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Abstract 

The term "pulsating wave" has been introduced by Kerner and Osipov for an unmoving wave whose shape changes 
periodically. Such waves are known to occur in reaction--diffusion systems where stationary waves become unstable. The 
present paper investigates numerically the properties of pulsating waves in a modified FitzHugh-Nagumo model. In the range 
of the model parameters the pulsating waves have been shown to appear in the intermediate region between the ones where 
stationary and propagating waves occur. The mechanisms of the "pulsations ~ are discussed in terms of the wave front and 
the wave back dynamics. 

1. Introduction 

The investigation of  nonlinear systems is mostly 
stimulated by problems in mathematical biology. Sim- 
ulation o f  information transfer in biological systems 
as well as simulation of  pattern formation leads to 
consideration of  a reaction-diffusion system of  the 
following type [6,8], 

zuOU/Ot = 12 A U -  q(U, W) ,  

zwOW/Ot = L 2A W - Q ( U ,  W) .  (1) 

These equations describe an excitable medium. The 
function q (U, W) is sigmoidal; the function Q(U, W)  
is monotonic; these functions have one crossing point 
in the phase plane ( U, W) corresponding to a station- 
ary state of  system ( 1 ). Solutions, U (x, t), W (x, t), 
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are searched for in a domain with von Neumann 
boundary conditions. The variables U and W usually 
denote concentrations of biochemical reagents, called 
"activator" and "inhibitor" respectively [8]. These 
terms mean that U is autocatalytically involved in 
its own production, but W causes a decrease in the 
production of U. 

Systems of type (I) have two well known types 
of solutions: propagating waves [6] and stationary 
waves [5,11 ]. Propagating waves occur in models of 
information transfer. They describe the propagation 
of excitation waves, for instance, in the Belousov- 
Zabotinskii reaction, nerve or muscle tissues. Sta- 
tionary waves (or "dissipative structures" [8] ) occur 
when pattern formation is simulated. They describe, 
for instance, morphogenetic patterns. 

A third type of solution of the system (I) has been 
found recently [I0,12 ]. It is convenient to consider 
this solution as a destabilized stationary wave whose 
fronts become movable and exhibit "breathing mo- 
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tion". As a result the width (and/or  the amplitude) 
o f  the wave oscillates. This solution has been called 
"layer oscillations" in Ref. [ 12 ], or "pulsating wave" 
in Ref. [10]. There are examples of  real biological 
patterns similar to pulsating waves. For instance, hy- 
droidal polyps can exhibit "pulsations" when their 
sizes change periodically in the course of  time [4]. 

Pulsating waves were predicted in Ref. [9] where 
the stationary solutions of  ( 1 ) were shown to become 
sensitive to periodical noise under the following con- 
ditions, 
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f ( U )  = SU, 
= - K v ( U -  a), 
= s ( u  - 1), 

where a = r v / r w  and ~ = I/L.  The frequency of  the 
wave pulsations was found to be 

to ~ V/~/zuzw.  (3) 

The results of  an analytical investigation of  the pul- 
sating wave reported in Ref. [12] confirm both (2) 
and (3). In addition, it was shown in Ref. [12] that 
pulsating waves occur via a Hopf  bifurcation of  the 
stationary waves when a ,,~ e, and the amplitude of  
pulsations increases as a decreases. 

The goal o f  the present paper is to numerically in- 
vestigate pulsating waves. In this way we check esti- 
mations (2) and (3) and study some other wave prop- 
erties. The qualitative mechanisms causing pulsations 
and transitions between wave regimes is also consid- 
ered. 

2. Model 

We have used for calculations the extension of  the 
Fi tzHugh-Nagumo equations as used in Refs. [ 5,11 ], 

OU/Ot = 0 2 U / O x  2 - f ( U )  - W, 

OW/Ot  = O O 2 W / O x  2 + ( K w U  - W ) / z .  (4) 

The term DO2W/Ox 2, responsible for the inhibitor 
diffusion, is known to be necessary for both stationary 
and pulsating wave occurrence [7,8]. Instead of  the 
ordinary cubic function f (U) [ 6 ] we used a piecewise 
linear function [ 14 ], 

i f U  ~< 0, 
i f 0 <  U <  1, 
i f U  >~ 0, (5) 

in the limit that S is infinite. Because S is infinite 
f (U) is defined only on the interval 0 < g < 1. 

