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4.8 Comparison between the numerical and analytical pro-
files of u(x) and v(x). (a): Numerical u-profile (solid) ver-
sus analytical u-profile (dashed) obtained by truncating the system
(4.18) at M = 1. Error between the curves is ER = 1.3830. (b):
Increasing the truncation to M = 2 significantly reduces the error
between the numerical and analytical u-profiles to ER = 0.0061.
(c): Further increase in truncation to M = 3 reduces the er-
ror between the two curves to ER = 0.0035. Similar results for
v-profiles: truncation at M = 1 with error ER = 0.6566 on
panel (d), M = 2 with error ER = 0.0003 on panel (e) and
M = 3 with error ER = 0.0009 on panel (f). Parameter values:
D1 = D2 = 1, r1 = r2 = 0.1, χ = −10 and b1 = b2 = 0.7. . . . . 144

4.9 Comparison between the numerical and analytical pro-
files of u(x) and v(x). (a): Numerical u-profile (solid) ver-
sus analytical u-profile (dashed) obtained by truncating the system
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Abstract
Biological pattern formation is one of the most intriguing phenomena in nature.
Since bacteria are rarely motionless, simple patterns such as travelling waves and
stationary periodic patterns form as a result of cellular movement, including dif-
fusion (movement away from areas of high density) and chemotaxis (movement
in response to chemical gradients). Bacterial movement in an originally homoge-
neous system is due to an instability triggered by random disturbances. In this
work, we investigate the conditions for the onset of instability that leads to the
formation of stationary periodic patterns, as well as the minimum wavespeed of
travelling wavefronts that appear between the steady states of reaction-diffusion-
advection systems.

We first consider some reaction-diffusion systems used in population dynam-
ics to illustrate the formation of travelling wavefronts, such as the well-known
Fisher-Kolmogorov equation, which is the starting point for our research since it
is commonly used to demonstrate the spatial spread of a single biological popu-
lation. Initially, we investigate the effects of model parameters on the profile of
the travelling wavefronts. Then, by assuming that the bacteria produce a chem-
ical agent, we use a modified reaction-diffusion-advection system to examine the
effects of chemotaxis on the wavespeed of the travelling wavefronts. Through
methods of nonlinear analysis, as well as computational simulations, it has been
shown that the wavespeed is highly affected by chemorepulsion. Essentially, bac-
terial species transition across the medium much faster when the chemical agent
produced acts as a repeller. On the other hand, when the chemical agent acts
as an attractor and the chemotaxis sensitivity is above a certain threshold value,
determined by methods of linear analysis, stationary periodic patterns form be-
hind the travelling wavefront. Characteristics of such patterns are determined
using methods of nonlinear Fourier analysis. Assuming the pattern has reached
a stationary nonhomogeneous state, the time variable is removed, and we seek
Fourier solutions over some modes, which can be used to find information about
the amplitude and wavelength of the patterns formed. The effects of model pa-
rameters are also investigated, and analytical results are supported by numerical
simulations.

We then investigate pattern formation in a system of two interacting species
with Lotka-Volterra kinetics. Initially, in the absence of chemotaxis, travelling
wavefronts are admitted as solutions to such systems, making the transition from
an unstable steady state to a stable one. We show that, in this case, depend-
ing on the diffusion and proliferation of the species, wavefronts can move with
different speeds when transitioning from the unstable trivial steady state to the
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stable coexistence state. More interestingly, when the coexistence steady state is
unstable, travelling wavefronts are admitted as solutions, making the transition
to one of the stable extinction states. In this case, the minimum wavespeed is
determined by investigating the dispersion curve, and the effects of model param-
eters on the propagation of the species are investigated by both analytical and
numerical methods. Additionally, a reaction-diffusion-advection model has also
been examined, in which one of the species produces a chemical agent that can act
either as a repeller or attractor for the other species. In the case where the chem-
ical agent acts as an attractor, we show that when the coexistence steady state
is unstable, the minimum wavespeed of travelling fronts significantly increases
with an increase in chemoattraction. Conversely, if the chemical agent acts as a
repeller and specific conditions are met, stationary periodic patterns form behind
the travelling wavefronts. Similar to the one-species case, characteristics such as
amplitude and wavelength are obtained using methods of nonlinear analysis. One
of the most interesting patterns that form in a system of two interacting species is
stationary periodic patterns triggered by finite amplitude disturbances when the
species producing the chemical agent is initially extinct. In this case, methods
of linear analysis show that stationary periodic patterns are not initiated by in-
finitesimal perturbations; however, assuming the perturbation is above a certain
threshold value, patterns can emerge.

The outcomes of our research demonstrate that chemotaxis plays a vital role
in pattern formation, which occurs during various biological processes such as
morphogenesis and population dynamics. In a one-species case, chemoattraction
is responsible for the formation of stationary periodic patterns, while chemore-
pulsion is responsible for faster bacterial propagation across the host medium. In
a two-species case, chemorepulsion is responsible for stationary periodic patterns,
while chemoattraction results in faster propagation of species. These results can
be applied to a range of biological processes, such as understanding the effects
of chemotaxis on colonisation in the early stages of biofilm formation, bacterial
infections, and wound healing processes.

Thesis Outline
This thesis consists of five chapters.

Chapter 1: Introduction

The first chapter of the thesis introduces the motivation behind this research,
which is to understand how bacterial motility affects pattern formation, as well
as some basic biological concepts and mathematical methods. Bacteria are among

18



the most primitive forms of life, and they can respond to a wide range of envi-
ronmental signals by directing their motion to more favourable conditions. We
are interested in examining how chemotaxis, as well as interspecific competition,
affects bacterial motility and results in spatial-temporal patterning.

After introducing the general area of research, we provide an introduction to
some common biological concepts. Different phenomena are discussed in which
pattern formation plays an important role, such as the explanation of animal
markings, e.g., the pattern that appears on the skin of the giant puffer fish [144],
or the way cells form complex patterns in developing tissue [82]. The effects of
chemotaxis on bacterial motion, as well as the differences between chemoattrac-
tion and chemorepulsion, are also explained. This is followed by a number of
experimental results that show patterns such as travelling waves and stationary
spots formed by E. coli on a Petri dish [17], as well as patterns in the form of
aggregating streams formed by starving populations of Dictyostelium discoideum
[133].

The biological introduction is followed by mathematical background, which
includes the main mathematical methods used in the analysis of systems of ordi-
nary differential equations, as well as partial differential equations. Methods of
linear analysis are introduced to investigate some simple mathematical models,
such as the Fisher-Kolmogorov equation [33, 62] and the Lotka-Volterra model
[76, 135]. Classical Turing pattern analysis is also introduced to find conditions
under which stability breaks down, resulting in stationary periodic pattern for-
mation [128]. In addition, Fourier analysis is introduced to obtain information
about the characteristics of the pattern. At the end of the chapter, we describe
some methods of solving differential equations numerically. These include the
classical forward Euler formula for time discretisation, the central scheme for
spatial discretisation, and the two-step Lax-Friedrichs method for the advection
term [100].

Chapter 2: Travelling wavefronts formed by chemotactically active bac-
teria

In this chapter, the aim is to understand the formation of travelling wavefronts
in a system with one bacterial population, as well as in a system with two in-
teracting species. In both cases, bacteria produce a chemical agent, which can
have no effect on the microorganisms, or it can act either as a chemoattractant
or chemorepellent, initiating the migration of bacteria due to chemotaxis.

In the first instance, we consider a system with one bacterial species in which
the chemical agent has no effect on motility. The partial differential equation de-
scribing the change in the density of bacteria over time is the Fisher-Kolmogorov
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equation [33], introduced in the first chapter. Since there is no movement due
to chemotaxis, the two partial differential equations are decoupled, and hence,
travelling wavefronts connect an unstable steady state to a stable one. Moreover,
travelling wavefronts also appear in the presence of chemotaxis. If the chemi-
cal acts as a chemoattractant and the chemotactic sensitivity is above a certain
threshold value, periodic patterns form behind the travelling wavefront. If the
chemical acts as a repellent and chemorepulsion is strong enough, the wavespeed
of the front is significantly affected by chemotaxis. Using methods of nonlin-
ear analysis, we provide a formula to describe how the wavespeed depends on
diffusion, reproduction, and chemorepulsion.

In the second section of the chapter, the formation of travelling wavefronts in
a system with two interacting species is considered. In the absence of chemotaxis,
this system represents the well-known Lotka-Volterra model [89, 137], in which
the only patterns that can be obtained are travelling wavefronts. On the other
hand, in the presence of chemotaxis, periodic patterns form behind the travelling
wavefronts if chemorepulsion is strong enough. In this section, we have shown
the formation of travelling wavefronts moving at different speeds, depending on
diffusion and reproduction, as well as wavefronts moving from the unstable coexis-
tence steady state to a stable extinction state if certain conditions on interspecific
competition are met.

Chapter 3: Stationary periodic patterns in a one species system

In this chapter, stationary Turing patterns formed by a single bacterial species
producing its own chemoattractant are considered and described in detail. This
work builds on research conducted by Keller and Segel [58, 59, 60], which investi-
gates patterns formed as a result of a breakdown of stability. In the mathematical
model considered, the movement of bacteria is highly dependent on the strength
of chemotactic sensitivity. First, using methods of linear analysis, conditions un-
der which stability breaks down and Turing pattern formation is initiated are
obtained.

Since classical Turing pattern analysis does not provide any information about
the characteristics of the pattern, nonlinear Fourier analysis is used to obtain
information about wavelength and amplitude. Assuming a stationary pattern,
a system of simultaneous equations is obtained, which can be solved to give
solutions as Fourier series over some modes. The effects of model parameters
on amplitude and wavelength are also investigated, and analytical results are
verified by methods of computational simulations. This work fills existing gaps
in the literature regarding the analysis of Turing patterns in a system with one
bacterial species producing a chemotactic agent. This chapter has also been
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submitted as a paper and is available as a preprint on arXiv [15].

Chapter 4: Stationary periodic patterns in a system of two interacting
species

The last research chapter focuses on stationary periodic pattern formation in a
system of two interacting bacterial species, where one of the species produces a
chemotactic agent for the other. The aim of this chapter is to understand the con-
ditions that lead to the formation of Turing patterns and to obtain characteristics
of the patterns, such as wavelength and amplitude.

The simplest case to consider is the emergence of Turing patterns from the
coexistence steady state, which is stable in the well-mixed system if both com-
petition rates are smaller than 1. By fixing model parameters and using the
Routh-Hurwitz criteria [25], regions in which the stable steady state becomes un-
stable due to perturbations are identified. These regions are used to investigate
the relationship between interspecific competition and chemorepulsion, and how
these parameters affect the formation of Turing patterns.

The next part of this chapter involves obtaining information about the char-
acteristics of the patterns using methods of nonlinear Fourier analysis, which is
done in a similar manner to the case of a single bacterial population. One of the
most important applications of nonlinear Fourier analysis is to demonstrate the
emergence of stationary periodic patterns when the species producing the chem-
ical agent is initially extinct. In this instance, methods of linear analysis show
that the emergence of patterns is not possible with infinitesimal perturbations;
however, using Fourier analysis, as well as computational simulations, we show
that patterns form under the influence of finite amplitude disturbances.

Chapter 5: Discussion

In this chapter, the main results of our research, along with further research
opportunities, are presented. We discuss the effects of chemotaxis, as well as other
model parameters, on pattern formation in a system of one or two interacting
bacterial populations. Additionally, the importance of using methods such as
linear analysis and nonlinear Fourier analysis to accurately describe the patterns
obtained in numerical simulations is highlighted. Finally, we conclude the chapter
and the thesis by discussing the significance of this work and potential future
research opportunities.

21



Chapter 1

Introduction

Mathematical modelling is a fundamental method for studying biological pattern
formation in populations of motile microorganisms. In this chapter, we provide
an overview of the biological and mathematical concepts used throughout this
thesis to motivate the research. We begin by introducing the biological proper-
ties of microorganisms, as well as the different interactions between two or more
species that give rise to spatial patterns, such as travelling wavefronts and sta-
tionary Turing patterns. Next, we introduce the main mathematical methods
used in this thesis, including linear analysis and nonlinear Fourier analysis, to
examine systems of partial differential equations in order to determine conditions
for pattern formation, as well as to gain insights into pattern characteristics, such
as amplitude and wavelength, in the case of stationary Turing pattern formation.
Computational simulations are a valuable part of this research, so in the final sec-
tion, we describe the numerical algorithm used to illustrate the various types of
patterns that emerge in systems involving one species, as well as two interacting
species.

1.1 Biological background
This research project is motivated by biological pattern formation, which is one of
the most intriguing phenomena in nature. The simplest examples of such patterns
are represented by travelling waves and stationary periodic patterns, which oc-
cur during various biological processes, including morphogenesis and population
dynamics. The formation of these patterns in populations of motile microor-
ganisms, such as Dictyostelium discoideum and E. coli, has been demonstrated
in a number of experimental studies. Conditions for the formation of various
types of patterns are commonly addressed in mathematical studies of dynamical
systems containing diffusive and advection terms. In this work, we conduct a
mathematical study of spatio-temporal patterns forming in a growing population
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of chemotactically active bacteria. We consider a single species of bacteria, as
well as two interacting species, and we are interested in determining under which
conditions we obtain travelling wave solutions [86] or stationary Turing patterns
[87]. Pattern formation is a fascinating topic with many applications, as it repre-
sents visible outcomes of self-organization. In biology, it explains patterns such
as animal markings, for example, the pattern that appears on the skin of the
giant pufferfish [144], or the way cells form complex patterns in developing tis-
sue. Additionally, in the very early stages of biofilm formation, many bacterial
patterns appear during colonization [56]. Pattern formation also has applications
in industry, for example, the formation of temperature hot spots as a result of
chemical kinetics and autocatalytic reactions [41]. Patterns appear everywhere in
nature, but we are specifically interested in patterns formed by bacterial species
in response to concentration gradients.

1.1.1 Bacterial growth

Populations of microorganisms expand through a process called binary fission
[57]. During this process, a mother cell doubles in size and then splits into
two daughter cells, which are genetically identical, assuming no mutations have
occurred. The growth of a population is defined by an increase in the number of
cells, rather than their size. The number of cells arising from a group of cells via
binary fission can be calculated as follows:

N = n× 2d, (1.1)

where N represents the number of cells at the end of the growth period, n the
number of cells at the beginning of the growth period and d the number of
divisions. There are four main stages of bacterial growth, which can be seen
graphically in Figure 1.1.

The four main phases that affect bacterial growth can be described as follows
[57, 107, 127]:

• Lag phase: this is the period of time in which bacteria adjust to the
environment and go through slow changes, however they are still in the
developing phase, so unable to go through binary fission;

• Log phase: this is also known as the exponential growth phase, and it is the
period of time in which cells divide via binary fission. This period cannot
be sustained permanently, since nutrients in the medium will eventually be
consumed;
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Figure 1.1: Bacterial growth curve. This shows the number of mi-
croogranisms as time increases affected by four main stages, followed by the sur-
vival phase. Figure reproduced from [107].

• Stationary phase: period of time in which growth and death rate are equal
due to growth being limited by environmental factors such as nutrients,
oxygen, temperature. Population remains constant during this phase;

• Death phase: cells start dying due to limitations such as nutrients and
oxygen and other harmful factors.

Some cells will also adapt to the harsh environmental conditions and survive
under conditions of stress and starvation, however not many species will survive,
and population will eventually decay to 0 [55]. It is important to understand the
bacterial growth concept, since this is present in the main models considered in
this thesis and has a great impact on pattern formation.

1.1.2 Microorganisms motility

Microorganisms, such as bacteria, are known to move independently from un-
favourable conditions towards more beneficial areas using metabolic energy. Bac-
terial motility and interactions between bacteria and their host can result in
colonisation, which is crucial for processes such as the early stages of biofilm
formation [5] or poorly healing wounds [148], but also for infectious pathogenic
processes [91].

Motion depends on the different appendages used for propulsion, but also on
the characteristics of the medium. There are various types of movement depend-
ing on how bacteria propel themselves: swarming and swimming are done using
rotating flagella, twitching is aided by pili, gliding uses motor complexes such as
focal adhesion, and sliding is independent of both flagella and pili, as it involves
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changing shape and moving across surfaces [22, 148]. A visual representation can
be seen in Figure 1.2.

Figure 1.2: Different types of bacterial motility, depending on the
structures that generate movement (marked by red). Figure reproduced
from [148].

The motion of microorganisms can be described by diffusion when bacteria
respond to concentration gradients in a medium, which appears to smooth out
any concentration differences. In this case, bacteria move from regions of high
concentration to regions of low concentration until the concentration gradient
is eventually eliminated. On the other hand, taxis refers to directed motion in
response to a stimulus, resulting in high densities of microorganisms in favourable
regions. There are different types of taxis. For example, phototaxis is movement
towards or away from light [7], magnetotaxis is movement along a magnetic field,
which can be used by bacteria for orientation [29], and the type considered most
important throughout this thesis is chemotaxis, which is movement in response
to chemical gradients [80, 118].

When considering microorganisms, such as bacteria, interacting with a chem-
ical, their motility is highly affected by changes in the concentration field of the
chemical agent. This process, known as chemotaxis, represents the chemically
directed movement of cells either along the concentration gradient (chemoattrac-
tion) or in the opposite direction (chemorepulsion), typically resulting in regions
with higher concentration densities [136]. Chemotaxis plays a crucial role in the
formation of Turing patterns, which represent regions of high and low densities
of bacteria and chemotactic agents. A chemical gradient is required for stability
to break down and initiate aggregation [59].

For example, consider a Petri dish with randomly distributed cells. If a drop
of chemoattractant is introduced, it can dissolve and diffuse, creating a concentra-
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tion gradient. Since the agent acts as a chemoattractant, cells will move along the
concentration gradient towards the point where the chemical was first introduced.
This is represented graphically in Figure 1.3. The figure also shows three modes
of bacterial movement: the bottom bacterium moves by attaching to a surface
and crawling by changing and elongating its shape; the middle bacterium moves
with the aid of pili; and the top bacterium uses its flagellum to move towards
regions of higher chemical concentration.

Figure 1.3: Organisms moving up the concentration gradient towards
the areas of high (chemoattraction) chemical concentrations. The
dashed lines represent isolines, where the chemoattractant concentration is con-
stant along the lines and the further away from center the lower the concentration
of the chemical is. Modified figure from wikipedia.org/wiki/chemotaxis.

Chemotaxis is arguably the most important form of taxis, and we have thor-
oughly investigated its effect on the types of patterns that can form when bacteria
respond to chemical concentration gradients. For example, in a one-species sys-
tem, strong chemoattraction leads to the formation of Turing patterns, while
strong chemorepulsion results in faster-moving wavefronts. Conversely, in a two-
species system, strong chemorepulsion leads to the formation of Turing patterns,
while strong chemoattraction results in faster-moving wavefronts. These results
will be explained using methods of linear and nonlinear analysis, as well as com-
putational simulations, in the following chapters.

1.1.3 Interactions between species

Rather than existing as single planktonic cells, microorganisms are more likely
to form complex interactive networks. Due to environmental sensing, species in
an ecosystem compete for the same limited resources, such as food and space,
usually resulting in the fitter individual surviving and reproducing. Competition
can be classified into three main categories: intraspecific competition (between
individuals of the same species), interspecific competition (between individuals of
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different species), and competition between entirely different families [139]. The
effects of intraspecific interactions are generally stronger than interspecific ones,
since members of the same species are more likely to require the same resources.
For example, they consume the same food and favour the same environmental
conditions, such as temperature [21]. Moreover, it has been shown that the
coexistence of competitive species is only possible when intraspecific competition
is stronger than interspecific competition, meaning that species inhibit their own
growth more than the growth of other species [38].

When considering the properties of an ecosystem, such as productivity and
stability, the effects of interspecific interactions are much more important, as these
represent different interactions between the species of a community. Microorgan-
isms can compete for resources such as food and space, inhibit each other by
secreting toxins, or even kill each other through direct contact [40]. Coexistence
is a fundamental ecological interaction, and when species cannot coexist, dynam-
ics lead to the exclusion of one species, a phenomenon known as the competitive
exclusion principle: "Complete competitors cannot coexist" [43].

Depending on the effect microorganisms have on each other, both when con-
sidering members of the same species, or different species, the most important
interactions can be classed as:

• Competition: when niches overlap and resources are limited, organisms
are in competition with each other in order to survive. Many species com-
pete for food or environmental conditions, such as places with higher or
lower temperatures, or places more dense in oxygen [9];

• Predation: occurs when an organism, predator, kills and eats another
organism, prey. Predators affect an ecosystem directly and indirectly by
eating its prey, but also reducing predation by other species. If there would
be no predators in an ecosystem, its population would increases exponen-
tially until it reaches its carrying capacity [88];

• Symbiosis: this is a long-term interaction between different organisms.
There are three main types of symbiosis: mutualism (both species bene-
fit), commensalism (one species benefits and another is not affected) and
parasitism (one species benefits and another is harmed) [110].

Understanding the different interactions between organisms is crucial for com-
prehending how an ecosystem can evolve or how biofilms form in the early stages.
In our models, we consider cases of competition and competitive exclusion, but
depending on the growth and competition rates of the species involved, the system
can be extended to other types of interactions as well. We thoroughly investigate
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the effects of interspecific competition and chemotaxis on the interactions and
patterns formed in a system of two species, one of which produces a chemotactic
agent that affects the other. It will be shown that the most interesting phenomena
arise from the disturbance of the coexistence steady state, both in the presence
and absence of chemotaxis.

1.1.4 Applications and experiments

Motility is one of the most important characteristics of many species, as it facili-
tates rapid expansion into previously unoccupied habitats. Expansion is initiated
by the sensing of gradients produced by the species themselves and is further en-
hanced by growth and chemotaxis. Understanding bacterial motility is crucial
for many sectors, such as healthcare (e.g., bacterial adaptation and antibiotic
resistance) [95], agriculture (e.g., effects of bacteria on plant growth) [129], and
the environment (e.g., bacterial motility in lakes) [119].

The aim of this research project is to better understand how bacterial motility
and growth can lead to different types of pattern formation. One of the spatial
patterns we are most interested in is the formation of travelling waves [17, 11, 37,
49, 58, 86, 87, 137]. Much work has been done on understanding the existence
of travelling wave solutions in systems with one or two bacterial populations.
The simplest way to describe the spread of a single population is by using the
well-known Fisher-Kolmogorov equation [33, 62]. This equation has a wide range
of applications; it can be used to describe the spread of animals and insects
[86], the propagation of mutant genes [14], and even has applications in nuclear
reactor theory [18]. In biology, the Fisher-Kolmogorov equation describes how a
population can occupy the entire available medium by moving from one region
to another at a constant speed. On the other hand, the Lotka-Volterra model
is commonly used to describe the spread of any two interacting species [76, 135]
that can diffuse, reproduce, decay, and compete for food and resources. In these
models, populations start moving from a certain region in the medium and occupy
the entire available space by forming travelling wavefronts that move at a constant
speed, making the transition from an unstable steady state to a stable one.

The concept of a ’Turing pattern’ was first introduced by Alan Turing in [128].
He examined a system with two substances, or morphogens, that are allowed to
diffuse and interact with each other. Mathematically, this is known as a ’reaction-
diffusion’ system. Initially, in the absence of diffusion, the homogeneous steady
state is stable against perturbations. However, if the morphogens both diffuse
and interact with each other, the steady state becomes unstable when a random
perturbation is introduced. This perturbation drives the system unstable, and
patterns such as stripes or spots begin to appear [17, 59, 60, 86, 87]. These
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are stationary patterns, meaning that once they are formed, they do not change
their characteristics over time. In other words, a system exhibits Turing patterns
under the condition of ’local self-enhancement and long-range inhibition’ [128,
144]. This concept has been used to investigate the aggregation of amoebae in
response to chemical gradients in the concentration of acrasin [59]. Amoebae are
unicellular organisms that, after formation, disperse uniformly as if acting under
repulsion. When food is present, the amoebae are chemotactically attracted to
it, and once the food has been consumed, they again disperse uniformly. After
some time, the amoebae start producing a chemical called acrasin, which acts as a
chemoattractant and initiates the process of aggregation. A number of collecting
spots form, and a slug begins to develop at the centre. This process is explained
mathematically in the next section.

There are many experiments examining the motility of bacteria in response
to chemical agents, as understanding bacterial response plays an important role
in bacterial infections and epidemiology [27]. Many experiments have focused
on the study of E. coli bacteria, which are primarily found in the human intes-
tine and produce their own chemoattractant, aspartate, leading to a chemotactic
aggregative signalling mechanism [130]. Researchers have investigated patterns
formed by E. coli on a Petri dish due to its simplicity and ease of use [17]. A
uniform distribution of food source is placed on the Petri dish with a high density
of bacteria in the middle. As bacteria start eating and spreading out, a swarm
ring is formed and travels outward as a travelling band. When bacteria in the
swarm ring reach maximal capacity, some bacteria are left behind. These start
producing their own chemoattractant, aspartate, which results in the formation
of aggregates. After some time, the aggregates begin to dissolve as bacteria join
the swarm ring and leave behind non-motile bacteria. These non-motile E. coli
produce the spots pattern seen in Figure 1.4 a. Even though this is similar to one
of the models we consider in this thesis, the main difference is that in this system
there is one bacterial species and two chemicals: one acting as a food source and
one acting as a chemoattractant.

Pseudomonas is a different type of bacteria that is well known for forming
biofilms and is preferred by experimentalists due to its adaptation to diverse and
challenging conditions [109]. This bacterium can be chemotactically affected by
a wide range of chemicals, and its response to concentration changes is mediated
by flagella or pili coupled with a well-developed chemosensory system. Its motil-
ity has been well studied since it can cause a wide range of infections, such as
pneumonia and infections of the gastrointestinal system [10]. In Figure 1.4 b, four
spots of bacteria are placed on a Petri dish containing an attractant. The top
spot is a non-chemotactic mutant of Pseudomonas putida, while the bottom three
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spots are the wild-type of the same species, which is chemically attracted to the
substance, causing it to spread outward. Experimentalists use Pseudomonas to
study antimicrobial treatments of infections because it forms dense and persistent
biofilms [125].

(a) (b)

Figure 1.4: Stationary patterns formed by growing populations of bac-
teria in agar. (a): Patterns formed by growing populations of E.coli; the light
spots on the Petri dish represent accumulations of bacteria due to the production
of chemoattractant. Taken from [17]. (b): Bacterial colonies formed by grow-
ing population of Pseudomonas in response to attractant. Figure reproduced from
[109].

Spatial patterns can also be seen in the aggregation of Dictyostelium dis-
coideum (Dd) in response to concentration gradients of cyclic AMP (cAMP)
[133]. This is a cellular slime mold that forms an excitable medium for cAMP.
Patterns are formed when a starving population of Dd starts moving toward foci
to form multicellular structures. Cells appear that spontaneously secrete cAMP,
and when a threshold value is reached, neighbouring cells also begin secreting the
chemical. In response to the increased concentration of cyclic AMP, Dd starts
producing phosphodiesterase, which slowly destroys the cAMP, creating travelling
waves. At the same time, on the front of these waves, Dd moves chemotactically
towards higher concentrations of cAMP. Figure 1.5 shows patterns formed by Dd
in response to cyclic AMP. In Figure 1.5 a, dark-field waves form because ag-
gregating cells communicate through propagating waves of chemoattractant. In
Figure 1.5 b, aggregation streams occur due to the dependence of the velocity of
cAMP waves on the density of the cells.

The difference between E. coli and Dictyostelium discoideum is that while the
former is a group of bacteria that always produces a chemical agent, the latter is
an amoeba species that produces a chemical agent in pulses, rather continuously.
In Dd, chemical emissions and amoeba movement occur every few minutes. When
one amoeba secretes cAMP, others start moving towards this central amoeba, the
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one secreting the most chemicals. Amoebae move toward a high concentration
of cyclic AMP for about 60 seconds, then stop until the next secretion begins.
This behaviour causes oscillations in the form of waves of cAMP, and this is
how aggregation and, hence, pattern formation, are initiated in populations of
Dictyostelium discoideum.

(a) (b)

Figure 1.5: Patterns formed by the amoeba species Dictyostelium dis-
coideum. (a): Formation of dark-field waves, in which light regions represent
elongated cells that move and dark regions represent round cell that do not move.
(b): Formation of aggregation streams towards a common centre in response to
chemical gradients. Figure reproduced from [115].

Interactions between two or more species also have a significant impact on
pattern formation and colonisation, so it is important to understand how these
interactions affect species dispersal in response to different stimuli. One appli-
cation of species interactions is pattern formation and colonisation in the early
stages of biofilm formation. Biofilms are communities of many different species
of bacteria attached to a surface [102]. Once bacteria are irreversibly attached to
a surface, they can proliferate to form a mature biofilm and then disperse. Inside
the biofilm, the different species of bacteria reproduce, decay, and interact. Re-
searchers have studied interactions such as competition and predation within the
biofilm because of their importance for public healthcare, as they play a crucial
role in certain infectious diseases [26, 42, 56]. A particularly challenging topic
is studying the formation of biofilms on medical devices, as they were the first
clinical biofilm-related infections. Several devices are prone to biofilms, such as
intravenous catheters, cardiac pacemakers, and prosthetic heart valves [42]. Due
to the interactions between microbial cells and the host product, the biofilm’s
resistance to microbial agents is not fully understood. Cystic fibrosis and pneu-
monia are only two examples of biofilm-related diseases. However, understanding
biofilms is not only important in healthcare, as they appear everywhere in nature.
For example, in Figure 1.6 a, biofilms can be seen forming in hydrothermal hot
springs, and similarly, in Figure 1.6 b, we can observe the formation of biofilms
in freshwater rivers.
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(a) (b)

Figure 1.6: Examples of biofilms in nature. (a): Formation of filamentous
streamers in hydrothermal hot springs due to the fast moving water which is able
to mold the morphology of bacteria and algae. (b): Formation of periphyton,
complex community of algae and bacteria growing on submerged surfaces in fresh
water rivers . Figure reproduced from [42].

In this project, we are interested in the structure formed by cells inside the
biofilm, so we investigate the very early stages of biofilm formation [5], when
bacteria are very loosely attached to a surface and are still motile. In particular,
we are interested in pattern formation, as this shows visible outcomes of self-
organization in response to morphogen gradients. These gradients appear as a
result of the bacteria diffusing, responding to chemicals, proliferating, decaying,
and competing for resources. Interactions between different bacterial species are
important in biofilm formation; however, we have not seen any experiments that
investigate the interactions we are interested in. Some researchers have looked at
interactions between multiple species, but these species are not motile, so their
results cannot provide significant data for our study.

Interactions between bacterial species are crucial in the early stages of biofilm
formation, but they also have other relevant applications in healthcare, such as
bacterial colonisation of the respiratory tract, which is an important cause of
morbidity and mortality worldwide [114]. Respiratory tract infections require
bacteria to evade the host mucosal system and spread to susceptible sites in
the upper airway, where colonisation occurs. Rapid transmission and spread
of bacteria are evasion strategies related to bacterial motility and interactions
between species.

