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Chapter 2

Travelling Waves

The appearance of travelling waves appear in many biological phenomena such as
in embryogenesis and in chemical reactions. It is known that in Keller’s model as

described in [2] was used to describe the concentration profile of the chemoattractant

”aspartate” due to chemotaxis under presence of bacteria. Such appearance of these
waves are a result of reaction-diffusion equations which are described below

∂u

∂t
= D

∂2u

∂x2
+ f(u) (2.1)

where for a concentration of a chemical u(x, t) depending on space x and time

t, we look at the change of concentration profile over time where D represents the

constant diffusion coefficient and f(u) is the function representing the ”reaction” or

kinetic terms of u. By solving for u, we find that the solutions of u are in the form of
travelling waves, in which when graphically plotted, the shape of the wave remains
the same as we can see a ”shift”. As travelling waves solution maintain a constant

shape, we also say that the profile is ”stable”. In the absence of diffusion (when

D = 0), we define the equilibria points as solutions u to equation 2.1 when

∂u

∂t
= f(u) = 0 (2.2)

where we can define the equilibria points as ui from f(u) = 0 and the travelling

waves will be stable in a region where f ′(u) < 0.

In addition, since the solution is a travelling wave for all time, we see that the
speed of this wave will be constant. We can define the speed as c along with intro-
ducing a change of coordinates ξ as:

ξ = x− ct, u(x, t) = u(ξ) (2.3)

since speed is constant thus making ξ constant. As ξ is constant, the shape of the
travelling wave is constant thus u is also constant. Therefore, when we are finding
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travelling wave solutions of an equation, we include the substitutions

∂u

∂t
= −cdu

dξ
,

∂u

∂x
=
du

dξ
(2.4)

which therefore become ordinary differential equations in ξ. For reasons in biology,
we must bound u for all ξ. Therefore, we can rewrite 2.1 as

0 = D
d2u

dξ2
+ c

du

dξ
+ f(u(ξ)) (2.5)

and solve accordingly. We will look at a specific example of such an equation called
the Fisher-Kolmogoroff Equation in the next section.

2.1 Fisher-Kolmogoroff Equation

The Fisher-Kolmogoroff Equation is a reaction-diffusion equation of the form of
equation 2.1 as

∂u

∂t
= D

∂2u

∂x2
+ ku(1− u) (2.6)

where k and D are positive coefficients representing reaction and diffusion coefficients

respectively, and f(u) = ku(1− u). Since the coefficients k and D are constant, we

can rewrite the system with a change of coordinates

x̃ = x

(
k

d

)1/2

, t̃ = kt (2.7)

and removing the tilde for simplicity so that

∂u

∂t
=
∂2u

∂x2
+ u(1− u) (2.8)

along with f(u) being defined respectively.

To check the equilibria points, we check for solutions ui of u(1− u) = 0 in which

we see that the solutions are u1 = 0 and u2 = 1. In addition, we see that f ′(u1) > 0

and f ′(u2) < 1, thus we should look for solutions where 0 ≤ u ≤ 1.

For existence of travelling solutions, we can introduce the same variable from 2.3
where

ξ = x− ct, u(x, t) = U(ξ) (2.9)

where c is the speed defined earlier, and substituting to get the ordinary differential
equation

U ′′ + cU ′ + U(1− U) = 0 (2.10)
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with respect to ξ. We note that the travelling ”wavefront” solutions are such that
as z → −∞, U is at one end of the steady state, and as z → ∞, U is at the other
end of the steady state. They are also known as the end boundary conditions for U
for all ξ as required. Therefore, by solving the problem, we will find values of c to
show the existence of the travelling wavefront solution.

From equation 2.10, we see that the f(U) term is non-linear, therefore, we intro-

duce another substitution variable W (U) where

U ′ = W, W ′ + cW + U(1− U) = 0 (2.11)

and we check in the (U,W ) phase plane. We found earlier that the equilibria points

for u are 0 and 1 along with their stability respectively, thus we know that

lim
ξ→−∞

U(ξ) = 1, lim
ξ→∞

U(ξ) = 0 (2.12)

and the equilibria points are (0, 0) and (1, 0) respectively. We can rewrite fo W ′ as

W ′ = −cW − U(1− U), thus creating a matrix where

J =

(
0 1

−1 + 2U −c

)
and by solving eigenvalues for J at each equilibria point, we see that

λ±(0,0) =
−c±

√
c2 − 4

2
, λ±(1,0) =

−c±
√
c2 + 4

2
(2.13)

The eigenvalues for (1, 0) are both unstable as they show that (1, 0) is a saddle point.

However, we find that the eigenvalues of (0, 0) both make it stable. If c < 2, then

these eigenvalues make it a stable spiral point, and if c > 2, then the origin is a stable
node point. To find the travelling wavefront solution, we omit c < 2 as the spiral
would mean that U < 0 around the origin, which is unrealistic, thus for travelling

wavefront to exist, c > 2 only. The graph is given from [1] as follows.

Figure 2.1: Travelling wavefront solution for the Fisher-Kolmogoroff equation where
the speed c > 2. This figure is taken from [1].
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2.2 Fitzhugh Nagumo Equations

In the previous section, we looked at a quadratic non-linear form for the reaction
term. In this chapter, we will look at an example of a cubic from where

∂u

∂t
= D

∂2u

∂x2
+A(u− u1)(u− u2)(u− u3) (2.14)

where A is a positive reaction constant and u1 < u2 < u3. To find travelling
wavefront solutions, we must include

u(x, t) = U(ξ), ξ = x− ct, U ′′ + cU ′ +A(U − u1)(U − u2)(U − u3) = 0 (2.15)

and as it’s non-linear,

U ′ = W, W ′ = −cW −A(U − u1)(U − u2)(U − u3) (2.16)

where we find the equilibria points to be (0, 0), (u1, 0), (u2, 0), (u3, 0). Along with

finding the eigenvalues, we can determine the boundary conditions, ie

lim
ξ→−∞

U(ξ) = u3, lim
ξ→∞

U(ξ) = u1 (2.17)

We can then substitute to solve this by

DU ′′ + cU ′ +A(U − u1)(U − u2)(U − u3) = 0 (2.18)

