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Abstract-The dynamics of phase disturbances in the 1D uniform medium described by FitzHugh- 
Nagumo equations was studied. It was found that the system synchronizes its oscillations if the initial 
disturbances are small. Large disturbances resulted in the appearance of phase breaks. Dependent on 
the system parameters, phase breaks were found to be either stable or unstable; stable breaks led to 
target pattern-like sources, unstable to extended chaos. 

1. INTRODUCTION 

Many processes in solid-state physics, plasmas, theory of lasers, chemistry and biology can 
be described in terms of the theory of coupled oscillators [l]. The same point of view may 
be also applied to distributed reaction-diffusion systems. Every point of such a medium is 
assumed to be a nonlinear oscillator diffusively connected to its neighbours. In the case 
when the system is described by two equations, the phase of oscillations, 9, may be 
determined by introducing a polar-coordinate system (r, 4) [2]. The dynamics of such a 
system was studied analytically in refs [2-41. In response to a small initial disturbance of 
the phase the system evolves to spatially uniform oscillations, or it falls into chaos if the 
system is unstable to initial perturbations. 

The phase analysis approach has also been used to study the spontaneous appearance 
of the wave sources. Assuming a source occurs at the location of impurities, phase- 
distribution analysis allows the study of characteristics of the waves irradiated from such 
sources [2-61. 

This paper analyses phase dynamics in the one-dimensional oscillating FitzHugh- 
Nagumo model, which is widely used as a prototype model for simulation in physics and 
biology [7-111. As well as synchronization of oscillations in a spatially uniform medium, 
there can exist a stable wave-break. This break exhibits a higher frequency of oscillations 
than the rest of the medium, i.e. it becomes a source of waves. There is also a band of 
system parameters where a single phase-break loses stability, which results in the chaotic 
oscillations. 

2. MODEL AND CALCULATIONS 

We use the modified FitzHugh-Nagumo equations: 

aE/at =V2E + f(E) - g 

adat = (k(E - a) - &h(E), 

(la> 

(lb) 

where E and g represent the potential and slow currents that occur in excitable cells [7]. 
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We use the piecewise linear function f(E) consisting of three lines: inclined, g = E - a, as 
0 < E < 1, and two vertical ones, E = 0 and E = 1 (see the nullcline E, = 0 in Fig. 1). The 
shape of f(E) resembles the classical one [7], but the function used is more convenient for 
calculations and analysis [ll]. The other model parameters are: k = 2.5, z(E) = (4, as 
0 < E < 1, and 20 otherwise}. The value of the parameter a is given in the figure captions. 

Calculations have been performed in a one-dimensional array of 250 elements by using 
the explicit Euler’s method of integration with space- and time-steps, h, = 0.5 S.U. and 
h, = 0.025 t.u., respectively. On the boundaries the Neumann’s ‘no flux’ conditions were 
imposed. Test runs with h, = 0.25 S.U. and h, = 0.006 t.u. show a minute deviation in the 
values of space- and time-parameters measured. This confirms the reliability of the 
computational method used. 

Initial phase distributions were generated by the following procedure: first, in a zero- 
dimensional medium the period of bulk oscillations, T, was determined. Then, during one 
more period, two arrays, E,[i] and g,Ji], each of 1000 elements, were filled with the values 
of the variables E and g at the time moments of iT/lOOO, i = O-999. The index i of these 
arrays represents the phase of oscillations, 4. Finally, the desired distribution of the phase 
was created by using these phase-scaled arrays E. and go before the calculations started 
(we used piecewise phase distributions, whose profiles are shown in the lower part of 
Fig. 2). 