Another relevant application of interactions between species is understanding
population dynamics in ecological systems. For example, one of the most studied
interactions of the Lotka-Volterra type is that of red and grey squirrels in the
United Kingdom, one reason being the amount of available data. In the early
stages of this research, the Lotka-Volterra system has been modified to include
a diffusion term that describes the random movement and spatial dispersal of
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the squirrels [89]. Under the assumption that grey squirrels have a competitive
advantage over red squirrels, it has been shown that the species disperse by
forming a wave, with red squirrels at the front of the travelling wave and only
grey squirrels behind it. These results have also been expanded to show that
both interspecific and intraspecific competition affect the minimal invasion speed;
moreover, this cannot be predicted when the former is greater than the latter
[47]. In a later paper [48], the existence of travelling fronts between the two
steady states in which one of the species is extinct has been investigated and
the minimal invasion speed when D1/D2 << 1 was found. Biologically, this
means that if there is no diffusion, the n-species always overcomes the v-species.
In [49], it was proved that travelling waves exist with any positive speed when
the predator cannot diffuse, and so only the prey is motile. This competitive
interaction has also been described using individual-based models to investigate
the effects of reproduction, mortality, and competition on the dispersal of red
and grey squirrels in a realistic habitat [108]. These models have been used to
successfully predict the expansion of grey squirrels in Italy. In addition, the
response of the squirrels to a virus has also received significant attention in order
to understand the impact of a shared disease and how to better conserve red
squirrels [140].

The dynamics of plant communities are another example of species interac-
tions, and in this case, the flux of species in a community has a significant impact
on colonisation. Plant species are highly competitive since most of them require
the same resources at all stages of their vegetative life cycle [93, 94]. It has been
shown that the competitive ability of plants is due to their colonisation and in-
hibition abilities, which play a vital role in population and community change.
Additionally, pattern formation in plant communities is due to plants respond-
ing to competition from their neighbours, which influences the distribution and
abundance of adult species.

The aim of this biological background section was to introduce the reader
to some of the most basic concepts used throughout this PhD thesis, such as
bacterial growth and motility, and to highlight the importance of interactions
between species and how these characteristics affect dispersal and, consequently,
pattern formation. It is clear that understanding bacterial responses to stimuli
and how the speed of dispersal is affected is important in many different sectors,
such as healthcare and ecology. In the next section, we will introduce the main
mathematical methods used for linear and nonlinear analysis, and also present
the numerical algorithms employed to support the analytical findings.
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1.2 Mathematical background
In this section, we introduce the basic mathematical methods used throughout
the thesis to investigate the existence of travelling wave solutions and stationary
periodic patterns in a system of one, as well as two interacting bacterial popula-
tions. Some of the most fundamental methods employed include transforming a
system from a space-time frame ((x, t) coordinates) to another frame that moves
at a constant velocity relative to the first frame (z-coordinates) [86, 87], and lin-
earising a system about the steady state to determine its stability when perturbed
[124] and understand the existence of Turing patterns [59]. Fourier analysis is
also introduced, as it is used to determine characteristics of the Turing pattern,
such as amplitude and wavelength.

1.2.1 Logistic growth equation

The simplest way to describe the expansion of a biological population is to say
that it grows at a rate proportional to the population density, under the as-
sumption that there is sufficient food and space for growth, and no threat from
predators. This can be modelled using the simple ordinary differential equation:

dn

dt
= rn, (1.2)

where n represents the population and r its growth rate coefficient. However,
these assumptions are not correct, as populations are constrained by limitations
on resources, which means the population can reach a maximum capacity. To
account for the reproduction rate declining to zero, the system is modified such
that:

dn

dt
= rn

(
1 − n

K

)
, (1.3)

where K represents the maximum carrying capacity. This is known as the logistic
equation, or the Pearl-Verhulst model [104].

In this thesis, we have used the logistic model to describe the growth of pop-
ulations of microorganisms, as it is the simplest model that accounts for the fact
that a population cannot expand infinitely. For example, in Figure 1.7, we can
see that over time, a very small population grows until it reaches its maximum
carrying capacity, after which its density remains constant.

1.2.2 Fisher-Kolmogorov equation

The logistic growth model describes the growth of a biological population over
time, characterised by the absence of a spatial variable, meaning the population is
non-motile. The simplest model that accounts for diffusion, or Brownian motion,
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Figure 1.7: Solution of the logistic growth equation (1.3). Solution
with model parameters r = 0.1 and K = 1, shows population transitioning from
n = 0.001 at time T = 0 to n = 1 as time increases.

is known as the Fisher-Kolmogorov model, which exhibits travelling wave solu-
tions and can be applied to the spread of any biological population [33, 62, 86].
In its dimensional form, it is:

∂n

∂t
= D

∂2n

∂x2 + kn(1 − n), (1.4)

where kn(1 − n) and D
∂2n

∂x2 are the reaction and diffusion terms respectively,
while D represents the diffusion coefficient. Nondimensionalisation of mathemat-
ical equations has several advantages, such as reducing the number of relevant
parameters and removing the need for measuring units in analysis. Further ad-
vantages of nondimensionalisation and scaling are discussed in [111]. Introducing
the nondimensional parameters:

t̃ = kt, x̃ = x

(
k

D

)1/2

,

and dropping the tilde, the nondimensional Fisher-Kolmogorov equation becomes:

∂n

∂t
= ∂2n

∂x2 + n(1 − n), (1.5)

where n represents any biological population which can diffuse and reproduce.
This model depends on both space and time, so as the population grows, it
moves from an unstable steady state to a stable one.

The main characteristic of travelling waves is that they move in a particular
direction with constant speed c [58] and they can be expressed as:

n(x, t) = N(z), where z = x± ct, (1.6)
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subject to the boundary conditions:N(±∞) = n±,

N ′(±∞) = 0,
(1.7)

where n± is a constant. If n+ = n− then the wave is a travelling pulse and if
n+ ̸= n− then the wave is a travelling front. The steady states of the spatially

homogeneous problem
(
∂2n

∂x2 = 0
)

are n = 0 and n = 1, which are unstable and

stable respectively. This means that we seek travelling wave solutions between
0 ≤ n ≤ 1. Substituting N(z) into (1.5) gives:

−cN ′ = N ′′ +N(1 −N). (1.8)

First step is to transform the equation into a system of two ODE’s:N ′ = V,

V ′ = −cV −N(1 −N).
(1.9)

Then, to obtain the speed of the travelling wave, the system needs to be linearized
about the steady states (N, V ) = {(0, 0), (1, 0)}. Let f = N ′ = V and g =
V ′ = −cV −N(1 −N), the Jacobian of the system becomes:

J =
(
fN fV

gN gV

)
=
(

0 1
−1 + 2N −c

)
. (1.10)

Evaluating J at the origin gives:

J(0, 0) =
(

0 1
−1 −c

)
, (1.11)

which has eigenvalues λ1,2 = −c±
√
c2 − 4

2 . This means that the origin (0, 0) is
a stable node if c2 ≥ 4 or a stable spiral if c2 ≤ 4. Next, evaluating J at (1, 0):

J(1, 0) =
(

0 1
1 −c

)
, (1.12)

which has eigenvalues λ1,2 = −c±
√
c2 + 4

2 , meaning that the steady state (1, 0)
is a saddle.

If c2 < 4, the origin is a stable spiral, which would result in the population
having negative densities. Since this is physically impossible, we require c ≥
cmin = 2. This makes the origin a stable node, so we expect travelling waves
between the two steady states.

Figure 1.8 shows the trajectories of system (1.9) in the phase plane for two
different values of speed. In Figure 1.8 a, we see that when the speed is c =
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(a) (b)

Figure 1.8: The phase-plane portrait of system (1.9). Direction field
is shown by the gray arrows and the red curves represent represent the phase
trajectories. (a): Simulation of phase portrait with c = cmin = 2, where steady
state (0, 0) is a stable node. (b): Simulation of phase portrait with c = 1, where
steady state (0, 0) is a stable spiral. The two steady states of the system (0, 0)
and (1, 0) are represented by the black dots. Figure produced numerically in
Maple.

cmin=2, the trajectories all converge to the point (0, 0), indicating that this is
a stable node. However, in Figure 1.8 b, with c = 1, the trajectories oscillate
around the origin, meaning the point is a stable spiral. This illustrates why
we generally require the eigenvalues at the extinction points to be real. Having
established the existence of travelling wavefronts with cmin ≥ 2, Figure 1.9 shows
the numerical profile of the biological population n as described by the Fisher-
Kolmogorov equation (1.5), transitioning from the unstable equilibrium point
n = 0 to the stable equilibrium point n = 1.

Figure 1.9: Profiles of the density of species n as described by the the
Fisher-Kolmogorov equation (1.5) produced in numerical simulations
at times: T = 25, 50, 75, 100 from left to right.
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In this part, we have introduced the simplest method to describe the spatial
spread of a single population using the Fisher-Kolmogorov equation. Next, we will
introduce the simplest model to describe the spread of two interacting biological
populations: the Lotka-Volterra model.

1.2.3 The Lotka-Volterra model

The Lotka-Volterra model is a classical model [76, 135] of first-order, nonlinear
partial differential equations that describe the interaction between two or more
biological populations. There are three main types of interactions that can occur
in a system of two species: competition, which decreases the growth rate of
each population; symbiosis, which increases both growth rates; and predator-prey
dynamics, where the growth rate of one population is increased while the other’s is
decreased [56, 86]. Several assumptions are made when using the Lotka-Volterra
models, such as: predators can eat continuously and their only food source is the
prey, which can also eat continuously and has a limitless food supply; there are no
environmental changes; and the rate of change of each population is proportional
to its size. The classical and dimensional Lotka-Volterra model that describes
the spatial distribution of two interacting populations is [86]:

∂n

∂t
= Dn

∂2n

∂x2 + r1n

(
1 − n

k1
− B1v

k1

)
,

∂v

∂t
= Dv

∂2v

∂x2 + r2v

(
1 − v

k2
− B2n

k2

)
,

(1.13)

where n and v represent two interacting bacterial populations, Dn, Dv represent
the diffusion coefficients, r1, r2 the proliferation rates, k1, k2 the carrying capaci-
ties and b1, b2 the interspecific competitive effects of species n and v respectively.
To reduce the number of relevant parameters, the system is commonly nondi-
mensionalized using the following substitutions: ñ = n

k1
, ṽ = v

k2
, t̃ = tr1 and

x̃ = x

√
r1

Dn

. Dropping the tilde and using the new nondimensional parameters:

r = r2/r1, d = Dv/Dn, b1 = B1k2/k1 and b2 = B2k1/k2, the nondimensional
system is: 

∂n

∂t
= ∂2n

∂x2 + n(1 − n− b1v),
∂v

∂t
= d

∂2v

∂x2 + rv(1 − v − b2n).
(1.14)

Depending on the signs of the interspecific competitions, b1,2, different inter-
actions can be described by the model:

• Competition: a1,2, b1,2 > 0, both species compete for food and resources
[9, 21];
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• Symbiosis: b1,2 < 0, both species cooperate and coexist [110, 149];

• Predator-Prey: b1 = 0 or b2 = 0, one species feeds on the other [88].

To understand the spatio-temporal distribution of such system, it is important
to know what the equilibrium points are and their stability. Clearly, system (1.14)
has four equilibrium points:

(n, v) =
(0, 0), (1, 0), (0, 1),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

) , (1.15)

and their stability can be determined by evaluating the trace and determinant of
the Jacobian evaluated at the equilibrium points, as seen in Figure 1.10.

Figure 1.10: Poincaré diagram showing stability depending on trace
and determinant. Steady states are stable in the first quadrant and unstable
anywhere else. Figure reproduced from [86].

The Jacobian of the homogeneous case (well-mixed system with no spatial
component) is:

Jwm =
(

1 − 2n− b1v −b1n
−rb2v r(1 − 2v − b2n)

)
, (1.16)

and the results regarding the stability of the equilibrium points are summarized
in Table 1.1.

To look for travelling wave solutions and analyse the stability of the equilib-
rium points in the nonhomogeneous system, one must first apply the transforma-
tions: n(x, t) = N(z) and v(x, t) = V (z) where z = x− st represents a travelling
wave moving from left to right with speed s. This gives:

−sN ′ = N ′′ +N(1 −N − b1V ),
−sV ′ = dV ′′ + rV (1 − V − b2N),

(1.17)
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and by lettingN ′ = U and V ′ = W , this results in a system of ordinary differential
equations: 

N ′ = U,

U ′ = −sU −N(1 −N − b1V ),
V ′ = W,

W ′ = 1
d

(−sW − rV (1 − V − b2N)),

(1.18)

which has four steady states:

(N, U, V, W ) =
(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0),

(
b1 − 1
b1b2 − 1 , 0, b2 − 1

b1b2 − 1 , 0
) ,

(1.19)
with stabilities given by evaluating the Jacobian:

Jtw =


0 1 0 0

−1 + 2N + b1V −s b1N 0
0 0 0 1

b2rV

d
0 −r(1 − 2V − b2N)

d
−s

d

 , (1.20)

at each steady state. In addition to stability, by requiring the steady states:
(N, U, V, W ) =

{
(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0)

}
to be nodes, rather

than spirals (real eigenvalues), one can find the minimum wavespeed requirements
for travelling wavefronts transitioning from that specific state. Results requiring
stability are summarized in Table 1.1 and results regarding minimum wavespeed
are summarized in Table 1.2.

Steady state Homogeneous Nonhomogeneous

(0, 0) always unstable always stable

(1, 0) stable if b2 > 1
unstable if b2 < 1 always unstable

(0, 1) stable if b1 > 1
unstable if b1 < 1 always unstable(

b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
stable if b1, b2 < 1 unstable if b1, b2 < 1

Table 1.1: Stability of the steady states of system (1.14) as obtained
by evaluating Jacobians (1.16) (homogeneous case) and (1.20) (nonho-
mogeneous case) at each steady state.

Since travelling waves make the transition from unstable to stable steady
states, it is clear from Table 1.1 that the simplest waves admitted as solutions to
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system (1.14) are waves from the unstable steady states (n, v) = {(0, 0), (1, 0), (0, 1)}
to the stable coexistence state with speeds as given in Table 1.2. The next step
is to show numerical simulations of such profiles in Figure 1.11.

Unstable
steady
state

(0, 0) (1, 0) (0, 1)

Minimum
wavespeed smin ≥ 2

√
dr smin ≥ 2

√
dr(1 − b2) smin ≥ 2

√
dr(1 − b1)

Table 1.2: Minimum wavespeed requirement for travelling wavefronts
to be admitted as solutions to system (1.14), making the transition
from specified unstable steady states.

(a) (b) (c)

Figure 1.11: Travelling wavefronts admitted as solutions to system
(1.14) making the transition to the stable coexistence steady state.

Initial conditions: (n, v)(x, 0) =
(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
, if x < 10 and if x ≥ 10,

(n, v) = (0, 0) in (a), (n, v) = (1, 0) in (b) and (n, v) = (0, 1) in (c).
Blue and cyan lines represent the densities of n and v, respectively, at times:
T = 10, 20, 30, 40 from left to right. Fixed parameters: d = 1, r = 1, b1 =
0.6, b2 = 0.5.

As well as the different types of wavefronts admitted as solutions to system
(1.14) and their minimum wave speed, their direction of propagation has also been
thoroughly investigated [2, 3, 4]. In a system with Lotka-Volterra dynamics, con-
ditions under which diffusion and competition can cause waves to be halted or
reversed have been explored. The dependence of wave speed on model parameters
in degenerate (one species assumed not to diffuse) and near-degenerate (ratio of
diffusion coefficients is small) systems results in three zones of response: in the
central zone, the direction of propagation depends on motility, while in the outer
two zones it depends on competition [2, 4]. Conditions under which competition
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between two species can be controlled by a biocontrol agent have also been in-
vestigated. Without altering the competitive strengths or motility of the existing
species, it has been shown that the relative strength of the biocontrol agent can
slow, stall, or even reverse the advance of one species into the territory of the
other [3].

This section has introduced some basic concepts about travelling waves ad-
mitted as solutions to the classical non-dimensional Lotka-Volterra system (1.14).
In the next chapters, we will investigate the existence of travelling wavefronts, as
well as stationary periodic patterns in a system of two competitive species with
Lotka-Volterra dynamics interacting with a chemical.

1.2.4 Turing instability

The concept of a ’Turing pattern’ was first introduced by Alan Turing in 1952
in his classical paper "The Chemical Basis of Morphogenesis" [128]. Concerned
with a system involving two substances, or morphogens, that diffuse and interact
with each other from an initially homogeneous state, Turing described pattern
formation as an instability of the homogeneous equilibrium triggered by random
disturbances. Mathematically, this is known as a ’reaction-diffusion’ system, and
conditions for the onset of instability can be found using methods of linear anal-
ysis. There are three mathematical conditions that a reaction-diffusion system
must satisfy to exhibit Turing patterns [86, 87]. First, the non-trivial steady
state of two morphogens in a well-mixed system with no spatial variation must
be stable against perturbations. The system can be represented by the system of
ordinary differential equations: 

dn

dt
= f(n, c),

dc

dt
= g(n, c),

(1.21)

which represent the rate of change of morphogens concentrations over time as
coupled functions. Here, n and c are two chemicals that can interact with each
other.

Now, consider the equilibrium point (n, c) = (n0, c0) and a simple perturba-
tion of the form ñ, c̃ ≈ exp(λt), where λ represents the eigenvalues of the system.
Then, the concentration of the morphogens at the perturbed point is:n = n0 + ñ,

c = c0 + c̃,
(1.22)

and the system can be linearized about the steady state (ñ, c̃)T , such that:
∂

∂t

(
ñ
c̃

)
= J

(
ñ
c̃

)
, (1.23)
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where J is the Jacobian of the system, i.e:

J =
(
fn fc

gn gc

) ∣∣∣∣∣
(ñ,c̃)

. (1.24)

For a system to be stable, we know that we require the determinant to be
positive and the trace negative. Therefore, here we require:

fngc − fcgn > 0,
fn + gc < 0,

(1.25)

which provides the first two conditions needed for the homogeneous steady state
in the well-mixed system to be stable against perturbations. Next, spatial vari-
ation is introduced into the system so that the morphogens can diffuse. The
previously stable homogeneous steady state in the well-mixed system needs to
become unstable due to random perturbations in the reaction-diffusion system,
which is: 

∂n

∂t
= Dn

∂2n

∂x2 + f(n, c),

∂c

∂t
= Dc

∂2c

∂x2 + g(n, c).
(1.26)

Generally, a perturbation of the homogeneous steady state (n0, c0) is considered
to take the form:

n = n0 + ñ,

c = c0 + c̃,
where


ñ =

∑
i

αiT1,i(λit)X1,i(kix),

c̃ =
∑

i

βiT2,i(λit)X2,i(kix).
(1.27)

To find out which functions T1,i(λit), T2,i(λit) and X1,i(kix), X2,i(kix) satisfy
the system of partial differential equations, consider only the first equation of the
homogeneous system and substitute in n = n0 + ñ, keeping in mind that all the
terms vanish at the equilibrium point to obtain:T

′
1,i − λiT1,i = 0
X ′′

1,i − k2
iX1,i = 0

=⇒

T1,i(t) = exp(λit),
X1,i(x) = ai cos(kix) + bi sin(kix),

(1.28)

where ai and bi are constants, ki represents the wavenumber and λi are the
eigenvalues of the system. Next, since in this work, we require no flux boundary
conditions, it is appropriate to apply Neumann boundary conditions for x ∈
[0, L]. Therefore, the derivatives of n and c with respect to x need to vanish at the
end points x = 0 and x = L. The derivative of X1,i(x) = ai cos(kix) + bi sin(kix)
with respect to x evaluated at 0 gives bi = 0, so all the sin coefficients vanish. In
addition, applying no flux boundary conditions at x = L, gives L = (2m+ 1)π

2ki

,
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where m = 1, 2, .... Same argument also holds for X2,i(x). Since this is valid for
all terms of the Fourier series, only one term of the series can be considered to
give the most commonly used perturbation:ñ = α exp(λt) cos(kx),

c̃ = β exp(λt) cos(kx).
(1.29)

Linearizing the system about (ñ, c̃)T :
∂

∂t

(
ñ
c̃

)
= ∂2

∂x2

(
Dnñ− χc̃
Dcc̃

)
+ J

(
ñ
c̃

)
, (1.30)

gives the characteristic matrix:

M =
(
fn −Dnk

2 fc

gn gc −Dck
2

)
. (1.31)

The trace is clearly negative, trM = −Dnk
2 −Dck

2 + fn + fc < 0 since fn + gc <

0 and Dc, Dn positive constants, so for the system to be driven unstable by
perturbation, the determinant has to be negative. Let:

detM = (fn −Dnk
2)(gc −Dck

2) − fcgn, (1.32)

=⇒ detM = k4DnDc + k2(−Dcfn −Dngc) + fngc − gnfc, (1.33)
which can be used to find the corresponding wavenumbers, k, that drive the
system unstable.

Equation (3.5) can be rewritten in parabola form, such that:

detM = ak4 + bk2 + c. (1.34)

If b2 − 4ac > 0, the parabola has two distinct roots; if b2 − 4ac = 0, then the
parabola has one root and if b2 − 4ac < 0, it has no roots. In order to get
Turing patterns, the determinant of matrix M needs to be negative, and since
DnDc > 0, this means that detM has a minimum value, and so, it is negative for
all k2 between the two distinct roots.

𝑘2

det𝑀

𝑘1
2 𝑘2

20

Figure 1.12: Plot of detM represented by equation (1.34). If b2 − 4ac >
0, the parabola has two distinct roots (solid line) and if b2 − 4ac < 0, the parabola
has no roots (dashed line).
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The roots of equation (3.5) can be expressed as:

k2
1,2 =

Dcfn +Dngc ±
√

(−Dcfn −Dngc)2 − 4DnDc(fngc − gnfc)
2DnDc

, (1.35)

which gives two distinct roots if:

(−Dcfn −Dngc)2 > 4DnDc(fngc − gnfc). (1.36)

From (1.25), fngc − gnfc > 0, so for (1.36) to hold, take the positive root of the
left hand side, which gives the condition needed for detM < 0 and for instability
to be initiated:

Dcfn +Dngc > 2
√
DnDc(fngc − gnfc). (1.37)

To summarize, the conditions needed for the onset of instability and hence,
formation of Turing patterns, are:

fngc − fcgn > 0,
fn + gc < 0,
Dcfn +Dngc > 2

√
DnDc(fngc − gnfc).

(1.38)

In this section, classical Turing pattern analysis has been introduced in a
simple reaction-diffusion system and condidtions for the onset of instability have
been obtained. Next, we introduce some well-known mathematical models of
chemotaxis.

1.2.5 Mathematical models of chemotaxis

Chemotaxis represents the directed movement of microorganisms in response to
gradients in the concentration field of the chemical [136]. Therefore, depending
on the microorganism and chemical kinetics, different spatial patterns can be
formed. As mentioned in the biological background section, bacterial interactions
can produce stationary patterns due to Turing instabilities or travelling waves
between two equilibrium points. In this section, we present some of the most
important chemotaxis models developed to show pattern formation initiated by
chemotaxis.

Consider a system with one reproductive bacterial species, n, and a chemoat-
tractant, c, with diffusive coefficients Dn and Dc, respectively. Chemotaxis can

be modelled mathematically by introducing the advection term ∂

∂x

(
χ(n, c) ∂c

∂x

)
,

which represents directed motion due to changes in the concentration field of the
chemical. χ(n, c) represents the chemotactic sensitivity of n to c, and it can take
different forms [46], depending on the density of bacteria, the concentration of
the chemical, or both. The sign of the chemotactic term describes the type of
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response: if χ > 0, then the chemical acts as a chemoattractant, and if χ < 0,
then the chemical acts as a repellent. Different forms of chemotactic sensitivity,
as well as their advantages and disadvantages, are described in Chapter 3 of this
thesis.

Mathematically, a model in which a chemical agent affects the motility of a
microorganism can be described by the reaction-diffusion-advection system:

∂n

∂t
= Dn

∂2n

∂x2 − ∂

∂x

(
χ(n, c) ∂c

∂x

)
+ f(n, c),

∂c

∂t
= Dc

∂2c

∂x2 + g(n, c),
(1.39)

where f(n, c) and g(n, c) represent kinetics of n and c, respectively. Under certain
conditions, different types of patterns can be admitted as solutions to this system,
such as:

• f(n, c) ̸= 0 and χ = 0, then we get the classical Fisher-Kolmogorov model
and expect formation of travelling wavefronts [33, 62];

• f(n, c) = 0 and χ ̸= 0, then we get the classical Keller-Segel model and
expect formation of stationary Turing patterns [59, 60];

• f(n, c) ̸= 0 and χ ̸= 0, then we can get both stationary Turing patterns and
travelling wavefronts depending on the kinetics of n and c and parameter
values. [46, 128].

In a system where both bacteria and the chemical can diffuse, and the bacteria
are chemotactically affected by gradients in the concentration of the chemical, the
type of pattern that emerges depends heavily on the kinetics of the system. For
example, Turing patterns form when bacteria produce their own chemotactic
agent, which acts as an attractant that can decay but is not consumed by the
bacteria [59, 60]. On the other hand, if there is a source of chemotactic agent that
can be consumed by the bacteria, then travelling bands are formed [58]. Both of
these models are described in detail in the following sections.

1.2.6 Turing patterns in systems with chemotaxis

In 1970, Keller and Segel [59] built on work done by Turing in 1952 [128] and
described pattern formation as a breakdown of stability in the context of amoebae
mediated by acrasin. They considered a homogeneous population of amoebae and
a chemical, namely acrasin, which chemotactically affects the amoebae. Acrasin
is a chemical substance that can be degraded by an enzyme called acrasinase,

46



which reacts according to:

c+ η ⇆ C → η + product, (1.40)

where c represents the chemical acrasin and η represents the enzyme acrasinase.
They form a complex C, which dissociates into free enzymes plus the degraded
product. The change in concentration of amoeba and acrasin per time is:

∂n

∂t
= Qn − ∇ · Jn,

∂c

∂t
= Qc − ∇ · J c,

(1.41)

where n and c represent the amoeba and acrasin concentration, Qn and Qc the
mass of amoeba and the mass of acrasin, Jn and J c the flux of amoeba and acrasin,
respectively. To write a mathematical model describing the interaction between
amoeba and acrasin, Keller has described the different types of interactions in
the model. First, the flux of amoeba and acrasin is considered to be of diffusive
type: 

Jn = χ(n, c)∇c−Dn∇n,

J c = −Dc∇c,
(1.42)

where χ(n, c) is the chemotactic sensitivity of amoeba to acrasin and Dn, Dc

are the diffusion coefficients of amoeba and acrasin respectively, also known as
Brownian motion or random motion.

To construct a simplified model, assume a homogeneous population of cells
and regard aggregation as a manifestation of instability in a uniform distribution
of acrasin and acrasinase. In the early stages of life, the uniform distribution
is stable, but at some point characteristics change to make the distribution un-
stable and any spontaneous perturbation can trigger aggregation. The model
constructed is: 

∂n

∂t
= −∇ · (χ(n, c)∇c) + ∇ · (Dn∇n),

∂c

∂t
= ∇2c+ hn− pc,

(1.43)

which describes the interaction between amoeba and acrasin; p represents the
decay rate of acrasin and h represents the production of the chemical per amoeba.
Assuming the diffusion and chemotactic sensitivity are constant, the model can
be simplified such as: 

∂n

∂t
= −χ∇2c+D∇2n,

∂c

∂t
= ∇2c+ hn− pc,

(1.44)
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where χ is the chemotactic sensitivity and D is the ratio between the diffusion
of amoeba and acrasin. Conditions for the onset of instability and formation of
Turing patterns can be found by looking for solutions near the equilibrium (n0, c0)
using a perturbation of the form (1.29), as described in the previous section.
Substituting (1.29) into (1.44) and linearzing about the equilibrium point gives
the characteristic matrix:

M =
(

−Dk2 χk2

h −k2 − p

)
. (1.45)

The trace of M is clearly negative, trM = −Dk2 − k2 − p < 0, so for instability
require:

detM = (−Dk2)(−k2 − p) − χhk2 < 0, (1.46)

which gives the instability condition:

χh

D(k2 + p) > 1, (1.47)

and since unstable disturbances grow faster for a sufficiently large medium, as-
sume that k → 0 to get the following instability condition:

χh

Dp
> 1, (1.48)

which means that if the chemotactic sensitivity of amoeba to acrasin as well as
the production of acrasin per amoebae is higher than the diffusion ratio and the
decay rate, then the system is driven unstable by perturbation and aggregation
initiated.

This paper describes how the chemotactic effect is long-range, meaning that
amoebae respond to small gradients in acrasin. Cells respond to local fluctuations
in the concentration of acrasin, which means that even small differences in con-
centration can be detected. In addition, it has been shown that amoebae become
unstable if there is an increase in sensitivity to the acrasin gradient (χ) or the
rate of acrasin production (h). However, the cells can also become unstable if
there is a decrease in the diffusion coefficient (D) or the decay rate of acrasin (p).

Next, Keller and Segel focused their attention on how cell flux is affected by
chemotaxis [60]. When a chemical substance such as acrasin is introduced into
the system, a chemotactic event is initiated by the local concentration of acrasin
in the vicinity of a cell receptor. Cells that respond to acrasin form individual
cell paths, resulting in an average cell flux proportional to the chemical gradient.
They also discussed how the range of motion in a given direction is determined
by the concentration at the propelling edge. For example, amoebae are propelled
by pulling, so their propelling edge is the leading edge, while the propelling edge
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for flagellated cells is the lagging edge, as they move by pushing. They provided a
general form for the derivation of the flux of cells that follow a Brownian motion
model of chemotaxis.

In this section, methods of classical Turing pattern analysis have been used to
describe the initiation of aggregation in a system of one species interacting with
a chemical agent, in which the chemical is produced by the cell. In the next part,
the formation of travelling bands is shown, due to the chemical being consumed
by the cell rather than produced.

1.2.7 Travelling bands in systems with chemotaxis

The first part of our research is focused on the analysis of a cell-chemical system.
In this system, the interactions between one bacterial species and a chemical are
considered to understand the existence of travelling wave solutions. Researchers
have looked into the existence of travelling waves in systems with chemotactic ac-
tivity from different perspectives. In 1971, Keller [58] considered the interaction
between E.coli and a chemical substrate which acts as an energy source. They
looked at patterns formed by E.coli placed at one end of a capillary tube con-
taining oxygen and the substrate and observed the formation of travelling bands.
This can be represented mathematically as:

∂n

∂t
= ∂

∂x

(
µ(c)∂n

∂x

)
− ∂

∂x

(
χ(n, c) ∂c

∂x

)
,

∂c

∂t
= D

∂2c

∂x2 − kn,

(1.49)

where n represents the concentration of bacteria; c the concentration of the chem-
ical; µ(c) measures motility, which can vary with substrate concentration; χ(n, c)
measures the chemical sensitivity of bacteria; D the diffusion of the chemical and
k the rate of consumption per cell.

They have taken chemotaxis of the form χ(n, c) = n/c and have shown that,
in this case, travelling bands exist only if chemotaxis is sufficiently strong and the
concentration of the food source is always sufficiently high. Motivated by model
(1.49) and the biologically unrealistic singularity in the chemotaxis term, a more
complicated partial differential equation model based on transport equations from
a velocity-jump process has been formulated [143]. This takes into account the
turning rate of cells, but also internal metabolic processes such as the response to
low nutrient levels and signal transduction. Global existence of travelling wave
solutions is proven with and without cell starvation. They later developed a
hybrid model which describes bacteria using an individual-based approach and the
chemoattractant using a partial differential equation [37]. This model takes into
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account signal transduction, as well as the proliferation and death of cells. They
have shown that proliferation is necessary for the existence of stationary travelling
waves and that reproduction and death have a stabilising effect. To show that
the existence of travelling waves is due to chemotaxis and not proliferation, they
obtained the expected wave speed in the case of no chemotaxis and observed that
this increases as chemotaxis strengthens.

