
interactions between the cells, although they do not
have fixed neighbours. The cells make and break
contacts continuously. Furthermore, cells in mounds,

F. 1. Development of Dictyostelium from single cells to the mound stage. (A–D) successive images of aggregation as calculated by
the model (E–H) Photographs taken at successive times during development of strain Ax-2 (at 0, 3, 6, 9 h of development). Bar in E=5 mm
and in (F,G,H)=500 mm. In the simulations cell density is shown as a yellow iso-surface (r=0.5) and the cAMP concentrations are
mapped on this surface from low cAMP (blue, g=0) to high cAMP (red, g=0.8). The initial density of cells was zero everywhere in
3d-space except for the bottom plane. The cell density in each grid of this plane was represented by a random number varying between
0 and 1 so that average density in this plane was equal to 0.5. The mound in (D) is close to its final stable shape.

F. 2. Effects of changes in excitability and rate of cell movement on morphogenesis. (A,B) Core formation depend on the rate of the
cAMP production in simulations. All the model parameters except the ones noted below are the same as in Fig. 1. The rate of cAMP
production has been changed by variation of kg. In (A) the rate of cAMP production is increased (kg =11) and in (B) decreased (kg =10).
(C,D) Aggregation of Ax-2 in the absence (C) or presence (D) of 3 mM caffeine. Caffeine results in an increase of the size of the core
in the centre of the aggregate at 6 h of development. Bar: 200 mm. (E,F) Change in core size observed in simulations as a result of a change
in cell velocity. The velocity has been changed by variation of chemotactic force. Kch =0.1 in (E) and Kch =0.3 in (F).

F. 3. Meandering mounds in simulations and experiment. Top view of a stationary mound in the simulation (A) and in the strain
Ax2 (D), both showing a spiral wave (projection of a scroll wave) with the core located at the centre of the mound. As an initial condition
in (A) we used a hemispherical mound (the density of the cells is equal 1 inside of the mound and 0 outside) where a scroll wave was
initiated. The shape of the mound in (A) is stable. Bar in (D) is 200 mm. (B,E) Meandering mound in the simulations (b) and in the streamer
F mutant NP368 (E), both showing a spiral wave whose centre does not coincide with the centre of the mound. (C,F) Time–space plot
showing a section of a meandering mound over time in the simulations (C) and in strain NP368 (F). The time–space plots were constructed
reading out the optical density along a horizontal line through the image of the mound (E). This process was repeated for successive time
points and the resulting sections lined up one below the other in a ‘‘time–space’’ plot. In the computations the time–space plot (C) was
constructed by reading out (r+0.2=V=) along a line on the bottom plane of the mound (B). Propagating waves are now visible as blue/red
(C) or dark tilted (F) bands. The section is 60 grids in (C) and 400 mm in (F). To construct the time–space plot in (C) 120 sections were
taken every 5 time units, and 512 images taken at 10 s for the plot in (F). In the graphs the path of the meandering mound translates
into an oscillatory path. a=1 in (A) (all cells relay cAMP); and a=0.75 in (B,C) (75% of the cells relay cAMP).

F. 4. Transformation of a mound into a ring. (A–C) A sequence showing ring formation from a mound obtained by lowering the
excitability and cell movement speed. The same model and parameters as in Fig. 3 were used, except for a which is changed gradually
from 0.6 in (A) to 0.475 in (C). (D–F) Transformation of a mound to a ring as observed in the streamer F mutant NP377. Time in (D)
0 min, (E) 30 min, (F) 40 min. Bar=450 mm.
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which rotate around a central core, show a velocity
profile that is smooth in space. The velocity is
maximal in the middle between the centre of the
mound and the periphery (Siegert et al., 1994; Siegert
& Weijer, 1995). These properties are similar to those
of a viscous liquid.

     

We realize that the model simplifies the processes
of mound formation in several aspects. 1. In real life
the amoebae are separate entities whose individual
properties are fluid-like and which are moving in an
extracellular matrix that also might be considered as
a viscous liquid. As a simplification we consider this
complex system as a uniform liquid. 2. In our model
cell–cell and cell–substrate adhesion is simply taken
into account as a force that holds the cell density
inside the mound nearly constant and is directed
downwards to the substrate. This is a reasonable
assumption as a first approximation, but the
description can be improved by more detailed
considerations of surface tension and liquid–substrate
adhesion. 3. The mound is covered by a slime sheath,
a physical barrier that is continually synthesized and
is clearly deformable, but whose exact mechanical
properties are not clear. The slime sheath is stationary
with respect to the substratum and will influence the
motion of nearby amoebae. We have considered the
effect of the slime sheath as that of a stationary
barrier covering the mound boundary. Detailed
properties of slime sheath and its influence on the
motion of the amoebae should be studied experimen-
tally before they can be considered in a model in any
detail. 4. We consider mound formation as compact-
ing of a compressible liquid. However, the mound
itself is incompressible and in order to describe slug
formation the system should be considered as an
incompressible liquid. This assumes that density is
constant and involves computations of the mound
shape changes.