As this is non-linear, we can make a substitution of U ′ = α(U − u1)(U − u3)

where α is a constant and we included the equilibria points to rewrite the above
equation as

(U − u1)(U − u3)[(2Dα2 −A)U − [Dα2(u1 + u3)− cα−Au2]] = 0 (2.19)

therefore to get non-trivial solutions, we must want

2Dα2 −A = 0, Dα2(u1 + u3)− cα−Au2 = 0 (2.20)

which therefore we can determine α and the wavespeed c as

α =

√
A

2D
, c = (u1 − 2u2 + u3)

√
AD

2
(2.21)

Therefore, we can substitute back into the differential equation, and by integrating,
we get the whole travelling wave solution

U(ξ) =
u3 +Ku1e

α(u3−u1)ξ

1 +Keα(u3−u1)ξ
(2.22)
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where K is a positive constant.
As until now, we have been looking at equations in terms of one variable. How-

ever, in biological phenomena, there are multiple factors involved in such reaction-
diffusion equations. In this section and later on in this dissertation, we will look at a

system of two non-linear reaction-diffusion equations (including cubic terms) known

as the Fitzhugh-Nagumo equation. In 1961 [3], Fitzhugh developed a model for wave

propagation within the nerve membranes by using electrical impulses. The main task
was to find out how it was made and how it works, thus mathematical models were
based upon the cells within the nerve membranes also known as neurons. However

the following year in 1962 [4], Nagumo proposed a model

∂u

∂t
=
∂2u

∂x2
− kuu(u− u0)(u− u1)− v

∂v

∂t
= Dv

∂2v

∂x2
+ e(u− v)

(2.23)

which was an improvement of the previous model of [3] as Nagumo considered dif-

fusion of the cells. In addition, it was assumed that there were no flux boundary
conditions for both u and v. The variable u is considered to be an activator for the
system while v is considered to be the inhibitor, meaning v accounts to decrease of
production of u. In addition, Dv is the constant diffusion coefficient for v and ku
and e are the positive kinetic terms for u and v respectively.

To find the stability of the system, we must make

kuu(u− u0)(u− u1) + v = 0

e(u− v) = 0
(2.24)

where we find u = v, and we can substitute so that

u[ku(u− u0)(u− u1) + 1] = 0 (2.25)

where we can immediately see that (0, 0) is a solution. The other two solutions would

be of the form

u =
u0 + u1 ±

√
u2

0 + u2
1 − 2u0u1 − 4/ku

2
(2.26)

For two real solutions to exist, we must make sure that the discriminant

u2
0 + u2

1 − 2u0u1 − 4/ku > 0 (2.27)

Since u0 and u1 are fixed, we can solve for ku as we would find for 2 real solutions,

ku >
4

(u0 − u1)2
(2.28)
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and similarly for a repeated real solution, ku = 4/(u0 − u1)2. In addition, we can

check the stability of the equilibria points as well by checking the nullclines below.

(a) One equilibrium point (b) Two equilibrium points (c) Three equilibrium points

Figure 2.2: Nullclines for equation 2.25 for each case. Blue line represents top line
of 2.24 and red dashed line represents v = u. In all three figures, u0 = 0.05 and
u1 = 1. Model parameters for ku = 3 in 2.2a, ku = 4/0.952 in 2.2b and ku = 6
in 2.2c.

Since ku < 4/(u0 − u1)2 in 2.2a, there would be only one solution which is

the origin. From the graph, we see that the origin is a stable point. Although
the stability does allow travelling waves to appear, this means that both u and v
concentrations will always be at 0, thus we will not be able to observe and change,
and therefore there will be no travelling waves observed. For 2.2b, we now see that
there is another solution apart from the origin. However, the second equilibria point
is unstable, thus travelling waves cannot appear for this equilibria point, and we
go back to the first condition in 2.2a. In figure 2.2c, we now see a total of three
solutions representing the three equilibria points. The origin is stable, but will not
produce travelling waves, and the second equilibria point is unstable. However, the
third equilibria point is stable as well. Therefore, we can see a shift from the origin
to the third equilibria point and vice versa as there will be areas of concentration at
0 and at another positive value. Therefore for travelling waves to appear, we must

have the condition that ku > 4/(u0 − u1)2.

Going back to equation 2.23, there must be other conditions as well including the
condition for diffusion. If the inhibitor diffusion is much smaller than the activator
diffusion, we will get travelling waves, otherwise, we will get patterns which we talk
more about in the next section. To check for travelling weave solutions, we shall
solve for v as the inhibitor depends upon the solutions observed in the activator
u profile. If travelling wave solutions are found for v, then we will also be able to
observe travelling wave solutions in u. For simplification, we will replace the u profile
as a rectangular profile by setting

u =

{
1, x ≤ |a|

0, x > |a|
(2.29)
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where a describes the boundaries of the medium. Other boundary conditions include

v(∞) = v(−∞) = 0 assuming that v is continuously differentiable and v(a) =

v+, v(−a) = v− where v+ and v− represent the wavefront and back of the wave

respectively. By using the substitution

ξ = x− ct, Dvv
′′ + cv′ + e(u− v) = 0 (2.30)

and solving for each segment, we find that

v(ξ) =


v1e

λ2(ξ+a), ξ < −a

1− λ2e
λ1(ξ+a)/(λ2 − λ1) + λ1e

λ2(ξ−a)/(λ2 − λ1), −a ≤ ξ ≤ a

v0e
λ1(ξ−a), ξ > a

(2.31)

where the eigenvalues are

λ1,2 =
−c±

√
c2 + 4Dve

2Dv
(2.32)

We note that

v+ =
λ2[1− e2λ1a]

(λ2 − λ1)
(2.33)

and

v− =
λ1[e−2λ2a − 1]

(λ2 − λ1)
(2.34)

To determine the existence of travelling waves, we can rewrite for v− as v−(λ2−
λ1)/λ1+1 = e−2λ2a. Since 0 < e−2λ2a < 1, we can see that −1 < v−(λ2−λ1)/λ1 < 0,

and thus replacing the eigenvalues to find that

Dve <
c2v−(1− v−)

(2v− − 1)2
(2.35)

We note that the right hand side of the above inequality can be regarded as a
constant, and thus we can rewrite this as

Dv < k/e (2.36)

where k = c2v−(1−v−)
(2v−−1)2

. A graph of Dv against e−1 was shown in [5] where each region

was specified
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Figure 2.3: Parameter plane for domains corresponding to different dynamical re-
gions as in [5]. For consideration of this dissertation, we have only looked at condi-
tions for travelling wave noted in the region of R1 as from equation 2.36.