In the models mentioned so far, methods of linear analysis, such as classical
Turing instability analysis, have been used to show the formation of spatial pat-
terns such as travelling waves or periodic stationary patterns. Next, we introduce
methods of Fourier analysis, which we have used to obtain information about the
characteristics of the pattern, such as amplitude and wavelength.

1.2.8 Fourier analysis of stationary solution

In this section, we introduce the method of Fourier analysis, which refers to
representing and approximating solutions to equations by sums of trigonometric
functions [35, 126]. This method is named after Joseph Fourier, who showed
that the study of heat is simplified if the function is represented by a sum of
trigonometric functions. His work describes the flow of heat in a thin rectangular
plate, where there is no heat loss from either face of the plate and the two long
sides are held at a constant temperature set to 0. Heat is then applied to one of the
short sides, while the other short side is assumed to be infinitely far away [36].
Mathematically, this can be represented in the wx-plane as a region bounded
below by x = −1, above by x = 1, and to the left by w = 0, as shown in
Figure 1.13. Let z(w, x) represent the temperature at the point (w, x); then a
temperature of 0 along the two faces of the plate means:

z(w, − 1) = z(w, 1) = 0, x > 0, (1.50)

and the temperature distribution along the left-hand edge is described by a func-
tion of x such as:

z(0, x) = f(x), (1.51)

where f(x) is assumed to be an even function.
Fourier describes heat flow at equilibrium using the partial differential equa-

tion:
∂2z

∂w2 + ∂2z

∂x2 = 0, (1.52)

which is known as Laplace’s equation. Looking for solutions of the form:

z = Φ(w)ψ(x), (1.53)
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Figure 1.13: Representation of Fourier’s thin plate to describe heat
distribution. Figure reproduced from [20].

this reduces to:

Φ′′(w)ψ(x) + Φ(w)ψ′′(x) = 0 =⇒ Φ(w)
Φ′′(w) = − ψ(x)

ψ′′(x) . (1.54)

From (1.50) ψ(−1) = ψ(1) = 0, which means ψ(x)
ψ′′(x) must be negative. Let:

Φ(w)
Φ′′(w) = A, and ψ(x)

ψ′′(x) = −A, (1.55)

where A is some positive constant set to be A = 1
n2 . Solving for:


Φ(w) = c1 exp(−nw) + c3 exp(−nw),

ψ(x) = c2 cos(nx) + c4 sin(nx),
(1.56)

where c3 = 0 since temperature approaches 0 as w −→ ∞ and c4 = 0 since ψ is
an even function, gives solution:

z(w, x) = a exp(−nw) cos(nx), (1.57)

where a and n are unknown constants, and a general solution over all modes takes
the form:

z(w, x) = a1 exp(−n1w) cos(n1x)+a2 exp(−n2w) cos(n2x)+a3 exp(−n3w) cos(n3x)+... .
(1.58)

Since (1.50) holds if and only if ni is an odd multiple of π2 and z(0, x) = f(x),
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this gives:

f(x) = a1 exp(−n10) cos(n1x) + a2 exp(−n20) cos(n2x) + a3 exp(−n30) cos(n3x) + ...

= a1 cos
(
π

2x
)

+ a2 cos
(

3π
2 x

)
+ a3 cos

(
5π
2 x

)
+ ...

=
∞∑

m=1
am cos

(
(2m− 1)πx

2

)
,

(1.59)

which is a solution to equation (1.52) known as Fourier series solution and where
coefficients am can be calculated according to the integral:

am =
∫ 1

−1
cos

(
(2m− 1)πx)

2

)
dx. (1.60)

Generally, for any periodic function:

f(θ) = A0 +
∞∑

n=1
[An cos(nθ) +Bn sin(nθ)], (1.61)

Fourier series solution coefficients can be calculated according to:

A0 = 1
π

∫ 2π

0
f(θ)dθ,

An = 1
π

∫ 2π

0
f(θ) cos(nθ)dθ,

Bn = 1
π

∫ 2π

0
f(θ) sin(nθ)dθ.

(1.62)

This section has introduced how solutions of partial differential equations
can be described by sums of trigonometric functions once equilibrium has been
reached and the solutions are stationary. This is a powerful method that we have
used throughout this thesis to find characteristics of stationary periodic patterns
such as wavelength and amplitude.

1.3 Numerical integration of partial differential
equations

In this section, we present methods for integrating partial differential equations
that are useful for investigating pattern formation in nonlinear reaction-diffusion
systems, as well as nonlinear reaction-diffusion-advection systems. Numerical
integration is needed to solve these types of systems since they cannot be solved
analytically, and the separation of variables method only works for some of the
simplest cases. To address these difficulties, we use finite difference methods to
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replace partial differential equations with difference equations and find solutions
to such modified systems.

Finite difference methods are commonly used in numerical simulations to
approximate derivatives with finite differences by discretizing space and time,
finding the solution at each discrete point by solving algebraic equations where
first and second derivatives have been obtained using Taylor expansion methods
[54, 83, 85]. Typically, a discretized point has index j to represent the x-direction
(spatial) and index n to represent the t-direction (temporal) position. To rep-
resent a solution using the finite difference method, we represent the function
u(x, t) by its values at a discrete set of points, such that:

tn = t0 + n∆t, where n = 0, ..., T

xj = a+ j∆x, where j = 0, ...,M,
(1.63)

where T represent the number of time steps and M the number of mesh points,
such that M = L

∆x for medium length L.
To establish the truncation error in the approximation of a function and ap-

proximate its derivatives, one can use Taylor series. For example, the Taylor
series expansion of a function u(x) is:

u(x+ ∆x) = u(x) +
∞∑

m=1

(∆x)m

m!
∂mf

∂xm

= u(x) + ∆xu′(x) + ∆x2

2! u′′(x) + ∆x3

3! u′′′(x) + ...+R,

(1.64)

and similarly,

u(x− ∆x) = u(x) − ∆xu′(x) + ∆x2

2! u′′(x) − ∆x3

3! u′′′(x) + ...+R, (1.65)

where R represents higher order derivative terms of u in the infinite sum. Rewrit-
ing (1.64) to obtain the Taylor series approximation of the first derivative gives:

u′(x) = u(x+ ∆x) − u(x)
∆x −∆x

2! u′′(x) − ∆x2

3! u′′′(x) − ...− R, (1.66)

where the bold terms represent the truncation error, which is the discrepancy
betwen the partial derivative and the Taylor approximation, also known as:

−∆x
2! u

′′(x) − ∆x2

3! u′′′(x) − ...−R = O(∆x), (1.67)

and since ∆x >> ∆x2 >> ∆x3, this is known as the leading term and contributes
to maximal error.
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Rewriting (1.66) in terms of index j gives three difference schemes:

Forward difference approximation: u′(x) ≃ uj+1 − uj

∆x +O(∆x),

Central difference approximation: u′(x) ≃ uj+1 − uj−1

2∆x +O(∆x),

Backward difference approximation: u′(x) ≃ uj − uj−1

∆x +O(∆x).

(1.68)

Extending to find the second derivative approximation of u(x) gives:

u′′(x) = u(x+ ∆x) − 2u(x) + u(x− ∆x)
∆x2 +O(∆x2), (1.69)

which represents the central difference approximation of the second derivative.

1.3.1 Finite difference methods for diffusive terms

Explicit and implicit numerical methods are two types of schemes used for ap-
proximating solutions to differential equations. Explicit schemes involve a direct
computation of dependent variables in terms of known quantities and are gener-
ally easier to implement, requiring fewer computational resources. However, ex-
plicit schemes are also conditionally stable and require smaller time steps. On the
other hand, in implicit schemes, dependent variables are computed using coupled
sets of equations, often requiring either a matrix or iterative technique. They are
harder to implement since they require additional computation, but larger time
steps can be used, resulting in less overall computational time [54, 85]. For the
numerical results presented in this thesis, we have used explicit schemes since
they are relatively fast and much easier to modify for different systems of partial
differential equations.

For the numerical approximation of the diffusive term, it is common to use
the forward Euler difference approximation for the first-order derivative in time
and the central difference approximation for the second-order derivative in space.
For example, the one-dimensional heat equation:

∂u

∂t
= D

∂2u

∂x2 , (1.70)

can be approximated numerically using the explicit method:

un+1
j = nn

j +D
∆t

∆x2

[
un

j+1 − 2un
j + un

j−1

]
. (1.71)

Since explicit schemes are conditionally stable, Von Neumann analysis is com-
monly used to find the stability condition, since coefficients of the difference
equations are slowly changing over space and time and can be assumed to be
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constant [100]. The independent solutions, or eigenmodes, of the difference equa-
tions are considered to be of the form:

un
j = ϵneikj∆x, (1.72)

where k is a real spatial wavenumber and ϵ = ϵ(k) is a complex number that
depends on k. The integer powers of ϵ are responsible for the time dependence of
a single eigenmode, which means that the difference equations have exponentially
growing modes if |ϵ(k)| > 1, or are said to be unstable. Similarly, according to
Von Neumann analysis, a numerical scheme is stable if |ϵ(k)| ≤ 1. Substituting
(1.72) into (1.71) after a single iteration gives:

ϵϵneikj∆x = ϵjeikm∆x +D
∆t

∆x2

[
ϵneikj∆x(eik∆x + e−ik∆x − 2)

]
, (1.73)

and the condition for stability:∣∣∣∣∣ϵ = 1 + 2D∆t
∆x2 (i sin(k∆x) − 1)

∣∣∣∣∣ ≤ 1, (1.74)

which gives:
D

∆t
∆x2 ≤ 1

2 , (1.75)

showing the explicit scheme (1.71) is conditionally stable.
This section shows that using the forward Euler difference approximation for

the first order time derivative and the central difference approximation for the
second order derivative in space is a reasonable numerical scheme to use for the
numerical integration of the diffusive type terms. Next, we present some schemes
that can be used to approximate the advection term, as well as discuss their
stability.

1.3.2 Finite difference methods for advection terms

The advection equation is well-known for representing the transport of a sub-
stance or morphogen by the bulk motion of a fluid. For example, in this thesis,
we consider chemotaxis, which is the directed movement of bacteria in response
to concentration gradients of a chemical, and it can be modelled mathematically
by the introduction of an advection term. The advection equation is not simple to
solve numerically, so in this section, we introduce some finite difference methods
for advection terms and discuss their stabilities. Consider the advection equation:

∂u

∂t
= −χ∂u

∂x
, (1.76)

where χ is a constant.
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One way of numerically integrating this equation and approximating its solu-
tion using finite difference methods is to use the forward Euler formula for time
discretization and the central scheme for spatial discretization, which results in a
first order accurate method in time [100]. For one iteration, equation (1.76) can
be represented by:

un+1
j = un

j − χ
∆t

2∆x
(
un

j+1 − un
j−1

)
. (1.77)

Applying Von Neumann analysis by substituting un
j = ϵneikj∆x into (1.77) gives:

ϵ(k) = 1 − i
χ∆t
∆x sin(k∆x), (1.78)

whose modulus is always greater than 1 for all k, meaning the central scheme is
unconditionally unstable.

A more appropriate method is using the upwind difference scheme which is
first order accurate in space and reads:

un+1
j = un

j − χ
∆t
∆x

(
un

j − un
j−1

)
, if χ > 0,

un+1
j = un

j − χ
∆t
∆x

(
un

j+1 − un
j

)
, if χ < 0,

(1.79)

For constant coefficient χ, applying Von Neumann stability analysis gives ampli-
fication factor:

ϵ = 1 −
∣∣∣∣∣χ∆t

∆x

∣∣∣∣∣ (1 − cos(k∆x)) − i
χ∆t
∆x sin(k∆x) =⇒ (1.80)

|ϵ|2 = 1 − 2
∣∣∣∣∣χ∆t

∆x

∣∣∣∣∣
1 −

∣∣∣∣∣χ∆t
∆x

∣∣∣∣∣
 (1 − cos(k∆x),

For stability, require |ϵ|2 ≤ 1 which gives:

|χ| ∆t
∆x ≤ 1, (1.81)

known as the Courant-Friedrichs-Lewy stability condition, or simply the Courant
condition [23].

The last method we introduce, which also represents the method used through-
out this thesis for the numerical integration of the advection term, is the Lax-
Friedrichs numerical scheme, or simply the Lax scheme [68, 78, 100]. This method
fixes the instability in the central scheme by replacing the term un

j in the time
derivative by its average such that:

un
j −→ 1

2
(
un

j+1 + un
j−1

)
, (1.82)
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and (1.77) becomes:

un+1
j = 1

2
(
un

j+1 + un
j−1

)
− χ∆t

2∆x
(
un

j+1 − un
j−1

)
. (1.83)

Applying Von Neumann analysis gives amplification factor:

ϵ = cos(k∆x) − i
χ∆t
∆x sin(k∆x), (1.84)

which by requiring |ϵ|2 ≤ 1 for stability gives |χ| ∆t
∆x ≤ 1, which again is the

Courant condition. One advantage of using such method is that it accounts for
numerical dissipation.

For a nonlinear advection equation:

ut + χf(u)x = 0. (1.85)

one can use the second-order Lax-Friedrichs scheme [13, 51, 112]. Instead of
approximating the advection term at each step, it is approximated at each half
step such that equation (1.77) becomes:

un+1
j = un

j + χ
∆t
∆x

[
f(un

j+1/2) − f(un
j−1/2)

]
. (1.86)

Since points un
j+1/2 and un

j−1/2 are not available, they must be approximated
using available point values {u}j+2

j−2. Introduce f̂j±1/2 ≈ f(un
j±1/2) such that the

nonlinear conservation law becomes:

un+1
j = un

j + χ
∆t
∆x

(
f̂j+1/2 − f̂j−1/2

)
= 0. (1.87)

To approximate f̂j+1/2 and f̂j−1/2 using available point values, let:

f̂j+1/2 = 1
2
[
f(u−

j+1/2) + f(u+
j+1/2) − α(u+

j+1/2 − u−
j+1/2)

]
, (1.88)

and similarly for f̂j−1/2,

f̂j−1/2 = 1
2
[
f(u−

j−1/2) + f(u+
j−1/2) − α(u+

j−1/2 − u−
j−1/2)

]
, (1.89)

where u±
j±1/2 represents the approximation of uj±1/2 from the left and right, and

f̂j−1/2 can be obtained by taking one full step back from f̂j+1/2. Note that the
coefficient α is defined such that:

α = max |f ′(u)|, (1.90)

and it represents numerical dissipation, which is associated with diffusion.
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The term u+
j+1/2 is approximated from the right using available point values

such that:

u+
j+1/2 = uj+1 − uj+2 − uj+1

2

= 3uj+1 − uj+2

2 ,

(1.91)

and similarly,

u−
j+1/2 = uj − uj−1 − uj

2

= 3uj − uj−1

2 .

(1.92)

Note that u+
j−1/2 and u−

j−1/2 can be constructed in the same way or they can be
obtained taking one full step back from u+

j+1/2 and u−
j+1/2. These approximations

can now be substituted into (1.87) to obtain a stable numerical scheme for (1.85).
The Lax-Friedrichs method is a useful numerical scheme for the integration of

advection term in model (1.39) in which chemotactic sensitivity is proportional

to the density of bacteria and takes the form
(
χu

∂c

∂x

)
x

. In this case, u is ap-

proximated at each half step according to f̂j±1/2 and the gradient of the chemical
using the central scheme such that:

(cx)n
j =

cn
j+1 − cn

j−1

2∆x . (1.93)

Using the forward Euler difference approximation for time discretization, the
central difference approximation for the second order derivative of diffusive term
and the Lax-Friedrichs scheme for the chemotactic term, the explicit numerical
scheme for the integration of model (1.39) becomes:

un+1
j = un

j +D
∆t

∆x2

[
un

j+1 − 2un
j + un

j−1

]
− χ

∆t
∆x

[
f̂j+1/2(cx)j+1/2 − f̂j−1/2(cx)j−1/2

]
+∆tf(un

j , c
n
j ),

cn+1
j = cn

j + ∆t
∆x2

[
cn

j+1 − 2cn
j + cn

j−1

]
+ ∆tg(un

j , c
n
j ),

(1.94)
with Neumann boundary conditions:

ux(a, t) = ux(b, t) = 0,

(cx)j=1 = (cx)j=N+1 = 0.
(1.95)

Note that in our numerical simulations, the coefficient for numerical dissipa-
tion is set such that α = 0, since this is associated with diffusion and is already
taken into account in the model.
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Chapter 2

Travelling wave solutions in
reaction-diffusion-advection
systems

In this chapter, the existence of travelling wave solutions [86, 87] in systems in-
volving one or two interacting bacterial populations is investigated. The chapter
begins by introducing the Fisher-Kolmogorov equation and the Lotka-Volterra
system, along with methods for determining their respective minimum wave
speeds. This is followed by two research sections that explore the spatio-temporal
distribution in systems of one and two interacting species, both in the presence
and absence of chemotaxis. A key result in Section 2.1 highlights the influence of
diffusion and reproduction on the shape of travelling wavefronts, as well as the
impact of these parameters on the spatial separation between bacterial species
and the chemical agent. Notably, when both diffusion and reproduction are suf-
ficiently small, the density of the bacterial species is approximately equal to the
concentration of the chemical agent. Using this result, an analytical equation has
been derived for a specific solution n(z) to calculate the minimum wave speed of
the travelling waves when the chemical agent acts as a repeller.

Section 2.2 focuses on two interacting bacterial species, one of which produces
a chemical agent. In the absence of chemotaxis, it is well established that trav-
elling waves can form between the unstable trivial steady state and the stable
coexistence state. Our findings show that the product of diffusion and reproduc-
tion determines the minimum wave speed, such that travelling waves can move
with different speeds when Dr ̸= 1. We also demonstrate how these speeds change
depending on whether Dr ≶ 1. Furthermore, we address gaps in the literature
regarding the minimum wave speed of travelling waves transitioning from the un-
stable coexistence steady state to one of the stable extinction states, both with
and without chemotaxis. To achieve this, we derive the dispersion curve that
relates wave speed to wave number. While this approach has previously been
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employed to determine the minimum wave speed in reaction-diffusion systems,
we extend its application to reaction-diffusion-advection systems. Throughout
the chapter, analytical results are supported by computational simulations.

Introduction
Travelling waves are waves that move in a particular direction, with constant
speed and fixed shape, making the transition from an unstable steady state to
a stable one. They have many applications in science, such as slow and fast
combustion waves due to chemical reactions [134], or shock waves in fluid dy-
namics [117]. Moreover, in mathematical biology, the spatial spread of diffusive
microorganisms can be described by travelling wave solutions, which represents
the motivation behind this chapter.

The simplest way to describe the spatial distribution of any population with
logistic growth that can diffuse is to use the nondimensional Fisher-Kolmogorov
equation [33, 62] :

∂n

∂t
= D

∂2n

∂x2 + rn(1 − n), (2.1)

where n represents the population density, D its diffusion rate and r the prolifer-
ation rate. This equation can be transformed into a system of two ordinary dif-
ferential equations using the ansatz n(x, t) = N(z) and N ′ = U , where z = x−st

and s is the speed of the wave travelling from left to right. The transformed
system has two equilibrium points, (N,U) = (0, 0), (1, 0), which are stable and
unstable, respectively, and allows the formation of travelling waves between the
two steady states. Using methods of linear analysis, one can find the minimum
wavespeed requirement by ensuring that the trivial steady state is a node rather
than a spiral, to avoid negative concentrations around (N,U) = (0, 0), which
gives smin ≥ 2

√
Dr [86, 87]. Finding the wavespeed of the front has attracted

great attention from researchers, as it provides insight into how fast a bacterial
species can be expected to spread across a medium. Since linear analysis provides
a minimum wavespeed, rather than an exact speed, much work has been done us-
ing a variety of different algebraic methods. An effective method to obtain exact
solutions to nonlinear partial differential equations is the direct tanh method, in
which the solution is expressed as a sum of hyperbolic functions such that:

n(z) =
m∑

i=0
ai tanhi(kz), (2.2)

where k represents the wavenumber and m the order of expansion. The order of
expansion is calculated such that m = d

h− 1 , where d is the order of the highest
derivative term and h the highest nonlinear term. By substituting n(z) into the
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Fisher equation and equating coefficients of powers of tanh to zero, it has been
shown that, for this solution of type (2.2) to system (2.1), the exact travelling

wavespeed is s =
√

25Dr
6 , which is about the minimum [64, 121]. It has also

been shown that travelling wavefronts exist when the diffusive flux is nonlinear
and the wavespeed has been determined explicitly in some special cases [8, 141].

There are many other effective algebraic methods for finding the exact speed
of travelling wavefronts such as the Exp-function method, which is used for find-
ing solitary solutions, periodic solutions and compacton-like solutions. In this
method, the solution is assumed to take the form:

n(z) =
∑d

i=−c ai exp(iz)∑q
j=−p bj exp(jz) , (2.3)

where c and p are obtained by balancing the highest order linear term with the
highest order nonlinear term and q and d the lowest order terms. The effectiveness
of this method has been proven by applying it to nonlinear PDEs such as the
Korteweg-de Vries and the Dodd-Bullough-Mikhailov equations [45], or Burgers-
type equations [145], and it has been shown to be a highly effective method
for solving equations with higher-order nonlinearity. These types of nonlinear
equations and travelling wave solutions can also be found using the sine-cosine
method, in which solutions take one of two forms:

n(z) = α cosi(kz),
or,
n(z) = α sini(kz).

(2.4)

This method has been proven to give exact solutions in line to those obtained
when using the direct tanh method when applied to generalised KdV equations
[122] or fifth order nonlinear evolution equations [101]. Another powerful method
has been applied to the Kolmogorov-Petrovskii-Piskunov equation [63] in which
the solution took the form:

n(z) =
m∑

i=0
ai(v(z))i, (2.5)

where vz = ϵ(1−v2) represents the Riccati equation. In this case, if the functions
1, v, v2 ... vm are linearly independent, then m = 1 [79]. These algebraic meth-
ods represent tools that can be used to find exact travelling wavefront solutions
to nonlinear partial differential equations when linear analysis does not provide
sufficient insight into the existence of travelling wavefronts or their speed, but are
not always guaranteed to work for any type of equation or boundary conditions.

The aim of this chapter is to understand the formation of travelling waves
in a system of one bacterial species interacting with a chemical. A great deal of
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research has been conducted on this subject due to the observation that bacteria
seek an optimal environment and can move towards regions of higher or lower
concentrations of certain chemical substrates. Keller and Segel first observed that
E. Coli form bands that can travel at constant speed when placed at one end of a
capillary tube containing oxygen and an energy source, in 1971 [58]. To describe
this phenomenon of substrate consumption and changes in bacterial density due
to diffusion and chemotaxis, they used a set of partial differential equations:

∂n

∂c
= ∂

∂x

(
D(c)∂n

∂x

)
− ∂

∂x

(
nχ(c) ∂c

∂x

)
,

∂c

∂t
= ∂2c

∂x2 − p(c)n,
(2.6)

where D(c) and χ(c) represent the diffusion and chemotactic sensitivity of bac-
teria in response to the chemical substrate concentration, respectively. p(c) rep-
resents the rate of consumption of the chemical substrate by the bacteria. It has
been shown that chemotaxis must be sufficiently strong and sufficiently singular
for the system to admit travelling bands solutions, i.e. χ(c) = δc−1. It has later
been shown that, using a velocity jump model, it is possible to obtain travelling
wave solutions without the singularity in the chemotactic sensitivity and without
explicit growth terms, or the introduction of additional attractant [143].

In model (2.6), the concentration of the chemical substrate is fixed to start
with and there is no production of the chemical, only consumption by the bacte-
ria. Motivated by this work, a different group of researchers has used a slightly
different model to account for chemical production [138]:

∂n

∂c
= D

∂2n

∂x2 − ∂

∂x

(
χ
n

c

∂c

∂x

)
,

∂c

∂t
= ϵ

∂2c

∂x2 + hv − p(c)n,
(2.7)

where ϵ is the diffusion rate of the chemical substrate and h is its production
rate. In this case, it has been shown using proof by contradiction that the system
does not admit travelling waves as solution. Other work has considered bacterial
kinetics such as reproduction and death and by introducing logistic bacterial
growth rate, it has been shown that system:

∂n

∂c
= D

∂2n

∂x2 − ∂

∂x

(
χ(c)n ∂c

∂x

)
+ rn(1 − n),

∂c

∂t
= ϵ

∂2c

∂x2 + hv − p(c)n,
(2.8)

admits travelling waves as solution without the requirement that χ(c) needs to be
singular. In addition, they have proven the existence of a minimum wave speed
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for which the model exhibits non-negative travelling wave solutions in order to
desribe the spreading or receding of the bacteria and chemical over the spatial
medium [11, 72].

It is clear that, commonly, researchers have focused their attention on cases
where the chemical substrate is consumed by the bacteria. In this chapter, the
one-species model we consider investigates the existence of travelling wave so-
lutions when the chemical agent is produced by the bacteria. In addition, the
system includes both bacterial and chemical diffusion, bacterial kinetics such as
reproduction and death, and the chemotactic response of the bacteria to changes
in the concentration field of the chemical. When bacteria produce their own
chemotactic agent [17, 16, 59], we show that the system admits travelling wave-
fronts as solutions. However, depending on the strength of the chemotactic agent
and whether it acts as an attractant or repellent, Turing patterns can also form
behind the travelling front. If chemorepulsion is strong enough, the speed of the
fronts increases as the strength of chemorepulsion also increases, and exact speeds
have been calculated under the assumption that the diffusion and reproduction
of the bacteria are sufficiently small. On the other hand, if chemoattraction is
strong enough, chemotactic sensitivity does not have a significant effect on the
speed of the front.

The second part of this chapter focuses on the existence of travelling wave
solutions in a two-species system. The Lotka-Volterra model is the simplest way
to describe the interactions between two competing populations [76, 135]. This is
a system of two partial differential equations used to describe the changes in the
population density of two species of microorganisms that can diffuse, reproduce,
die, and compete for resources:

∂n

∂t
= ∂2n

∂x2 + n(1 − n− b1v),

∂v

∂t
= D

∂2v

∂x2 + v(r − v − b2n),
(2.9)

where n and v represent two populations, r the intrinsic growth rate, b1 represents
the competitive effect of species v on n and similarly, b2 represents the competitive
effect of species n on v. The main types of interactions in this system have
been well studied: predator-prey, competition and symbiosis [28, 31, 86, 87, 99]
and travelling wave solutions in these situations are well understood. Similar
to the Fisher-Kolmogorov equation, methods of linear analysis can be used to
find minimum travelling wavespeed between unstable and stable steady states
when travelling wavefronts are admitted as solutions [86, 87]. One of the most
important cases in this system is considered to be when one of the species survives
while the other becomes extinct, depending on initial data. In this case, the
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direct tanh method has been used to find the exact speed of the travelling front
between (N, V )(−∞) = (0, r) and (N, V )(∞) = (1, 0). By using the ansatz
that dN

dz
= F (N) and and V = G(N), where:


F (N) =

m∑
i=0

aiN
i,

G(N) =
n∑

i=0
biN

i,
(2.10)

where m and n are such that 2m = n + 2. Substituting into system (2.9) and
equating all coefficients of powers of N to zero, for the obvious case that m =
n = 2, one can obtain parameters such that:

D = 1
3b1

, b2 = 2 + 5r
3 − rb1, s = −2 + rb1√

2rb1
,

which give an exact monotone travelling wave solution:

N(z) = 1
2

1 + tanh
√

2rb1

4 z


 ,

V (z) = r

4

1 − tanh
√

2rb1

4 z




2

,

(2.11)

as explained in detail in [106]. This is not as powerful as finding minimum
wavespeed by methods of linear analysis, since solution is found for specific pa-
rameter conditions, in which parameters depend on one another. Similarly, re-
searchers have looked into finding exact travelling wavefront solutions for systems
transitioning from coexistence to extinction, however mistakes in expansion and
analysis have been found when using the hyperbolic function ansatz [52]. We
believe that when analysing travelling wavefront solutions belonging to Lotka-
Volterra-type systems, linear analysis is more powerful than nonlinear analysis,
as nonlinear analysis provides exact solutions only for specific parameter regimes,
while linear analysis provides a minimum wavespeed requirement with no param-
eter dependence on one another.

More recently, researchers have focused their attention on the effects of chemo-
taxis in a two species system to understand the long-time behaviour of species
in response to chemical agents. Lin and Wang have considered a two species
model in which both species chemotactically react to a chemical agent degraded
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by themselves [73]:

∂n

∂t
= ∂2n

∂x2 − ∂

∂x

(
χ1n

∂ϕ(c)
∂x

− βn
∂ϕ(v)
∂x

)
,

∂v

∂t
= ∂2v

∂x2 − ∂

∂x

(
χ2v

∂ϕ(c)
∂x

− βv
∂ϕ(u)
∂x

)
,

∂c

∂t
= ϵ

∂2c

∂x2 − u− v,

(2.12)

where χ1, χ2, β represent the chemotactic strengths and ϕ the chemotactic sen-
sitivity function. In this case, the chemotactic sensitivity is considered to be
logarithmic, ϕ(c) = ln c and if β = 0, then n and v have no mutual chemotactic
effects. The main results of the paper have shown that regions in which the system
admits travelling waves as solution depend on the chemotactic strengths (χ1, χ2)
for different β regimes. In particular, if β = 1, travelling wave solutions exist if
χ1 = χ2 ≥ 2. In other models, the species are assumed to exhibit Lotka-Volterra
competitive kinetics and produce the same chemical agent [53, 69, 123]:

∂n

∂t
= D1

∂2n

∂x2 − χ1
∂

∂x

(
n
∂c

∂x

)
+ r1n(1 − n− b1v),

∂v

∂t
= D2

∂2v

∂x2 − χ2
∂

∂x

(
v
∂c

∂x

)
+ r2v(1 − v − b2n),

∂c

∂t
= D3

∂2c

∂x2 + h1u+ h2v − pc,

(2.13)

where h1 and h2 represent the production rates of c by n and v, respectively and p
represents the degradation rate of c. In [69] the existence of travelling wavefronts
and heteroclinic solutions has been established by the perturbation method and
computational simulations have been used to show existence of travelling wave-
fronts numerically. By assuming that the concentration of the chemical does not
change over time, i.e:

0 = D3
∂2c

∂x2 + h1u+ h2v − pc,

0 << b1, b2 << 1 and D1, D2, D3 > 0, system (2.13) has been proven to have
a spatially homogeneous equilibrium point, which is asympotically stable in an
nonempty range of r1 and r2 in [123]. Moreover, under further assumptions that
D1 = 1 and r1 = 1 and that the chemotaxis strength is sufficiently small, χ1 <

1
h1

and χ2 <
r2

h2
, the existence of travelling wave solutions connecting two spatially

homogeneous equilibrium points with wave speed greater than a critical number
s∗ = 2

√
(1 − b1) has been proven in [53].
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To understand the long-term behaviour of two competing species, we exam-
ine the existence of travelling wave solutions both in the absence and presence
of a chemotactic agent. In the first instance, the classical Lotka-Volterra model
[49, 76, 135] is considered to demonstrate the formation of travelling waves be-
tween the four steady states and to obtain the minimal travelling wave speed,
which is compared against speeds obtained numerically. An interesting result is
that, in certain cases, the waves can travel at different speeds, and we provide an
explanation as to why this occurs. Additionally, a novel result presented in this
chapter is the existence and minimum wavespeed of travelling wavefronts moving
away from the unstable coexistence steady state to one of the stable extinction
states. The two-species chemotaxis model considered here consists of two bac-
terial species with Lotka-Volterra kinetics, where one of the species produces a
chemical agent that affects the other species. In this case, the effects of chemo-
taxis on the formation of travelling wave solutions and its impact on the minimal
wave speed are analysed through computational simulations. Results show that,
due to chemotaxis, as time tends to infinity, all three travelling wavefronts move
at the same speed as the leading wavefront, and the distance between the two
species as they travel across the medium remains constant after a certain time
point.

