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Ahstrnct-We studied the behavior of a vortex in an excitable medium having a stepped inho- 
mogeneity, which is represented by a system of two coupled fibers. Numerical experiments were 
performed and analytical expressions were obtained for the determination of vortex drift velocity as a 
function of the parameters in the FitzHugh-Nagumo model. 

INTRODUCTION 

This paper is concerned with the behavior of a vortex in an inhomogeneous excitable 

medium that consists of two nonidentical coupled fibers. The existence of rotating vortices 

is common to a great variety of active media. Vortices in physical, chemical and biological 

media are the main cause of instabilities in normal wave regimes and of chaos in the 

initially ordered media. The most dangerous disturbances of cardiac rhythm-paroxysmal 

tachycardia and fibrillation- are associated with the appcarancc of vortices [I]. 

The simplest possible medium where vortices can occur is a system of two coupled fibers 

[2, 31. In particular, such a system can be formed by the Purkinje fibers in the heart or by 

trabcculac in the myocardial tissue [J]. The vortex in this system is an impulse rotating 

along a closed trajectory. In a previous work [S], the properties of vortices were studied 

theoretically and numerically for the case of a homogeneous medium. However, the vortex 

behavior in inhomogeneous media is important because it is at inhomogeneities that 

vortices originate and vanish [6]. 

In a system of two coupled fibers, two basic types of inhomogeneity attract the greatest 

interest, longitudinal, along the length of identical fibers, and transversal, when both fibers 

are homogeneous but differ in their properties, for instance, in refractoriness. Systems 

having a transversal inhomogencity are analogous to two-dimensional media with a stepped 

inhomogeneity. 

The behavior of a vortex in a system with a longitudinal inhomogeneity was studied in 

[3]. Such a vortex was shown to drift in the direction of its increased period and the drift 

mechanism was investigated. Systems with a transverse inhomogeneity have been much less 

well studied. It has only been shown [7] that the drift of a vortex in such systems is, in 

principle. possible, but no detailed investigation was carried out. 

The present work is aimed at studying systematically the behavior of a vortex in a system 

of two coupled fibers with a transversal inhomogeneity. We consider two types of 

inhomogeneity. with respect to medium refractoriness and with respect to excitation 

propagation velocity, for different impulse duration and coupling coefficients. We present 

an axiomatic approach for the drift of a vortex (Section l), the results of numerical 
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investigations (Section 2) and analytical estimates 

FitzHugh-Nagumo model (Section 3). 

for the vortex drift velocity in the 

1. ASIOAIATIC APPROACH TO .A PROBLEM OF \.ORTES DRIFT IS A SYSTEhI OF TW’O 

COUPLED FIBERS M’ITH A TRANSVERSAL INHOJIOGESEIT~ 

Consider what happens to a vortes in a system of two coupled fibers. proceeding from its 

simplest properties. As follo\vs from [2]. such a system is characterized by the following 

basic parameters: velocity of a single wave. I/,,,,. velocity of a collective wave. V,,,,,. and 

medium refractoriness, R. Consider first the case-of a homogeneous medium (Fig. 1). 

Let a wave propagate only along fiber 1. At a certain moment we connect the two fibers 

and the wave of excitation passes to the second fiber (point ,4). hvhere t\vo oppositely 

propagating waves (I and 2) are thus formed (Fig. Ic). Wave 1, together with the leave of 

the first fiber. forms a collective wave and wave 2 remains single. After some time. the 

single wave will be able to excite the first fiber (point B in Fig. Id). This will occur tvhen 

the first fiber just beneath the single wave recovers from refractoriness. After point B is 

escitcd, two waves will originate from it (Fig. lc). one of them being single again. After 

time T equal to the refractory period of the medium at point B, the \vavc will conic back 

to point ,4 and bvill bc able to excite two waves on the second fiber. 

Thus, in a homogeneous system of two coupled fibers a vortex is a single wave 

circulating bct\vccn points t\ and 8 (Fig. I) at velocity V,,,,, and period T equal to the 

medium refractory pcriocl R. If the fibers differ in refractoriness. the stcacly state 

circulation of the wave bccomcs impossible [2]. Let us &scribe this process at grcatcr 

Icngth. 