Fig. 1. On the (E, g) coordinate plane of equation (1) nullclines E, = 0 and g, = 0 in the spatially uniform case 
(V2E = 0) are depicted. Any point P on the plane can be located by introducing either Cartesian coordinates 

(E, g), or polar ones (r, $), where angle I$ presents the phase of oscillations. 
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Fig. 2. Evolution of small phase disturbances. The upper part of the figure presents a space-time distribution of 
the phase 4: each row of this chart depicts a phase distribution at the appropriate time moment, t. Time ranges 
from 0 time units (the lowest row) to 220 t.u. (the upper one). Parts (a), (b) and (c) show the response of the 
system to different initial disturbances (their profiles are shown in the low part of the figure). Note that in (a) and 
(b), disturbances identical in shape but different in sign establish the alternative final phases. The period of bulk 
oscillations was T = 43 t.u., A$J = 0.25T, the parameter a in equation (1) was 0.15; the other model parameter 

values are given in the text. 

It should be noted that the procedure given above is convenient for setting up the initial 
phase distribution, but not for measuring the phase during calculations. For this we use 
another method of phase determination: the phase at a point P(E, g) is assumed to be 
numerically equal to the angle $, 0 < C#J < 2rr, as shown in Fig. 1 [2]. The angle C$ at each 
point of the tested medium was calculated as tan-’ (g/(E - a)) (see Fig. 1). This definition 
of the phase is used in Figs 2-5, where the value of the phase $ in range [0, 27r] is coded 
by the darkness of the appropriate part of the figure. 

3. RESULTS 

3.1. Small amplitude disturbances 

Figure 2(a) shows the evolution of small local disturbance with positive phase shift, 
A$ = 0.25 T (i.e. oscillations here are behind oscillations of the remainder of the medium). 
It is seen that such a phase-lag rapidly vanishes. Note that, because of the nonlinearity of 
the system, the points of the perturbed region ‘overshoot’ distant points, forming a site 
slightly leading in phase (see Fig. 2(a)). 

When the imposed disturbance is the same in shape but negative in sign, A# = -0.25T 
(Fig. 2(b)), Y h s nc ronized oscillations are also established in the system, but their phase 
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differs. The phase established in both cases proved to be that of the phase-leading part of 
the medium: as a positive disturbance is imposed (Fig. 2(a)), the phase established is the 
phase of oscillations far from the disturbance (neglecting ‘overshooting’ described above); 
as A4 < 0 (Fig. 2(b)) phase-leading points are located inside the perturbation. These 
phase-leading points impose the phase of oscillations that is finally established in the 
medium. 

The process of phase synchronization is presented in Fig. 2(c): the medium was initially 
divided into two parts with the phase shift, AC#I = 0.25T, so that oscillations in the left of 
the medium were behind those in the right. It is seen that with time, points on the left of 
the medium synchronize their oscillations with the leading phase points on the right side. 
This process may be described in terms of a wave of synchronization, ‘dephasing wave’, 
spreading in the left-hand direction from the place of a phase step (see Fig. 2(c)). Such a 
wave occurs because of the nonlinearity of the system (note, that in a linear system the 
phase-step would be simply blurred due to diffusion). 

3.2. Phase breaking, wave sources and chaos 

When a large initial phase shift A@, A$J 2: 0.5T, was imposed, no synchronization of 
oscillations was observed, but a stable phase-break arose (Fig. 3). After transient processes 
have been completed, the medium on the left- and right-hand sides of the break oscillates 
with a phase-shift equal to half of the period of oscillation. The frequency of oscillation of 
the break proved to be 1.5 times as great as that of the homogeneous oscillations. So the 

Fig. 3. Break of the phase: (a), (b) and (c) are the space-time distributions of E, g, and phase, 4, respectively. 
The period of oscillations of points adjacent to the break, Tb, is less than the period of bulk oscillations, T, and 
equals 0.687’. Because of the high frequency, the break becomes a source of waves irradiated in both directions 
with the phase-shift 0.5T’. The break occurs under the same conditions as in Fig. 2(c), except that A# was 0.5T. 
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high frequency of the break resulted in anti-phase waves, irradiated by the break in the 
opposite directions (Fig. 3). 