2.1 Travelling wave solutions in a one species
system

In the first part of this chapter, the existence of travelling wave solutions in a
system of one bacterial species producing a chemical is investigated. Initially,
the concentration of the chemical agent does not affect the bacterial species,
which means the system behaves like the Fisher-Kolmogorov equation [33, 62].
However, we investigate the effects of model parameters, such as the diffusion
and reproduction of bacteria, on the shape of the travelling front. In the second
scenario, the chemical affects the bacteria by either acting as an attractant or
repellent. We are interested in how chemotaxis affects the speed of the travelling
wavefronts, which indicates how fast the bacteria and chemical spread across the
medium. In the case of small bacterial diffusion and reproduction, we obtain
a formula for the speed of the travelling wave in response to chemorepulsion.
Analytical results are supported by computational simulations.
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2.1.1 Travelling waves in a system without chemotaxis

Travelling waves are important solutions to reaction-diffusion systems, and they
help in understanding the long-term behaviour of such systems. Analysing the
minimum wave speed of travelling wave solutions aids in understanding the spread
of populations, or in our case, the spread of bacteria in response to a chemical
agent it produces.

One of the simplest ways to describe a diffusive microorganism producing a
chemical agent is to model the density of the bacteria according to the Fisher-
Kolmogorov equation, and the concentration of the chemical changes according
to diffusion, its production by the bacteria, and its decay:

∂n

∂t
= D

∂2n

∂x2 + rn(1 − n),

∂c

∂t
= ∂2c

∂x2 + n− c,

(2.14)

where n and c represent the density of bacteria and the concentration of the
chemical, respectively. Since the first equation is decoupled from the second and
the concentration of the chemical agent does not affect the bacterial density,
the system behaves like the Fisher-Kolmogorov equation and admits travelling
wavefronts as solutions, making the transition from the unstable steady state
(n, c) = (0, 0) to the stable steady state (n, c) = (1, 1) with minimal wave
speed smin ≥ 2

√
Dr.

Figure 2.1: Numerical simulation of travelling fronts in system
(2.14). Initial conditions such as (n, c)(x, 0) = (1, 1) if x < 10 and
(n, c)(x, 0) = (0, 0) if x ≥ 10. Blue represents the density of bacteria and
red the concentration of the chemical. Dotted, dashed and solid lines represent
the profiles at time t = 10, t = 25 and t = 40, respectively. Model parameters:
D = r = 1 and speed: s ≈ 2.

Figure 2.1 shows numerically that system (2.14) admits travelling wavefronts
as solutions. It is clear that wavefront c, corresponding to the concentration of
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the chemical, follows closely behind wavefront n, corresponding to the density
of bacteria. However, they both travel at the same speed, as the gap between
the two fronts remains unchanged over time. An interesting question in this
case is whether model parameters, such as bacterial diffusivity and reproduction,
affect the shape of the profiles and, consequently, the gap between them. By
fixing the medium length L = 1000 and running simulations for time T = 250,
with dt = 6.9 × 10−3 and dx = 1.67, the difference between the two fronts is
investigated, such that ∆a(i) = n(i) − c(i), where i represents each mesh point
from i = 1 : 6000. Numerical results for ∆a(i) are shown in Figure 2.2.

(a) (b)

Figure 2.2: Numerical comparison between the profiles of the two
wavefronts of system (2.14), as parameters vary. (a): The effects of bac-
terial diffusion on the speed and shape of the numerical profiles. Fixed parameter
r = 1. (b): The effects of bacterial reproduction on the numerical profiles. Fixed
parameter D = 1.

Figure 2.2 describes characteristics of the travelling wavefronts, such as shape,
speed, and the distance between the wavefront of n and that of c. In each panel,
the amplitude of the spikes is related to the distance between the two wavefronts,
the width of the spikes is related to the shape of the profiles, and the position-
ing of the spikes is related to the speed of the wavefront, or how far along the
medium they have travelled. Both panels show that increasing either diffusion or
reproduction results in faster travelling fronts, which is expected from the mini-
mum wave speed condition. Interestingly, in Figure 2.2 a, the amplitude of the
spikes is approximately the same, which shows that the distance between the two
wavefronts does not change as the diffusion parameter increases. However, the
width of the spikes increases, meaning that the shape of the profiles changes,
and wavefront n becomes smoother with an increase in diffusion. On the other
hand, in Figure 2.2 b, the amplitude of the spikes increases with an increase in
reproduction, indicating that the distance between the two fronts increases. The
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width of the spikes gets smaller, meaning that wavefront n becomes sharper as
reproduction increases. Results related to the shape of wavefront n can be seen
graphically in Figure 2.3.

(a) (b)

Figure 2.3: Travelling wavefronts n in system (2.14) . (a): As the
diffusion parameter, D, is increased, the wavefront becomes smoother. Fixed pa-
rameter r = 1. (b): As the reproduction parameter, r, is increased, the wavefront
becomes sharper. Fixed parameter D = 1. Initial conditions: n(x, 0) = 1 if
x < 50 and n(x, 0) = 0 if x ≥ 50.

Figure 2.3 shows a graphical representation of the numerical solution to sys-
tem (2.14) corresponding to the wavefront n. In Figure 2.3 a, as the diffusion
coefficient is increased up to D = 1, the shape of the profile becomes smoother
compared to the shallow shape corresponding to very small diffusion, D = 0.01.
On the other hand, in Figure 2.3 b, it is clear that a very small reproduction co-
efficient, r = 0.01, results in a smoother profile shape compared to the shallower
shape given by a larger r = 1. A suitable conclusion from this analysis would
be to state that n ≈ c if D << 1 to ensure the profiles have similar shapes (see
Figure 2.2 a) and r < 1 to ensure the distance between the fronts is very small
(see Figure 2.2 b).

In this section, the existence of travelling wave solutions in a one-species
system without chemotaxis is investigated. In addition, we have examined the
effects of model parameters, such as diffusion and reproduction, on the shape and
the distance between the two fronts corresponding to the density of bacteria and
the concentration of the chemical. The key result is that system (2.14) behaves
like the Fisher-Kolmogorov equation, admitting travelling wavefronts as solutions,
and that the characteristics of the solutions, such as shape and distance between
the profiles, are affected by model parameters. In the next section, attention
focuses on the existence of travelling wave solutions in a system with chemotaxis,
meaning that gradients in the concentration field of the chemical will affect the
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spatial spread of bacteria.

2.1.2 Travelling waves in a system with chemotaxis

In this section, chemotactic activity is considered, which implies the directed mo-
tion of bacteria in response to gradients in the concentration field of the chemical.
The chemical gradient affects the spread of bacteria by acting either as an at-
tractant or a repellent. This can be modelled mathematically by introducing the

advection term χ
∂

∂x

(
f(n, c) ∂c

∂x

)
, where χ represents the chemotaxis strength

and its sign indicates whether it is attraction or repulsion. The simplest assump-
tion is that chemotaxis strongly depends on bacterial density, i.e. f(n, c) = n,
and model (2.14) becomes:

∂n

∂t
= D

∂2n

∂x2 − χ
∂

∂x

(
n
∂c

∂x

)
+ rn(1 − n),

∂c

∂t
= ∂2c

∂x2 + n− c,

(2.15)

where, as before, c is a chemical agent produced by the bacterial species n. In
order to check analytically if the system admits travelling waves as solutions, the
ansatz n(x, t) = N(z), c(x, t) = C(z), where z = x − st is substituted into
(2.15), which becomes,

N ′ = U,

U ′ = 1
D

(
−sU + χ(UW − sNW −N2 +NC) + rN(N − 1)

)
,

C ′ = W,

W ′ = −sW −N + C.

(2.16)

This system has two steady states, (N,U,C,W ) = (0, 0, 0, 0) and (1, 0, 1, 0).
By evaluating the Jacobian of (2.16) at the first steady state, we find that this is
unstable when s ≥ 2

√
Dr; however, evaluating the Jacobian at the second steady

state is more complicated, as an analytical expression for its corresponding eigen-
values cannot be obtained. As discussed, if χ = 0, the chemical agent does not
affect the spatial spread of bacterial density, and the system behaves like the
Fisher-Kolmogorov equation, allowing the formation of travelling waves between
the two steady states. Intuitively, we expect that travelling waves also appear if
the chemotaxis strength is small enough, |χ| << 1, since this would not signifi-
cantly impact the solutions admitted by the system. By fixing model parameters
and running numerical simulations, we investigate the effect of chemotaxis on the
existence of travelling waves and their speed, both when the chemical agent acts
as an attractant or repellent, with no constraint on the strength of chemotaxis.
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(a) (b)

Figure 2.4: Travelling wave solutions to system (2.15) obtained in
numerical simulations. (a): Travelling wave solutions in the case of no
chemotaxis, χ = 0. (b): Travelling wave solutions when the chemical agent acts
as a strong repeller, χ = −10. Fixed parameters: D = 1, r = 0.1 and time=150.
Initial conditions: (n, c) = (1, 1) if x < 20 and (n, c) = (0, 0) if x ≥ 20.

Figure 2.4 shows travelling waves admitted as solutions to system (2.15). In
Figure 2.4 a, there is no chemotaxis, meaning the chemical agent c does not affect
the bacterial species n and χ = 0. In Figure 2.4 b, the chemical agent acts as a
strong repeller, χ = −10, and clearly, the waves have travelled faster and further
along the medium in this case, compared to the case of no chemotaxis. This
shows numerically that chemorepulsion affects the speed of the travelling waves.

Typically, the speed of the travelling wavefront can be determined analytically
by requiring that the steady state (N,U,C,W ) = (0, 0, 0, 0) of system (2.16) is an
unstable node, rather than a spiral, to avoid negative concentrations. Mathemat-
ically, this means that all eigenvalues corresponding to this steady state must be
real, and this constraint provides the minimal speed of the travelling wavefront,
s ≥ 2

√
Dr. Clearly, this speed depends only on diffusion and reproduction, not

chemotaxis, and it does not align with the results seen in the numerical simu-
lations presented in Figure 2.4. One way to understand how model parameters,
including chemotaxis, affect the speed of the travelling wavefronts admitted as
solutions to system (2.15) is to run computational simulations and calculate the
speed s numerically. Numerical results are presented graphically in Figure 2.5.

Figure 2.5 shows how the speed of the travelling wavefronts, admitted as solu-
tions to system (2.15), changes with chemotaxis for different model parameters.
In Figure 2.5 a, the reproduction coefficient is fixed such that r = 1, and the
diffusion coefficient is varied such that D < 1, since D = Dn

Dc

and the chemical
agent is expected to diffuse faster than the bacteria. Three different diffusion
values are considered, and in all cases, it is clear that the speed of the front
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(a) (b)

Figure 2.5: Numerical speed of the travelling wavefront solutions to
system (2.15) as chemotaxis changes. (a): The effect of chemotaxis on
the speed of the front for different diffusion rates: D = 1 (navy line), D = 0.5
(red line), D = 0.1 (blue line) and fixed r = 1. (b): The effect of chemotaxis on
the speed of the front for different reproduction rates: r = 1 (navy line), r = 0.5
(red line), r = 0.1 (blue line) and fixed D = 1.

increases significantly as the strength of chemorepulsion increases. Similarly, in
Figure 2.5 b, the diffusion coefficient is fixed such that D = 1, and three dif-
ferent reproduction rates are considered. Again, in all three cases, the speed of
the travelling wavefront increases as chemorepulsion gets stronger. On the other
hand, it is evident that chemoattraction does not significantly impact the speed
of the front, though Figure 2.4 shows that if chemoattraction is strong enough,
Turing patterns can appear behind the travelling front.

Computational simulations provide great insight into how the speed of trav-
elling wavefront solutions is affected by the presence of a chemical agent that
chemotactically influences the spatial distribution of the bacterial species pro-
ducing it. However, numerical results do not offer a quantitative measure of how
much a model parameter affects how fast bacteria spread or recede across the
medium. Since the linear analysis of system (2.15) around the trivial equilibrium
point provides a minimum wave speed formula that depends only on diffusion and
reproduction, this motivates our next work: using observations from numerical
simulations to analytically derive a wave speed formula that depends on all three
model parameters.

As seen in the previous section, in Figure 2.2 a, the width of the spikes is
smaller for smaller diffusion coefficients, meaning the difference between the two
profiles of n and c is also reduced. Additionally, in Figure 2.2 b, the amplitude
of the spikes is smaller for lower reproduction coefficients, which indicates that
the distance between the two profiles is also smaller. Combining these results,
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for small diffusion and reproduction, the distance between the two profiles (n, c)
is minimal, and the shape of the profiles is similar. Under the assumption that
D, r << 1, we can use the approximation n ≈ c to transform the system of two
partial differential equations (2.15) into one partial differential equation:

∂n

∂t
= D

∂2n

∂x2 − χ
∂

∂x

(
n
∂n

∂x

)
+ rn(1 − n), (2.17)

which using the ansatz n(x, t) = N(z), where z = x−st, can be transformed into
the nonlinear ordinary differential equation:

Dn′′ − χnn′′ − χ(n′)2 + sn′ + rn− rn2 = 0, (2.18)

that can be solved for s to obtain the speed of the travelling front.
Now, we seek travelling wave solutions between the unstable state n(∞) = 0

and the stable state n(−∞) = 1. For the specific ansatz:

n(z) = 1
1 + a exp(αz) , such that

n → 0 as z → ∞,

n → 1 as z → −∞,
(2.19)

one can approximate: n ≈ a exp(−αz) as z → ∞,

n ≈ 1 − a exp(αz) as z → −∞.
(2.20)

To solve equation (2.18), we assume that the density of bacteria takes the
form n = 1 − a exp (αz), where a is the coefficient responsible for the amplitude
of the wave and α is the wavenumber. Substituting into the ode, we get:

eαz(Dα2 − χα2a+ sαa− ra) + e2αz(−2χα2a2 − ra2) = 0, (2.21)

which holds for all z if and only if the coefficients of the exponential terms are
equal to zero: Dα2a− χα2a+ sαa− ra = 0,

−2χα2a2 − ra2 = 0,
(2.22)

which gives: 
α2 = − r

2χ,

s = −D
√

− r

2χ +
√

−rχ

2 +
√

−2χr.
(2.23)

Note that we are interested in the case of chemorepulsion, for which χ < 0, so
the formula gives a real number for the speed value. In addition, this formula
only holds for cases when the solution of n takes the form (2.19). Next step is to
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check this formula against numerical results and see if the speed of the front is
captured accurately for D, r << 1.

Figure 2.6 shows a graphical comparison between the wavefront speeds ob-
tained analytically according to (2.23) and the speeds obtained from numerical
simulations for four different pairs of model parameters, with D, r << 1. In
Figure 2.6 a, D = r = 0.05, the smallest values considered, and it is evident that
there is good correlation between numerical and analytical results, indicating that
formula (2.23) accurately captures the effects of chemorepulsion on the speed of
the front. In Figure 2.6 b, diffusion remains the same, but bacterial reproduction
is increased to r = 0.2, and it is clear that, in this case, the analytical formula
perfectly captures the speed of the front. This result is due to the fact that, for
larger reproduction rates, the shape of the profile of n becomes sharper, and the
difference between the shapes of the two profiles becomes smaller, which is an
important factor when assuming n ≈ c. In Figure 2.6 c and d, reproduction is
fixed at r = 0.2, and diffusion is increased to D = 0.15 (panel c) and D = 0.3
(panel d). Clearly, as bacterial diffusivity increases, the discrepancy between nu-
merical and analytical results also increases, and (2.23) provides a lower bound
for the speed of the travelling wavefront. These results are also related to ob-
servations about the shape of the profiles of n and c, as presented in Figure 2.2.
As diffusion increases, the difference between the two profile shapes grows, while
conversely, as reproduction increases, the difference between the shapes of the
profiles decreases.

The minimum wave speed of the travelling wavefronts, admitted as solutions
to (2.15), is an important characteristic to understand, as it describes how fast
bacteria spread over a spatial medium in response to chemical agents. It has
been shown that chemorepulsion strongly affects the speed of the front, and since
the minimum wave speed formula obtained from linear analysis depends only
on diffusion and reproduction, it does not represent an accurate approximation.
By assuming that D, r << 1, such that n ≈ c, we have been able to derive a
minimum wave speed formula given by (2.23) that considers the effects of all
model parameters, i.e., diffusion, reproduction, and chemorepulsion. We believe
this is a novel result and a step forward in understanding how chemorepulsion
affects the speed at which bacteria spread over a given medium.

74



(a) (b)

(c) (d)

Figure 2.6: Analytical speeds of the travelling wavefront solutions to
system (2.15) as given by (2.23) compared against speeds obtained
from numerical simulations as strength of chemorepulsion varies.
Solid curves represent analytical speeds given by (2.23) and dotted curves represent
speeds from numerical simulations. (a): D = r = 0.05. (b): D = 0.05, r = 0.2.
(c): D = 0.15, r = 0.2. (d): D = 0.3, r = 0.2.

In the first part of this chapter, the existence of travelling wavefront solutions
in a system with one bacterial species producing a chemical has been investi-
gated. It has been shown that in the absence of chemotaxis, the system behaves
like the Fisher-Kolmogorov equation, and travelling wavefronts are admitted as
solutions that transition from the unstable trivial steady state to the stable non-
trivial state. When the chemical agent affects the distribution of bacteria, either
by chemoattraction or chemorepulsion, travelling wavefronts appear, and when
chemoattraction is strong enough, Turing patterns also form behind the front.
One of the most important characteristics of such fronts is that their speed sig-
nificantly increases with an increase in chemorepulsion strength. To quantify this
increase, we have derived a minimum wave speed formula that accounts for the
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effects of all model parameters, such as diffusion, reproduction, and chemorepul-
sion. In the next part, we investigate the existence of travelling wave solutions in
a two-species system, with and without chemotaxis.

2.2 Travelling wave solutions in a two species
system

In the second part of this chapter, the existence of travelling wave solutions in
a two-species system, where one of the species produces a chemical agent, is
investigated. Initially, the concentration of the chemical agent does not affect
the population density, and the formation of travelling wavefronts in a system of
three partial differential equations with Lotka-Volterra kinetics is studied, along
with their respective minimum wave speeds. In the second part, the density of the
species is influenced by changes in the concentration field of the chemical. The
effects of chemotaxis on the existence of travelling wavefronts, as well as its impact
on the minimum wave speed, are investigated both analytically and numerically
through computational simulations. The aim of this section is to provide an in-
depth understanding of the spatial spread of interacting populations and how the
speed of colonisation is influenced by chemotaxis.

2.2.1 Travelling waves in a two species system without
chemotaxis

The aim of this section is to provide a better understanding of the interactions
between two species and how these are affected by the presence of a chemical
agent. The existence of travelling wavefronts in such a system is important,
as it provides information about how quickly interspecific competition can lead
to colonisation or extinction. Mathematically, this can be modelled by a non-
dimensional system of three partial differential equations, in which the bacterial
species exhibit Lotka-Volterra kinetics:

∂u

∂t
= D1

∂2u

∂x2 + r1u(1 − u− b1v),

∂v

∂t
= D2

∂2v

∂x2 + r2v(1 − v − b2n),

∂c

∂t
= ∂2c

∂x2 + v − c,

(2.24)

where u and v represent two bacterial species and c is the chemical agent produced
by the latter. Since the third partial differential equation is decoupled, the system
behaves like the Lotka-Volterra model [76, 135], in which D1 and D2 represent
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the diffusion coefficients and r1 and r2 represent the reproduction coefficients of
u and v, respectively.

The aim of this section is to investigate how the minimum wavespeed of the
travelling wavefronts admitted as solutions to system (2.24) depends on model
parameters. It is clear that the system has four steady states, such that:

(u, v, c) =
(0, 0, 0), (1, 0, 0), (0, 1, 1),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

) .
(2.25)

In the well-mixed system, the trivial steady state is always unstable and the
stability of the other steady states depends on the interspecific competititon rates
b1 and b2, as presented in Figure 2.7 .

Figure 2.7: Domains in the parameter plane (b1, b2) corresponding to
stability of the equilibria of system (2.24). Modified version of Figure 1 in [24].

Since travelling wavefronts make the transition from an unstable steady state
to a stable one, there is a wide range of travelling wavefronts that can be admitted
as solutions to system (2.24), and it is important to consider their minimum wave
speed requirements. To simplify the mathematical analysis, only the first two
partial differential equations of the system are considered, with the characteristic
that wavefront c follows wavefront v at the same speed. System (2.24) is now
reduced to a system of two partial differential equations, and using the ansatz
u(x, t) = U(z) and v(x, t) = V (z), where z = x− st, this becomes:

−sU ′ = D1U
′′ + r1U(1 − U − b1V ),

−sV ′ = D2V
′′ + r2V (1 − V − b2U),

(2.26)

and by letting U ′ = N and V ′ = W , the Jacobian of the system ca be obtained
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such that:

J(U, N, V, W ) =



0 1 0 0
r1

D1
(−1 + 2U + b1V ) − s

D1

r1b1U

D1
0

0 0 0 1
r2b2V

D2
0 r2

D2
(−1 + 2V + b2U) − s

D2


.

(2.27)
By evaluating the Jacobian (2.27) at (n, v) =

{
(0, 0), (1, 0), (0, 1)

}
, and

finding its corresponding eigenvalues while requiring that they are real, such that
oscillations around 0, and hence negative densities, are avoided, the minimum
wave speed requirements can be determined and are presented in Table 2.1. On
the other hand, the eigenvalues of the Jacobian evaluated at the coexistence
steady state do not need to be real, as in this case, oscillations around coexistence
would not result in negative densities.

Unstable
steady
state

(0, 0, 0) (1, 0, 0) (0, 1, 1)

Minimum
wavespeed

su ≥ 2
√
D1r1

sv,c ≥ 2
√
D2r2

s ≥ 2
√
D2r2(1 − b2) s ≥ 2

√
D1r1(1 − b1)

Table 2.1: Minimum wavespeed requirement for travelling wavefronts
to be admitted as solutions to system (2.24), making the transition
from specific unstable steady states.

Next, with the aid of computational simulations, we show the different wave-
front transitions that system (2.24) admits as solutions, including waves moving
at different speeds when transitioning from the trivial steady state. In addition,
the analytical speed of the wavefronts, as given in Table 2.1, is compared against
the speeds obtained from numerical simulations.

Wavefronts transitioning from the trivial steady state (0, 0, 0)

The trivial steady state (u, v, c) = (0, 0, 0) is always unstable, meaning that,
depending on the interspecific competition rates b1 and b2, system (2.24) can
transition from the trivial state to any other stable state with speeds given by
su ≥ 2

√
D1r1 and sv,c ≥ 2

√
D2r2. Clearly, if D1r1 = D2r2, all three wavefronts

move at the same speed. However, if D1r1 ̸= D2r2, wavefront u moves at a
different speed compared to wavefronts v and c, which move at the same speed.
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Figure 2.8 shows the different wavefronts that can be admitted as solutions
to system (2.24), transitioning from the unstable trivial steady state (u, v, c) =

(0, 0, 0) to the final stable state (u, v, c) =
(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
. In

Figure 2.8 a and b, D1r1 = D2r2, and the wavefronts move at the same speed
s ≈ 0.6. The difference between the profiles of the wavefronts is caused by the
interspecific competition rates, which results in all three wavefronts having the
same profile when the two species have the same competitive effect (Figure 2.8 a),
and different profiles when one species is more competitive than the other (Figure
2.8 b). In Figure 2.8 c, D1r1 ̸= D2r2, and species v has a higher diffusivity rate
than species u, with D1 = 0.5 < D2 = 1. In this case, wavefront u moves
slower, transitioning from the steady state (u, v, c) = (0, 1, 1) to coexistence
with speed su ≈ 0.3, while wavefronts v and c first transition from the trivial
steady state to (u, v, c) = (0, 1, 1) with speed s ≈ 0.4. Similarly, in Figure
2.8 d, D1r1 ̸= D2r2, and species u has a higher proliferation rate than species v,
with r1 = 0.15 > r2 = 0.1. This results in species u moving at a higher speed,
s ≈ 0.7, from the trivial steady state to (u, v, c) = (1, 0, 0), while species v and
the chemical c transition from (u, v, c) = (1, 0, 0) to coexistence with speed
s ≈ 0.4.

Figure 2.9 shows a comparison between the numerical and analytical wave
speeds corresponding to the transitions seen in Figure 2.8 c and d. In Figure 2.9,
parameters are chosen such that D1r1 ̸= D2r2. In Figure 2.9 a, the diffusivity of
species u varies such that D1 ∈ [0.2, 1.4]. When D1 < 1, the system transitions
from the trivial state to (u, v, c) = (0, 1, 1) to coexistence. In this case, wave-
fronts v and c move with speed sv,c = 2

√
D2r2, while wavefront u moves with

speed s ≥ 2
√
D1r1(1 − b1). For D1 = 1, where D1r1 = D2r2, both wavefronts

move at the same speed su,v,c = 2
√
D1r1 = 2

√
D2r2. When D1 > 1, the system

transitions from the trivial state to (u, v, c) = (1, 0, 0), and in this case, wave-
front u moves with speed s = 2

√
D1r1, while wavefronts v and c move with speed

sv,c ≥ 2
√
D2r2(1 − b2). In Figure 2.9 b, the wavefront transitions and minimal

speeds work in a similar way. However, in this case, the proliferation rate of the
first species varies, such that r1 ∈ [0.05, 0.35].

79



(a) (b)

(c) (d)

Figure 2.8: Travelling wavefront solutions to system (2.24), making
the transition from the trivial unstable steady state to the stable coex-
istence steady state. Solid blue and dash-dotted cyan lines represent the densi-
ties of populations u and v, respectively, and dotted red line represents the concen-
tration of the chemical, c. (a): D1 = D2 = 1, r1 = r2 = 0.1, b1 = b2 = 0.5; (b):
D1 = D2 = 1, r1 = r2 = 0.1, b1 = 0.5, b2 = 0.6; (c): D1 = 0.5, D2 = 1, r1 =
r2 = 0.1, b1 = b2 = 0.5; (d): D1 = D2 = 1, r1 = 0.15, r2 = 0.1, b1 = b2 = 0.5.
Initial conditions such that (u, v, c)(x, 0) is at coexistence if x < 20 and
(u, v, c)(x, 0) = (0, 0, 0) if x ≥ 20.

Under appropriate conditions on the interspecific competition rates b1 and b2,
system (2.24) can also transition from the steady state (u, v, c) = (0, 0, 0) to
the extinction steady state (u, v, c) = (1, 0, 0), if b2 > 1. However, in this
case, there is no density of the second species v or the chemical agent c, so only
travelling wavefronts corresponding to u are admitted as solutions. Similarly, the
system can also transition from the trivial steady state to the other extinction
state (u, v, c) = (0, 1, 1), if b1 > 1. In this case, there is no density of the first
species u, so only wavefronts corresponding to species v and the chemical agent c
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(a) (b)

Figure 2.9: Comparison between numerical and analytical speeds for
wavefronts that transition from (u, v, c) = (0, 0, 0) when D1r1 ̸= D2r2.
Blue and red represent the speeds of wavefronts u and v, c, respec-
tively, with solid lines representing numerical results and dashed lines
analytical results according to Table 2.1. (a): D1 ∈ [0.2, 1.4], D2 =
1, r1 = r2 = 0.1, b1 = b2 = 0.6; (b): D1 = D2 = 1, r1 ∈ [0.05, 0.35], r2 =
0.1, b1 = b2 = 0.6.

appear as solutions. Since these wavefronts transition from the origin, the speeds
of such wavefronts are su ≥ 2

√
D1r1 and sv,c ≥ 2

√
D2r2.

This section has shown all the possible travelling wavefronts that system (2.24)
admits as solutions when transitioning from the trivial steady state (u, v, c) =
(0, 0, 0), as well as the minimum speed of such wavefronts. An interesting char-
acteristic of these wavefronts is that if D1r1 ̸= D2r2, the system exhibits waves
moving at different speeds. We have shown, both analytically and numerically,
how these minimum speeds depend on model parameters. Next, wavefronts tran-
sitioning from the extinction steady states are investigated.

Wavefronts transitioning from the extinction steady states

Travelling wave solutions are highly dependent on the interspecific competition
rates between the two species considered. When considering system (2.24), it has
been shown that coexistence is always stable if b1, b2 < 1. If b1 < 1, then the
steady state (u, v, c) = (0, 1, 1) is unstable, and similarly, if b2 < 1, the steady
state (u, v, c) = (1, 0, 0) is unstable. This means that species can transition
from one of these extinction steady states to coexistence, with minimum wave
speed requirements as given in Table 2.1.

Figure 2.10 graphically illustrates the transition from the extinction steady
states to coexistence, aided by numerical simulations. In Figure 2.10 a, since
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(a) (b)

Figure 2.10: Travelling wavefront solutions to system (2.24) making
the transition from the two extinction steady states to coexistence.
(a): System moves from the unstable steady state (n, v, c) = (1, 0, 0) to coex-
istence, with competition rates: b1 = 0.6 and b2 = 0.4. Initially, (u, v, c)(x, 0)
is at coexistence if x < 10 and (u, v, c)(x, 0) = (1, 0, 0) if x ≥ 10. (b): System
moves from the unstable steady state (n, v, c) = (0, 1, 1) to coexistence, with
competition rates: b1 = 0.4 and b2 = 0.6. Initially, (u, v, c)(x, 0) is at coexis-
tence if x < 10 and (u, v, c)(x, 0) = (0, 1, 1) if x ≥ 10. Solid blue lines repre-
sent the density of n, while dotted red and dash-dotted cyan lines the concencen-
tration of c and v, respectively. Fixed parameters: D1 = D2 = 1, r1 = r2 = 0.1.

b2 < 1, the steady state (u, v, c) = (1, 0, 0) is unstable, and the system moves
from this state to the stable coexistence state, with all three wavefronts moving
at speed s = 2

√
D2r2(1 − b2). Similarly, in Figure 2.10 b, b1 < 1, and the

steady state (u, v, c) = (0, 1, 1) is unstable. The system once again transitions
to the stable coexistence state, with all three wavefronts moving at speed s =
2
√
D1r1(1 − b1). Clearly, the speeds of these wavefronts depend significantly on

the diffusivity of each species, as well as their reproduction and competition
rates. If the reproduction or diffusion rates increase, the minimum wave speed
also increases. Conversely, if the competition rate increases, the minimum wave
speed decreases.