Let the rcfractorincss of fiber I (Fig. 2) bc R, and of fiber 2, R2, K, < I<,. The single 

wave then makes a cycle from point ,4 to point 11 and back for time R, and has to run 

further along the first fiber. since K2 > R,. By the time it has rcturncd to point A, the 
scconcl fiber has not yet rccovcrcd (Fig. 2). For the single wave to bc able to pass again to 

the scconcl fiber. the lottcr must recover from refractoriness. This occurs only if the interval 

bctwccn single wave I nncl collcctivc wave 2 (SW Fig. 2) t-caches the refractoriness value of 
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the second fiber, R1, i.e. only if the single wave lags behind the collective one, 

Kng < v,,,. In the case of Vslng = Vcoll, for example in axiomatic models of excitable 

media [6]. wave 1 can never pass to the second fiber and the vortex vanishes after emitting 

just one wave. As shown theoretically and numerically [S], in realistic models of excitable 

media V,,,, < V,,II and, therefore, wave 1 covers a distance L along the first fiber and then 
passes to the second one. The process described recurs in each turn-over of the single wave 
and causes the vortex to drift. 

The drift of a vortex in a system of two coupled fibers differing in refractoriness was 
considered in [2] and an equation for the drift velocity was obtained. Here we outline the 
derivation of this equation. 

The distance L travelled by a single wave during one period is easily found to be: 

L = AR*V,,,,*V,,,,/AV, (1.1) 

where AR = R2 - RI. A V = V,,,, - Vslnp. 
The time interval between successive passages of the single wave to the second fiber (at 

point A and C) is 

T = R, + AR*V,,,,/AV. (1.2) 

Given L and T, the drift velocity, Vdrr in the system considered can easily be obtained 

V,, = L/T = V,,,,/(l + AV*R/(AR*V ‘,,,, )). (1.3) 

It follows from the above consideration that the direction of the drift is determined by 

the following vector relation 

V,, = [c#gratl R], (1.4) 

where OI is the vector of the angular velocity of vortcs rotation and gr;ld R is the vector 
orthogonal to the fiber and directed toward the grcntcr rcfractorincss. 

If the system under examination is, in addition, inhomogcncous with rcspcct to excitation 

propagation velocity. i.e. the velocity of :I single wave in the first fiber, V,,,,FI, differs from 
that of the second fiber, Vllrlp2, simple analysis shows that equation (1.3) remains valid but 

one should substitute into it V*illgI for the cxc of Fig. 2 or I/,,,,g of the fiber whose 

refractoriness is lower in the gcncral case: 

Vdr = V,,,,,,/(l + Av*R/(AR*V,,,,,)). (1.5) 

From (1.5) it follows that: 

I. If the fibers differ only in wave velocities and not in refractoriness (AL’ # 0, AR = 0). 
then V,,, = 0, i.e. the vortcs rotates steadily and does not drift. 

2. Velocity V,, increases with increasing degree of inhornogcncity. AR/R, and at large 

A R/R it reaches a saturated level: 

VW,, = v,,,,,. ( 1.6) 

3. The drift velocity increases with decrease in the difference between the value V,,,, :lnd 
V, ,,,, and when A V/V,,,,, -+ 0 the drift velocity V,, - V ,,,, B. 

Equation (1.5) describes the dependence of V,,, on &her important parameters of nn 
escitable medium also, such x the coefficient of coupling bctwcen the fibers. P, and the 
duration of the excited state. r. 

4. Velocity V,, must fall with increasing I’. Indeed, the increased coupling between the 

fibers, according to [ 2. 51, Icads to a dccrense of I/,,,, and therefore. by equation (1.5). to 
n dccrcasc in V,,. 
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5. Velocity V,, is independent of the duration of the excited state, t. 
6. A drifting vortex. just as a stationary one, ‘emits’ collective waves. However. in the 

case of a drifting vortex, the frequency of collective waves in different directions is not the 
same. In the direction of drift of a vortex, collective waves follow with a period equal to 
the larger refractory period: 

Tf = R2 (1.7) 

In the opposite direction. the period of collective waves is longer and depends on V,,, 
according to Doppler’s effect [2]: 

Tb = R31 + v,r/vco,,)/(~ - VcdVcod (1.8) 

To verify these conclusions, numerical experiments were carried out, which are described 
below. 