Now that we have the conditions, we can numerically integrate for the u profile
as originally defined to see the travelling wave. The numerical integration was done
on MATLAB and we can see from the 1D figures below

Figure 2.4: Travelling waves represented by the blue line for u and the red line for
v. Time was taken for a total of 25 units. Model parameters are Dv = 0, e = 0.3,
ku = 4.5, u0 = 0.05, u1 = 1.

From the three figures above, we can see a gradual shift where we see the back
and front of the wave. If continued for a longer period of time, we would see both of
the waves completely disappear from the figure as the waves would keep on travelling
in the forward direction. Initially, we see that the concentration of v is 0 everywhere
meanwhile there is a small peak at 1 for the concentration of u and 0 everywhere
else. We see that in the u profile, the peak at the front is around 0.9 and the trough
is around −0.2. Meanwhile, the peak of v is around 0.6. We can see that the peak is
the inhibitor is less than the peak of the activator. The purpose of the inhibitor is
to slow down the production of the activator, thus we expect for v to have a smaller
peak than u. We can also calculate that the speed of the travelling waves is 1.130.

As the main purpose of this dissertation is to see patterns, we will turn our
attention to 2D space instead of 1D space. This is since we can easily spot patterns

over 2D space. We now note that u(x, t) and v(x, t) where x ∈ R2. We can replace

x with x in equation 2.23, but since we are solving for travelling waves, we can use
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the same substitution method as before for the 1D case. For the purposes of this
dissertation, we have chosen the x space for substitution. This would also produce
travelling waves. We can see the travelling waves for the u profile as shown below
my numerical integration from MATLAB as seen below.

Figure 2.5: Travelling waves for u. Time was taken for a total of 25 units. Model
parameters are Dv = 0, e = 0.3, ku = 4.5, u0 = 0.05, u1 = 1.

This is very similar to what we’ve seen in figures 2.4. Initially, we can see the
front of the wave as a peak, and thus as the time increases, we can see the wave
shifting towards the right. The colourbar on the right is to show the intensity of the
concentration levels for u. The peaks and troughs are as the same in the 1D case.
The speed is calculated as previously. If we choose a line in the y axis, say y = 3,
we will obtain the 1D case for u along this line.

As stated earlier in this section, the travelling waves observed from the FitzHugh-
Nagumo model was used to conclude on how neurons travel within the nerve mem-

brane via electrical impulses in [4]. Indeed, using a 2D scale can show multiple

neurons moving along the line instead of the 1D scale. Since the electrical impulses
were detected along the nerve membranes, it does make sense as to why we see a
negative quantity of the trough of the travelling wave as it is known that current
can flow in both directions. In the next section, we will talk about another type of
pattern arising in the FitzHugh Nagumo model, and then we will combine the two
to describe chemotaxis.
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Chapter 3

Turing Patterns

In the previous chapter, we have talked about travelling waves and how they form
spatial patterns as shown in figures 2.5. However, these are spatio-temporal patterns,
meaning that these patterns formed from travelling waves can only be recognised over
time, or even temporarily. Indeed, the time-varying position in space represented by
ξ in the substitution of the previous chapter is an essential part of the entire pattern.

In this chapter we will talk about the steady state (”static”) spatially heterogeneous

patterns also known as Turing Patterns. The name ”Turing patterns” came from

Alan Turing in 1952 [10] when he proposed conditions for such static spatio patterns.

The conditions are the following for reaction-diffusion equations of the form

∂u

∂t
= Du

∂2u

∂x2
+ f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v)

(3.1)

as defined in the previous chapter:

1. In the absence of diffusion (net zero diffusion), two chemicals u and v would

tend to go to an equilibrium state, thus being stable.

2. When there is a difference of diffusion between the two chemicals u and v,
a small perturbation from equilibrium points will no longer make the system
stay under equilibria, and thus the instability will lead to a change in spatial
structure forming patterns.

We have already seen in the previous chapter how to find equilibria points, which

is when f(u, v) = g(u, v) = 0. In addition, to find whether the points were stable

or not for activator-inhibitor systems, we have only looked at graphical solutions.

However, we can analyse the stability points by looking at the sign of f ′(u, v) and

g′(u, v) at u0 and v0 respectively. We want f ′(u0, v0) and g′(u0, v0) to both be less
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than 0. As f and g are functions of two variables u and v, we can write the Jacobian
matrix as

M =

(
fu fv
gu gv

)
(u0,v0)

(3.2)

where each entry represents the first order differentiation of each variable at u0 and
v0 respectively. In order to ensure stability, we must calculate the eigenvalues of the
matrix and must make sure that the real entry of the eigenvalue is less than zero.
In other words, we must make sure that

tr(M) = fu + gv < 0

det(M) = fugv − fvgu > 0
(3.3)

where tr(M) and det(M) represent the trace and determinant of the Jacobian M

respectively. Thus we have found the conditions to satisfy the first point.
To satisfy the second point, we can represent a small perturbation of u and v by

ũ = u− u0

ṽ = v − v0

(3.4)

where ũ and ṽ represent the changes, and u0 and v0 represent the equilibria points.
By rearranging the top and bottom of equations 3.4, we can use taylor expansion
for the first order for approximation as

f(u, v) = f(ũ+ u0, ṽ + v0) = f(u0, v0) + ũ
∂f(u0, v0)

∂u
+ ṽ

∂f(u0, v0)

∂v
(3.5)

and similarly for g(u, v). Higher order terms can be ignored as the perturbation terms

are very small and can be approximated to 0. We can note that from equation 3.5,

f(u0, v0) = g(u0, v0) = 0 as this is required from the first condition. Thus, we can

substitute back into equation 3.1 and rewrite it as

∂ũ

∂t
= Du

∂2ũ

∂x2
+ ũ

∂f(u0, v0)

∂u
+ ṽ

∂f(u0, v0)