  

Spiral waves meander in high excitable media,
when the period of their rotation is smaller than the
refractoriness of the medium (Muller & Zykov, 1994).
In our computations presented in Fig. 3 the spiral
starts to meander when the excitability of the medium
decreases. The mechanism of meandering in this case
is the following. A decrease in excitability leads to an
increase in the size of the spiral core. Since the spiral
tip rotates around a larger core it comes closer to the
mounds boundary and this destabilizes its motion.
The boundary of the mound attracts the spiral. This
was shown in two types of computations (1) in a

2d-medium, inhomogeneous in cell density, spirals
drift in the direction of lower cell density; (2) in a
mound consisting of low excitable non-motile cells, a
spiral drifts in the direction of the mound boundary
and disappears. However, due to the chemotactic
motion of the cells which try to follow the spirals tip,
the mound shifts. This results in a change of direction
of the spiral drift, leading to meandering of the spiral
and the mound.

    

The calculations clearly show that it is possible to
describe the process of mound formation by usage of
a constant set of parameters without additional
assumptions concerning evolution of the system
parameters (Fig. 1). The mound is the final stable
solution in this system. This implies that this
complicated process could take place without the
necessity for transcription of new genes. In real life,
however, it is known that many different genes are
transcribed during aggregation and mound for-
mation. Essential components of the cAMP signal
relay system such as cAMP receptors, G proteins,
phosphodiesterase and adenylyl cyclase all increase
considerably during development (Firtel, 1995). The
expression of these genes is under feedback control of
the cAMP pulses (Gerisch, 1987). This may provide
extra stability to the system as well as fine tuning of
the process. However, to proceed in morphogenesis to
the slug stage new qualities need to be added to the
model, like different cell types with different cAMP
relay kinetics and movement properties.

The model also provides insight into some more
complex behavioural modes of mounds, like mean-
dering and ring formation. The calculations show that
these properties depend on the cAMP kinetics. These
predictions can now be tested experimentally by
investigation of mutants in known components of the
signal transduction system that should show altered
kinetics. Mutants to investigate are receptor mutants
with a reduced affinity for cAMP which makes the
system less sensitive (Johnson et al., 1993; Caterina
et al., 1994), as well as mutants in the cAMP
hydrolysing enzyme cAMP phosphodiesterase (Hall
et al., 1993). Mutants with reduced phosphodiesterase
should show reduced rates of cAMP degradation and
therefore a decreased rate of resensitization. This
work shows that it is possible to understand
aggregation and mound formation of Dictyostelium
on the basis of well-known physico-chemical prin-
ciples. Furthermore, these model calculations help in
understanding apparently complex biological pheno-
types and direct new experiments.
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APPENDIX A

Numerical Schemes

For integration of all eqns (1–4) we have used
explicit numerical methods. The diffusion terms in (1),
(3), and (4) were discretised by the FTCS (forward
time centred space) method using 18 neighbouring
points in 4d-space. That is, the Laplacian operator
was calculated as following:

Du=(4(ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1

+ ui,j,k−1)0+ ui+1,j+1,k + ui−1,j+1,k + ui+1,j−1,k + ui−1,j

−1,k+ ui+1,j,k+1 + ui+1,j,k−1 + ui−1,j,k+1 + ui−1,j,k−1

+ui,j+1,k+1 + ui,j+1,k−1ui,j−1,k+1

+ui,j−1,k−1 −36ui,j,k)/(8h2
x)

where u can represent the cAMP level in (1), any
component of flow velocity in (3), or cell density in
(4). This scheme is a three-dimensional (3d) version of
the scheme suggested by Barkley (1990) for the
calculation of the 2d Laplacian. This scheme is much
more isotropic than the classical one which uses six
neighbours (ui2 1,j,k, ui,j2 1,k, and ui,j,k2 1). Since in the
system under consideration, there is a principal
instability (‘‘streaming instability’’, Levine &
Reynolds, 1991) we have to use numerical schemes
which keep wave velocity constant in all the directions
and thereby prevent the formation of artificial
streams. Used scheme is stable when: Duht/h2

x Q 1/6
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where Du means either diffusion coefficient of cAMP
in (1), or viscosity coefficient in (3), or coefficient of
cell random motion in (4). In all these cases this
condition has been satisfied in our computations.