Figure 4 shows two breaks placed close together. This pair of breaks forms a wave 
source that sends in-phase waves in both directions. Meanwhile, oscillations that occur 
outside the source are out-of-phase in comparison with those inside. On the boundary of 
the source, i.e. at the place where the break is situated, oscillations of double frequency 
were observed. Such double-frequency oscillations are, of course, present in case of single 
break (Fig. 3) as well. 

Evolution of the breaks proved to be affected by the value of the parameter a (see Fig. 
1). As a is diminished, a single break loses stability and starts to divide itself. As a result, a 
stair of breaks appears (Fig. 5) leading to chaotic oscillations: during the time for four bulk 
oscillations, the entire system is filled with chaotic oscillations of high frequency. 

4. DISCUSSION 

We have shown that an initially inhomogeneous phase distribution results in either 
phase-smoothing (Fig. 2) or phase-breaking (Fig. 3). The former phenomenon is well 
known and has been discussed in the literature [2-51. On the other hand, phase-breaking 
in such a distributed system has not been reported previously and seems to be nontrivial. 
The phenomenon is of interest because the frequency of the phase-break is higher than that 
of bulk oscillations of the medium. Apparently, this makes the break become a source of 
waves. Similar wave sources observed in a discrete medium were called ‘echo sources’ [12]. 
Although, in contrast to the phase-breaks, echo sources are restricted to discrete media, 

Fig. 4. Wave source in a spatially uniform medium. Symmetric initial conditions, as in Fig. 2(a) with A@ = OST, 
result in the formation of the source of waves (T, = 0.68, T = 28 t.u.. & = 72 s.u.). All system parameters arc as 

in Fig. 3 
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Fig. 5. Transition to chaotic oscillations. The same initial phase-distribution, as in Fig. 2(c) with A@ = O.ST, 
causes chaos to appear in the case of small parameter a = 0.1 (see equation (1)). Under these conditions single 
break, as in Fig. 3, is no more stable but divides into many breaks that fill the medium. Parts (a), (b), and (c) 

show the distributions of E, g, and #I, respectively. 

the essential feature of their appearance is a finite phase shift between neighbouring cells. 
In a continuous medium similar regimes were studied by Yakhno and were called ‘front 
division’ [13,14]. Yet these sources require a special symmetry of the system to be stable 
1141. 

Local wave sources, such as ‘target patterns’ or ‘focal sources’ are the origin of 
pathological regimes in the heart [15] and pattern-formation in oscillating chemical 
reactions [16-181. The problem of the spontaneous appearance of such sources has been 
widely discussed in the literature [2-6,17-201, and most theories consider the presence of 
impurities to be the key reason for the appearance of wave sources [2-6,201. Here it is 
shown that such wave sources can be initiated in the homogeneous medium when an 
initially nonuniform phase distribution is imposed. 

To find out in laboratory experiments whether (a) a wave source arose because of 
impurities, or (b) the nonuniform initial phase distribution was the reason for its 
appearance, it is sufficient to measure the character of oscillations near the centre of a 
source: in the latter case the double-frequency oscillations should be observed. 

The study of oscillation dynamics in systems with nonuniform phase distribution is also of 
interest when in the context of the light-sensitive BZ reaction as a system for image 
processing [21]. As has been shown, the phase distribution formed by a short-period light 
exposition is blurred in time, and the system synchronizes its oscillations (cf. Fig. 2). It was 
also observed that, at the place of a sharp gradient of the light intensity (i.e. at the place of 
sharp phase-gradient), wave sources appeared, highlighting this boundary [21]. The origin 
of such sources has not been investigated in detail, but the mechanism of their initiation at 
the location of large phase-gradient can be identical to that described above. 
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The similarities between the processes observed in the Belousov-Zhabotinsky reaction 
and described here seem to be not accidental. We believe that the initially nonuniform 
phase distribution plays a significant role in the dynamics of other excitable media as well. 
It should be also noted that the system, with a piecewise linear nonlinearity, may be 
studied analytically. 
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