∂v

∂ṽ

∂t
= Dv

∂2ṽ

∂x2
+ ũ

∂g(u0, v0)

∂u
+ ṽ

∂g(u0, v0)

∂v

(3.6)

We can look for solutions for both equations of 3.6 by setting

ũ(x, t) = weikx+λt

ṽ(x, t) = qeikx+λt
(3.7)

where w and q are constants. Since we are looking for separable solutions, we can see

that the x component is written as eikx. This means that we are looking for Fourier
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mode solutions where k represents the wavenumber (Fourier number). Substituting

this into equation 3.6, we get

λweikx+λt = −k2Duwe
ikx+λt + weikx+λtfu + qeikx+λtfv

λqeikx+λt = −k2Dvqe
ikx+λt + weikx+λtgu + qeikx+λtgv

(3.8)

in which we can simplify to

0 = (−λ− k2Du + fu)w + fvq

0 = (−λ− k2Dv + gv)q + guw
(3.9)

We can see from equation 3.9 that this is an eigenvalue problem. Let

b =

(
w
q

)
, D =

(
Du 0
0 Dv

)
and M be defined as in 3.2 where we can substitute into 3.9 to get

0 = (M − k2D − λI)b (3.10)

where I represents the 2 × 2 identity matrix. We can see that λ is the termporal

growth rate and is an eigenvalue of the matrix T = M − k2D. Therefore, for
instability, we must want either of one of the following conditions to hold

tr(T ) = fu + gv − k2(Du +Dv) > 0 (3.11)

det(T ) = (fu − k2Du)(gv − k2Dv)− fvgu < 0 (3.12)

We know that fu+gv < 0 in the absence of diffusion. In addition, Du, Dv ∈ R+, thus

the trace tr(T ) < 0 always. We can now look at the condition for the determinant

of T . Expanding the determinant, we get

k4DuDv − (Dugv +Dvfu)k2 + (fugv − fvgu) < 0 (3.13)

We can see that this is a quadratic equation in terms of k2. In addition, due to
the first condition of formation of Turing patterns, we see that fugv − fvgu > 0.
Therefore, for this condition to hold, we must have Dugv + Dvfu > 0. Moreover,
looking at the discriminant, we must have

Dugv +Dvfu > 2
√
DuDv(fugv − fvgu) (3.14)

so that k has one positive real part. In addition, if we impose zero flux boundary

conditions where we define the boundaries of x ∈ [0, L] ∈ R where L is the length
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of the boundary, we must restrict k = nπ/L where n ∈ Z. Therefore, we can apply

upper and lower bounds on k as k− < (nπ/L)2 < k+ where we can find k± by solving

equation 3.13 using the quadratic formula. Therefore, by satisfying the second point
from Turing, we are able to see a steady state with the absence of diffusion, but the
system can become unstable when diffusion is present. We will see some examples of
such activator-inhibitor systems and see how they can experience Turing patterns.

3.1 Gierer-Meinhardt Model

In 1972 [11], Gierer and Meinhardt proposed a reaction-diffusion equation model for

activator-inhibitor systems. The objective was to show that their model can be used
to show the formation of Turing patterns due to morphogenesis. As there are many
modern day varients of the form, we will consider a simple version of this model

∂u

∂t
= Du

∂2u

∂x2
+
u2

v
− bu

∂v

∂t
= Dv

∂2v

∂x2
+ u2 − v

(3.15)

where b is a constant regarding the degregation of the activator u. First, we must
find the equilibria points of this equation. We can see that from the bottom bit

of equation 3.15, v = u2, and thus substituting back into the top bit, we see that

u0 = 1/b and v0 = 1/b2 where u0 and v0 represent the equilibria points. To check

that the equilibria points are stable, the Jacobian will be

R =

(
b −b2

2/b −1

)
(3.16)

which from the trace, we see that b < 1 and from determinant, b > 0, so for stability
without diffusion, we note that 0 < b < 1. Introducing the perturbation as defined
in 3.5, we can rewrite equation 3.15 as

∂ũ

∂t
= Du

∂2ũ

∂x2
+ bũ− b2ṽ

∂ṽ

∂t
= Dv

∂2ṽ

∂x2
+

2

b
ũ− ṽ

(3.17)

where we can denote solutions for ũ and ṽ as in equation 3.7. Solving for eigenvalues,
we can denote the new matrix

P =

(
b− k2Du −b2

2/b −1− k2Dv

)
(3.18)
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which by solving the determinant to determine instability, we get

k4DuDv − (bDv −Du)k2 + b < 0 (3.19)

thus we must have

bDv −Du > 2
√
DuDvb (3.20)

In addition, if we want to see patterns, we must impose zero flux boundary conditions

in a length of x ∈ [0, L] at the end points. We will impose the condition that

k = nπ/L as before where

k2
− <

(nπ
L

)2
< k2

+,

k± =
(bDv −Du)±

√
(bDv −Du)2 − 4DuDvb

2DuDv

(3.21)

We observe another thing from this condition. We see that in order to have Turing
Patterns, there must be a minimum and maximum length of the domain L. In
addition, since n is an integer, we can see that if we increase the value of n, then the
solutions would be periodic, meaning the patterns would repeat over a finite amount

of length. Therefore, if we want to find the minimum critical length required (where

n = 1), we find that
π

k+
< L (3.22)

If we want to add an upper bound, the critical maximum length would be L < π/k−.

The upper and lower bounds applied in this case is when n = 1, which corresponds
to the number of peaks and stripes as what we will see below. Therefore with these
constraints, we can numerically integrate 3.1 on MATLAB and we can see the 1D
figures below.