The term graddivV in (3) leads to the occurrence of
a number of second velocity derivatives (1/1xk(1vl/
1xl)). They were all discretised by the FTCS method:

12u/1x2 = (ui+1,j,k + ui−1,j,k −2ui,j,k)/h2
x

12u/1x1y=(ui+1,j+1,k + ui−1,j−1,k

− ui+1,j−1,k − ui−1,j+1,k)/(4h2
x)

The condition for stability of these schemes
Duht/h2

x Q 1/2 has also been satisfied.
First-order velocity and cAMP derivatives have

been calculated as following:

1u/1x=(ui+1,j,k − ui−1,j,k)/(2hx)

which was also stable for the values of time and space
steps used and in the range of density and velocity
changes that occurred during the computations
(A*ht/hx Q 1 where A is either velocity or density of
cells). To avoid anisotropy in the obtained patterns
which arise during computations due to the
anisotropy in the discretization schemes we alternated
the set of neighbours used in these schemes for each
second iteration step. The schemes given above were
used for odd iteration steps. For even iteration steps
we used the following:

1u/1x=

(ui+1,j+1,k + ui+1,j−1,k − ui−1,j+1,k − ui−1,j−1,k)/(4hx)

12u/1x2

= (ui+1,j+1,k+ui−1,j−1,k+ui+1,j−1,k+ui−1,j+1,k

−4ui,j,k)/(2h2
x)

This alternation of schemes was very efficient to avoid
anisotropy effects in the patterns obtained. We did
not alternate the scheme for 12u/1x1y as we did not
find a good alternative scheme. The problem of
anisotropy, however, was satisfactorily solved by
alternation of two other schemes.

The first order derivatives of density in (4) were
discretized using the explicit upwind method:

1r/1x=(ri+1,j,k − ri,j,k)/hx if vi,j,k q 0;

1r/1x=(ri,j,k − ri−1,j,k)/hx otherwise,

where vi,j,k is the x-component of the cells velocity in
the space grid considered. This scheme is the simplest
one which can be used for stable integration of the
equation of conservation of mass (Press et al., 1988).
The condition for its stability, A*ht/hx Q 1, where A

is a value of any velocity component at any time
during the computation, has been satisfied. Using this
scheme we were able to integrate equation (4) without
substantial changes (not more than 10%) in the total
number of cells (integral of the density of cells over
the whole volume) during the computations.

Using the discretisation schemes given above we
have found that the values of the model parameters
(given in the ‘‘Model’’ section of the paper) give rise
to stable computations using hx =0.4 and ht =0.01.
Increasing the space or time steps led to a
destabilization of the computations. The computation
presented in Fig. 1 (2×105 iteration steps in a
medium of 100×100×20 grids) took about 25.5 h
of CPU time on an IBM RS 6000 model 350
workstation. This computation has been made using
the non-viscous flow version of the model which is
almost three times faster than viscous flow model.

APPENDIX B

Details of the Model

   - 

One of the main challenges in these computations
is to describe the behaviour of the mounds surface as
it is a free moving boundary. The boundary was
defined as a surface consisting of grid points where
the cells’ density changes from rq rth to rQ rth

where rth =0.5. The value 0.5 was taken arbitrary and
can vary in a range from 0.8 to 0.3 without essential
influence on the results. Near the mound boundary we
have used some restrictions for cell movement:

1. There is no random motion of the cells in an
empty grid, that is, cells cannot cross the
boundary during random movement.

2. Cells can only flow into grids where rq rth or
which have at least one neighbouring grid where
rq rth. This rule allows the mound to change its
shape, for example, to elongate due to pressure.

3. On the medium boundary the velocity of the
cells is zero. In the grids where rQ rth and which
are surrounded by grids which all satisfy this
condition the velocity of the cells is also
supposed to be zero. This results in a non-motile
space surrounding the mound, i.e. there is a
non-motile layer covering the mounds free
boundary.

These assumptions lead to a steep change in cell
density at the mound boundary (2–3 grid points to
decrease the cell density from around 1 to 0). Thus,
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although we use a continuum model to describe
mound formation, due to these restrictions for cell
movement we obtain a well-defined mound.