With the aid of computational simulations, this section has shown the types
of wavefronts that can appear as solutions to system (2.24) when the extinction
steady states are unstable, and coexistence is stable. In the next section, the
opposite case is considered, where b1, b2 > 1, making coexistence unstable and
the extinction states stable. The case in which one of the competition rates is
greater than one and the other is less than one cannot be considered, as this
would result in negative coexistence, and negative densities are not feasible or
relevant to our research.
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Wavefronts transitioning from the coexistence steady state

Travelling wavefronts admitted as solutions to system (2.24) from the coexistence
steady state are less studied, and we believe this to be the most interesting
case. As seen from linear analysis, the coexistence steady state (u, v, c) =(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
is stable if b1, b2 < 1 and unstable if at least one

of the competition rates is greater than one. If one of the competition rates is
positive and the other negative, then at least one of the concentrations u, v, c
would be negative, making the scenario biologically irrelevant. Therefore, the only
biologically relevant case is when both competition rates are greater than one,
i.e., b1, b2 > 1. In this case, coexistence is unstable, and both extinction states:
(u, v, c) = (1, 0, 0) and (u, v, c) = (0, 1, 1) are stable, meaning travelling
wavefronts can transition from coexistence to either state, depending on initial
conditions. Figure 2.11 graphically shows the two types of travelling wavefronts
with the aid of computational simulations.

(a) (b)

Figure 2.11: Travelling wavefront solutions to system (2.24) mak-
ing the transition from the unstable coexistence state to the two sta-
ble extinction steady states. (a): Initial conditions such as: (u, v, c) =
(1, 0, 0) if x < 10 and coexistence otherwise. (b):Initial conditions such as:
(u, v, c) = (0, 1 1) if x < 10 and coexistence otherwise. Fixed parameters:
D1 = D2 = 1, r1 = r2 = 0.1, b1 = 1.6, b2 = 1.7.

Understanding the speed of travelling wavefronts moving from coexistence is
more challenging to approach analytically, as oscillations around coexistence do
not result in negative concentrations. Therefore, this steady state can behave
either as a node or a spiral. In this case, linear analysis is not an effective method
for determining the speed of the travelling wavefront, so nonlinear analysis may
be more appropriate. Methods of nonlinear analysis, such as the direct tanh
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method based on Mimura’s work [106], have previously been attempted to de-
scribe the speeds of travelling wavefronts moving from coexistence. However, we
have identified errors in the expansion of the solution, expressed as a sum of
hyperbolic functions [52]. In this work, system (2.24) is reduced to a system of
two equations for (u, v), as wavefront c closely follows wavefront v at the same
speed. The general form of the solution is taken to be:

u(z) = 1 + u∗

2 + −1 + u∗

2 tanh(z),

v(z) = v∗

4 (1 + tanh(z))2,

(2.28)

where (u∗, v∗) represents the coexistence state and the solution satisfies bound-
ary conditions such that (u, v)(−∞) = (1, 0) and (u, v)(∞) = (u∗, v∗) =(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
. By substiting this into system (2.26), we get a system

of 9 simultaneous equations which need to be solved to find the speed, s. This is
an overdetermined system and to overcome this, researchers have solved this type
of problem by considering model parameters such as D, r, b1 as unknowns and
they have obtained solutions for this model parameters depending on b2 [52, 106].
By fixing the errors found in [52], we have not been able to find any exact solutions
using (2.28).

Methods of solving for nonlinear partial differential equations most often in-
volve sums of hyperbolic functions [52, 64, 106, 121] such as:

u(z) =
m∑

i=0
ai tanhi(βz),

v(z) =
n∑

i=0
gi tanhi(βz),

(2.29)

where m and n are obtained by balancing the highest order derivative terms with
the highest nonlinear terms. In our case, for system (2.26), we get 2m = n + 2
and the most obvious choice is m = n = 2. This means that if, for example,
we are looking for travelling wavefronts from coexistence to the extinction steady
state (u, v) = (0, 1), we seek solutions of the form:

u(z) = a0 + a1 tanh(βz) + a2 tanh2(βz),

v(z) = g0 + g1 tanh(βz) + a2 tanh2(βz),
(2.30)

to system: 
0 = D1u

′′ + su′ + r1u(1 − u− b1v),

0 = D2v
′′ + sv′ + r2v(1 − v − b2u),

(2.31)
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with boundary conditions:
(u, v)(−∞) = (0, 1),

(u, v)(∞) =
(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
.

(2.32)

Substituting (2.30) into (2.31) and (2.32) and equating coefficients of powers of
tanh to 0, we get a system of 14 simultaneous equations which needs to be solved
for 8 unknowns: a0, a1, a2, g0, g1, g2, s, β:

a0 + a1 + a2 − b1 − 1
b1b2 − 1 = 0,

a0 − a1 + a2 = 0,

g0 − g1 + g2 − 1 = 0,

g0 + g1 + g2 − b2 − 1
b1b2 − 1 = 0,

2D1a2β
2 + sa1β + r1a0 − r1a

2
0 − r1b1a0g0 = 0,

−2D1a1β
2 + 2sa2β + r1a1 − 2r1a0a1 − r1b1a0g1 − r1b1a1g0 = 0,

−8D1a2β
2 − sa1β + r1a2 − r1a

2
1 − 2r1a0a2 − r1b1a0g2 − r1b1a1g1 − r1b1a2g0 = 0,

2D1a1β
2 − 2sa2β − 2r1a1a2 − r1b1a1g2 − r1b1a2g1 = 0,

6D1a2β
2 − r1a

2
2 − r1b1a2g2 = 0,

2D2g2β
2 + sg1β + r2g0 − r2g

2
0 − r2b2a0g0 = 0,

−2D2g1β
2 + 2sg2β + r2g1 − 2r2g0g1 − r2b2a0g1 − r2b2a1g0 = 0,

−8D2g2β
2 − sg1β + r2g2 − r2g

2
1 − 2r2g0g2 − r2b2a0g2 − r2b2a1g1 − r2b2a2g0 = 0,

2D2g1β
2 − 2sg2β − 2r2g1g2 − r2b2a1g2 − r2b2a2g1 = 0,

6D2g2β
2 − r2g

2
2 − r2b2a2g2 = 0,

(2.33)
which clearly is an overdetermined system. They only way to solve this is to use
Maple and treat model parameters: D1, D2, r1, r2, b1 and b2 as unknowns in
order to have 14 equations for 14 unknowns. The solution obtained:

a0 = a1 = 4.95, a2 = 0, g0 = 1, g1 = g2 = 0, β = 2.85, s = 0.61, D1 = D2 = 0,

r1 = −0.35, r2 = 0, b1 = −8.9, b2 = 0,

is clearly not satisfactory and biologically relevant for a number of reasons, such
as negative model parameters and b1, b2 ≯ 1.
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A more useful method of finding the speed of the travelling wavefronts moving
from coexistence to one of the two extinction steady states is to express the
densities of the two bacterial species as:

u ≈ u0 + α1 exp(−βz),

v ≈ v0 + α2 exp(−βz),
(2.34)

as z −→ ∞, where (u0, v0) represents the coexistence state, α1, α2 are the
coefficients responsible for amplitude and β is the wavenumber. It is important
to investigate the behaviour of the initial data at infinity, as this is crucial for
describing the long-time behaviour of the system [67]. Note that wavefront c is
assumed to follow closely behind wavefront v, so using c ≈ v allows us to reduce a
system of three partial differential equations to a system of two partial differential
equations for simplicity. Substituting (2.34) into system (2.26) results in a system
of two simultaneous equations for four unknowns: α1, α2, β, s:

D1α1β
2 − sα1β + r1α1 − 2r1u0α1 − r1b1u0α2 − r1b1v0α1 = 0,

D2α2β2 − sα2β + r2α2 − 2r2v0α2 − r2b2u0α2 − r2b2v0α1 = 0.
(2.35)

Using the second equation of system (2.35), an expression for α2 in terms of α1

can be obtained, such as:

α2 = r2b2v0α1

D2β2 − sβ + r2 − 2r2v0 − r2b2u0
, (2.36)

which can be substituted into the first equation of the system to obtain an implicit
equation for s and β:

D1β
2 − sβ + r1 − 2r1u0 − r1b1v0 − r1r2b1b2u0v0

D2β2 − sβ + r2 − 2r2v0 − r2b2u0
= 0. (2.37)

Clearly, equation (2.37) is a quadratic equation for the speed, s, as depending on
the wavenumber, β:

s2β2+s(2βr1u0+2βr2v0+βr1b1v0+βr2b2u0−D1β
2−D2β

3−βr1−βr2)+(D1D2β
4+

D1β
2r2+D2β

2r1−2D1β
2r2v0−2D2β

2r1u0−D1β
2r2b2u0−D2β

2r1b1v0+r1r2−2r1r2u0−
2r1r2v0 − r1r2b2u0 − r1r2b1v0 + 4r1r2u0v0 + 2r1r2b2u

2
0 + 2r1r2b1v

2
0). (2.38)

Solutions to equation (2.38) are difficult to obtain analytically, however we can
investigate them graphically by looking at solutions in the positive quadrant since
we are looking for wavefronts moving from left to right such that s ≥ 0. Figure
2.12 shows the dispersion curve for speed as a function of the wavenumber β for
fixed model parameters.
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Figure 2.12: Dispersion curve (2.38) for speed as a function of
wavenumber for wavefronts transitioning from the unstable coexis-
tence steady state. β0 represents the minimum of the curve. Fixed model
parameters: D1 = D2 = 1, r1 = r2 = 0.1 and b1 = b2 = 1.6.

From the dispersion curve in Figure 2.12, one can see that the dot represents
smin = 0.3038 for β0 = 0.1519. For β < β0, the waves move with speed smin and
for β > β0, the speed is given by the dispersion curve. This method has first been
introduced for Fisher type equations by McKean [84] and Larson [67] in the 1970’s,
proved numerically by Manoranjan [81] and adapted by Murray in [86]. This
method can be used to analytically obtain the speed of the travelling wavefronts
transitioning from coexistence, however it is important to know the magnitude of
the wavenumber β and whether β ≶ β0. By using numerical simulations for fixed
model parameters: D1 = D2 = 1, r1 = r2 = 0.1 and b1 = b2 = 1.6 and waves
transitioning from coexistence to obtain and fit data to an exponential curve, one
can show that the densities of the species (n, v) at infinity follow the distribution:

u ≈ n0 + 0.0036 exp(−0.024z),

v ≈ v0 + 0.0688 exp(−0.024z),
(2.39)

as z −→ ∞, where clearly β = 0.024 < β0, meaning that waves move with
s = smin, as given by the dispersion curve in Figure 2.12. This is a powerful
method of obtaining the analytical speeds of travelling wavefronts moving from
the unstable coexistence steady state admitted as solutions to system (2.24),
irrespective of the stable steady state they are transitioning to. To show that the
speeds obtained via this method are in line with speeds obtained from numerical
simulations, the effect of model parameters on speed has been investigated and
shown in Figure 2.13.

Figure 2.13 shows the effect of model parameters on the speed of the trav-
elling wavefronts when system (2.24) transitions from coexistence. In the nu-
merical simulations, the system transitions to the stable extinction steady state
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(a) (b) (c)

Figure 2.13: Speed of travelling wavefronts transitioning from unsta-
ble coexistence admitted as solutions to system (2.24). Numerical speeds
(solid lines) are obtained from simulations and analytical speeds (dashed lines) are
given by the minimum of the dispersion curve as given by solutions to equation
(2.38). Fixed parameters: D1 = D2 = 1, r1 = r2 = 0.1 and b1 = b2 = 1.6.

(u, v, c) = (1, 0, 0). However, the speed of the waves is influenced only by the
long-term behaviour of the system at +∞, not by its behaviour at −∞ [67]. The
minimum of the dispersion curve given by (2.38) clearly captures the effect of
diffusion, competition, and reproduction, with the difference between numerical
and analytical speeds being less than 5%, likely due to numerical error. As the
diffusion and reproduction rates of the first species increase, the speed of the
wavefronts also increases. Similarly, as the competition of the second species, v,
on the first species, u, increases, the speed also increases. Changing the parame-
ters corresponding to species v: D2, b2, and r2, has the same effects on the speeds
of the travelling wavefronts as altering D1, b1, and r1.

This section has focused on illustrating the different types of travelling wave-
fronts that can arise as solutions in a system of two bacterial species and a
chemical, which behaves similarly to the Lotka-Volterra competition model, as
the chemical does not affect the spatial distribution of the bacterial species. The
speed of the fronts has been determined through both analytical methods and
computational simulations, allowing us to analytically calculate the speed of the
travelling wavefronts when the system transitions from the unstable coexistence
steady state. In the next section, we will consider the chemotactic effect of the
chemical produced by the second species on the first species, and we will investi-
gate the existence and speed of the resulting travelling wavefronts.

2.2.2 Travelling waves in a two species system with chemo-
taxis

In this section, the chemical agent c produced by species v in system (2.24) is
considered to have a chemotactic effect on the spatial distribution of species u.
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We consider this to be of high biological relevance, as it investigates a slightly
modified Lotka-Volterra competition model in which two species compete for
resources, but only one of them produces a chemical agent that affects the density
of the other species. It is important to understand whether chemotaxis impacts
species survival or wave speed, and its effects on colonisation. Chemotaxis is
mathematically modelled by the introduction of an advection term, such that
system (2.24) becomes:

∂u

∂t
= D1

∂2u

∂x2 − χ
∂

∂x

(
u
∂c

∂x

)
+ r1u(1 − u− b1v),

∂v

∂t
= D2

∂2v

∂x2 + r2v(1 − v − b2u),

∂c

∂t
= ∂2c

∂x2 + v − c,

(2.40)

where χ represents the chemotactic strength of c on u and its sign whether its
chemoattraction (χ positivie) or chemorepulsion (χ negative). Clearly, this sys-
tem has the same steady states as system (2.24):

(u, v, c) =
(0, 0, 0), (1, 0, 0), (0, 1, 1),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

) ,
(2.41)

with stabilities as shown in Figure 2.7. The aim of this section is to understand
the types of travelling wavefronts admitted as solutions to system (2.40) and how
chemotaxis affects the wave speed of such fronts. It has been shown in the previ-
ous section that, under specific conditions, all four steady states of system (2.24)
can be unstable, and travelling wavefronts can emerge to make the transition
from any unstable steady state to a stable one. In addition, using methods of
linear analysis, the minimum travelling wave speed has been obtained, and these
analytical results have been compared against numerical wave speeds obtained
through computational simulations.

One of the most interesting features of travelling wavefronts in a system of
two species is the appearance of wavefronts moving at different speeds when the
system transitions from the unstable trivial steady state and D1r1 ̸= D2r2. It has
been shown that if D1r1 > D2r2, the system transitions from the steady state
(u, v, c) = (0, 0, 0) to the steady state (u, v, c) = (1, 0, 0) to coexistence. In
this case, wavefront u moves with speed smin,u = 2

√
D1r1, and wavefronts v and

c move with speed smin,v,c = 2
√
D2r2(1 − b2). Similarly, when D2r2 > D1r1, the

system transitions from the steady state (u, v, c) = (0, 0, 0) to the steady state
(u, v, c) = (0, 1, 1) to coexistence. In this case, wavefront u moves with speed
smin,u = 2

√
D1r1(1 − b1), and wavefronts v and c move with speed smin,v,c =
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2
√
D2r2. In this section, with the aid of computational simulations, we study

the long-time behaviour of such wavefronts and show that, due to chemotaxis, all
three wavefronts eventually move at the same speed.

One of the simplest travelling wavefronts that can be admitted as a solution
to system (2.24) is a wavefront making the transition from the trivial steady
state to coexistence, moving at the same speed when D1r1 = D2r2. In this case,
it is important to understand how chemotaxis affects both the formation of the
wavefronts and their speed. Using computational simulations, Figure 2.14 shows
the effects of chemorepulsion (Figure 2.14 (a)) and chemoattraction (Figure 2.14
(b)) on the shape and speed of the travelling wavefronts.

(a) (b)

Figure 2.14: Travelling wavefront solutions to system (2.40) making
the transition from the trivial steady state to coexistence. (a): System
moves from the trivial steady state to coexistence, in the case of chemorepulsion,
χ = −5. (b): System moves from the trivial steady state to (u, v, c) = (0, 1, 1)
to coexistence, in the case of chemoattraction, χ = 20. Solid blue line represents
the density of u and dotted red and dash-dotted cyan lines represent the concen-
tration of c and v, respectively. Fixed parameters: D1 = D2 = 1, r1 = r2 =
0.1, b1 = b2 = 0.6. Initial conditions such as: (u, v, c)(x, 0) is at coexistence if
x < 100 and (u, v, c)(x, 0) = (0, 0, 0) if x ≥ 100.

Figure 2.14 shows the effects of chemotaxis on the speed and shape of the
travelling wavefronts admitted as solutions to system (2.40) for fixed parame-
ters: D1 = D2 = 1, r1 = r2 = 0.1, and b1 = b2 = 0.6. Since in this case
D1r1 = D2r2, in the absence of chemotaxis (χ = 0), the system transitions from
(u, v, c) = (0, 0, 0) to coexistence, with the wavefronts moving at the same
speed smin = 2

√
D1r1 = 2

√
D2r2. This also holds for the case of chemorepulsion,

as seen in Figure 2.14 a. However, in the case of chemoattraction, Figure 2.14
b, the system transitions from the trivial steady state to (u, v, c) = (0, 1, 1),
and then to coexistence. In this case, initially, the wavefronts move at different
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speeds, as shown in Figure 2.8, where the chemical agent has no effect on the two
species. However, due to the chemotactic effect of c on n, in the long run, the
wavefronts will move at the same speed as the leading wavefront. It is important
to understand the time-dependent behaviour of the wavefront speeds, as well as
how the distance between them changes over time. This has been investigated
with the aid of computational simulations for fixed parameters, and the results
are presented in Figure 2.15.

(a) (b)

Figure 2.15: Effect of chemotaxis on the wavespeed of the wavefronts
admitted as solution to system (2.40) and the distance between the
two species. (a): The long-time behaviour of the speed of wavefronts due to
chemoattraction. (b): The effect of chemoattraction on the distance between the
species as time increases, represented by d. Fixed parameters: D1 = D2 = 1, r1 =
r2 = 0.1, b1 = b2 = 0.6 and χ = 20.

Figure 2.15 examines the effect of chemoattraction on the speed of the wave-
fronts and the distance between the two species as time t −→ ∞. As seen in
Figure 2.14 b, when the steady state (u, v, c) = (0, 0, 0) is unstable and coex-
istence is stable, system (2.40) transitions from the unstable trivial steady state
to (u, v, c) = (0, 1, 1) and then to coexistence. In the absence of chemotaxis,
wavefronts v and c move with a speed smin,v,c ≥ 2

√
D2r2, while wavefront u moves

with a speed smin,u ≥ 2
√
D1r1(1 − b1). However, in the presence of chemotaxis,

as shown in Figure 2.15 a, the speed of wavefront u increases over time, and
eventually, all wavefronts move at the same speed, smin ≥ 2

√
D2r2. Additionally,

Figure 2.15 b, shows that initially, as time increases, the distance between the two
species increases rapidly, as wavefront v travels significantly faster than wavefront
u. However, in the long run, the distance between the two wavefronts converges
to approximately d ≈ 210, due to the wavefronts eventually moving at the same
speed as t −→ ∞. Similarly, in the case of chemorepulsion, as seen in Figure 2.14
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a, the speed of wavefront v also increases over time, until all wavefronts move
with speed smin ≥ 2

√
D1r1. This indicates that the long-time behaviour of the

wavefronts is influenced by chemotaxis, such that as time tends to infinity, both
species, as well as the chemical agent, move at the speed of the leading wavefront.
However, it is important to note that the speed of the leading wavefront is not
affected by the chemotactic strength of the chemical agent.

In the absence of chemotaxis, system (2.24) also allows transitions from the
two extinction steady states (u, v, c) = (1, 0, 0), (0, 1, 1), and in these cases,
the wavefronts transition at the same speed, as given by the analytical expressions
obtained in the previous section. In the presence of chemotaxis, our numerical
analysis has shown that chemotaxis does not affect the speed of the travelling
wavefronts, and it remains the same as when the chemical agent has no effect on
the spatial distribution of species u. This means that regardless of the chemotaxis
strength, the wavefronts move at the speeds given in Table 2.1.

On the other hand, if b1, b2 > 1, coexistence becomes unstable, and in this
case, chemotaxis impacts the speed of the travelling wavefronts that make the
transition from the unstable coexistence state to one of the stable extinction
states in system (2.40). To analytically find conditions for the wavefront speed,
we seek travelling wavefront solutions to the system:

0 = D1u
′′ + su′ − χ(u′c′ + uc′′) + r1u(1 − u− b1v),

0 = D2v
′′ + sv′ + r2v(1 − v − b2u),

0 = c′′ + sc′ + v − c.

(2.42)

The difficulty in solving this nonlinear system of three simultaneous par-
tial differential equations, leads us to making the simplification that v ≈ c if
D2, r2 << 1, as shown in the first section of this chapter. This allows us to work
with the simplified system:

0 = D1u
′′ + su′ − χ(u′v′ + uv′′) + r1u(1 − u− b1v),

0 = D2v
′′ + sv′ + r2v(1 − v − b2u),

(2.43)

for which we seek solutions of the form (2.34), as in the no chemotaxis case. By
substituting (2.34) into (2.43) and solving the set of two simultaneous equations,
one can obtain the dispersion curve for speed and the wavenumber β:

D1β
2 − sβ + r1 − 2r1u0 − r1b1v0 − r1r2b1b2u0v0

D2β2 − sβ + r2 − 2r2v0 − r2b2u0
−

χβ2u0v0r2b2

D2β2 − sβ + r2 − 2r2v0 − r2b2u0
= 0. (2.44)
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Clearly, an analytical expression for speed as a function of the wavenumber is
difficult to obtain, however solutions can be investigated graphically by plotting
equation (2.44) in the positive quadrant and looking for its minimum point, as
seen in Figure 2.16 a.

(a) (b)

Figure 2.16: Use of dispersion curve (2.44) to investigate the effects
of chemotaxis in a system of two species transitioning from the un-
stable coexistence steady state. (a): The dispersion curve of system (2.43)
representing speed as function of the wavenumber for fixed chemotaxis strength
χ = 15. (b): The effect of chemoattraction on the speed of the travelling wave-
fronts when coexistence is unstable. Fixed parameters: D1 = 1, D2 = 0.1, r1 =
r2 = 0.1, b1 = b2 = 1.6.

It has been discussed in the case of no chemotaxis that if the wavenumber
β is smaller than β0, then wavefronts travel at the minimum speed as given by
the dispersion curve (2.44) in Figure 2.16 a. By fixing model parameters such
that D1 = 1, D2 = 0.1, r1 = r2 = 0.1, b1 = b2 = 1.6, and χ = 15, numerical
simulations have been used to find the wavenumber β for travelling wavefront
solutions to system (2.42). By fitting numerical data to an exponential curve,
it can be seen that the two species, u and v, and the chemical c follow the
distributions: 

u ≈ 0.0007 exp(−0.014z),

v ≈ 0.0006 exp(−0.018z),

c ≈ 0.0005 exp(−0.018z),

(2.45)

as z −→ ∞. Since β0 = 0.089, it can be seen that β < β0, which means that the
travelling wavefronts transition with speed s = smin, as given by (2.44). The next
step in verifying the accuracy of the method is to compare the analytical speeds,
provided by the minimum of the dispersion curve, against the speeds obtained
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from numerical simulations for different chemoattraction strengths. A graphical
comparison of the results is presented in Figure 2.16 b. Clearly, chemotaxis
has a significant impact on the speed of the wavefronts, and as the strength of
chemoattraction increases, the wave speed also increases. This means that the two
competing species and the chemical travel across the medium significantly faster
when the chemotactic effect of the chemical is stronger. This shows that using
the dispersion curve is a powerful method for obtaining the speed of wavefronts
in a nonlinear system of PDEs.

In conclusion, our investigation into the effects of chemotaxis in a two-species
system transitioning from either the trivial state or one of the unstable extinc-
tion states has shown that chemotaxis does not affect the speed of the leading
wavefront, and due to chemotaxis, all wavefronts move at the same speed as time
tends to infinity. Additionally, the distance between the two species stabilises
after a certain time point. On the other hand, we have shown that the speed
of the travelling wavefronts transitioning from the unstable coexistence steady
state is highly impacted by the strength of chemoattraction. Moreover, we have
obtained the dispersion curve for such a system and demonstrated that it can
successfully predict the minimum wave speed of the two bacterial species, as well
as the chemical, as they travel across the medium.

Discussion
In this chapter, we study a particular class of partial differential equations that
exhibit the formation of travelling wavefronts in reaction-diffusion systems, as
well as reaction-diffusion-advection systems. In the first section, we consider the
case of one bacterial species producing a chemical agent, both in the absence and
presence of chemotaxis. In the second section, we explore two bacterial species,
one of which produces a chemical agent that may or may not affect the spatial
distribution of the other species. In both sections, to address the complexity
of solving nonlinear partial differential equations, we employ various analytical
and numerical methods to demonstrate the existence of travelling wavefronts and
determine their minimum wave speeds.

The simplest case involves one bacterial species producing a chemical that
does not affect the spatial distribution of the bacteria. In this scenario, the bac-
teria’s kinetics follow logistic growth, resembling the Fisher-Kolmogorov equation
[33, 62], with the chemical agent following closely behind. This is mathemati-
cally represented by a system of two decoupled partial differential equations,
where both travel across the medium with speed s ≥ 2

√
Dr. Since both model

parameters, diffusion and reproduction, influence the speed of the wavefronts,
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we have also investigated their effects on the shape of the wavefront. It has
been shown that increasing diffusion makes the wavefront corresponding to the
bacterial species smoother, while increasing reproduction makes it sharper.

The more interesting case in the one-species model arises when the chemotac-
tic agent affects the distribution of the bacterial species, with chemotaxis being
introduced via an advection term in the system of PDEs. Numerical computations
have shown that travelling wavefronts exist whether the chemical agent acts as
an attractant or a repellent. Investigating the effects of chemotaxis on the speed
of the front is crucial to understanding the dynamics of such a system. Under
the assumption that both diffusion and reproduction are very small, D, r << 1,
we have derived a formula for the minimum wave speed that depends on all three
model parameters: diffusion, reproduction, and chemorepulsion. These analytical
speeds have been compared against those from numerical simulations, showing a
strong correlation between the two methods.

In the second section of this chapter, a two-species model is considered in
which one of the species produces a chemical agent, and both species com-
pete for resources following Lotka-Volterra kinetics [76, 135]. The mathemat-
ical model corresponding to this scenario consists of three partial differential
equations and has four steady states. It has been shown that, under specific
conditions, all steady states can be unstable, and the system admits travelling
wavefronts that transition from any unstable steady state to a stable one. One
important characteristic of waves transitioning from the unstable trivial steady
state is that, depending on model parameters, wavefronts can move at different
speeds if D1r1 ̸= D2r2. Conditions for the minimum wave speed of fronts tran-
sitioning from the unstable trivial steady state or any of the unstable extinction
states have been obtained through linear analysis, requiring that the steady state
is an unstable node rather than a spiral, to avoid negative species densities, which
are biologically irrelevant.

Another novel result in this section is that if both competition rates, b1, b2 >

1, then the coexistence steady state is unstable, and the system can transition
from coexistence to one of the stable extinction states. In this case, the disper-
sal curve of the system provides valuable information about the minimum wave
speed, which strongly correlates with results from numerical simulations. In the
two-species system with chemotaxis, it has been shown that, due to attraction
or repulsion, the long-time behaviour of travelling wavefronts transitioning from
the trivial steady state or one of the extinction states is such that they all move
at the same speed as the leading wavefront, and the distance between the two
species stabilises after a specific time point. While chemotaxis does not greatly
impact the speed of the leading wavefront, it does cause both species, as well as
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the chemical, to move at the same speed in the long run, as time tends to infin-
ity. More interestingly, in the case of wavefronts transitioning from the unstable
coexistence state to one of the stable extinction states, it has been shown that
chemoattraction significantly increases the wave speed of the fronts. By exam-
ining the dispersion curve of the system when D2, r2 << 1, such that v ≈ c,
we have been able to analytically describe the increase in speed with increasing
chemotaxis strength. It has also been shown that this is in accordance with the
wave speeds obtained from numerical simulations.

In conclusion, the aim of this chapter was to thoroughly investigate the ex-
istence of travelling wavefronts in a system of one or two interacting bacterial
populations and to understand how their speed is affected by model parameters,
particularly how chemotaxis influences the dynamics of the system. This is of
high biological relevance, as it helps understand how quickly bacteria and chemi-
cals can spread across a medium and sheds light on the early stages of colonisation
in species competing for resources.
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Chapter 3

Modelling pattern formation in a
single species system

Biological pattern formation is one of the most fascinating phenomena in na-
ture. The simplest examples of such patterns are travelling waves and stationary
periodic patterns, which emerge during various biological processes, including
morphogenesis and population dynamics. The formation of these patterns in
populations of motile microorganisms, such as Dictyostelium discoideum and E.
coli, has been demonstrated in numerous experimental studies.

The conditions under which various types of patterns form are typically ex-
plored in mathematical studies of dynamical systems that include diffusive and
advection terms. In this work, we perform a mathematical study of spatio-
temporal patterns arising in a growing population of chemotactically active bac-
teria. Specifically, we use linear analysis to determine the conditions for the for-
mation of stationary periodic patterns and nonlinear (Fourier) analysis to identify
key characteristics, such as the amplitude and wavelength of these patterns.

The novel contributions of this chapter centre around approximating the most
unstable wavelength in a reaction-diffusion-advection system. In particular, we
demonstrate that using an implicit equation to identify the largest positive eigen-
value of the characteristic matrix is a significantly more effective method for
determining the most unstable mode compared to classical linear analysis. This
is especially evident when studying the effects of reproduction, where the results
from the two approaches are qualitatively different. Additionally, we show that
Fourier analysis is a more effective method for estimating the amplitude of Turing
patterns, as it is both simpler and computationally more efficient compared to
other approaches in the literature.

The methods employed in this chapter to study pattern formation and its char-
acteristics have previously been introduced for reaction-diffusion and activator-
inhibitor systems. However, we address gaps in the literature by extending these
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methods to reaction-diffusion-advection systems, which are less commonly studied
than other classical systems. Throughout the chapter, we validate our analytical
results through numerical simulations.

3.1 Introduction
Pattern formation is a widely observed phenomenon in nature and is one of the
key outcomes of biological self-organization. It manifests in well-known patterns,
such as animal markings, and processes like embryogenesis. Growing bacterial
communities form patterns that significantly impact biofilm formation [56]. Non-
biological examples include the formation of dunes in deserts [?], temperature
hot spots in autocatalytic chemical systems [41] and various other processes in
physical [116], chemical [146] and social [96] systems.

The most representative examples of spatio-temporal patterns are travelling
waves and stationary periodic patterns. The formation of travelling waves in
biological populations has been studied for many decades using the Kolmogorov-
Fisher equation [33, 62] and its modifications [1, 32]. A key future of these models
is the inclusion of an advection term, which accounts for the directional motion of
biological species in response to chemical signals (chemotaxis) [11, 37, 49, 58, 137].
Studies of the mechanism for stationary periodic pattern formation in chemical
and biological systems have been launched by Alan Turing in his fundamental
work [128]. Turing considered a system of differential equations that describe
the dynamics of two interacting substances, or morphogens. Typically, in a well-
mixed system (or in the absence of diffusion), the system maintains a stable
homogeneous solution. However, for certain types of interactions between the
morphogens, specifically in what is known as an "activator-inhibitor" system, the
homogeneous state becomes unstable when the diffusion rate of one morphogen
(the inhibitor) is significantly higher than that of the other (the activator). In this
scenario, non-homogeneous patterns, such as stripes or spots, emerge [17, 59, 39].
This pattern formation mechanism has been termed "diffusion driven instability"
and, in the context of activator-inhibitor systems, is often described as "local
self-enhancement and long-range inhibition" [39, 144].