Calculations were performed in a one-dimensional 
array using the explicit Euler method of  integration 
with a space step hx = 0.5 and a time step ht = 0.025 
[14]. Von Neumann's  "no flux" conditions were im- 
posed on the boundaries of  the array. Test runs with 
hx = 0.25 and ht = 0.006 show a minute deviation 
in the values of  the space and time parameters mea- 
sured. This confirms reliability of  the computational 
method. For calculations we have used the following 
basic set of  parameters: a = 0.05,Ku = l ,Kw = 
1, z = 8, D = 3.2, the size of  the medium is M = 70. 

3. Results 

Views of  the pulsating waves are shown in Fig. 1. 
A stimulation of  the central region causes the exci- 
tation propagating from there. The propagation rate 
is not constant, it changes periodically from positive 
to negative. As a result, the size of  the excited area 
changes as well, and pulsations are observed. Com- 
parison of  the pulsating waves presented in Figs. 1A 
and 1B shows that their shapes for piecewise and cu- 
bic functioris f (U) are qualitatively similar. 

Calculations have shown that pulsating waves oc- 
cur and are stable when the inhibitor diffusion (D) is 
in a limited range,/)2 < D < D~. If  the diffusion D is 
higher than the critical value D~, classical dissipative 
structures are observed. On the other hand, a decrease 
of  the diffusion D to below the critical value/)2 makes 
the pulsating waves unstable; they vanish after a few 
pulsations. A further decrease of  D to below a third 
critical value D 3 leads to the appearance o f  propagat- 
ing waves. Thus, four different wave regimes in sys- 
tem (4) can be observed as the inhibitor diffusion D 
is varied. Fig. 2 shows the planes z-D, and a - D  di- 
vided into four regions by curves D~, D2, and D3. One 
can see that an increase in r (Fig. 2A) or a decrease 
in a (Fig. 2B) both cause an increase in the diffusion 
critical values. 

The transitions of  the wave regimes when D crosses 
critical values D~ and D2 can be explained by the de- 
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Fig. l. View of  pulsating waves in system (4) (the solutions U(x, t) are presented). The medium in (A) is described by the 
piecewise function f (U)  (5), in (B) by the cubic function f (U)  = 4 . 8 U ( U - a )  ( 1 - U). D = 3.2 in (A) and D = 2.8 in (B). 

A - stationary wave; ~ - pulsating were: 
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Fig. 2. The range of  the model parameters is divided into four regions where stationary, pulsating, unstable or propagating 
waves are observed. These regions in the planes ~-D (A), and a-D (B) are shown. 
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Fig. 3. Minimal and maximal wave sizes (during a pulsa- 
tion) versus inhibitor diffusion, D (wave size is measured 
as a size of the region were U = 1 ). It is possible to see 
that the mean wave size, Sin, does not change. Stable pul- 
sating waves are observed when D 1 < D < D 2. If D < D 1 
the waves are unstable (they vanish in the course of time), 
and if D > D 2 the waves are stationary. 
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pendence of the amplitude of the pulsations on the 
inhibitor diffusion D, shown in Fig. 3. When D = D E 
the amplitude is so high that the wave size in the phase 
of its maximal constriction is about zero and a small 
increase of the pulsation amplitude makes the pulsat- 
ing wave vanish. The increase of the inhibitor diffu- 
sion to the value D = Dl causes the pulsation ampli- 
tude to decrease to zero, and hence pulsating waves 
become stationary waves. 

The effect of the inhibitor diffusion on the period of 
pulsations (Tp) and on the wave mean size (Sm) (half 
of the sum of the minimal  and maximal wave sizes, 
see Fig. 3) is negligible. However, further calculations 
have shown that Tp and Sm increase linearly with in- 
hibitor relaxation time r (see Fig. 4A). It has been 
found that an increase of the medium excitability (by 

a decrease of the threshold of medium excitability a 
or of the slope K u  of the function f (U) )  also causes 
an increase in Tp and Sin. 