The no-flux boundary condition for cAMP field on
the free boundary of mound has been implemented as
follows. The cAMP level is calculated according to (1)
in the grids where rq rth. This value is copied to the
upper grid if rQ rth. In all the other grids cAMP level
has been set to zero. This algorithm results in a cAMP
surface covering the mound leading to no flow of
cAMP on the surface of the mound. Using this
method we did not find a detectable influence of the
mounds boundary on the cAMP waves inside the
mound. This was the simplest scheme of a few others
which also could be used. A similar method has been
used to avoid random motion of cells through the
mounds-free surface.

-  

In the computations presented in Figs 1 and 2 we
have used the Euler equation rather than the
Navier–Stokes equation, i.e. we have neglected the
effect of viscosity: h=0 and j=0. To calculate cell
flow velocity we assumed:

(a) The chemotactic force occurs only at the front
of the wave: Fch = rKchgradg where Kch =0
when 1g/1tR 0 and Kch =0.2 when 1g/1tq 0.
To distinguish the wave front and the wave
back we used the sign of cAMP time derivative
rather than state of cAMP receptors (Vasiev
et al., 1994; Höfer et al., 1995). Using the state
of the cAMP receptors to control cell
movement always resulted in an instability of
the spiral wave rotation, since the receptor
relaxation time increases with increasing cell
density. When a spiral rotates with a period
close to the refractoriness of the medium the
motion of cells in regions with a lower cells
density is essentially longer than that of cells in
regions of high density. This results in multiple
breaks in aggregation streams and in the ring
of cells formed by the spiral tip.

(b) Cell movement is slowed down by a ‘‘friction’’
force Ffr =−V which describes in first
approximation the relaxation of the cytoskele-
ton in moving cells.

(c) Cell–cell and cell–substrate adhesion respon-
sible for sticking the cells together and on the
surface are taken into account as a force
slowing down the upward motion of cells:
(Fad)z = −2Vz; (Fad)x =(Fad)y =0. Ideally, Fad

comes into action if somewhere inside of the

mound the density of cells is slightly less than
1 and should be directed from the mounds-
free surface up the cell density gradient.
However, a force directed up to the cell
density acts as a negative pressure and
destabilises the computations. The method
which we used to take Fad into account
behaves qualitatively correct. At least in the
case of stable rotating and monotonic elon-
gating mounds it avoids the formation of low
cell density regions inside the mound and it is
numerically stable.

(d) Pressure (gradp=0.01gradr) in the aggregate
develops when the cell density increases over a
threshold value (rq 1) in this or in one of the
six neighbouring grids (in the x-, y-, z-direc-
tions), while gradp=0 otherwise. This takes
flows from high cell density regions as well as
flows into surrounding regions of low cell
density into account.

  

Cell–Cell friction is taken into account by the use
of two viscosity coefficients: h= r and j=0.5r. We
assume that the force responsible for slowing down
cell movement (the friction force Ffr in the first model)
derives from the cell–substrate interaction. That is,
Ffr =−V for the cells located on the bottom plane
and Ffr =0 everywhere else. Cells moving on the
bottom plane stop due to the friction with the
substrate, while all other cells stop due to cell–cell
friction (viscosity). This assumption results in more
continuous cell movement in the mound in agreement
with experimental observations (Fig. 6). However,
cells in the lower part of the mound stop faster than
cells in the upper part of the mound, which is not
observed in experiments. To circumvent this problem
we made one additional assumption, i.e. the
chemotactic force is taken to be twice as strong for
cells in contact with the substrate as for all other cells.
This assumption results in roughly equal cell
velocities everywhere in the mound.

The description of the force responsible for cell–cell
and cell–substrate adhesion has also been improved.
We take this force into account as a force directed
towards the substrate ((Fad)z =0.3; (Fad)x =(Fad)y =0)
which occurs inside the mound in grid points where
rq 1 when in grid point underneath rQ 1. This force
keeps the mound compact and dense also when the
mound exhibits more complicated types of behaviour
such as transformations of shape and meandering.

Inclusion of viscosity terms result in a smoother
velocity profile in the mound but also decreases the
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F. A1. Structures obtained in alternative models. (a)
Aggregation pattern using the viscous flow model. Due to viscous
cell–cell interactions the streams obtained in the viscous model and
shown in (A) are much wider than obtained with the non-viscous
model [Fig. 1(B)]. (B) Mound in the non-viscous flow model. The
mound obtained with the non-viscous model is very flexible, and
its surface is continuously deformed by the propagating cAMP
waves. The version of non-viscous model used here differs from
that used for Figs 1 and 2. The adhesive force is taken into account
in the same way as in the viscous model (see Appendix C).