Figure 3.1: Turing patterns represented by blue line for u and red line for v. Time
was taken for a total of 50 units. Model parameters are Dv = 3, Du = 0.1, b = 0.5,
L = 20.
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From the three figures above, we see a change in pattern as the time increases.
We notice that waves form at periodic intervals for both u and v, and then they
become still at around the time at 36. The time was let to run till 50 to ensure
that the waves formed will become still for the remaining time to ensure that the
patterns have formed, and thus they will not deform. In addition, we see that the
peaks and troughs for both u and v correspond at the same region in space. This

is because u and v have solutions of forms of leikx+λt + z0 where l is a positive
constant and z0 would be the stability points for u and v respectively as mentioned
in equations 3.5. However, the peaks and troughs for v are higher than u. This
is due condition bDv − Du > 0. Since 0 < b < 1 and both diffusion coefficients
are positive, the inhibitor diffusion coefficient Dv is much larger than the activator
diffusion coefficient Du. Looking at the peaks, we see that there are a total of 4
peaks for u and v. Although we have mentioned that the critical length for patterns
to form is L > π

k+
, if we add the upper bound at n = 1, that would correspond to L

being much less than our model parameter for L. In fact, we could rewrite the top
of equation 3.21 to get

Lk−
π

< n <
Lk+

π
(3.23)

From this condition and inputting the parameters, we find that 2.70 < n < 5.66. As
n is an integer, by rounding up on the lower bound and rounding down on the upper
bound we see that 3 < n < 5, which means n = 4. This means that n in our solution
for the wavenumber k corresponds to the number of peaks seen. In fact, this shows
that the solution formed is periodic as n > 1, thus we are able to see periodicity in
figure ??.

To illustrate it further, we can also represent Turing patterns of equations 3.15

in 2D. We will now let u(x, t) and v(x, t) where x ∈ R2. We replace x with x

in equations 3.15, and to solve, we now note that solutions will be of the form

eik(x+y)+λt instead accounting y ∈ R for the extra dimension. In addition, we will
alter our solutions for the wavenumber k and

k =

(
nπ

Lx

)2

+

(
nπ

Ly

)2

(3.24)

where Lx, Ly ∈ R represent the lengths of the domain over the x and y plane.

Therefore, to represent the bounds for k±, we just represent the bounds for each

axis as we have done for equation 3.21. To illustrate this in 2D, we can numerically
integrate this in MATLAB and we can see the figures below.
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Figure 3.2: Turing patterns for u. Time was taken for a total of 50 units. Model
parameters are Dv = 3, Du = 0.1, b = 0.5, Lx = 20, Ly = 0.5.

From these three figures of figure 3.2, we see that this is very similar to the 1D
version of u as seen in figures 3.1. Instead of peaks, we see stripes in the 2D version
where the yellow stripes represent the ”peaks” and the blue stripes represent the
”troughs”. In addition, we see exactly 4 yellow stripes. In fact, if we choose a y
value from figure 3.2, we would get exactly the same pattern as we get in the 1D
version of figures 3.1. We first see a small trough, and then we see that stripes
eventually form, and this process stops at around a time of 36, but this was run
to 50 so that we can notice that these stripes are now stationary, and they will
not deform. In addition, the critical value for L in figures 3.1 to have stripes was

L > π/k+, which is approximately L > 0.73. In these figures, we have kept Lx as L

before to be 20 and thus we see 4 stripes, however, our choice of Ly < π/k+. Since

this is the case, we would see no stationary patterns happen along the y domain.
Therefore, the patterns appear as stripes in the x domain only.

However, if we change the condition for Ly > π/k+, we would see patterns

happening in both domains. We can numerically integrate this on MATLAB to see
the phenomenon from the figures below.

Figure 3.3: Turing patterns for u. Time was taken for a total of 100 units. Model
parameters are Dv = 3, Du = 0.1, b = 0.5, Lx = 20, Ly = 20.

In figure 3.3, we initially see a small dot which expands into concentric rings until
around a time at 36. Afterwards, we start to see the concentric rings break down
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into spots, starting with the far edge of the ring, and spots forming lastly on the
closest ring to the centre. We note that the spots form along the yellow peaks of each
concentric ring. This is since as the rings expand, the peaks acts as a propagating
wave, but since the ”peak” rings are unstable, at a critical time, the peak rings break
down into stationary spots where the middle of the dot is the ”peak”. The farther
the yellow ring is from the centre, the more unstable the ring is, thus the far-most
ring broke down into spots much earlier at around a time of 36, meanwhile the inner
bright yellow circle broke down into spots at around a time of 92. For a larger plane,
we would see more formation of dots, and this might be the reason why we can see
spots forming at the corners. In addition, since the radius of the inner yellow ring
is much smaller than the outer ring, the size of the dots formed along the ring is
much smaller, and the number of dots formed along the inner ring is much less. This
is due to the fact that the spots do not have enough space to occupy. If we count
the corners as well for the spots inside the domain, we see that there is a total of
16 spots which corresponds to 4x4 patterns forming at each domain. Since a value
was chosen at 20 for the length of both domains, we would see a total of 4 peaks

(or stripes) along the domain, thus in the 2D plane where we allow both domains to

form patterns, we would see 4× 4 = 16 stationary spots in total.

In fact, a result of this was used in a 1988 paper by JD Murray [13] to coat

animal patterns in tails. He observed that leopards can either get stripes or spots
at the tail during development. In fact, as the leopards grow over time, he noted
that the stripes at the end of the tail would eventually change to stationary spots.
In addition, such models of Turing Patterns can be used in other applications. We
will now combine the result from this chapter and from the earlier chapter to show
how Turing patterns can be formed in chemotaxis.
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Chapter 4

Models of Chemotaxis

Chemotaxis is a chemo-mechanical process that is observed in many organisms. The
process of chemotaxis is the movement of organisms in response to a chemical stimu-
lus. This can range from many types such as in plants, bacteria, fungi, animals, and
many more organisms. The process of chemotaxis is the movement of organisms in
response to a chemical stimulus. For example, somatic cells in plants move according
to areas of oxygen in the atmosphere, or in early development such as the migration
of cells during embryogenesis. In this chapter,we will look at an example of how bac-
teria undergo chemotaxis. Bacteria undergo chemotaxis in order to get their food
by detecting and moving towards a higher concentration of the food available. The
detection is due to bacteria releasing a chemoattractant named ”aspartate” which
detects the concentrations of the food and causes bacteria to either move towards
it or not. As bacteria undergo chemotaxis, we see that the movement of bacteria
causes a shift within the aspartate. This is due to the fact that there might be more
food as the bacteria approaches the attractant, thus the aspartate shifts towards
the higher concentration of the food, however the aspartate’s concentration doesn’t
decrease. In addition, the bacteria doesn’t always keep on moving as some of the
bacteria might die out or will become inactive during this process. As they have
moved from their original position, they might end up in a situation where there
is not enough food for them. This might cause an instability within the aspartate,
which therefore leads to the bacteria being still at a region as the aspartate hasn’t
shifted.