Stationary periodic patterns are frequently observed in populations of chemo-
tactically active microorganisms, which tend to aggregate and form regularly
spaced clusters. Chemotactic activity refers to the movement of microorganisms
either along or against chemical gradients, which may be produced externally or
by the microorganisms themselves. Numerous theoretical studies have investi-
gated the mechanisms underlying pattern formation in growing populations of
such microorganisms, including bacteria and amoebae [59, 46]. The general form
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of these models is given as
∂n

∂t
= Dn∇2n− ∇

(
χ(n, c)∇c

)
+ f(n, c),

∂c

∂t
= Dc∇2c+ g(n, c),

(3.1)

where the variable n represents the density of microorganisms, while the variable
c denotes the concentration of the chemotactic agent. The parameter Dn is the
diffusion coefficient describing the random motion of cells, and Dc - the diffusion
constant of the chemotactic agent. The function χ(n, c) describes the chemotactic
response of the microorganisms, while the functions f(n, c) and g(n, c) represent
the microbial and chemical kinetics, respectively.

If χ(n, c) = 0 (indicating no chemotaxis) the system (3.1) reduces to a reaction-
diffusion model similar to the classical Lotka-Volterra model (as presented in
Chapters 1 and 2 of [87]). However, if χ(n, c) ̸= 0 an advection term appears in the
first equation transforming the system (3.1) into a reaction-diffusion-advection
model. Furthermore, if f(n, c) = 0, the system simplifies to the well-known
Keller-Segel model [59]. The Keller-Segel model, introduced in 1970, was de-
signed to describe the aggregation of Dictyosteium discoideum amoebae, medi-
ated by a chemotactic agent (cAMP, known at the time as acrasin) produced
by the amoebae themselves [59]. The original model consisted of four equations,
but by applying the quasi-steady-state assumption (i.e. replacing ’fast’ differ-
ential equations with algebraic relationships) it was reduced to a system of two
reaction-diffusion-advection equations. The analysis conducted on the simplest
version of the model, where the following assumptions were made: (a) the the
chemotactic sensitivity is constant (χ(n, c) = χ0), (b) the amoebae do not die or
reproduce, (f(n, c) = 0), and (c) the chemical agent is produced by the amoebae
and degrades at a constant rate, g(n, c) = hn−pc, where h represents the produc-
tion rate per amoeba, and p is the degradation rate. Under these assumptions,
the model (3.1) is represented by the following system:

∂n

∂t
= D∇2n− χ0∇2c,

∂c

∂t
= ∇2c+ hn− pc,

where D = Dn/Dc is the ratio of the diffusion constants of the amoebae and the
chemical, and the spatial variable is rescaled so that the diffusion of the chemical
c is normalised to one. In the absence of chemotaxis (χ0 = 0) the system evolves
towards the stable steady state (n, c) = (n0, c0), which is determined by the
initial amount of amoebae, where n0 represents the average initial density of the
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amoebae and c0 = n0∗h/p. It was shown in [59] that in the presence of chemotaxis
the homogeneous state (n0, c0) becomes unstable if

χ0p

Dh
+ n0h

p
> 1.

This condition implies that an increase in the chemotactic activity χ disrupts the
stability of the homogeneous state, causing the amoebae to aggregate into clusters
and form stationary periodic patterns. Since the instability in this system arises
from spatial coupling, though due to the advection rather than the diffusion term,
it has been suggested to consider such a system as a Turing system [90], where
Turing instability - a term broader than diffusion-driven instability - occurs.

An assumption made in [59] that the chemotactic response is independent of
both the density of cells and the concentration of the chemotactic agent (i.e.,
χ(n, c) = χ0), simplifies the mathematical analysis but leads to unbounded solu-
tions. It is more reasonable to assume that the chemotactic response is propor-
tional to the density of cells and that it decreases with increasing concentration
of the chemotactic agent [77]. Several modifications of the Keller-Segel model, in-
corporating different forms of the chemotactic term and/or variations in bacterial
and chemical kinetics, have been explored by researchers, with some listed in [46].
Notably, models describing patterns in growing E. coli colonies [6, 97]have been
developed, as E. coli is another species exhibiting chemotactic activity. One such
model, known as the ’liquid model,’ is designed to reproduce patterns formed by
bacteria in a liquid environment [130]. This model, similar to the Keller-Segel
model, is represented by a variant of the system (3.1). In this model cell death
and proliferation is again neglected (f(n, c) = 0) and the chemotactic sensitiv-
ity is given by χ(n, c) = χ0

n

1 + c2 , meaning it is proportional to the cell density
and decreases with the concentration of the chemotactic agent. While the decay
of the chemical is neglected, its production is modelled using the Hill function
g(n, c) = ω

n2

ν + n2 . Analysis of this model in [130] showed that for sufficiently
large χ0, the homogeneous state becomes unstable, leading to the formation of
periodic patterns. However, these patterns were found to be non-stationary, with
their spatial periodicity changing over time. Subsequent research demonstrated
the formation of stationary periodic patterns within larger systems of differential
equations modeling E. coli populations [6, 75, 97]. Conversely, other models of the
type (3.1) have shown non-stationary patterns resulting from Turing instability
[147, 105].

While the mechanisms and conditions for periodic pattern formation have
been extensively studied [128, 59, 86], the properties of these patterns, such as
wavelength and amplitude, have been explored to a lesser extent. The estimation
of the wavelength of patterns is typically based on linear stability analysis and
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is often given by the wave number of the most unstable mode (see Chapter 2 of
[87]). The amplitude of periodic patterns is generally estimated through weakly
nonlinear analysis. In this approach, the solution of (3.1) is approximated in the
form: n(x, t) = n0 + α(ϵ, t) cos(kx),

c(x, t) = c0 + β(ϵ, t) cos(kx),
(3.2)

where the point (n0, c0) represents the homogeneous steady state of the system.
k is the wave number of the first unstable mode which occurs after a Turing
bifurcation and is found through linear stability analysis. α(ϵ, t) and β(ϵ, t) rep-
resent the amplitudes of n- and c-profiles in the emerging periodic pattern. The
parameter ϵ indicates the distance from the bifurcation point; for instance, if the
homogeneous state becomes unstable when χ0 = χ∗, then ϵ = χ0−χ∗. ϵ should be
small enough so that there is only one unstable mode as it appears in the equation
(3.2). The amplitude equation is a differential equation for α(ϵ, t) (or β(ϵ, t)), i.e.
ȧ = F (ϵ, a), which should be derived for a system under consideration.

For the linear system, ȧ ≈ λa, where λ is the largest eigenvalue of the system,
which for an unstable mode leads to infinite growth in the amplitude of the
pattern. In the vicinity of the Turing bifurcation, the amplitude equation gives
a slow evolution along the centre manifold, ȧ ≈ ϵa. In the case of a nonlinear
system the amplitude equation also becomes nonlinear:

da

dt
= ϵah(ϵ, a).

First- and second-order approximations of the function h(ϵ, a) (under the assump-
tion that ϵ ≪ 1) has been found for a set of nonlinear systems and boundary
conditions [30, 137, 142]. It has been shown that the amplitude equation, de-
rived for the model with no flux boundary condition, has a cubic (rather than
quadratic) nonlinearity: h(ϵ, a) = h′

ϵϵ + 0.5h′′
aaa

2, which points to a supercritical
pitchfork bifurcation associated with Turing instability [30, 142]. In this case,
the loss of stability of homogeneous state is accompanied by the formation of two
stable stationary periodic patterns of opposite phase and equal amplitude:

a =
∣∣∣∣∣2h′

ϵ

h′′
aa

∣∣∣∣∣√ϵ. (3.3)

Derivation of the function h(ϵ, a) for systems of differential equations (such as
(3.1)) is associated with tedious algebra and any technique that reduces the time
and effort required to address the problem would be greatly appreciated. Most
recently, an alternative approach to estimate the amplitude of Turing patterns,
forming in a class of two-variable reaction-diffusion models with kinetics terms
given by polynomial functions, was presented in [19]. The amplitude was also
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estimated based of weakly nonlinear analysis, but by setting the amplitudes α(ϵt)
and β(ϵt) in (3.2) to be constants. Consequently, the amplitudes were found as
the roots of algebraic equations. It was also shown that the amplitude obtained
analytically matched the numerical results reasonably well [19]. However, it is
evident that other techniques, which would allow for accurate estimation of the
wavelength and amplitude of periodic patterns and are not limited to the vicinity
to bifurcation point, would be of great value.

In this chapter, we introduce a prototype model of a growing population of
chemotactically active cells, which is relatively simple, biologically justifiable,
and reproduces the formation of stationary periodic patterns. We use Fourier
series for the analysis of patterns obtained from numerical simulations, as well
as for the analytical estimation of the amplitude and wavelength of stationary
periodic patterns emerging in the model. For greater accuracy, we perform our
analytical studies on a small domain that can contain only half (or one) spike.
We demonstrate that the use of Fourier series is a good alternative to deriving the
amplitude equation, as it provides a more accurate estimation of the pattern’s
amplitude and is not limited to the vicinity of the bifurcation point. We also
study how the amplitude and wavelength of periodic patterns depend on the
values of the model parameters.

3.2 Model
In this section, we introduce the model of growing population of motile bacteria
which we will analyse throughout this chapter. This model is represented by a
system of two partial-differential equations which include diffusion, reaction and
advection terms. It is known that such systems allow formation of travelling
wavefronts [37, 72] as well as Turing patterns [46, 86, 87].

We look for Turing patterns forming in one-dimensional domain (of size L)
under no-flux boundary conditions. We have performed preliminary numerical
simulations using various models of type (3.1) and based on the results of these
simulations we have chosen the following system:

∂n

∂t
= Dn

∂2n

∂x2 − χ̃
∂

∂x

(
n
∂c

∂x

)
+ r0n

(
1 − n

k

)
,

∂c

∂t
= Dc

∂2c

∂x2 + hn− pc,

This system is a version of the system (3.1) and describes the dynamics of popu-
lation of bacteria, whose density is given by n, which respond chemotactically to
a chemical agent of concentration c, produced by bacteria themselves. Here the
chemotactic sensitivity of cells is assumed to be proportional to n and takes the
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form χ(n, c) = χ̃n. Also, cells reproduce according to logistic law with growth
rate r0 and carrying capacity k: f(n, c) = r(1 − r/k). The kinetics of chemical
is assumed to be linear , g(n, c) = hn− pc (like in Keller-Segel model [59]), that
is, it is being produced by cells with rate h and decays with rate p. This system

can be nondimensionalised using the substitutions t̃ = tp, x̃ = x

√
p

Dc

, ñ = n

k
,

c̃ = cp

hk
. This gives (after dropping the tildes):


∂n

∂t
= D

∂2n

∂x2 − χ0
∂

∂x

(
n
∂c

∂x

)
+ rn(1 − n),

∂c

∂t
= ∂2c

∂x2 + n− c,

(3.4)

with new constants D = Dn

Dc

, χ0 = χ̃hk

Dcp
and r = r0k

p
While the parameters D and

r are essentially non-negative, χ can be positive (chemoattraction) or negative
(chemorepulsion).

In the absence of diffusion and chemotaxis, the system is said to be well-
mixed, meaning that both variables, n and c, don’t depend on the spatial variable
x. In this case, the first equation is detached from the second and describes the
logistic growth of population of bacteria. The system has two steady states
(n, c) = (0, 0) and (1, 1), which are unstable and stable respectively [86]. After
putting back the diffusion term (D ̸= 0, χ0 = 0) the first equation transfers
into Kolmogorov-Fisher equation which is known for travelling front solutions
[62, 33]. The system now allows the formation of travelling wavefronts between
the steady states (n, c) = (0, 0) and (n, c) = (1, 1), which are now stable and
unstable, respectively [86].

When the system includes the flow of cells due to chemotaxis (χ0 ̸= 0) then
the two equations in (3.4) are coupled and the known solutions of this system
include stationary periodic, or Turing, patterns [86], when the chemotactic flow
is strong enough. That is, if the value of χ0 is above certain value, then the
formation of stationary periodic patterns given by periodic functions, n(x) and
c(x), can be observed in Figure 3.1.

3.3 Conditions for formation of Turing patterns
Our numerical simulations, illustrated in Figure 3.1, have indicated that Turing
patterns can appear only if the chemotactic sensitivity, χ0, is above some thresh-
old value. This threshold value can be found analytically by applying the stan-
dard linear analysis technique, which is well known from the literature [59, 87].
It is known that Turing patterns form due to so-called Turing instability when a
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Figure 3.1: Numerical simulation of the Turing pattern formed in
system (3.4). Profiles of cell density, n, (solid blue line) and concentration
of chemotactic agent, c, (dotted red line) are shown. Solutions are obtained in
the domain 0 ≤ x ≤ 200, t ≥ 0. Initial conditions: n(x, 0) = 0 if x > 2 and
n(x, 0) = 1 if 0 ≤ x ≤ 2; c(x) = 0 ∀x. Model parameters: D = 1, χ = 1.9,
r = 0.1 and time T = 800.

steady state, which is stable in the well-mixed system, becomes unstable in the
full reaction-diffusion-advection system. This means that the equilibrium point
(n0, c0) = (1, 1) in system (3.4), which is stable if D = χ0 = 0, should become
unstable for some non-zero values of D and χ0.

Investigation of stability of steady state (n0, c0) involves linearisation of the
system (3.4) at this state and checking the dynamics of perturbations, which are
given in the form eλt cos(kx). Parameter k represents a perturbation mode and
can have any value from the set, given as k = iπ/L, with i taking any integer
value so that the perturbation satisfies no-flux boundary conditions. It appears
that these perturbations represent solutions of the linearised system provided
that λ is an eigenvalue of the characteristic matrix, which is, for the system (3.4)
at the steady state (1, 1), given as

M =
(

−Dk2 − r χ0k
2

1 −k2 − 1

)
. (3.5)

The steady state (1, 1) is stable if both eigenvalues of this matrix are negative,
which is known to require detM > 0 and rmTrM < 0 [87]. We can see that
TrM = −Dk2 − r − k2 − 1 is always negative, so for the system to be driven
unstable by perturbation, we require detM < 0, which leads to the following
condition for Turing instability,

detM = Dk4 + k2(D + r − χ0) + r < 0.

From this, a necessary but not sufficient condition is

D + r − χ0 < 0 (3.6)
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since if D+ r−χ0 > 0 then detM > 0 for any k.The second necessary condition
for initiation of Turing patterns comes from the fact that the equation detM = 0
should have real roots, so that detM < 0 between these two roots. Clearly, the
roots are given as

k2
1,2 =

−(D + r − χ0) ±
√

(D + r − χ0)2 − 4Dr
2D , (3.7)

and therefore we require

(D + r − χ0)2 − 4Dr > 0.

Taking into account (3.6) we get

χ0 −D − r > 2
√
Dr.

After rearranging terms in this inequality and, by introducing new notation RT ,
we can state the condition for Turing instability in the form:

RT = χ0

D + r + 2
√
Dr

> 1. (3.8)

Looking again at Figure 3.1, the factor of instability is RT = 1.1 > 1, confirm-
ing that if equation (3.8) holds, then infinitesimal perturbances of system (3.4)
result in formation of stationary periodic patterns.

Using the above technique we have performed stability analysis for a number
of models, which are represented by system (3.1) but differ by functions χ(n, c)
and f(n, c). Following [59] we assumed that the chemical kinetics is linear and
didn’t alter it across models, i.e. g(n, c) = n−c in all models. List of the analysed
models together with the obtained formulas for instability factor, RT , is shown in
Table 3.1. Note that travelling wave solutions form if RT < 1 (and f(n, c) ̸= 0),
while if RT > 1 then formation of Turing patterns should be observed.

Most of the models listed in Table 3.1 have been introduced earlier (see [46]),
however, the conditions for Turing instability for most of these models have not
been stated so far. These conditions are qualitatively similar for all considered
models and this is illustrated by domains where these conditions satisfied (in
parameter planes for models M3 and M7) in Fig. 3.2. We see from this figure
that for Turing instability to take place the chemotactic sensitivity, χ0 should be
strong enough, while the diffusion of chemotactic agent, D and reproduction rate
r are small enough.

We have reproduced numerically Turing patterns forming in all models given
in Table 3.1 aiming to find the simplest model, which allows formation of Turing
patterns, such that its shape is within physical constrains. Here is a summary of
our numerical results:
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χ(n, c) f(n, c) RT

M1 χ0 0 χ0

D

M2 χ0n 0 χ0n0

D

M3 χ0n rn(1 − n) χ0

D + r + 2
√
Dr

M4 χ0
1
c

0 χ0

Dn0

M5 χ0
1
c

rn(1 − n) χ0

D + r + 2
√
Dr

M6 χ0
n

c
rn(1 − n) χ0

D + r + 2
√
Dr

M7 χ0
n

c+ ν
rn(1 − n) χ0

(ν + 1)(D + r + 2
√
Dr)

M8 χ0
n

(c+ ν)2 rn(1 − n) χ0

(ν + 1)2(D + r + 2
√
Dr)

M9 χ0
n+ ν1

c+ ν2
rn(1 − n) χ0(1 + ν1)

(ν2 + 1)(D + r + 2
√
Dr)

Table 3.1: Results of Turing instability analysis for nine models rep-
resented by system (3.1). Model notations are given in the first column. Func-
tions χ(n, c) and f(n, c) corresponding to each model are given in columns 2 and
3. Calculated formula for instability factor, RT , is given in column 4. In models
M2 and M4, where f(n, c) = 0, the instability factor, RT , depends on n0, which
is an average value of n in the domain and determined by the initial conditions.

• M1 is the simplest model where the chemotactic sensitivity is assumed to
be constant, and no cell death/proliferation takes place [59]. Numerical
simulations show that Turing patterns in this model evolve towards infinite
amplitude and involve negative values for density of cells and concentration
of chemical (see Figure 3.3 a), which is physically impossible. So, we can
conclude, that χ(n, c) has to depend on at least one of the two variables, n
and c.

• In M2 the chemotactic sensitivity is assumed to be proportional to the con-
centration of cells, χ(n, c) = χ0n, but there is still no cell death/proliferation
taking place. When the instability condition is met we observe only one
sharp spike forming in response to stimulus (see Figure 3.3 b). Thus, no
Turing pattern can be observed in this model.

• M3 is M2 with added logistic growth of cells, f(n, c) = rn(1 − n). In this
model Turing patterns of finite amplitude and non-negative values of n and
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(a) (b) (c)

Figure 3.2: Domains RT > 1 (where Turing instability takes place) in
parameter planes for models M3 (solid) and M7 (dashed). Plots RT = 1
are drown according to the formulas for RT given in Table 3.1 in an assumption
that one of parameters has a fixed (default) value, which are D = 1, χ0 = 1.9,
r = 0.1. Dashed line is plotted for ν = 0.2 (model M7). The dot indicates position
of the point with coordinates given by default values of parameters.

c are observed. Thus, this is a simplest model which allows reproduction of
Turing pattern of physically justifiable shape.

• In M4 the chemotactic sensitivity is inversely proportional to the concen-
tration of cells and there is no cell proliferation. Here numerical simulations
end up with division by zero and abruptly stop after short period of time.

• M5 is M4 with added logistic growth of cells. Simulations can be ran for
longer periods of time, however division by zero is still taking place.

• In M6 χ(n, c) is proportional to n and inversely proportional to c. Eventu-
ally, division by zero is not taking place here and we obtain appropriately
shaped Turing patterns.

• The main feature of models M7,8,9 is that χ(n, c) is proportional to linear
function of n and inverse proportional to linear function, or a square of
linear function of c. The latter property lets us to safely avoid division by
zero (see [46, 130]). In all these cases, we get reasonably shaped Turing
patterns, which can be sharper or smoother for particular models (i.e. M7,
M8 or M9).

Our main conclusion after analysis and numerical simulations presented in this
chapter that model M3 is the simplest model where periodic stationary patterns,
which do not violate any physical constrains, are observed. Model M3 (which is
given by the system (3.4)) will be used in the rest of this paper for analysis of
properties of Turing patterns such as their amplitude and wavelength.
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(a) (b) (c)

Figure 3.3: Numerical simulations of patterns forming in models M1
(panel a), M2 (panel b) and M3 (panel c). Profiles of cell density, n,
(blue line) and concentration of chemotactic agent, c, (dotted red line) at time
T = 500 in the domain of size L = 50 shown in all three panels. Initial condition
n = c = 0 in panels a and c, and n = 1 and c = 0 in b. Patterns were initiated
using stimulus applied to the centre of the domain: n = 1.1 for 24 < x < 26 at
time t = 0. Model parameters: D = 1, χ0 = 1.8 and r = 0.1 (in M3).

3.4 Estimation of the wavelength of Turing pat-
terns

In the previous section, we identified the conditions for the formation of stationary
periodic patterns in the model (3.4), as given by equation (3.6), and presented
numerical simulations (see Figure 3.1) to illustrate the validity of this estimation.
Our next task is to analyse the properties of these patterns, specifically their
wavelength and amplitude. The amplitude is defined as the difference between
the maximal and minimal values of cell density, n, in the pattern, while the
wavelength is the distance representing the spatial periodicity of the pattern. As
an alternative to the wavelength, we will also consider a characteristic length,
which is the distance between consecutive maxima and minima and is half the
wavelength.

In this section, we consider the wavelength of the periodic pattern and will
estimate it based on the linear stability analysis presented in the previous section.
A periodic pattern forming under no-flux boundary conditions can be represented
as a sum of cosinusoidal profiles, each given as a(k) cos(kx), where k = iπ/L, i
is an integer, and L is the domain size. The integer i should be such that k
belongs to the interval k ∈ (k1, k2), where k1 and k2 are given by equation (3.7).
Wavenumbers k in this interval correspond to unstable modes, each having a
wavelength ω = 2π/k. It is reasonable to assume that the periodic pattern is
predominantly defined by the most unstable mode. A popular way to choose this
mode is to take the one corresponding to the arithmetic average of k2

1 and k2
2, as
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given by equation (3.7) [87, 19], which is:

k2
av = χ0 −D − r

2D .

The wavelength corresponding to this mode is given as:

ω = 2π
√

2D
χ0 −D − r

. (3.9)

A more accurate way to estimate the most unstable mode is to find the mode
for which the characteristic matrix (3.5) has the largest positive eigenvalue. In
terms of the trace and determinant, the two eigenvalues of the characteristic
matrix, M , are

λ1,2 = trM ±
√
trM2 − 4 detM

2 ,

which gives

λ1,2 = −Dk2 − k2 − r − 1
2 ±√

k4(D2 − 2D + 1) + k2(2D(r − 1) + 4χ0 − 2r + 2) + 1 − 2r
2 .

(3.10)

Clearly, λ1 < 0 always, so we are interested in the value of k2 that corresponds to
the largest value of λ2. Similar analysis has been used previously to determine the
most unstable mode in a system in which pattern formation is diffusion driven,
rather than as a result of chemotaxis [87]. This means we are looking for the
value of k2 at which the derivative of λ2 with respect to k2 is zero:

dλ2

dk2 = −D − 1
2 + τ(1 −D)2 + (2χ0 +Dr −D − r + 1)

2
√
τ 2(1 −D)2 + 2τ(2χ0 +Dr −D − r + 1) − 2r + 1

= 0.

(3.11)
Numerically, we found the value of k2 (for fixed values of the parameters D,
χ0, and r) that satisfies the above equation, and subsequently calculated the
corresponding wavelength, ω = 2π/k.

To complete the presented linear analysis, we checked the dependence of the
wavelength, ω, on the values of the model parameters for the system (3.4), ac-
cording to formula (3.9) and the implicit formula (3.11). The corresponding
plots are shown in Figure 3.4. It can be seen that, according to both formu-
las, the wavelength is a monotonically increasing function of diffusion, D (Figure
3.4 a), and a decreasing function of chemotactic sensitivity, χ0 (Figure 3.4 b).
The vertical asymptotes in these panels confirm that periodic patterns cannot
be observed when diffusion is too fast or chemotactic sensitivity is too weak (see
the condition given by equation (3.8) and the domains for Turing instability in
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(a) (b) (c)

Figure 3.4: Dependence of the wavelength of the periodic pattern, ω,
on the parameters of model (3.4) as found according to the equation
(3.9) (dashed) and the implicit formula (3.11) (solid). Default values of
the model parameters: D = 1, χ0 = 1.9 and r = 0.1.

Figure 3.2). While certain quantitative differences between the plots in Figure
3.4 a and Figure 3.4 b are observed, the plots in Figure 3.4 c differ qualitatively:
the wavelength of the most unstable mode in the periodic pattern is a decreasing
function of the growth rate, r, according to formula (3.11), and an increasing
function according to formula (3.9). Our numerical simulations (shown in Sec-
tion 7) indicate that the dependence given by formula (3.11) is not only correct
qualitatively but also quite accurate quantitatively.

We note that equations (3.9) and (3.11) provide only approximations of the
wavelength for the periodic pattern, based on the linear analysis of the system
(3.4). These approximations will later be compared with results obtained through
nonlinear analysis and numerical simulations.

3.5 Fourier series for numerically simulated pro-
files

Numerically simulated profiles are given by stationary periodic patterns and can
naturally be represented as Fourier series. A pattern forming in a domain of size
L under no-flux boundary conditions is given as a superposition of cosines. In
the case of the system (3.4), we have:

n(x) =
M∑

i=0
αi cos iπx

L
,

c(x) =
M∑

i=0
βi cos iπx

L
.

(3.12)

The coefficients αi and βi define the amplitudes of mode i for the variables n
and c (with the amplitudes given as 2αi and 2βi). For smooth profiles, these
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coefficients quickly tend to zero as i increases, allowing us to truncate the series
by considering only the first M terms, where M should be carefully chosen. For
a known profile, n(x), a spectral Fourier decomposition can be performed, by
breaking down the pattern into cosine functions with different frequencies. The
lowest ferquency mode represents the homogeneous state of the system, while the
highest frequency mode is responsible for the amplitude and the most unstable
wavelength of the system. The coefficients of the Fourier series can be found by
integrating the numerical profile n(x) according to the formulas:

α0 = 1
L

∫ L

0
n(x)dx,

and for i > 0
αi = 2

L

∫ L

0
n(x) cos iπx

L
dx. (3.13)

In the rest of this chapter, we will focus on profiles n(x) (and coefficients αi),
keeping in mind that the analysis of the profile c(x) is done in the same way.

Figure 3.5 shows patterns obtained in numerical simulations of system (3.4)
corresponding to species n for different medium lengths. Figure 3.5 a shows a
pattern of nine and a half spikes for which we expect α19 to be the most unstable
mode following Fourier decomposition. Since investigating a large number of
modes would result in a tedious analysis, the medium length has been reduced
to obtain a half spike (Figure 3.5 b) and a full spike (Figure 3.5 c) for which the
most unstable modes would be α1 and α2. A numerical investigation of how these
most unstable modes change for different medium lengths is presented in Figure
3.6.

Formulas (3.13) can be used for the spectral decomposition of patterns ob-
tained numerically. A typical stationary profile for cell density, n, obtained from
numerical simulations of the system (3.4) is shown in Figure 3.5 a. Spectral
decomposition of this profile reveals that only four modes have reasonably high
coefficients: α0 = 0.8979, α19 = 0.3945, α38 = 0.1293, and α57 = 0.0345, while
all other coefficients are considerably smaller (less than 0.1). α0 represents the
average level of n for the entire pattern, α19 defines the amplitude of the mode
with a characteristic length of 1/19th of the domain size, which corresponds to
the 9.5 spikes seen in Figure 3.5 a. Finally, α38 and α57 correspond to the second
and third harmonics of the main harmonic given by α19. Thus, the amplitude of
the pattern shown in Figure 3.5 a can be estimated as 2α19. Varying the size of
the domain will change the number of observed spikes but will not affect their
amplitude or spatial periodicity. This is illustrated by the patterns shown in Fig-
ure 3.5 b and Figure 3.5 c, which are obtained by changing the medium size of
the simulation in Figure 3.5 a, such that half a spike and full spike patterns are
obtained. These profiles are generally easier to consider analytically, since they
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require a smaller number of simultaneous equations, such as those in (3.15), to
be solved for Fourier coefficients αi.

(a) (b) (c)

Figure 3.5: Profiles of cell density, n(x), for patterns in the system
(3.4) obtained numerically. Domain size: L = 100 in (a), L = 5.5 in (b),
and L = 11 in (c). Model parameters are D = 1, χ0 = 1.9 and r = 0.1. Initial
conditions such that n(x, 0) = 1 if x < 20 (in a) and n(x, 0) = 1 if x < 2 (in b
and c), and n(x, 0) = 0 otherwise.

Patterns occurring in a small domain (like those shown in Figure 3.5 b and c)
are of particular interest, as the corresponding Fourier series can be truncated at
a reasonably low value of M (see equation (3.12)). Using Fourier decomposition
of numerically obtained patterns, we investigated how the coefficients of Fourier
modes depend on the domain size. In Figure 3.6, we show how the numerical
values of αi for i = {0, 1, 2, 3, 4, 6, 8, 9, 12} change with increase in the domain
size, L, which varies from 0 to 25. To obtain these values we have ran numerical
simulations for L ∈ [0, 25] with step 0.5 and have numerically integrated the
profiles according to formula (3.13) to obtain the corresponding Fourier series
coefficients. We observe that while α0 does not vary much (staying in the range
between 0.9 and 1) and the omitted α-coefficients are always negligibly small,
the displayed coefficients vary significantly. For L < 4, α0 = 1 and all other
coefficients are zero, indicating that the system is in a homogeneous state with
no spikes formed. For 4 < L < 7.5, the first coefficient, α1, is larger than any
subsequent coefficient (α1 > αi, ∀i > 1), reflecting the fact that only half of a spike
can form in a simulation with domain length in this range. Within this range of
domain sizes, the value of α1 increases from zero, reaches a maximum value α1(=
αmax) = 0.385 at L = 5.5, and then decreases to zero. This domain size, which
corresponds to the maximal value of α1, will be considered the characteristic
length (or half-wavelength) of the periodic pattern and will be denoted as Λ0,
i.e., Λ0 = 5.5 for the system (3.4) with the model parameters used in simulations
to produce Figure 3.6.

In Figure 3.6, we observe that for L ≈ 8, α0 = 1 and all other coefiicients
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Figure 3.6: Dependence of coefficients αi for i = {0, 1, 2, 3, 4, 6, 8, 9, 12}
on domain size, L. The values for the coefficients αi are obtained by integrating
numerical profiles according to the formula (3.13). Model parameters are D =
1, χ0 = 1.9, and r = 0.1. Vertical dashed lines represent the most unstable
wavelengths for patterns of half a spike (Λ0), one full spike (2Λ0), spike and a
half (3Λ0) and two full spikes (4Λ0).

are 0, which means the half spike pattern dissapears and we get a homogeneous
steady state before a full spike is observed for L > 8.5. The pattern - no pattern
- pattern behaviour is due to the fact that there are no unstable modes for L ∈
[7.5, 8.5] to result in patten formation when system (3.4) is perturbed. In essence,
there are no eigenvalues (3.10) with positive real part. This phenomenon is also
explained in Chapter 2 of [87] for a system driven unstable by diffusion, rather
than chemotaxis. With a further increase in domain size (L > 8.5), the coefficient
α2 increases and then decreases, and a similar pattern is seen with the coefficients
α3 and α4, each reaching a maximum of αmax = 0.385 when the domain size is
such that L = i · Λ0 for αi (where i = 2, 3, and 4), as indicated by the vertical
dashed lines. From these observations, we conclude that the periodic patterns
observed in the system (3.4) with the model parameters used to obtain the Fourier
coefficients in Figure 3.6 have a characteristic length Λ0 = 5.5 (size of half a spike)
and an amplitude A = 2αmax = 0.77. Another conclusion we can draw from the
coefficients in Figure 3.6 is that the shape of the observed periodic patterns are
defined by four coefficients: α0, the main mode αi with i given by the integer
closest to the ratio L/Λ0, and its second (α2i) and third (α3i) modes.