APPENDIX C

Variations of the Model

 . -  

The results presented in Figs 1 and 2 can also be
obtained using a viscous flow model, however, the
morphology obtained is not as good. Using the
viscous flow model to simulate aggregation results in
the formation of too wide streams [Fig. A1(A)]. Using
the non-viscous flow model to simulate non-station-
ary (moving or changing shape) mounds has
problems as well. The shape of the mound is very
flexible in this case and it is deformed by each cAMP
wave propagating inside the mound [Fig. A1(B)]. We
therefore conclude that the formation of aggregation
streams is better described by using a non-viscous
flow model, while mound behaviour is better
approximated by a viscous flow model. This
corresponds well to what is known about the strength
of the cell–cell interactions in these stages (Loomis,
1982).

   

Simulations with the viscous and non-viscous flow
models show considerable differences in mound shape

average velocity of the cells and therefore it also
results in mound shape changes. We have chosen the
values of the viscosity coefficients so that they are
enough big to make the surface of the mound smooth
(Figs 3 and 4) and increased chemotactic forces
(Kch =0.6 in the bottom plane and Kch =0.3 in the
rest of the space in the viscous model) to return to the
hemispherical shape of the mound as shown in
Fig. 3(A).

F. A2. Velocity and density profiles. (A,C) Density profiles of vertical cross-sections of the mounds shown in Fig. 1(D) and Fig. 3(A).
The density of cells decreases from the centre of the mould to its boundary. The maximal density of cells is 2.1 in (A) and 1.6 in (B).
(B,D) Velocity profiles for the bottom planes of the mounds in Fig. 1(D) and Fig. 3(A). The view point is the same as in Fig. 1(D). The
velocity profiles are also spiral-shaped patterns and show that the cells in (D) move much longer than the cells in (B).
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F. A3. Mounds in the viscous flow model with different chemotactic forcing. Kch =0.6 in (A); Kch =0.3 in (B); Kch =0.15 in (C). The
mound in (B) is the same as in Fig. 3(A). The shape of the mound becomes flatter when Kch decreases, and more elongated when it increases.
The mound in (A) exhibits a meandering motion as shown for the mound in Fig. 3(B and C).

as well as in the velocity and density profiles inside the
mound. Fig A2(A and C) show density distribution in
a vertical cross-section of a non-viscous [Fig. 1(D)]
and a viscous [Fig. 3(A)] mound. The shape of the
non-viscous mound is much more pointed in
comparison with the flat shape of the viscous mound.
Cell density decreases smoothly from the centre of the
mound to its periphery in both cases. The maximal
cell density is higher in the non-viscous (2.1) than in
the viscous model (1.6). By increasing the pressure we
obtain a smoother density profile in the non-viscous
mound due to a decrease of the maximal cell density
inside the mound. It also results in changes of mound
shape: it becomes more elongated. Fig. A2(B and D)
show velocity profiles in the bottom sections of the
mounds shown in Fig. A2(A and C). Cell movement
results from the chemotactic force developing at the
front of the cAMP wave. Therefore, the velocity
profiles are also spiral-shaped, however, there is a
significant difference in the relaxation time of the
movement in these two cases. In non-viscous mound
cells move only during a short time, while in the
viscous mound the velocity of the cells drops much
slower after a wave has passed, therefore, the cells
move almost all the time. This behaviour is very
similar to that seen under experimental conditions

where cell movement has been shown to be almost
continuous with only slight periodic modulations
(Rietdorf et al., 1996).

   

Here we briefly describe the main changes caused
by variation of the model parameters. By variation of
the parameters in equations (1)–(2) we can change
excitability of the medium (Figs 2–4) and the shape
of the cAMP waves. The change in wave shape can
change the velocity of the chemotactic motion, since
this velocity is roughly proportional to the duration
of the rising phase of the cAMP wave. Increase in the
coefficient of random cell motion, Dr results in an
increase of the time of stream formation as well as in
wider streams. It has almost no influence on the shape
of the mound. The shape of the mound depends
strongest on the parameters in eqn (3). A decrease in
the chemotactic forcing, Kch, or in viscosity co-
efficients, h and j, or in pressure, results in a flatter
mound, while an increse in these parameters makes
the mound elongated. The effects of changes in the
chemotactic forcing on the shape of the mound are
illustrated in Fig. A3. An increase in the friction term
results in similar changes as a decrease in chemotactic
forcing.