In a paper from Berg [14], it was described how E-coli can undergo chemotaxis

to form stable patterns of ”surprising complexity but with remarkable regularity”.
Directly from experimenting with e-coli, the patterns cannot be described immedi-
ately, but mathematical models can be used to describe them. It was noted that

their movement is random, and the diffusion coefficient was measured [9]. The ex-

perimental results carried by Berg showed that E-coli can form patterns when they
feed on or are exposed to ”tricarboxylic acid” when the bacteria are placed in a
semi-solid substrate. The E-coli reacts to the chemical asparate, which leads to the

patterns seen in figure [9] below.
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Figure 4.1: Adapted from [14], the E-coli was placed in semi-solid substrate of
different concentrations in a petri dish. The light regions of asparate represent high
density of bacteria. This figure is taken from [9].

Initially, the E-coli was inoculated at the centre of each petri dish. As the E-coli
detect food inside the agar jelly, the aspartate is released inside the petri dish in the
form of concentric rings, and the bacteria follow in the direction of the aspartate.
The process keeps on happening until the E-coli reach the end of the petri dish,
which afterwards, some of the aspartate breaks down into white spots as seen in
figure 4.1. This is since the aspartate is now unstable as there is no more presence
of the food left in the agar jelly. In all four figures of figure 4.1, we see that they
all have a bright ring at the end of the petri dish as it would make sense since most
of the bacteria have moved towards the end of the petri dish. Figure 4.1 a and d
show that a sunflower pattern has been observed as most of the food was distributed
evenly across the petri dish, hence the aspartate not being so unstable, and thus
leaving the spots in form of the pattern across the petri dish. However, figure 4.1
c shows a radial streak pattern towards the edge of the petri dish since most of the
food was towards the edges of the petri dish, and hence most of the aspartate were
released in the following pattern.

From the conclusion of Berg [14], and from what we know about chemotaxis of

bacteria, we can see that the concentric rings formed due to chemotaxis represents
travelling waves, and after chemotaxis, we see that the spots formed inside the petri
dish represent the stationary Turing patterns as what we have seen from chapters 2
and 3 of this dissertation respectively. We will be talking about this in more detail
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using Keller-Segel’s models for travelling waves [2] and in Turing patterns [12] to see

how they are linked in chemotaxis.

4.1 Keller-Segel Model for Travelling Waves

In Keller’s paper [2], a model was formulated to describe the bands (or areas) of active

E coli. The bands of active E-coli are also representative to the areas of the aspartate
released. These bands have been observed to travel at constant speeds when the
bacteria experiences a chemotactic motion according to the chemoattractant. In
other words, we can take the bacterial motion responding chemotactically to a single
substrate, known as the ”critical substrate”. The model to describe such bands
included partial differential equations which described the consumption of the critical
substrate, ie the change in concentration, and the change in density due to random
motion and chemotaxis. For conciseness, it was assumed that there was no growth
of the E-coli, and the diffusion of the substrate denoted by Dc is a constant which
is really small as compared to the ”diffusive” motion of E-coli.

We denote c as the concentration of the substrate, and ρ(x, t) as the bacterial

density. It is assumed that the concentration c(x, t) of space and time of the chemical

is modelled by the equation

∂c

∂t
= Dc

∂2c

∂x2
− k1ρ (4.1)

where k1 is the constant rate of consumption of the substrate per cell, and Dc is the
diffusion constant of the substrate.

The density of bacteria is modelled by the equation

∂ρ

∂t
=

∂

∂x

(
µ
∂ρ

∂x

)
− ∂

∂x

(
ρχ

∂c

∂x

)
(4.2)

where µ parameter takes place of the diffusion coefficient, and χ is the chemotactic

coefficient. In Keller’s paper [2], both of the coefficients are as a function of the

concentration c. The term ∂
∂x(µ ∂ρ∂x) represents the motion of bacteria albeit chemo-

taxis. If there is no chemical gradient, ie ∂c
∂x = 0, the equation becomes identical

to the diffusion equation. The random motion of bacteria unaffected by chemotaxis
suggests that the flux of E-coli is proportional to the gradient in density.

In a previous study by Alder and Dahl [15], the random motion of E-coli is ”sim-

ilar to diffusion” where there was no chemical gradient. This motion was detected

by µ and was taken to be a constant. Alder and Dahl [15] looked for solutions to

equations 4.1 and 4.2 to the first approximation such that Dc equals zero.

The term ∂
∂x(ρχ ∂c∂x) represents the response of the bacteria due to chemotaxis.

Since it is assumed that the flux is proportional to the chemical gradient, it was
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shown that the chemotactic response was insufficient for weak gradients. The flux

due to chemotaxis was denoted as ρχ ∂c∂x where χ is the measure of strength of the

chemotaxis, thus the ”chemotactic coefficient”.

Under the assumptions made so far, χ(c) must have been singular for equations

4.1 and 4.2 to produce travelling bands as a solution. Thus it was assumed that the
chemotactic coefficient was represented as

χ(c) = δc−1 (4.3)

where δ is a constant.
Solutions of equations 4.1 and 4.2 were found in Keller’s paper [2], and the

derivations were solved in [16]. Since these are partial differential equations, the

initial boundary conditions were chosen such that

c(x, 0) = c∞, ρ(x, 0) = ρ∞ (4.4)

where these are both constants. Assuming that x ∈ [0, L] where L is the maximum

length of the tube and the bacteria did not flow at the endpoints,

∂c

∂x
= 0, and

∂ρ

∂x
= 0 at x = 0 and x = L (4.5)

Since the solutions in the form of a band are the ”travelling waves”, it was
allowed to take an infinite length of the tube, ie let x vary from −∞ to ∞, and look
for solutions of the form

ρ(x, t) = ρ(ξ̄), c(x, t) = c(ξ̄)

where a change of coordinates

ξ̄ =
s

µ
(x− st) (4.6)

has been introduced, and s is the constant speed band. Also, the boundary conditions
imply that