2. RESULTS OF NUJIERICAL EXPERIMENTS 

Here we present the results of numerical esperiments on a FitzHugh-Nagumo model 
describing a system of two coupled fibers [3]. We considered a simple ohmic coupling 
between the fibers. The active medium under study is a system of equations: 

aI!Y, a%, - = - - f(E,) + P( EJ - E,) - g, ar ax2 

as, - = E( E‘,yyE, - &,) 
aI 

al!zz a%‘? -= 
ar - - /(.!YJ + P*( E, - E?) - g: 

a.r ? 

as> 

(2.1) 

where I’ is the paramctcr dctcrmining the coupling between the fibers. 15 and y are the 
vnriablcs characterizing the state of each point of a fiber, j’(E) is the nonlinear N-shaped 
function, f(E) is the paramctcr determining the temporal behavior of the slow variable s, 
i.e. the duration of the excited state and the duration of the refractory tail of the wave. 

The calculation was pcrformcd for the piecewise linear function f’(E): f(E) = 
-C*( .E - a) if 0 < E < 1, E = 0, if .E 5 0, and E = 1 if .E 2 1, (where C = 1, 0 = 0.0%~). 
This shape of function arises as a limit transition for function 

I’(E) = s*E 

! 

when E 5 0 
-c (E - 0) when 0 < E < 1 (2.2) 

s*(.E - 1) when E 2 1 

where S tends to infinity. As wc shall see later (Section 3.) this shape is very convenient 
for analytical studying. 

The paramctcr E(E) was defined as follows: 

E(E) = FJ 

I 

E, when E 5 0 
\vhen 0 < E < 1 (2.3) 

E.J when E 2 1 

The parameter E, specifies the duration of the refractory tail. Ed the duration of the 
excited state and F: << 1. 
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A more detailed description of the model and of the experimental procedure is given in a 

previous work [_‘I. The model was made inhomogeneous either in the quantity E, 

characterizing the medium refractoriness or in the diffusion coefficient D determining the 

velocity of wave propagation. Numerical experiments were performed using Neuman 

boundary conditions aE/3n = 0. Numerical integrations in a rectangular coordinate system 

were by the esplicit Euler method with a space step of Ax = 0.5 and time step of 

At = 0.0-l. 

The vortex was obtained as follows: an excitation wave was initiated to propagate along 

one fiber (Fig. la). After some period of time the couplin_g between the fibers was switched 

on. As a result. the excitation wave invaded to the second fiber (point A) (Fig. lb) and 

two excitation waves (1 and 2) moving in opposite directions along fiber 2 occur (Fig. lc). 

The wave on the first fiber and wave 1 (Fig. lc) is called a collective wave: wave 2 is called 

a single reflected wave. With the further passage of time, the single wave will be able to 

reinvade the first fiber (point B in Fig. Id). This will occur when the first fiber directly 

opposite the single wave has recovered and is able to be re-excited. After excitation of 

point B, two waves on the first fiber appear (Fig. le). One of these waves, again, will be 

single. In time this wave. again. will be able to generate an excitation wave on the second 

fiber (Fig. If). 

Thus, in a system of two coupled fibers, the vortex is a single wave rotating alon_e a 

closed trajectory. The duration of one cycle is the period of the vortex, and region of the 

vortes circulation (the distance between the point r\ and B) is the vortex size. 

Numerical csperiments have shown the following: 

1. A vortes in a system of two coupled fibers with different rcfractorincss displays drift. 

The drift direction dcpcnds on the direction of rotation and is dctcrmincd by equation 

(1.4). 

2. The drift velocity V tlr grobvs with increasing inhomogcncity of the medium. In Fig. 3 

the velocity V,,, is plotted against the quantity Af</R characterizing the dcgrcc of 

inhomogcncity in rcfractorincss. It is seen that V clr grows with AR/R and rcachcs a 

saturation at A R/R = 1. The shape of the plot fits equation (1.3). 

3. Velocity V,,, is indcpcndcnt of the duration of the cxcitcd state. Figure 3(a) presents a 

family of curves for various durations of the cxcitcd states. T. It is seen that V,, remains 

Fig. 3. Vortex drift wlociry as n function of IIIC dcgcc of inhomopznciry on rcfractorincss AK/R,. (a) For various 
durarionr of thc cscitcd state: I. r = 0.7 (RI = 35.1): 7. r = 6.0 (K, = 41.4): 3. T = 13.x (H, = 4x3): P = 0.15. (h) 
For various cocff&wts of coupling bctww fiber\: I. I’ = 0.15: 2. I’ = 0.2: 3. P = 0. I (K, = 41.4 for P = 0.15, 

r = 6.9). 
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practically unaltered when of the duration of the excited state increases by more than a 
factor of 10. This is also in accord with the results of qualitative theory. 