Calculations have shown that pulsating waves initi- 
ated in the same medium are influenced by their in- 
teractions. Similary, a solitary wave is influenced by 
the medium boundaries. Since von Neumann  bound- 
ary conditions are used the influence of the boundary 
is similar to that of an imaginary wave located at the 
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Fig. 4. (A) Dependence of the pulsation period and the wave mean size on the inhibitor relaxation time, z. (B) Dependence 
of the period and the amplitude of pulsations on the size of the model medium. 



same distance but outside the boundary. As a result 
the pulsating wave parameters depend on the medium 
size (see Fig. 4B). The amplitude of  pulsations de- 
creases with a decrease of  the medium size, and there 
is a critical size of  the medium when the amplitude of  
pulsation becomes zero and a stationary wave occurs. 
I f  the medium is large enough, the boundaries do not 
influence the pulsation. 

4. Mechanism of the wave pulsation 

5. Discussion 

The qualitative explanation of  the pulsation phe- 
nomenon is based on the following statements: 

( l ) The velocity o f  the wave front decreases when 
the inhibitor concentration, Wfr, increases on the wave 
front [6 ]. 

(2) The inhibitor is produced in the excited region 
and destroyed outside of  it. 

(3) The diffusion of  the inhibitor is faster than that 
of  the activator (D > 1 ). 

(4) The rate of  inhibitor kinetics is less than that 
of  the activator (z > 1 ). 

Expansion of  the wave leads to an increase of  the 
inhibitor production. The inhibitor diffuses quickly 

and its concentration on the wave front increases (see 
Fig. 5A). It causes a decrease of  the front velocity, so 
that after some time the wave stops (this phenomenon 
is known as "lateral inhibition" [ 8 ] ). This stationary 
wave is not stable. Due to the slow production of  the 
inhibitor the front velocity decreases further and then 
becomes negative (the wave front becomes the wave 
back). Now the wave constricts causing a decrease of  
inhibitor production (Fig. 5B). The inhibitor amount 
decreases, and after some time the inhibitor concen- 
tration on the wave back begins to decrease as well. 
As a result, the wave back velocity increases. When 
it becomes positive the wave expands again. The de- 
scribed processes repeat, producing the pulsations. 

U,W 

Statements ( 1 ) and (2) in the previous section are 
common for the excitable media. Statements (3) and 
(4) are specific to this model and are responsible for 
the pulsations. Estimation (2) expresses the latter two 
statements. This estimation rewritten for system (4) 
gives that pulsating waves should occur if 1 < D < z. 
The respective region obtained numerically and pre- 
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Fig. 5. Profiles of variables on the half of the pulsating wave given in Fig. 2A. Seven pairs of profiles are taken out with an 
equal time interval during a pulsation. The U- and W-profdes forming each pair are distinguished by the number near their 
crossing point. Pairs 1, 4, 7 are the profiles of the stopped wave; 2 and 3 the profiles of the expanding wave; 5 and 6 those 
of the constricting wave. The full line depicts the dynamics of the inhibitor concentration on the wave front, Wfr, during a 
pulsation period. 
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sented in Fig. 2A qualitatively confirms it. The pulsa- 
tion period in numerical experiments is in qualitative 
agreement with estimation (3): T ~ 2nD°'25z °'75. In 
our computations we have detected no change in the 
pulsation period by variation of  inhibitor diffusion D, 
and the almost linear dependence of  the period on z. 

We have found a new regime of  unstable pulsat- 
ing waves when D3 < D < D2 (see Fig. 2). It proves 
that no solitary excitation can exist infinitely long in 
a medium of  this regime. Furthermore, propagating 
waves occurring in system (4) close to the boundary 
(D = D3 ) of  this regime exhibit unexpected proper- 
ties, for example, waves moving towards each other 
do not annihilate but reflect and move in opposite di- 
rection. 

Pulsating waves, similar to those studied here, 
are observed in an open chemical system in Refs. 
[1,3,13]. However, the mechanism of pulsations in 
Refs. [1,3,13] is different from the mechanism con- 
sidered in the present paper. In Refs. [1,3,13] the 
pulsations occur due to an externally imposed con- 
centration gradient in a system where diffusion of  
both variables is equal. In contrast, the pulsations 
considered in our paper are supported internally due 
to the difference in diffusions and relaxation times of  
the variables. 
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