ρ→ 0, ρ′ → 0, c→ c∞, as ξ →∞ (4.7)

Therefore, we solve for c(ξ̄) and ρ(ξ̄) as

c(ξ̄) = c∞(1 + e−ξ̄)1/(1−δ̄) (4.8)

ρ(ξ̄) =
s2c∞e

−ξ̄(1 + e−ξ̄)δ̄/(1−δ̄)

µk1(δ̄ − 1)
(4.9)

As ξ̄ → −∞, ρ and c behave as multiples of eξ̄/(δ̄−1). Assuming that solutions

were finite, this implies that δ̄ > 1 or δ > µ, and thus

lim
ξ̄→−∞

c = 0, lim
ξ̄→−∞

ρ = 0 (4.10)

24



Integrating ρ and taking limits, it was obtained that the speed of the traveling
bands can be denoted as

s =
Nk1

ac∞
(4.11)

where N is the total number of bacteria found in the band and a is the cross-sectional
area of the tube used in the experiment.

Graphs of equations 4.8 and 4.9 for c and ρ against ξ̄ were given in MATLAB
figures as below.

Figure 4.2: Graphs for critical substrate concentration c and density of bacteria ρ
against ξ̄ where model parameters are µ = 1/4, k1 = 5 x 10−12, and c∞ = 2 x 10−4,
δ̄ = 2, δ̄ = 3, and δ̄ = 5.

A higher value of δ̄ corresponds to a higher chemotaxis strength δ as it was
assumed that the diffusion coefficient µ remained constant for each chemical. As

they all exhibit travelling solutions, for a higher value of δ̄, the concentration is
higher at the left side of the graph, and then the shift becomes shallower and the
value is less on the right side of the graph. This may be due to the fact that for a
stronger chemotactic agent, the E-coli gets attracted to the chemical and eats the
chemical faster resulting in a higher value on the left, and later on, the abundance of
the chemical have decreased more than the ones with weaker chemotactic strength,
so this results in a shallower gradient at the right side of the graph. Therefore, the

travelling waves for a higher value of δ̄ will not move as mush to the equilibrium state

as for ones with lower values of δ̄. All values of δ̄ tend to an upper limit denoting
that the chemical may have been fully consumed.

Note that around δ̄ = 2, the curve is symmetrical, and is steeper at the right

side when δ̄ > 2, and at the left side when δ̄ < 2. For low values of δ̄, the width is
very narrow, and wider for larger values. We can tell that for a stronger chemotactic
agent, the diffusion of the chemical will be minimal, thus for a stronger chemotactic
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agent, the bacteria will move more rapidly, and thus will be able to spread uniformly
which coincides with the larger width. This can correspond to figure 3.1 where for a
higher strength of chemotaxis, the bacteria are spread out more, thus there will not
be a major shift for the travelling waves of the chemical.

The results produced in the paper was nearly exact to the results obtained in

Alder and Dahl’s paper [15] for modelling E-coli. From the results, it was decided

that this model was capable of describing both chemotactic bands of moving bacteria
and the aggregation of slime mould in another paper, and thus this model can be
extended to other chemotactic phenomena.

We have look at the travelling wave solutions, and now we will extend this to
when the stationary spots being formed in the next section.

4.2 Pattern Formation on Keller-Segel Model

In the previous section, we assumed that there was neither no growth or death rate
of bacteria, nor the production rate of the substrate. We will modify equations 4.2
and 4.1 to the following:

∂ρ

∂t
= µ

∂ρ2

∂x2
− κ ∂

∂x

(
ρ

(1 + c)2

∂c

∂x

)
+ aρ(1− ρ) (4.12)

where a is considered to be the growth (or death) rate of bacteria for the density

equation 4.12. In addition, we now assume that the chemotactic strength κ is a

constant, and the chemotaxis term also depends on c−2. In addition, we will write
the change for the concentration density as

∂c

∂t
=
∂2c

∂x2
+

ρ2

1 + ρ2
− ρc (4.13)

In Alder’s paper [15], along with the cell density and concentration of the substrate,

the concentration of the nutrient (food) was considered to make the patterns. How-

ever, since the consumption of the nutrient was very small, for the purposes of this
dissertation, we will ignore the change in concentration of the nutrient. As we are
wanting to find stationary solutions, we must first find the equilibria points. In equa-
tion 4.12, we note that there is a chemotaxis term along with a diffusion term. Since
chemotaxis term is also considered to be part of the flux, at equilibria, it is assumed
that there is no chemotaxis happening, thus we assume that κ = 0 at equilibria.
Therefore to find the equilibria points, we make

∂ρ

∂t
= aρ(1− ρ) = 0

∂c

∂t
=

ρ2

1 + ρ2
− ρc = 0

(4.14)
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in which we find that ρ = 0 or ρ = 1. If ρ = 0, then we could allow any value of c,

however, wee will choose ρ = 1 such that c = 1/2. To check the stability, we make

the Jacobian

R =

(
−2aρ+ a 0

2ρ
(1+ρ2)2

−ρ

)
(4.15)

and when substituting ρ = 1, we find that tr(R) = −a − 1 < 0 thus a > −1, and

det(R) = a > 0, therefore the only condition required is a > 0. Introducing a small

perturbation as defined in 3.5, we get

∂ρ

∂t
= µ

∂ρ2

∂x2
− 4

9
κ
∂2c

∂x2
− aρ

∂c

∂t
=
∂2c

∂x2
+
ρ

2
− c

(4.16)

where we can denote solutions for ρ and c as in equation 3.7. Solving for eigenvalues,
we can denote the new matrix

P =

(
−a− k2µ κ(4/9)k2

1/2 −1− k2

)
(4.17)

which by solving the determinant to determine instability, we get

µk4 − (−µ− a+
2

18
κ)k2 + a = 0 (4.18)

thus we must have

−µ− a+
2

18
κ > 2

√
µa (4.19)

In addition, if we want to see patterns, we must impose zero flux boundary conditions

in a length of x ∈ [0, L] at the end points. We will impose the condition that

k = nπ/L as before where

k2
− <

(nπ
L

)2
< k2

+,

k± =
(−µ− a+ 2κ/18)±

√
(−µ− a+ 2κ/18)2 − 4µa

2µa

(4.20)

Thus the critical length required would me L > π/k+. Therefore, we can numerically

integrate in MATLAB to produce the figures for equations 4.12 and 4.13 below.
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Figure 4.3: Patterns observed for ρ in blue and c in red. Model parameters are
µ = 0.25, a = 1, κ = 90, L = 20.