4. Velocity V,, falls with an increase in the coupling coefficient. In Fig. 3(b). there is 
shown a family of the curves characterizing the dependence of I/,, on AR/R for different 
values of the coupling coefficient P. It is seen that a I.5 or 2-fold increase in P causes the 
velocity to drop by 2040%. The maximum velocity also decreases at a high degree of 
inhomogeneity, which agrees qualitatively with the results of Section 1. 

5. As distinct from theory. in numerical experiments the drift of a vortex in a medium 
having a velocity gradient was obtained even in the absence of a inhomogeneity in 
refractoriness. The direction of drift depends on the direction of vortex rotation as follows: 

V,, = [w*grad v] (2.4) 

where w - vector of the angular velocity of rotation and grad v-vector orthogonal to the 
fibers and directed toward the fiber with a higher velocity. 

Figure 4 shows the dependence of velocity V,, on the escitation propagation velocity 
inhomogeneity. It is seen that when the inhomogeneity changes sign. there is a change in 
the direction of drift. The velocity V,, grows with increasing inhomogeneity, remaining. 
however. far below the value observed in the case of equal degree of inhomogeneity in 

rtfractoriness. Thus, V,, q 0.1 at AV/V,,,,, = 0.4. being about one-fifth as large as the 
vortex velocity for the corresponding degree of inhomogencity in refractoriness (cf. Figs 4 

and 3). 
6. The pcriocl of collcctivc ~vavcs emitted by a drifting vortes in the direction of its drift. 

7‘(. agrees well with the vnluc of the refractory period ot’ the fihcr having a greater 
rcfracrorincss. R:. Thus, TI = 4-L. 1 at R, = 47.5. The period of collcctivt W;I~CS propagat- 

ing in the opposite clircclion is T,, = 88.6, which is also consistent with the value obtninccl 

from equation (I .S). T,, = ST.0 (V,,, = 0.3X. V,,,,, = I .206). 

The construction ot’ ;I slricl analytical theory of the drift ot’ the vortices in hctcrogcncous 
cscitablc mcdi;i is very clit‘ficult problcni which needs to take into con5idcration ;I number 
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of factors (dispersion relations for wave propagation. influence of the neighboring fiber on 

the speed of the wave, nonstationarity of the processes, possible drift of the vortices even 
in homogeneous system of coupled fibers etc.). However. in some cases this problem can 
be considerably simplified. In fact. for the model (2.1) used for computer simulation the 
neighboring fibers affects each other in very simple manner. Because of the specific shape 
of the function f(E) the wave in (2.1) consists of front, back and two regions: E = 1 at the 
plateau, and E = 0 after the back of the wave. If we consider a wave with small duration 

of plateau (t << R,) than the coupling term + P*(E: - E,) will be equal to - P’E, (where 
i is the number of the fiber) for propagating front of a single wave and 0 for collective 
wave. as the value of E on the adjacent fiber equals to 0 for single and Ei for collective 
wave. It is important that the form of these terms do not change in time. So, the chained 
equations (2.1) unchain and this enables us to perform some analytical estimations and to 
improve the formula (1.3) for model (2.1). However, even in this case it is difficult to take 
care for all possible factors. So. here we shall consider the case of high heterogeneities. In 
particular, the case when the shift of the vortex L (see Fig. 2) is more with respect to the 
vortex size AB. In this case the vortex motion consists mainly of a lag of the single wave 
from the collective wave on the interval AC and the dynamics of this process will give us 
the formula for the drift of the vortex in a system of coupled heterogeneous excitable 
fibers. 

To obtain the value of the velocity we assume that VslnB = V(f), where V(f) is the 
dispersion relation and 1 is the distance between the single wave and the collective one. 
(Note that the axiomatic estimation of the drift of a vortex (Section 1) assumes that the 
velocity of a single wave, Vslnp, is constant.) 

