
MODELLING PATTERN FORMATION IN HETEROGENEOUS 
BACTERIAL POPULATIONS

In this work we model the very early stages of biofilm formation when bacteria are loosely attached to a surface such that they are still motile. We consider two interacting 
bacterial populations which proliferate and compete for resources. First, we consider formation of travelling wave solutions in a system of two interacting bacterial populations. 
Then we introduce chemotactic activity for one of the populations in response to a chemical produced by the second population and analyse formation of Turing patterns in 

this system. 

• Motile bacteria can form spatial-temporal
patterns due to taxis to external or internal
signals. Understanding how these patterns are
initiated is important in biofilm prevention since
surface attachment, reproduction and formation
of colonies is the first step in the formation of
biofilms.

INTRODUCTION

Fig1: Pattern formed by 
E. Coli bacteria. It is 
initially placed on a 
small spot in the center 
of the petri dish spreads 
out and covers the 
entire surface with a 
stationary spotted 
pattern. [1, Ch5]
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• 𝑛,𝑣, 𝑐 represent two competing bacterial species 
and a chemical which can diffuse with ratios 
𝐷1,𝐷2, reproduce with ratios 𝑟1, 𝑟2 and compete 
with ratios 𝑏1, 𝑏2 respectively.

STABILITY IN THE             
WELL-MIXED SYSTEM

• The system we consider has four steady states 
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• Stability of these steady states is important since 
travelling wavefronts make the transition between 
stable and unstable steady state; and stationary 
spatial patterns appear when the stable steady state 
in the well-mixed system becomes unstable in 
presence of diffusion and chemotaxis

DISCUSSION

We have introduced a model for two interacting bacterial species such that one of the species produces a chemotactic agent for the other species. We have shown that 
different spatial patterns such as travelling wavefronts and Turing patterns can be observed in this system. We have presented numerical simulations of the travelling wavefronts 
between different steady states. These are travelling with different speeds depending on the steady state we are transitioning from. Numerical speeds are presented, but these 
are matching the analytical speeds we have obtained. We have obtained domains for the competition effects that lead to a breakdown of stability and hence, Turing patterns. 
There is a domain χ < 7, in which we cannot have patterns no matter how strong competition is.
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TURING PATTERNS

• In this section we are looking at the formation of spatial patterns as a breakdown of stability due to 
changes in the parameters that characterize the system. [5]

• First, we have set all parameters apart from competition (𝑏1, 𝑏2) and obtained that if these values are 
within the loop, then we expect to see a breakdown of stability and hence Turing patterns. Then, we 
have set 𝑏1 = 𝑏2 = 𝑏 and looked at the relationship between competition and chemotaxis χ. Clearly, 
as the chemotactic sensitivity increases, competition decreases. Also, there is a vertical asymptote at 
χ = 7, such that no matter how strong competition between species is, the system will relax back to 
homogeneous steady state when perturbed.

TRAVELLING WAVEFRONTS

• Here, we consider a system of two interacting bacterial populations in which there is no chemical 
being produced and hence no chemotaxis, 𝑐 = 0, χ = 0, we have investigated the transition between 
different steady states as travelling wavefronts with speed 𝑠. [3, 4]

• Wavefronts move with different speeds in the three simulations presented because they are 
transitioning from different steady states. The speeds depend on the parameters set, but there are 
different speed requirements for different steady states.

Fig2: Regions in which 
different steady states 
are stable depending 
on the competition 
ratios 𝑏1, 𝑏2. (0,0,0)
always unstable. [2]

Fig3: In the first panel, wavefronts transtition from 0,0 to coexistence. In the second panel, they 
transition from (1,0) to coexistence; and in the third panel they transition from (0,1) to coexistence. Set 
parameters are 𝐷1 = 𝐷2 = 1,𝑟1 = 𝑟2 = 1, 𝑏1 = 0.5,𝑏2 = 0.6. Simulations are set such that in all panels 
there is a small region 𝑥𝜖(0,100) in which concentrations of the bacteria are such that  𝑛,𝑣 = 1,1
and different anywhere else. In the region 𝑥𝜖(100,800), 𝑛,𝑣 = 0,0 in the first panel, 𝑛,𝑣 = 1,0
in the second panel and 𝑛,𝑣 = 0,1 in the third panel.
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Fig4:  In the first panel, inside the loop is the largest Turing space (𝑏1, 𝑏2) obtained for set parameters 
𝐷1 = 𝐷2 = 1,𝑟1 = 𝑟2 = 0.1 and χ = 10. In the second panel we look at the relationship between 
competition and chemotaxis. In the third panel, we simulate a Turing pattern for χ = 7, 𝑏1 = 𝑏2 =
𝑏 = 0.9.