In this section, we have performed Fourier decomposition of patterns obtained
from numerical simulations. Our next task is to find the Fourier coefficients
describing patterns forming in the system (3.4) analytically. This will allow us
to compare the analytical results with the numerical ones and to predict the
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dependence of the most unstable half wavelength, Λ0, and amplitude, A, of the
periodic patterns on the model parameters in (3.4).

3.6 Nonlinear analysis of stationary periodic pat-
terns

Stationary solutions of the system (3.4), represented by their Fourier series, satisfy
the system (3.4) where the partial derivatives with respect to time are set to zero,
and the variables n and c are replaced by their Fourier series (3.12). This results
in the following equations for the coefficients of the Fourier series, αi and βi:



−D
M∑

i=0
(iκ)2αi cos(iκx) + χ0

∂

∂x

 M∑
i=0

αi cos(iκx)
M∑

i=0
iκβi sin(iκx)

+

r
∑M

i=0 αi cos(iκx)
(
1 −∑M

i=0 αi cos(iκx)
)

= 0,

−
M∑

i=0
(iκ)2βi cos(iκx) +

M∑
i=0

αi cos(iκx) −
M∑

i=0
βi cos(iκx) = 0,

(3.14)

where κ = π/L. We will begin the analysis of this system by finding the homoge-
neous solutions, or the solutions for which αi = βi = 0 when i > 0. This means
that, in order to find the homogeneous solution, we truncate the above system at
M = 0 and obtain: 

α0 − α2
0 = 0,

α0 − β0 = 0.

Roots of this system correspond to two homogeneous solutions: α0 = β0 = 1
(meaning that n(x, t) = c(x, t) = 1, ∀x, t) and α0 = β0 = 0 (meaning that
n(x, t) = c(x, t) = 0, ∀x, t).

To derive the equations for αi and βi when we truncate the system (3.14) at
an arbitrary M , we use trigonometric identities to replace the product of cosines
with cosines of sums. By equating the terms containing cos(ikx) for each i, we
break the first equation in the system (3.14) into the following M + 1 equations:
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α0 − α2
0 −

M∑
i=1

α2
i

2 = 0,

−Dα1k
2 + χ0k

2

α0β1 +
M∑

i≥1

i+ 1
2 αiβi+1 −

M∑
i≥2

i− 1
2 αiβi−1

+

r

α1 − 2α0α1 −
M∑

i≥1
αiαi+1

 = 0,

−4Dα2k
2 + χ0k

2

4α0β2 + α1β1 +
M∑

i≥1
(i+ 2)αiβi+2 −

M∑
i≥3

(i− 2)αiβi−2

+

r

−α2
1

2 + α2 − 2α0α2 −
M∑

i≥1
αiαi+2

 = 0,

−9Dα3k
2 + χ0k

2

9α0β3 + 3α1β2 + 3
2α2β1 +

M∑
i≥1

3(i+ 3)
2 αiβi+3 −

M∑
i≥4

3(i− 3)
2 αiβi−3

+

r

α3 − 2α0α3 − α1α2 −
M∑

i≥1
αiαi+3

 = 0,

....

(3.15)
The first equation is constructed as an identity for the coefficients of cos(0), the
second equation for cos(kx), and the i-th equation for cos(ikx). Since the second
equation in (3.14) is linear, it breaks into M + 1 identical equations:

−βi(ik)2 + αi − βi = 0.

This gives βi = αi

1 + (ik)2 , so the coefficients βi can be eliminated from the system

(3.15), resulting in a system of M + 1 equations for M + 1 unknowns.
By truncating the system (3.15) at M = 1 and using the formula β1 = α1

1 + k2 ,
we obtain the following system for finding the coefficients α0 and α1:

α0 − α2
0 − α2

1
2 = 0,

−Dk2α1 + k2χ0α0
α1

1 + k2 + r(−2α0α1 + α1) = 0.
(3.16)

This system has four solutions of which two, namely (0, 0) and (1, 0), correspond
to homogeneous solutions of the system (3.4), and the two others,

α0 = (Dk2 − r)(1 + k2)
χ0k2 − 2r(1 + k2) and α1 = ±

√
2α0(1 − α0) (3.17)

- to the spatial periodic patterns (in opposite phase) forming in (3.4). The roots
associated with the homogeneous solutions were found earlier by truncating the

115



system (3.15) at M = 0, while the solutions (3.17) correspond to the first mode of
the spectral decomposition of the periodic pattern. Thus, equations (3.17) provide
the dependence of α0 and α1 on the model parameters and can be compared with
the results obtained numerically, as shown in Figure 3.6.

Truncation of the system (3.15) at M = 2 gives three equations for three
unknowns, α0, α1 and α2:

α0 − α2
0 − α2

1
2 − α2

2
2 = 0,

−Dα1k
2 + χ0k

2
(
α0β1 + α1β2 − 1

2α2β1

)
+ r(α1 − 2α0α1 − α1α2) = 0,

−4Dα2k
2 + χ0k

2(4α0β2 + α1β1) + r

(
α2 − α2

1
2 − 2α0α2

)
= 0.

Similarly, systems of equations for 4 and 5 unknowns, when the system (3.15)
is truncated at M = 3 or M = 4, can be derived. Although the roots of these
systems cannot be expressed explicitly, their values (for a given set of model
parameters) can be found numerically. Using numerical methods, we have found
solutions to the system (3.15) truncated up to M = 4. These solutions for the
model (3.4), with the model parameter values D = 1, χ0 = 1.9, and r = 0.1 (see
Figures 3.5 and 3.6), and a domain size of L = 5.5, are shown in Table 3.2. For
comparison, we have also shown in this table the coefficients αi obtained by the
spectral decomposition of the numerically simulated pattern (shown in Figure
3.5 b). As we can see from this table, the solutions obtained are consistent
across different truncations and fairly comparable with the results of the spectral
decomposition of the simulated pattern. Additionally, the coefficients α3 and
α4 are considerably small, which indicates that truncating the system (3.15) at
M = 4 should provide a fairly accurate solution for the model (3.4) when the
domain size is reasonably small (in the presented case, L = Λ0).

To check the accuracy of the truncated solutions presented in Table 3.2, we
have reproduced the corresponding profiles (for M = 1, 2, and 3) and compared
them with the profile obtained from numerical simulations. All these profiles are
shown in Figure 3.7 a. Visually, it is evident that the solution of (3.15) truncated
at M = 2 fits the profiles obtained from numerical simulations better than the
one truncated at M = 1. Furthermore, the profile corresponding to the solution
truncated at M = 3 is almost indistinguishable from the simulated profile. As a
numerical measure of the discrepancy between the profiles, ni(x) and n0(x), one
can use the integral:

I =
∫ L

0
[ni(x) − n0(x)]2dx,

where ni(x) correspond to one of the solutions of (3.15) (truncated at M = i,
i > 0), while n0(x) - to the profile obtained in numerical simulations. The value
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α0 α1 α2 α3 α4

Simulation 0.9009 0.3849 0.1423 0.0428 0.0143

M = 1 0.8462 0.5103 0 0 0

M = 2 0.8868 0.4153 0.1680 0 0

M = 3 0.8938 0.4035 0.1563 0.0508 0

M = 4 0.8941 0.4033 0.1550 0.0496 0.0155

Table 3.2: Coefficients of Fourier series, αi, for the first five modes
of the pattern represented by a half-spike. First row: coefficients are
obtained using eq. (4.13) for the profile shown in Figure 3.5 b. Following four
rows: coefficients are obtained by truncating the system (3.15) at M = 1, 2, 3
and 4 for the model parameters used in Figure 3.5 b.

of this integral for the solutions truncated at M = 1 is I = 0.1353, at M = 2
- I = 0.0114 and at M = 3 - I = 0.0026. Thus, the discrepancy between the
solution, truncated at M = 3, and the one obtained numerically is less than 1%.
Additionally, the numerical discrepancy for M = 4 is I = 0.0020 and fairly the
same as for M = 3.

The amplitude of the profile for the variable n in a small domain (when
L ≈ Λ0) is predominantly defined by the coefficient α1, while its average value is
defined by α0. Figure 3.7 b shows the dependence of these two coefficients on the
size of the domain, L, obtained from the spectral decomposition of the simulated
profile and according to the equation (3.14) truncated at M = 1 and M = 3.
We observe that, while all three plots are qualitatively similar, the plots for the
simulated profile and for the solution of equation (3.14) truncated at M = 3 also
show good quantitative agreement.

In this section, we have focused on finding the analytical solutions of the
system (3.4), represented by truncated Fourier series. Numerically, we were able
to find solutions truncated up to M = 4, and have shown that these solutions
(at M ≥ 3) are fairly accurate if the modelled domain is small. Throughout this
section, we have fixed the model parameters: D = 1, χ0 = 1.9, and r = 0.1. In
the next section, we will examine how the characteristics of periodic patterns,
obtained numerically and given by the analytical solutions of (3.14), depend on
the model parameters.
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(a) (b)

Figure 3.7: Comparison of analytical and numerical solutions. A:
Profiles of solutions to (3.15) truncated at M = 1 (dashed) and M = 3 (dotted)
as compared to numerically simulated profile (solid, same as in Figure 3.5 b). B:
Dependence of the coefficients α0 (thin lines) and α1 (thick lines) on the domain
size L found by spectral decomposition of profiles obtained in simulations (solid)
and from (3.15) truncated at M = 1 (dashed) and M = 3 (dotted). Values of
model parameters are the same as in Figure 3.5.

3.7 Impact of model parameters on characteris-
tics of stationary periodic pattern

Based on the linear analysis of pattern formation presented in Section 3, we were
able to predict the dependence of the pattern’s wavelength on model parameters
(see equations (3.9), (3.11), and Figure 3.4). However, linear analysis did not
allow us to make any predictions concerning the amplitude of the periodic pat-
tern. In this section, we will make such predictions using the nonlinear analysis
presented in the previous section and compare them with the results of numerical
simulations. The outcome of this study is presented in Fig. 3.8. Since D repre-
sents the ratio of the rate of random motion of cells to the diffusion coefficient of
the chemotactic agent, it is essentially smaller than one; therefore, D < 1 in our
plots. Additionally, the ranges of values for χ0 and r were chosen such that the
condition for Turing instability given by equation (3.8) (and illustrated in Figure
3.2) is satisfied, and therefore χ0 ≥ 1.9 or r ≤ 0.14 in all presented plots.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Dependence of the characteristics of stationary periodic
pattern on model parameters. (a)-(c) Dependence of the wavelength on
the diffusion coefficient, D, (panel (a)), chemotactic coefficient, χ0, (panel (b)),
and reproduction rate, r, (panel (c)): dotted lines - from linear analysis (same as
solid line in Fig. 3.4), dashed lines - from Fourier series truncated at M = 3, and
solid lines - from simulations. (d)-(f) Coefficients of Fourier series versus the
diffusion coefficient, D, (panel (d)), chemotactic coefficient, χ0, (panel (e)), and
reproduction rate, r, (panel (f)) found after spectral decomposition of numerically
simulated profile (black lines) and found analytically from eq. (3.15) with M = 3
(grey lines). (g)-(i) Profiles of cell density obtained numerically for different
values of the diffusion coefficient, D, (panel (g)), chemotactic coefficient, χ0,
(panel (h)), and reproduction rate, r, (panel (i)). Each profile obtained in the
domain of size of characteristic length, L = Λ0 (for given set of parameter values)
and presented versus scaled spatial variable ξ = x/Λ0.

The dependence of the pattern’s wavelength on model parameters, as pre-
dicted by linear analysis (equation (3.11)), nonlinear analysis (equation (3.15)),
and found numerically, is shown in Figure 3.8 a-c. The wavelength in numerical
simulations was determined as the length of the domain for which the Fourier
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decomposition of the obtained profile gave the maximal value of α2 (or 2Λ0 ac-
cording to Figure 3.6). Similarly, using equation (3.15) truncated at M = 4, we
found the value of k for which the value of α2 is maximal, and the wavelength was
calculated as the length of the domain corresponding to this value of k, namely,
ω = π/k. As we can see from Figure 3.8 a-c, the dependences found in this way
indicate that the wavelength increases linearly with the diffusion coefficient, D,
and decreases with the chemotactic coefficient, χ0 (which can be approximated by
a hyperbola), and the reproduction rate, r (which appears as linear), as predicted
by linear analysis in Section 3. Regarding the dependence on the reproduction
rate, r, the prediction made by the implicit formula (3.11), rather than the ex-
plicit (3.9) (see Figure 3.4), was confirmed both by simulations and analytically.
It is evident that the predictions made using nonlinear analysis (based on equa-
tion (3.15)) are far more accurate compared to those made using linear analysis
(based on equation (3.11)) in reproducing numerical results.

The dependence of the amplitude of the periodic pattern on model parame-
ters is shown in Figure 3.8 d-f. The amplitude is predominantly defined by the
maximal value of αi (i > 0) when the size of the domain L is varied (see Figure
3.6). As found in Section 5, for the default values of the model parameters, the
maximal value of αi is αmax = 0.385 for i = 1, 2, 3, 4, and evidently for all other
modes. The main question we address now is how αmax depends on the model
parameters. Figure 3.8 d-f show how αmax, which is represented here by the
value of α1, depends on the model parameters. In addition, we have presented
the values of α0, α2, and α3, which contribute to the shape of the n-profile. We
do not consider the contributions of α2 and α3 to the amplitude of the periodic
pattern for the following reasons: (1) Due to symmetry in the Fourier expansion,
even modes do not contribute to the amplitude at all, and therefore α2 has no
impact on the amplitude of the pattern; (2) According to Table 3.2, α3 is an or-
der of magnitude smaller than α1, which means it contributes only about 10% to
the amplitude of the patterns. Furthermore, the plots in Fugure 3.8 d-f indicate
that this contribution remains roughly the same for any set of model parameters,
and thus we can consider α1 as an indicator of the behaviour of the pattern’s
amplitude.

The main conclusion drawn from the plots presented in Figure 3.8 d-f is that
the amplitude of the periodic pattern (given by the value of α1) saturates at low
values of the diffusion coefficient, D, and reproduction rate, r, and at high values
of the chemotactic sensitivity, χ0. The amplitude increases with an increase in
D and r, while it decreases with an increase in χ0. Another notable conclusion
from the plots is that the average value of cell density, n, given by the value of
α0, increases with the diffusion coefficient, D, and the reproduction rate, r, while
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decreasing with the chemotactic sensitivity, χ0. It saturates at low values of D
and high values of χ0, while it depends linearly on r.

Figure 3.8 g-i shows how the shape of the n-profile depends on the model
parameters. The plots in Figure 3.8 g confirm that the amplitude of the profile
decreases, and the average value of the cell density, n, increases with the increase
of the diffusion coefficient, D. The plots in Figure 3.8 h confirm that the ampli-
tude of the profile increases, and the average value of the cell density, n, decreases
with the increase of chemotactic sensitivity, χ0. Finally, the plots in Figure 3.8
i confirm that the amplitude of the profile decreases, and the average value of
the cell density, n, increases with the increase of the reproduction rate, r. The
dependence of the wavelength of the patterns on the model parameters cannot
be seen in Figure 3.8 g-i, as the profiles, although obtained for media of different
sizes, are spatially scaled and presented as n(x) = n(ξ) in the scaled variable
ξ = x/L.

3.8 Discussion
In this chapter, we have introduced a prototype model that reproduces the for-
mation of periodic patterns due to advection. A prototype model is a mini-
malistic model that can capture the essential features of the phenomenon under
study, and as such, it is often used in mathematical biology. For example, the
FitzHugh-Nagumo model is a prototype model for the study of excitability in
biological systems [34], and, in addition, it is often used to reproduce other phe-
nomena requiring cubic nonlinearity [132]. The formation of periodic patterns in
reaction-diffusion systems also requires cubic nonlinearity, and a corresponding
prototype model was introduced in [103]. The formation of periodic patterns in
diffusion-advection-reaction systems requires only quadratic nonlinearity, and in
the present work, we have introduced the corresponding prototype model, which
is also designed to reproduce dynamics in a growing population of motile bac-
teria. The growth of the modelled population follows the logistic law, while the
migration of cells is due to chemoattraction by the chemical produced by the
cells themselves. The model used in this study is a prototype model because it is
the simplest model that allows the formation of physically justified (bound and
non-negative) periodic patterns. For example, the periodic patterns forming in
our one-dimensional model can be considered as reproducing and explaining the
formation of stripes of cell density in the experiments presented in [75], although
it is simpler than the three-variable model used in that publication.

In our analysis of the model (3.4), we have identified the condition for the
formation of stationary periodic patterns (or Turing instability), presented as a
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certain expression, which we denoted as RT (3.8). This is given in terms of the
model parameters, with RT > 1 required for the pattern to emerge. The main
conclusion of this analysis is that for periodic patterns to form, chemoattraction
must be sufficiently strong, while the diffusion of the chemical and the repro-
duction of cells must be slow and below a certain threshold, as defined by the
condition RT > 1. This result aligns with the known fact that for periodic pat-
tern formation, the advection term should represent chemoattraction [59], while
chemorepulsion only leads to the formation of moving bands of cells [58, 44, 131].

We have also presented our analysis of the spatial characteristics of the pe-
riodic patterns. Commonly, the wavelength of such patterns is estimated based
on linear analysis using the formula (3.9) [87]. We have suggested a correction to
this estimate, which is also based on linear analysis and is given by the implicit
formula (3.11). Comparison with the wavelengths of simulated patterns has indi-
cated that the formula (3.11) provides a better approximation of the wavelength
of the periodic pattern, not only quantitatively but also qualitatively, particu-
larly when checking the dependence of the wavelength on model parameters (see
Figure 3.4 and Figure 3.8 c). The wavelength of the periodic pattern was also
estimated based on nonlinear analysis presented in Section 6. The first-order
approximation can be made analytically by finding the value of k corresponding
to the maximal value of α1 in equations (3.17). The link between this value of k
and the wavelength is given by the formula k = π/Λ0, where Λ0 is a characteristic
length, which is half the wavelength. The dependence of α1 on the domain size,
L, found from this approximation is shown by the dashed plot in Figure 3.7 b.
It is evident from this figure that the length of the medium for which α1 reaches
its maximum value (and which gives the value of Λ0) is much higher than the
one found numerically (Λ0 = 5.5, see Figure 3.6). However, when we find the
characteristic length using the model (3.15) truncated at M = 3, we find that
it is very close to the value obtained numerically (compare the locations of the
maxima for dashed blue and cyan lines in Figure 3.7 b).

One of the most important problems addressed in this work concerns the ana-
lytical estimation of the amplitude of periodic patterns forming in Turing systems.
Many researchers use multi-scale analysis to derive the amplitude equation for
this purpose, although this technique often appears technically complex and not
always entirely convincing [30, 137, 142]. For a certain class of kinetic terms,
this approach can be significantly simplified, and has been applied with some
success [19]. Generally, in terms of the system (3.4), these techniques allow for
the derivation of a differential or algebraic equation for α1, which is reasonably
accurate in the vicinity of the Turing bifurcation point, where the homogeneous
solution becomes unstable. In this work, we have proposed the use of Fourier
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series analysis, which, in our view, despite its simplicity, offers many advantages
compared to weakly nonlinear techniques.

As the amplitude equation is derived based on weakly nonlinear analysis and
represents the equation for the amplitude of the most unstable mode, it should
be compared with the Fourier series truncated at M = 1, that is, with the system
(3.16). As we know (see [142]), the amplitude equation for the system (3.4) sug-
gests a supercritical pitchfork bifurcation, meaning that when the homogeneous
state becomes unstable, two stable stationary periodic patterns of equal ampli-
tude but differing in sign would form. While it would require tedious algebra
to determine the dependence of the amplitude on model parameters, one could
expect it to increase with chemotactic sensitivity, as shown in (3.3). Solving the
system (3.16) leads to the same result but in a much more efficient way. As we
found earlier, χ∗ = (

√
D +

√
r)2 is the bifurcation value of χ0 when the homoge-

neous state, (n = 1, c = 1), loses its stability. By solving the system (3.16), we
find that if χ0 < χ∗, there are only two solutions, both with α1 = 0, correspond-
ing to the homogeneous solutions of the system (3.4). However, when χ0 > χ∗,
two additional solutions emerge, for which α1 can be approximated as:

α1 ≈

√√√√ 2k2ϵ

(Dk2 − r)(1 + k2)

where ϵ = χ0−χ∗ is a small variable indicating proximity to the Turing bifurcation
point, and k = (r/D)1/4 is the wavenumber of the first unstable mode. This shows
that the amplitude of the periodic pattern can be approximated using Fourier
series in a way that saves a lot of time and effort. While we can’t conclude
on the stability of periodic patterns using only Fourier series, the preliminary
linear stability analysis pointing to Turing bifurcation helps clarify this point.
Furthermore, truncating the Fourier series at higher values of M allows for a
more accurate approximation of the periodic pattern without resulting in any
physically irrelevant solutions, as all extra solutions appear to be complex. For
example, the amplitude found from the system (3.15) truncated at M = 3 is
far more accurate when compared with that found using the system (3.16), and
the periodic pattern reproduced using this solution is almost indistinguishable
from the one obtained in numerical simulations (see Figure 3.7 a). The only
concern when solving the algebraic system (3.15) is that this solution can only
be expressed explicitly when the system is truncated at M = 1 (see (3.17)). For
M > 1, solutions can only be found numerically. This is particularly true for the
dependence of the wavelength and amplitude of the periodic patterns found for
the system (3.15), as presented in Figure 3.8. All corresponding plots are drawn
based on sets of solutions to the system (3.15) truncated at M = 3, which were
found numerically.
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As the presented model is a prototype model, it is representative of a wide
class of models, and our results are, at least qualitatively, applicable to many
biological systems. The analysed one-dimensional patterns shown in Figure 3.1
can be directly compared with the stripe patterns observed in expanding cell
populations, as reported in [75]. Furthermore, in that paper, it was found that
the wavelength of the emerging patterns increases (i.e., the number of stripes in
the same physical domain reduces) with an increase in the diffusion rate of cells,
which is also in agreement with the results shown in Figure 3.4 a. Generally, our
results on the dependence of the wavelength and amplitude of periodic patterns
on model parameters could be tested in experiments with different strains of E.
coli that have varying chemotactic sensitivity, proliferation rate, or motility.

The analytical methods used in this chapter, particularly the representation
of periodic patterns by means of Fourier series, have proven to be very useful.
They can be applied to the analysis of other classes of models where the formation
of stationary periodic patterns is observed. In particular, they can be extended
to the analysis of patterns forming in a system of two competing species, where
one produces a chemical agent and the other responds to it chemotactically. This
study is presented in the next chapter.
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Chapter 4

Modelling pattern formation in a
system of two competing species

One of the classical models in mathematical biology is the Lotka-Volterra com-
petition model, which describes the dynamics of two populations competing for
resources. This system has two possible regimes: coexistence or the extinction
of the weaker population. In this work, we extend the competition model by
introducing an additional interaction between the populations through chemo-
tactic coupling, specifically, assuming that one species produces a chemical agent
that induces taxis in the other. It is well known that in a single-species model
(i.e. the Keller-Segel model), the production of a chemoattractant leads to the
formation of stationary periodic (or Turing-type) patterns. Here, we investigate
the conditions under which stationary periodic patterns emerge in a two-species
competition model with chemotaxis.

Pattern formation in reaction-diffusion-advection systems involving two inter-
acting species has been previously demonstrated in the case of weak competition.
However, little research has been conducted to determine the conditions that lead
to a breakdown of stability or to characterise the patterns that emerge. In the
weak competition regime, the novelty of our work lies in identifying a domain
of instability, dependent on the competition rates, where pattern formation is
possible. Beyond establishing the conditions for stability breakdown, we also
conduct a detailed analysis of the effects of model parameters on this instability
domain. Additionally, we obtain key insights into pattern characteristics, such as
wavelength and amplitude, using nonlinear Fourier analysis, an approach that is
commonly applied to one species systems, rather than two species.

Moreover, some of the most intriguing results in this study concern pattern for-
mation when the species producing the chemical agent is initially close to extinc-
tion. We demonstrate that such patterns arise in the case of strong competition,
driven by finite-amplitude disturbances rather than infinitesimal perturbations.
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We provide a detailed numerical analysis of how model parameters influence the
minimum perturbation amplitude required to trigger stability breakdown. Fur-
thermore, we use Fourier analysis to show that these reaction-diffusion-advection
systems admit Turing-type patterns as solutions. This finding contradicts results
from linear analysis, which predict that the system remains homogeneous in the
strong competition regime.

4.1 Introduction
Ecological systems, such as bacterial biofilms, are often composed of multiple
biological species whose interactions play a crucial role in the formation and
properties of these systems [66]. The interactions between biological populations
can take various forms, including predator-prey, competition, and symbiosis [86].
In this work, we consider the case of competitive interactions between two popula-
tions, which is commonly modelled by the classical Lotka-Volterra model [76, 135],
represented by the following (nondimensional) equations:ut = u(1 − u− b1v),

vt = rv(1 − v − b2u),
(4.1)

in which variables u and v represent sizes of two species, parameter r gives the
ratio of reproduction rates of v and u, parameter b1 represents the competition
strength of v on u and b2 - of u on v. The case when 0 < b1 < 1 and 0 < b2 < 1
is referred to as a weak competition regime; the case of b1 > 1 and b2 > 1
corresponds to strong competition regime, and intermediate cases as string-weak
or weak-strong regimes. It is well known that this model has four steady states
and their stability is defined by model parameters as follows [50, 86, 113]:

• (u1, v1) = (0, 0) (both species are extinct) is always unstable;

• (u2, v2) =
(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
(coexistence) is stable if b1, b2 < 1 (weak

competition) and unstable otherwise.

• (u3, v3) = (1, 0) (the second species is extinct) is stable if b2 > 1, and
unstable otherwise;

• (u4, v4) = (0, 1) (the first species is extinct) is stable if b1 > 1 and unstable
otherwise;

The system (4.1) is often extended by adding spatial variable so that the vari-
ables u = u(x, t) and v = v(x, t) represent densities of species, which depend on
the coordinate x as well as on time t. Spatial coupling is commonly given by
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diffusion and cross-diffusion (or cross-taxis) and mathematically represented by
Shigesada-Kawasaki-Teramoto, or SKT system [113], which can be reduced to
Potts-Petrovskii model [98]:ut = uxx − χ1(uvx)x + u(1 − u− b1v),

vt = dvxx − χ2(vux)x + rv(1 − v − b2u).
(4.2)

Here parameter d represents the rate of random motion of species v relative to
that of u and parameters χ1 and χ2 give the strengths of cross-taxis between
species. The case of χ1 = χ2 = 0 is referred to as a classical competition-diffusion
model known by travelling front solutions corresponding to transitions between
stationary states of system (4.1), which were studied in many papers [47, 106,
4, 2]. Cross-taxis terms affect the speed, direction and shape of travelling fronts
[138] and, under certain conditions, also cause the loss of stability of equilibrium
states resulting to formation of stationary periodic patterns [71, 12].

Going one step further, mathematical models have been introduced for two
competing species with extra interaction mediated by chemical produced by one
or both species. This chemical can affect the kinetic terms resulting, for example,
to inhibition of one species by the other [24]. It can also act as a chemotactic
agent, as it is assumed in a class of so called two-species chemotaxis model, which
can be represented by the following (non-dimensional) system [61]:

ut = D1uxx − χ1(ucx)x + u(1 − u− b1v),
vt = D2vxx − χ2(vcx)x + rv(1 − v − b2u),
ct = cxx + µ1u+ µ2v − γc,

(4.3)

where parameters D1 and D2 define the rate of random motion of species u

and v, χ1 and χ2 the strength of their chemotactic response to the chemical
c, which is produced by both species (with production rates µ1 and µ2) and
degrades with rate γ [65]. This system models spatio-temporal evolution of two
competitive species, which migrate along (chemoattraction, χ > 0) or against
(chemorepulsion, χ < 0) the concentration gradient of the chemical produced by
themselves.

The impact of chemotactic terms on the shape and speed of travelling fronts,
which represent transitions between the steady states of (4.1), has been in the fo-
cus of many studies of system (4.3) and other similar systems [53, 69, 73, 74, 120].
An analytical study of system (4.3), conducted in [92], demonstrated that in the
case of chemoattraction (χ1 > 0, χ2 > 0) and strong competition (b1 > 1, b2 > 1),
the stable steady states can lose their stability when the chemoattraction is suffi-
ciently strong. The loss of steady-state stability due to special coupling (given by
the chemotactic term in the given case) is commonly referred to as Turing insta-
bility, with the stationary periodic patterns forming as a result known as Turing
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patterns [128]. In [92], it was shown that a stationary periodic pattern may arise
when the steady state (u, v, c) = (1, 0, 1) becomes unstable if χ1 is sufficiently
large, and similarly, such patterns may arise from (u, v, c) = (0, 1, 1) when χ2

is sufficiently large. Moreover, it was numerically demonstrated that in the case
of weak competition, stationary periodic patterns can arise from the coexistence
state if either of the parameters χ1 or χ2, defining the chemotactic response, is
sufficiently large. These findings are not surprising, as by setting u = 0 or v = 0,
the system (4.3) is reduced to a one-species model, aligning with the classical
result [60, 15] that strong chemoattraction in a single species with logistic growth
leads to Turing-type instability.

The formation of stationary periodic patterns in the case of mutual repulsion
between species was reported in [70]. The model presented in that paper included
two chemicals, each produced by one of the bacterial species and acting as a
chemorepellent to the other. It was shown that, in the case of weak competition,
the coexistence state can become unstable, leading to the formation of periodic
patterns when the strengths of chemorepulsion are sufficiently high. The study
of these patterns in [70] included an estimation of their amplitude using the
amplitude equation, as well as their numerical reproduction in one- and two-
dimensional domains. The phenomenon reported in [70] is quite novel, as it is
not observed in single-species systems, where chemorepulsion does not result to
formation of periodic patterns.

In this chapter, we focus on the formation of periodic patterns in system (4.3)
in the most basic scenario, where only one species produces a chemical agent
which repels the second species. In line with the results reported in [70], we
found that Turing-type instability occurs only in the case of weak competition,
where strong chemorepulsion causes the coexistence state to become unstable,
resulting in the formation of periodic patterns. We have also found that both
steady states, corresponding to the extinction of one of the species (in the case of
strong competition), remain stable in the presence of chemotaxis. However, we
have shown that, even in this case, stationary periodic patterns can be initiated
by finite perturbations. We have also analysed the wavelengths and amplitude of
the forming patterns using Fourier series analysis, as done in [15].