Initially, we set a small perturbation for ρ by adding noise in the MATLAB
code, and set c = 0. Due to the random distribution, we see many peaks and
troughs for ρ. This might be due to the fact that the bacteria have started to
release the chemoattractant. This corresponds with the sudden increase of c. As
time increases, the bacteria continue to release the chemoattractant. However, we
note that the concentration of the chemo attractant is not changing as much over
time. This may be to to the fact that when some of the food are no longer present,
the chemoattractant dissolves in the nutrient jelly, therefore, we see little to no
net change in c. Meanwhile, as time increases, we see that the number of peaks
decreases, but the amplitudes increases. This may be due to the fact that there
might be competition going on within the bacterial species. The denser the group of
cells, the greater the production of chemoattractant. However, the high cell density
group of cells also experience diffusion much more against them, which also may be a
reason why there is no net change in c. If not enough chemoattractant is produced to
overpower diffusion, then the group with higher chemoatttractant production rate
than diffusion rate would not die out as fast, even if they are in lower numbers.
Therefore, we see a reduction in the population of high density corresponding to
less peaks. Eventually, the patterns of high cell concentrations start to disappear,

however, there will be some (or maybe one) peak left over. The left over peak would

be the stable peak and possibly some left over bacteria.
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Chapter 5

Conclusion

In this dissertation, we introduced the notion of pattern formation and its applica-
tions to biology. Such examples were the waves produced of calcium concentration
during embryo development. The waves formed from the calcium signals are known
as travelling waves, and we have first analysed them on how they appear and their
conditions required for such waves to appear. In addition, we have also given exam-
ples such as spots formed on giraffes or stripes formed on snakes, or even on nonliving
objects such as the shell of molluscs. These patterns are known to be permanent
on them, and unlike the travelling waves, these patterns are known to be stationary
in which they are commonly known as ”Turing Patterns”. Patterns like these arise
during morphogenesis, which is the early stage of life that involve reaction-diffusion
equations. In addition, such patterns can also arise in other biological phenomena
such as chemotaxis. In the last chapter, we combined the studies from travelling wave
solutions and stationary patterns to see how they arise in chemotactically moving
bacteria.

In the first chapter, we explicitly discussed travelling wave solutions, first from

the Fisher-Kologroff equation, and then from the Fitzhugh Nagumo (FHN) model.

Assuming that there was no flux boundary conditions, we analysed the conditions for
such propagation of the wave to happen for the Fisher-Kologroff equation, and then
we saw a graph of such travelling waves. The Fisher-Kologroff equation was a term of
quadratic in the concentration, meanwhile the FHN model was more interesting as it
included a cubic term, and the FHN model involed two chemical interactions instead
of a solo interaction. In addition, the FHN model was used to describe electrical
impulses from neurons and how they propagate. We then analysed the conditions
for travelling wave solutions for the FHN model, and have used numerical methods
on MATLAB to numerically integrate the FHN equations, and to see the animation
for the 1D and 2D models respectively. The major advantage of numerical methods
is that we can see the propagation of waves over a specific time period. In addition,
the error from the numerical methods is very small since the numerical methods
were forms of difference equations, which tie in neatly with the partial differential
equations. Nevertheless, the 2D model gave a greater understanding of the travelling
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wave in space rather than over a single domain as in the 1D version.

In the second chapter, we now looked at stationary (static) patterns. Unlike

travelling wave solutions, these stationary solutions are formed due to a small per-
turbation of instability. These patterns were first theorised by Alan Turing, and
thus commonly known as Turing Patterns. We first discussed the conditions of such
static patterns arising, and then we gave an example of such on the Gierer-Meinhardt

(GM) model. The objective of this model was to show that the model can be used for

the formation of Turing Patterns due to morphogenesis. We have analysed the con-
ditions for Turing Patterns to form on the GM model, and then have used MATLAB
to numerically integrate the GM equations for 1D and 2D respectively. In the 1D
version, we have seen the peaks and troughs of waves that eventually become stable.
To see the patterns more explicitly, we turned attention to the 2D model where we
have seen two different types of patterns: stationary spots and stripes. We note that
these patterns are due to the different lengths of the medium. For a medium below
the critical length, we see stipes, otherwise we would see spots. Indeed, if we changed
the inital conditions of our spot formation pattern in 2D so that we are integrating
over one domain only, we would see stripes as well. Like in the previous chapter,
we have considered numerical methods which were accurate as they were also in the
form of difference equations tying in with the partial differential equations.

Finally, we have linked the two types of patterns observed in the previous chapters
to see how such patterns arise in chemotaxis instead of morphogenesis. The major
difference is that now the chemotaxis term is also included for flux. In this chapter,
we have used versions of Keller-Segel models to illustrate travelling waves of E-coli
and patterns of E-coli. By analysing travelling wave solutions, we first derived the
solutions for the concentration of the chemoattractant and density for the E-coli, in
which we plotted the graphs of the functions for each describing them. Although
they were linked together, we were not able to see how the two evolve over time. If
time permitted, we would’ve used a different method of integration instead of the
standard method used for the previous two chapters. The difficulty arose from the

fact that the chemotaxis term included a c−1 term, thus the difficulty was to avoid the
code blowing up due to the singularity at around c = 0. Afterwards, we modified the
Keller-Segel equations by also involving proliferation of the E-coli and the production
of the concentration of the chemoattractant along with the degradation. The kinetic
terms were added so that we could be able to analyse the stability around a non-zero
point, which would allow us to introduce a small perturbation. After analysing the
conditions, we numerically integrated to plot the graphs of them by using the Lax-
Friedrichs method. This method was used to overcome the singularity arising due

to the c−2 term, in which this code can be seen in the appendix. Overall, we have
seen how travelling wave and stationary spot patterns have been used to tie in with

Alder’s paper [15] and how they can be used to study chemotaxis. Further studies

can be done to explore such patterns that can be seen due to chemotaxis on other
models as well.
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