Let us determine the velocity of drift in this case. As before (Section 1). to do this one 
needs to find the distance L between points A and C (Fig. 2) where the single wave passes 
to the second fiber and the time I taken for the single pulse to pass from A to C. Note 
that during time I the distance between the single and collective waves grows from I,, (at 
point /I) to I, (at point C) and: 

I,, = R,*V,“,, (3.1) 

1, = Rr*V,,,,,. (3.2) 

To find time I, consider the dependence of the distance between the single and collective 
waves on time: 

Hence, 

dl/df = V,,,, - V(f) (3.3) 

dl 
t= 

v,,,, - V(O 
(3.4) 

where I,, and I, are found from equations (3.1) and (3.2). 
Given t, it is easy to find the distance between the points of the successive passage of the 

single wave to the second fiber (A and C): 

L = VW,, *t + R,*V,,,, - Rz*~,,,,. (3.5) 

Now, to find the velocity of drift it remains only to take into account that the time 
needed for a single wave to pass the distance between points A and B and back is equal to 
R,. Hence, 

V,, = L/(r + R,) (3.6) 



Therefore, to determine the drift velocity of a vortex one must find L and r. To do this 

it is necessary to determine the shape of the function V(I). Let us look for the dispersion 

relation in the class of two-component relaxation models of the reaction-diffusion type. in 

such models. wave velocities are determined by the value of the slow variable at the 

impulse front [Y]. If g = 0 corresponds to the restin p state of an excitable medium, then to 
a first approsimation we can write: 

V(f) = V, + Q”g(I). (3.7) 

where C’, is the velocity of a single wave at g = 0, Vi is the velocity derivative with respect 

to the variable g. and g(l) is a value of the slow variable at the wavefront, depending on 

the distance I between the single and the collective waves. For rather a broad class of 

excitable media (where equilibrium is represented by a singularity of the saddle type in a 

complete self-model equation system). the quantity g depends on 1 (for large I) as follows 

[lO.‘ll]: 

where A is the 

observed. and 

Considering 

g(I) = G*esp(-//A) (3.S) 

eigenvalue characterizing the distance 1. on which an r-fold decrease of g is 

G is an integration constant. 

(3.S). the relation (3.7) can be written as 

V.(I) = v, + v;“G”csp(-//A). (3.9) 

Given the velocity of a sin+ wave at point A. V(I,,). the constant Vi*G can be 

cliniin:ltccl from (3.9) and the dispersion relation is written as: 

V(I) = v, - (V, - v(I,,))*csp(-(( - ,,,)/A). (3.10) 

It turns out that in this USC the csact caluc of integral (3.4) can bc obtained and the 

time rcquircd for the \vavc to pass from A to C is: 

A 
*Ill 

i 

VI - V(I,,) + (V,,,,, - v,):“csp((l, - /,,)/A) 

t = v,,,,, - v, VW,, - V(I,,) 1. 
(3.1 I) 

Thus, by substituting (3. I I) into (3.5) and (3.6). wc can find the drift velocity of ;I vortcs. 

Let us find the drift velocity for the model (2.1). For equation (3.6) to be applicable to 

nioclcl (3. I), one needs to find 1’,,,,,. V,, V(/,,). fi,. l-Z2 and A. From [5, IO]. 

1 - (1 
y=Ln-- 

(I 
(3.13) 

To find V, and V(I,,). we use the espression for the velocity of a single wave as a 

function of the g value at the forward tvavefront obtained in [S]: 

V \“,I: 
= yy* (3. I-l) 

where yn = Ln 1 - (?,,/(I,,, C, = C - P. CI,, = C*n + g/C - P. and also the expression for g 

at instant of time when a single wnvc passes to the neighboring fiber: 

g = I’ - C’fl. (3. li) 
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To find V, from (3.14), we take g = 0 and V(1,) is equal to V,_ for g taken from 

(3.15). 
According to [5. lo], the quantities R,, R2, and A can also be expressed through the 

parameters of model (2.1). namely: 

A = VcolllEI (3.16) 

R=T,+ T,+T,+ T4 (3.17) 

where: 

(3.1s) 

is the duration of the forward wavefront: 

T, = ET’* Ln x 
1 - g- 

(3.19) 

the duration of the excited state; 

the duration of the back wavefront: 

T3 = T, (3.20) 

T J = E-I* Ln &- 
I 

s+ 
(3.21) 

the duration of the refractory tail. 
Here g+ is the value of g at the front of an excitation wave found from (3.15). and g- is 

its value at the back, 

g-1 = c*(l - 2*a) (3.22) 

The value of y is found from the relation (3.13). It can see from equations (3.21). (3.19) 
and (3. I-I) that the rcfractorincss of the fibers dcpcnds from coupling coefficient. 

Substituting the expressions for R, L, V,, V(I,,) and V,,,, into (3.1), (3.2), (3.11) and 
then into (3.5) and (3.6). we find the velocity of drift of a vortex, Vdr. 

Figure 5 presents plots of V,,, as a function of the degree of inhomogcncity AR/R 

obtainccl from numerical cspcrimcnts. from analytical cstimatc (3.6), and from axiomatic 

Fig. S. Dspcndcncc of the wrtcx drift velocity on the tkgrcc of inhomo$cncity WI rofractorines AR/R,: I, in 
numerical c.xpcriment: 2. ds ohtnincd from analytical catimatc from equation (3.6): 3. 95 obtained from equation 

of the asiomatic approx-h (1.3). RI = 41.4. I’ = 0.15. r = 6.0. 



13 A. V. PASFILOV and B. N. VASIEL 

estimate (1.3) with the velocities of the single and collective waves and the refractoriness of 
fibers given from analytical equations (3.12), (3.11). (3.17)-(3.21). It is seen that the 
discrepancy between the analytical estimate and the experimental curves does not exceed 
5% of the drift velocity. It is also seen that the analytical estimate is better than the 

previous axiomatic approach. 
Analogous plots are presented in Fig. 6 for the drift velocity as a function of the coupling 

coefficient in a system inhomogeneous with respect to refractoriness. There is fairly good 
agreement between the plots for large values of the coupling coefficient. P. As P 
decreases, the agreement becomes worse. the theoretical values for V,, being above those 
obtained experimentally. This seems to be due to the fact that the vortex size (distance 
between A and B) increases when the coupling between the fibers weakens, and the fact 
that the distance between the single and collective waves increases when the former moves 
from point B to point A. which we ignored in the derivation of equation (3.6). should be 

taken into consideration. 

This work has shown that the presence in an excitable medium of an inhomogeneity with 
respect to the propagation velocity leads to the drift of a vortex. The drift mechanism in 
this case appears to be as follows. 

The refractoriness of a medium is not completely fixed, as was supposed in Section 1, 
but it depends on the strength of the applied stimulus. This effect is well known in 

physiology as the phenomenon of relative refractoriness of a medium and is usually 

described by a strength-duration curve [12]. In a medium having an inhomogeneity with 
respect to the propagation velocity, the wave length on one of the fibers is greater than on 
the other. As a result, a wave propagating along the first fiber produces a stronger 

stimulating cffcct on the second fiber than in the opposite cnsc. Therefore, the actual 
refractoriness of the second fiber is lower than that of the first one, and this gives rise to 
the drift of the vortex. 

We studied here the drift phenomenon in an excitable medium with a stepped 

inhomogcncity in rcfractorincss. Such inhomogeneities are, undoubtedly. of great interest 

in biological excitable media, in the first place, in cardiac tissue, where the possibility of 

this type of vortex generation was dcmonstratcd [13-IS]. 

FiS.6. Dcpcndcncc of [he vortex drift velocity on the coupling coefficient. Solid line. numerical experiments: 

hrokcrl Zinc. analytical data obtnincd from equation (3.6): E , = 10 for fiber I (K = 41.4 for Y = 0.15). EL = 1-I for 
fiber 2 (R = 51.6 for P = 0.15). r = 6.9. 
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The results obtained suggest that vortices caused by a stepped inhomogeneity must drift 
along its border and the direction of the drift velocity being given by equation (1.4), i.e. 
being dependent on the directions of vortex rotation and of inhomogeneity orientation. 
There is another interesting fact that comes from equation (1.4). If there are two vortices 
generated in a medium by the rhythm transformation mechanism, than, as shown in [6]. 
they will have opposite sense of rotation. In this case, besides opposite rotation, they will 
have a special orientation with respect to the inhomogeneity [6]. As a result of equation 
(1.4), such vortices must approach each other. They may then collide and annihilate. This 
process may underlay the phenomenon of the finite life-time of a vortex in cardiac tissue 

[141. 
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