4.2 Model and linear stability analysis of its steady
states

We consider a two-species competition model with chemotaxis where one of
species produces chemotaxtic agent for the other. This is represented by a slightly
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modified version of the system (4.3) given as:
ut = D1uxx − χ(ucx)x + r1u(1 − u− b1v),
vt = D2vxx − r2v(1 − v − b2u),
ct = cxx + v − c,

(4.4)

where the chemical agent c is produced by species v and affects chemotactically u.
This system is considered on a one-dimensional domain x ∈ (0, L) under no-flux
boundary conditions. In the well-mixed case, when the solution is homogeneous,
the first two equations of this system transform into the system (4.1), last equation
gives c = v, and therefore it has four steady states:

(u∗, v∗, c∗) =
(0, 0, 0),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
, (1, 0, 0), (0, 1, 1)

 ,
with their stability given by the same conditions as for the Lotka-Volterra model
(4.1).

Classical Turing instability analysis refers to the formation of stationary pe-
riodic patterns in a reaction-diffusion-advection system, when the steady states
loose their stability due diffusion and advection terms [128, 60]. Linear stability
analysis involves consideration of the perturbation given by cosinusoidal function,
∼ exp(λt) cos(kx) [87], so that the stability of the steady state, (u∗, v∗, c∗), is de-
fined by the signs of eigenvalues of the characteristic matrix at this state, which,
for the system (4.4), is given as following:

M =

−D1k
2 + r1(1 − 2u∗ − b1v

∗) −r1b1u
∗ −χu∗k2

−r2b2v
∗ −D2k

2 + r2(1 − 2v∗ − b2u
∗) 0

0 1 −k2 − 1

 .
(4.5)

The steady state is unstable if at least one of eigenvalues is positive. Since the
steady state (u1, v1, c1) = (0, 0, 0) is always unstable and can’t loose its stability
due to diffusion and advection terms we don’t need to consider it. However,
stationary periodic patterns can emerge from other steady states when they are
stable in the well-mixed system and become unstable in the presence of diffusion
and advection.

4.2.1 Analysis of the coexistence state

The aim of this section is to obtain conditions for Turing-type instability of the
coexistence steady state,

(u2, v2, c2) =
(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
. (4.6)
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It is known that in the absence of diffusion and advection this state is stable
if b1 < 1 and b2 < 1 (weak competition). The natural step is to evaluate the
characteristic matrix (4.5) at the coexistence state and investigate under what
conditions it will have positive eigenvalues. As the matrix (4.5) is 3x3 matrix its
eigenvalues are roots of the cubic polynomial:

λ3 + a1λ
2 + a2λ+ a3 = 0, (4.7)

where coefficients a1, a2 and a3 are defined by the entries of matrix (4.5) where
(u∗, v∗, c∗) = (u2, v2, c2). Analytical expression for these coefficients are awk-
wardly long to be presented here, however their numerical values can always be
found for any given set of parameter values of model (4.4). The Routh-Hurwitz
criteria states that if a1, a2, a3 > 0,

a3 − a1a2 < 0,
(4.8)

then all roots of (4.7) are negative and the steady state is stable. If any of these
conditions is violated, then at least one eigenvalue is positive and the steady state
is unstable. For a set of parameter values D1 = D2 = 1, r1 = r2 = 0.1, χ = −10
and k = 0.2, we have found numerically how the coefficients a1, a2, a3 and the
expression a3 − a1a2 depend on the model parameters b1 and b2. Figure 4.1 a
shows that the region of interest, b1 < 1, b2 < 1, is split into two domains δ1 and
δ2. In domain δ1 all conditions of the Routh-Hurwitz criteria for stability (4.8)
are met, so the coexistence state is stable if (b1, b2) ∈ δ1. However, in domain δ2

the Routh-Hurwitz criteria for stability are violated, namely, a3 < 0. This means
that if (b1, b2) ∈ δ2 then the coexistence steady state is unstable and stationary
periodic patterns are expected to form. This conclusion is confirmed by numerical
simulations shown in Figure 4.1 b.

The shape and size of the domain δ2 depend not only on the model parameters
but also on the wavenumber k. An important question is: what is the domain δ2,
encompassing all possible (b1, b2) values that will trigger a breakdown of stability
and the formation of patterns for a given set of model parameters D1, D2, r1, r2

and χ and any value of the wavenumber k? Formally, this domain is a union of
domains for all possible values of k. However it can be estimated as a domain for
the value of k, which gives the highest positive value for eigenvalue of matrix (4.5).
Figure 4.2 a shows how the real part of this eigenvalue depends on the wavenumber
for three values of chemotactic sensitivity χ. Wavenumber k corresponding to
the most unstable mode for each of these plots is that giving their maxima.
The domain δ2 for this value of k could be considered as a domain of instability
for given set of parameters. As we can see from Figure 4.2 a, as chemotaxtic
sensitivity χ increases, the value of most unstable wavenumber also increases,

130



(a) (b)

Figure 4.1: Stability of the coexistence steady state depending on in-
terspecific competition. (a): Conditions (4.8) are verified for fixed parame-
ters D1 = D2 = 1, r1 = r2 = 0.1, χ = −10 and k = 0.2, in the region b1, b2 < 1.
In domain δ2, condition for a3 is violated, i.e. a3 < 0. (b): stationary peri-
odic pattern obtained from numerical simulations by fixing b1 = b2 = 0.7 ∈ δ2.
Solid blue and dotted red lines represent the density of u and v, respectively.
Dash-dotted cyan line shows the concentration profile of the chemical c. Initial
conditions such that v(x, 0) = (b2 − 1)/(b1b2 − 1) + 0.1 for 100 < x < 140 and
(u, v, c)(x, 0) is at coexistence everywhere else.

resulting in smaller wavelengths and, consequently, more spikes. Additionally, as
shown in the previous chapter, k = iπ

L
satisfies the boundary conditions. The

most unstable wavenumber can provide a rough estimate of how many spikes
are expected in the system. For example, when χ = −10, the most unstable
wavenumber is k = 0.2. The number of half spikes can be predicted using i = kL

π
;

for a medium of length L = 250, i ≈ 16, resulting in 8 full spikes. This prediction
aligns well with the results shown in Figure 4.1 b.

Figure 4.2 b demonstrates another method for determining the domain δ2

where the coexistence state of the system (4.4) becomes unstable. The presented
analysis is performed using an assumption that b1 = b2 = b. As the loss of
stability is associated with the sign change of a3 (in (4.7)) we plot the line a3 = 0
on (b, k) plane and note that a3 is positive on the side of this plot corresponding
to larger values of b. Minimal value of b on this plot gives the the minimal value
of b in the domain δ2. The way to find this value is to draw another line where
the partial derivative ∂a3

∂k
= 0. By examining the intersection between these two

curves (see Figure 4.2 b), both the most unstable wavelength and the minimum
value of b required for pattern formation can be found. For instance, in Figure
4.2 b, it can be observed that for D1 = D2 = 1, r1 = r2 = 0.1, and χ = −10, the
maximum size of δ2 is reached when k ≈ 0.2, which is consistent with the results
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(a) (b)

Figure 4.2: Most unstable wavenumber k for different chemotactic
strengths and competition factors. (a): The real part of wavelength λ
from equation (4.7), as function of the wavenumber k for different chemotac-
tic strengths: χ = {−10 (solid) ,−50 (dashed) ,−90 (dotted) }. (b): Minimum
value of b that initiates formation of patterns and the most unstable wavenumber
k that ensures maximal size of δ2. Plots of parameter a3 from (4.8), such that
a3 = 0 (solid line) and derivative of a3 with respect to k, (a3)k = 0 (dashed line).
Fixed parameters: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10 and b1 = b2 = b.

in Figure 4.2 a. Additionally, Figure 4.2 b predicts that the minimum value of
the competition rate b needed to initiate periodic patterns is b = 0.6.

So far, using the Routh-Hurwitz criteria, we have identified a domain, δ2 on
the plane (b1, b2), where stationary periodic patterns are expected to emerge. Our
next task is to examine how the size of this domain is affected by the remaining
model parameters. We will perform this study using the technique illustrated in
Figure 4.2 b, that is by assuming that both species exert the same competitive
effect on one another, i.e. b1 = b2 = b, and examining the intersection point
between ∂a3

∂k
= 0 and a3 = 0. In what follows we will use the following default

set of parameters: D1 = D2 = 1, r1 = r2 = 0.1 and χ = −10.
Model (4.4) accounts for two different diffusion coefficients, D1 and D2, corre-

sponding to the two species u and v, respectively. Both analytical and numerical
results show that fixing D1 and varying D2 has the same effect on the stability of
the coexistence steady state as fixing D2 and varying D1. Figure 4.3 a shows how
the minimal value of b in the domain δ2 depends on the diffusion rate D1 keep-
ing the default values for other parameters. It shows a good match between the
analytical and numerical results with both indicating that as diffusion increases
the size of the domain δ2 decreases and it disappears when D1 = 2.6 (shown by
the vertical dashed line) and indicating that no periodic patterns will form for
diffusion values greater than this. If D > 2.6, then model (4.4) relaxes back to a
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homogeneous state after disturbance.

(a) (b) (c) (d)

Figure 4.3: Domains for pattern formation after disturbance of the
coexistence state in the weak competition case in model (4.4). Domains
for the formation of stationary periodic patterns on the planes (a): (b,D1); (b):
(b, χ); (c): (b, r1); (d): (b, r2). Used default set of parameters: D1 = D2 =
1, r1 = r2 = 0.1 and χ = −10. Solid lines represent results from numerical
simulations of system (4.4) and dashed lines represent analytical results looking
at the intersection between the two lines in Figure 4.2 b.

In a similar manner, we have investigated the effects of chemotaxis on the size
of the domain δ2. Plots shown in Figure 4.3 b indicate that the minimal value of b
increases (and, therefore, the size of δ2 decreases) when the chemotactic response
gets weaker (χ increases). This means that it is more likely to obtain periodic
patterns for a stronger chemotactic response, while weaker chemotaxis can only
result in the formation of travelling waves. Periodic patterns cannot be obtained
if χ is below the threshold χ = −6. Again, the shown plots indicate a good match
between analytical and numerical results.

In Figure 4.3 c and d, the effects of species reproduction, r1 and r2, on the
minimal value of b in the domain δ2 are shown. We see that the reproduction
rates r1 and r2 have opposite effects on the size of δ2. Increasing r1 results to
the shrinkage of δ2 with the threshold value of r1 = 0.3 above which no periodic
patterns can be obtained. On the other hand, increasing r2 shows that the value of
b decreasing and therefore the size of the domain δ2 increasing. In this case, there
is a threshold value r2 = 0.04 below which no periodic patterns (only travelling
waves) can be observed.

Thus far, classical Turing-type instability analysis has been employed to demon-
strate the formation of stationary periodic patterns caused by disturbances to the
coexistence steady state of model (4.4). The Routh-Hurwitz criteria have been
used to show that, for fixed parameters, a domain of instability δ2 exists, and
any competition values within this domain will result in a breakdown of stability.
The maximal size of this domain has been determined by identifying the most
unstable wavenumber k, ensuring that all possible (b1, b2) values are considered,
along with the minimum value of b = b1 = b2 required for pattern formation.
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4.2.2 Analysis of the extinction steady states

Now we investigate whether the pattern formation can take place in system (4.4)
when the competion is not weak, that is when either b1 > 1 and/or b2 > 1.
Linear analysis would point to this possibility if the stability of any of the extinc-
tion steady states, (1, 0, 0) and (0, 1, 1), is affected by the diffusion or advection
terms. This implies that when b2 > 1 periodic patterns can form if the steady
state (1, 0, 0) is unstable. Similarly, when b1 > 1 periodic patterns can form if
the steady state (0, 1, 1) is driven unstable in the presence of diffusion and/or
advection terms. Linear stability analysis involves examination of the eigenval-
ues of the characteristic matrix (4.5) evaluated at each extinction steady state to
identify conditions under which at least one eigenvalue has a positive real part.
The analysis of the steady state (1, 0, 0) is done by investigating the eigenvalues
of the characteristic matrix (4.5) evaluated at (n, v, c) = (1, 0, 0), i.e.:

M(1,0,0) =

−D1k
2 − r1 −r1b1 −χk2

0 −D2k
2 − r2(b2 − 1) 0

0 1 −1 − k2

 , (4.9)

which has 3 eigenvalues: 
−1 − k2,

−D1k
2 − r1,

−D2k
2 − r2(b2 − 1),

(4.10)

with negative real parts if b2 > 1. This means that the steady state (1, 0, 0)
remains stable when perturbed in the full reaction-diffusion-advection system and
we should not expect formation of stationary patterns from this state. This result
also holds for the other extinction steady state, (0, 1, 1): if b1 > 1 this steady state
is stable irrespective on the strengths of both diffusions and chemotaxis.

One characteristic of the periodic patterns obtained so far is that they have
formed from infinitesimal perturbations, meaning that as long as the conditions
for the breakdown of stability have been met, the size of the perturbation did not
matter and has not been a factor to consider. However, when investigating the
steady state (1, 0, 0), one question to consider is whether a large enough pertur-
bation in the second species, v, would result in the formation of patterns, or if the
perturbation would decay and the system would return to being homogeneous.
The biological idea behind this is that in experiments, if the starting point were a
Petri dish with a species of bacteria, u, distributed homogeneously, introducing a
large enough quantity of the second species of bacteria, v, could produce enough
chemotactic agent to start repelling the first species, and with the aid of compe-
tition, the second species could survive and reproduce. The repulsion of the first
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species, u, by the chemical, c, could launch the aggregation and hence, the for-
mation of spots. In order to test this hypothesis, computational simulations have
been performed with fixed parameters: D1 = D2 = 1, χ = −10, r1 = r2 = 0.1,
b1 = 0.7, b2 = 1.7, such that b2 > 1 and v = 0 + ṽ, where the perturbation
ṽ = 0.9. Simulated profiles are shown in Figure 4.4.

(a) (b) (c) (d)

Figure 4.4: Simulation of pattern formation from system (??) in the
weak-strong competition case when b2 > 1. (a): An initially large pertur-
bation of the steady state (1, 0, 0) (dash-dotted cyan line). (b): v starts producing
a chemical agent c (dotted red line) which repels species u (solid blue line). (c):
Density of u slowly starts increasing in the middle, while the density of v and con-
centration of c slowly start decaying (d): Stationary pattern consisting of two full
spikes has formed. Parameter values: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10,
b1 = 0.7, b2 = 1.7, medium size, L = 50, and initial conditions such as:
v(x, 0) = 0.9 for 20 < x < 30 and (u, v, c)(x, 0) = (1, 0, 0) for x < 20
and x > 30.

Figure 4.4 shows that, contrary to linear analysis, stationary periodic patterns
can emerge from finite perturbation of the stable extinction steady state (1, 0, 0).
An important characteristic of this pattern is that aggregation can only be ini-
tiated by the perturbation of species v. Perturbing species u, or the chemical c,
results in the system decaying back to homogeneity, regardless of the amplitude
of the perturbation. This leads us to the next question, which is how the mini-
mal amplitude required for pattern formation is affected by changes in the model
parameters.

Next, with the aid of computational simulations, the effect of model param-
eters on the minimal perturbation amplitude required for pattern formation is
investigated. The default set of model parameters used in these simulations are:
D1 = D2 = 1, r1 = r2 = 0.1, χ = −10, b1 = 0.7, b2 = 1.7 and medium
size, L = 50. By varying these parameters one at a time, we note the minimal
amplitude required for a breakdown of stability. It is also important to note
that, unlike patterns around the coexistence steady state, travelling waves do not
emerge from the extinction steady state. This means that, depending on the am-
plitude of the perturbation, the system can exhibit pattern formation or return
to a homogeneous state.
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The plots in Figure 4.5 a show the minimum perturbation amplitude required
in simulations for periodic patterns to emerge from the extinction steady state
(1, 0, 0) when both diffusion coefficients are varied one at a time and the other
parameters are fixed. We see that the impacts of diffusion coefficients are similar
with the increase of the threshold perturbation, ṽ, with the increase of the dif-
fusion. An important observation is that for D1 > 1.3 or D2 > 1.3, the system
does not show the formation of patterns, meaning that from any perturbation
the system relaxes back to homogeneous state.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: The dependence of the minimal perturbation amplitude, ṽ,
from the steady state (1, 0, 0), required to generate periodic patterns,
on the model parameters. Dependence on the diffusion coefficients (panel
(a)), chemotactic sensitivity (panel (b)), competition strength b1 (panel (c)), and
b2 (panel (d)), reproduction rate r1 (panel (e)) and r2 (panel (f)). Default set
of parameters: D1 = D2 = 1, χ = −10, r1 = r2 = 0.1, b1 = 0.7 and b2 = 1.7.
Results from numerical simulations of system (4.4).

The effect of chemotaxis on the perturbation amplitude is shown by the plot
in Figure 4.5 b. For chemoattraction, or weak chemorepulsion, when χ > −9, the
system cannot be perturbed from the homogeneous state, no matter how large
the perturbation is. However, for stronger chemorepulsion, when χ < −9, the
system can be transformed into inhomogeneous state provided the disturbance is
large enough. As chemorepulsion increases, a smaller perturbation amplitude is
needed to generate pattern formation.

Similarly, the effects of reproduction rates on the threshold perturbation am-
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plitude are also investigated with the results presented in Figure 4.5 c and d .
It appears that the two reproduction coefficients, r1 and r2, corresponding to
species u and v, respectively, have opposite effects on the threshold amplitude. If
the reproduction rate of the species u is high (r1 > 0.15), then the system can-
not be transformed into stationary inhomogeneous state no matter how large is
perturbation. Additionally, as r1 decreases, the minimal perturbation amplitude
required for the formation of stationary periodic pattern decreases, meaning that
if u reproduces more slowly, it is more likely to initiate aggregation through per-
turbation. On the other hand, if r2 < 0.1, no pattern formation in the system can
be observed. Moreover, as r2 increases, the amplitude required for a breakdown
of stability decreases, converging to ṽ = 0.8 for r2 ≥ 0.15.

The effect of the competition rates, b1 and b2, on the threshold perturbation
amplitude is presented by plots in Figure 4.5 e and f. Numerical results show
that pattern can form only if b1 is large enough, b1 ≥ 0.3. if b1 < 0.3, the system
relaxes back to a homogeneous state from any initial state. Conversely, as b2

increases, the perturbation amplitude required for instability also increases. This
means that, in order to initiate pattern formation, higher competition of u on
v, represented by b2, requires a larger disturbance for species v to survive and
reproduce.

In this section, we have shown that, contrary to linear analysis, which suggests
that the steady state (1, 0, 0) of system (4.4) remains stable if b2 > 1, stationary
inhomogeneous pattern can emerge in the system (4.4) from a finite amplitude
disturbance of this steady state. This phenomenon has been demonstrated in
numerical simulations. Using numerical simulations, the effect of model parame-
ters on the minimum perturbation amplitude required to generate a breakdown
of stability and, consequently, pattern formation has been investigated. We have
also found that if the strong-weak competition case when b2 < 1 and b1 > 1 we
don’t observe pattern formation no matter what initial conditions are set.

While linear analysis focuses on the breakdown of stability and formation of
inhomogeneous patterns, Fourier analysis can be used to describe the pattern
once it has formed and stabilized. In particular, Fourier analysis can be applied
to obtain information about the pattern’s characteristics, such as amplitude and
wavelength.

4.3 Fourier analysis of patterns obtained in nu-
merical simulations

In this section we will focus on Fourier series representing stationary periodic
patterns obtained in numerical simulations, like those shown in Figure 4.1 b and
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Figure 4.4 d. As the stationary pattern is that which does not change over time,
it satisfies the simplified version of model (4.4):

D1uxx − χ(ucx)x + r1u(1 − u− b1v) = 0,
D2vxx + r2v(1 − v − b2u) = 0,
cxx + v − c = 0,

(4.11)

and can be represented by Fourier series:

u =
M∑

i=0
αi cos

(
iπ

L
x

)
,

v =
M∑

i=0
γi cos

(
iπ

L
x

)
,

c =
M∑

i=0
βi cos

(
iπ

L
x

)
.

(4.12)

The coefficients αi, γi and βi define the amplitudes of mode i for the variables u,
v and c. For smooth profiles, these coefficients quickly tend to zero as i increases,
allowing us to truncate the series by considering only the first M terms, where M
should be carefully chosen. For a known profile, u(x), the coefficients are found
using the formulas:

α0 = 1
L

∫ L

0
u(x)dx,

and for i > 0
αi = 2

L

∫ L

0
u(x) cos iπx

L
dx. (4.13)

In the rest of this chapter, we will focus on profiles u(x) (and coefficients αi),
keeping in mind that the analysis of the profiles v(x) and c(x) is done in the same
way.

Formulas (4.13) can be used for the spectral decomposition of patterns ob-
tained numerically. A typical stationary solution obtained from numerical simu-
lations of the system (4.4) is shown in Figure 4.1 b. Spectral decomposition of
this profile reveals that only four modes have reasonably high coefficients:


α0 = 0.4777, α16 = 0.2445, α32 = 0.0842, α48 = 0.0225;
γ0 = 0.6719, γ16 = −0.1024, γ32 = −0.0145, γ48 = −0.0010;
β0 = 0.6719, β16 = −0.0984, β32 = −0.0124, β48 = −0.0006,

(4.14)

while all other coefficients are considerably smaller (all other α-s are less than
0.01). α0 represents the average level of u for the entire pattern, α16 defines the
amplitude of the mode with a characteristic length of 1/16th of the domain size,
which corresponds to the 8 spikes observed. This matches the number of spikes
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seen in Figure 4.1 b. Finally, α32 and α48 correspond to the second and third
harmonics of the main harmonic given by α16. Thus, the amplitude of the pattern
shown in Figure 4.1 b can be estimated as 2α16. Varying the size of the domain
will change the number of observed spikes but will not affect their amplitude or
spatial periodicity. This is illustrated by the patterns shown in Figure 4.6 b and
c, which are obtained in simulations of smaller domains where only half (b) and
one (c) spike can fit.

(a) (b) (c)

Figure 4.6: Numerical simulations of the stationary patterns formed
in model (4.4) for different medium lengths. (a): Comparison between
the numerical profile from simulations (solid) and the profile including only the
highest three modes (dashed) given in (4.14) for a large medium L = 250. (b):
Reduced medium length such that only half a spike produced L = 15. (c): Full
spike for medium length L = 30. Blue and red lines represent the densities of
u and v, respectively, while cyan lines the concentration of the chemical c. Used
parameter values: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10 and b1 = b2 = 0.7.

Patterns occurring in a small domain (like those shown in Figure 4.6 b and
c) are of particular interest, as the corresponding Fourier series can be truncated
at a reasonably low value of M (see Eq. (4.12)). Using Fourier decomposi-
tion of numerically obtained patterns, we investigated how the coefficients of
Fourier modes depend on the domain size. In Fig. 4.7, we show plots of αi for
i = 0, 1, 2, 3, 4, 6, 9 against the domain size, L, which varies from 0 to 50. We
observe that while α0 does not vary much (staying in the range between 0.5 and
0.6) and the omitted α-coefficients are always negligibly small, the displayed co-
efficients vary significantly. For L < 10, α0 = 0.6 and all other coefficients are
zero, indicating that the system is in a homogeneous state with no spikes formed.
For 10 < L < 20, the first coefficient, α1, is larger than any subsequent coefficient
(α1 > αi, ∀i > 1), reflecting the fact that only half of a spike can fit in. Within
this range of domain sizes, the value of α1 increases from zero, reaches a max-
imum value α1(= αmax) = 0.2445 at L = 15, and then decreases to zero. This
domain size, which corresponds to the maximal value of α1, will be considered
the characteristic length (or half-wavelength) of the periodic pattern and will be
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denoted as Λ0, i.e., Λ0 = 15 for the system (4.4) with the model parameters used
in simulations to produce Figure 4.7.

(a) (b)

Figure 4.7: Dependence of Fourier coefficients αi on medium size L
for numerically simulated u-profiles in model (4.4). For patterns forming
(a): in weak competition case, b2 = 0.7 and (b) in weak-strong competition case,
b2 = 1.7. Other model parameter: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10,
b1 = 0.7.

As we seen earlier, stationary periodic patterns in the system (4.4) form under
two regimes: in the case of weak competition (b1 < 1 and b2 < 1, see Figure 4.1 b
and Figure 4.6) and in the case of weak-strong or strong competition when b2 > 1.
In the latter case despite the stability of homogeneous state (1, 0, 0) we observe
the formation of stationary periodic patterns (see Figure 4.4). Characteristics of
the patterns forming in these two regimes are significantly different. Figure 4.7
b shows how the first 9 α-coefficients describing u-profile in the pattern obtained
for b2 > 1 depend on the medium size. As we can see the spectral decomposition
of the profiles in panel (b) is considerable different from those shown in the panel
(a). For L ∈ [10, 17), α1 is the largest mode and in this case only half of the spike
can fit into the simulated medium. We note that α0 drops significantly when
pattern forms: for L ∈ [17, 20), α0 = 1 is the only non-zero coefficient, meaning
the system relaxes back to a homogeneous steady state. For L ∈ [20, 30], α2 is the
highest frequency mode, and patterns emerging for medium lengths in this region
will exhibit one full spike. Additionally, the fastest-growing mode corresponds to
L = 20, as α2 is largest at this point.

So far, we have shown that we can use Fourier decomposition to obtain in-
formation about the amplitude and wavelength of a stationary periodic pattern
obtained in numerical simulations and express the solution of system (4.4) as a
Fourier series. Our next aim is to to solve this system analytically by finding out
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the Fourier coefficients of solution to the system (4.11).

4.4 Analytical solution represented by Fourier
series

The analytical solution of the system (4.11) can be found using substitution
(4.12), which transforms this system into:

−D1

M∑
i=0

(ik)2αi cos(ikx) + χ
∂

∂x

 M∑
i=0

αi cos(ikx)
M∑

i=0
ikβi sin(ikx)

 = 0

+r1
∑M

i=0 αi cos(ikx)
(
1 −∑M

i=0 αi cos(ikx) − b1
∑M

i=0 γi cos(ikx)
)
,

−D2

M∑
i=0

(ik)2γi cos(ikx) + r2

M∑
i=0

γi cos(ikx)
1 −

M∑
i=0

γi cos(ikx) − b2

M∑
i=0

αi cos(ikx)
 = 0,

−
M∑

i=0
(ik)2βi cos(ikx) +

M∑
i=0

γi cos(ikx) −
M∑

i=0
βi cos(ikx) = 0,

(4.15)
where k = π/L. Truncation of the system (4.15) at M = 0 gives the system of
three algebraic equations:

r1α0(1 − α0 − b1γ0) = 0,
r2γ0(1 − γ0 − b2α0) = 0,
γ0 − β0 = 0,

(4.16)

which has four solutions:

(α0, γ0, β0) =
(0, 0, 0), (1, 0, 0), (0, 1, 1),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

) ,
corresponding to the steady states of model (4.4), as expected. Note, that the
third equation in the system (4.15) gives:

−(ik)2βi + γi − βi = 0 =⇒ βi = γi

1 + (ik)2 , (4.17)

which allows to reduce the system to equations in terms of unknowns αi and γi.
Truncating the system (4.15) at M > 0 we get 2M simultaneous equations that
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need to be solved:

α0 − α2
0 −

M∑
i=1

α2
i

2 − b1

α0γ0 +
M∑

i=1

αiγi

2

 = 0,

γ0 − γ2
0 −

M∑
i=1

γ2
i

2 − b2

α0γ0 +
M∑

i=1

αiγi

2

 = 0,

−D1α1k
2 + χk2

α0β1 +
M−1∑
i=1

i+ 1
2 αiβi+1 −

M∑
i=2

i− 1
2 αiβi−1

−

r1b1

α0γ1 + α1γ0 +
M−1∑
i=1

(
αiγi+1

2 + αi+1γi

2

)+

r1

α1 − 2α0α1 −
M−1∑
i=1

αiαi+1

 = 0,

−D2γ1k
2 − r2b2

α0γ − 1 + α1γ0 +
M−1∑
i=1

(
αiγi+1

2 + αi+1γi

2

)+

r2

γ1 − 2γ0γ1 −
M−1∑
i=1

γiγi+1

 = 0,

−4D1α2k
2 + χk2

4α0β2 + α1β1 +
M−2∑
i=1

(i+ 2)α1βi+2 −
M∑

i=3
(i− 2)αiβi−2

−

r1b1

α0γ2 + α2γ0 + α1γ1

2 +
M−2∑
i=1

(
αiγi+2

2 + αi+2γi

2

)+

r2

α2 − α2
1

2 − 2α0α2 −
M−2∑
i=1

αiαi+2

 = 0,

−4D2γ2k
2 − r2b2

α0γ2 + α2γ0 + α1γ1

2 +
M−2∑
i=1

(
αiγi+2

2 + αi+2γi

2

)+

r2

γ2 − γ2
1
2 − 2γ0γ2 −

M−2∑
i=1

γiγi+2

 = 0,

...

(4.18)
where the first two equations represent the balance for coefficients of cos(0), the
third and fourth equations - for the coefficients of cos(kx), the following two
equations - the coefficients of cos(2kx) and so on up to coefficients of cos(Mkx).

Analytical solutions expressed in terms of model parameters for the simultane-
ous system (4.18) cannot be found for M ≥ 1, but numerical values of αi, γi, and
βi can be determined with the aid of Maple for any given set of model parameters
D1, D2, χ, r1, r2, b1, and b2. This method can be used to compare the Fourier
series coefficients obtained analytically by solving system (4.18) with those ob-
tained through Fourier decomposition of the simulated profile, as presented in
Figure 4.7. To quantify the difference between the profiles obtained from sim-
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ulations and those predicted analytically, the error between the two curves is
calculated using the formula:

ER =
∫ L

0
(PA − PN)2dx, (4.19)

where PA represents the profile found analytically as a solution of the system
(4.18) and PN - the profile from numerical simulations.

Figure 4.7 shows that the half-wavelength of the periodic pattern obtained
numerically using parameter values: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10,
and b1 = b2 = 0.7 is equal to 15. In addition, this figure indicates that for an
accurate approximation of the profile u(x), coefficients up to and including α3

need to be considered. For the fixed parameters mentioned, we have used Maple
to find coefficients up to and including α3 (to describe the profile u(x)) and γ3

(to describe the profile v(x)) by solving the system (4.18) for the medium of size,
L = 15, using truncations at M = 1, 2, 3 . Found solutions for α-s are presented
in Table 4.1.

L = 15 α0 α1 α2 α3

Numerical 0.4813 0.2431 0.0787 0.0191

M = 1 0.1878 0.3330 0 0

M = 2 0.4753 0.2446 0.0961 0

M = 3 0.4702 0.2532 0.0849 0.0241

Table 4.1: First four Fourier coefficients describing u-profile in the
case of weak competition. Numerical coefficients are obtained by Fourier
decomposition of the profile u(x) obtained in simulations of system (4.4) and
shown in Fig.4.6(b), while analytical coefficients are obtained by solving system
(4.18) truncated at M = 1, 2 and 3. Model parameters: D1 = D2 = 1, r1 = r2 =
0.1, χ = −10, b1 = b2 = 0.7 and medium length L = 15.

Analysing the coefficients presented in Table 4.1, one can clearly see that
truncating at M = 1, including only α0 and α1, does not accurately reproduce the
corresponding coefficients found from numerical simulations. However, increasing
the truncation to M = 2, such that the simultaneous system is extended to solve
for α0, α1, and α2, produces a much better match to Fourier decomposition
of simulated profiles. Our next aim is to determine how many α coefficients
are needed to accurately reproduce the pattern shown by the curve u(x). It is
difficult to say whether increasing the truncation further, with M > 2, would
result in a better match between numerical and analytical results. To quantify
the discrepancy and better visualise the difference between the numerical and
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analytical profiles, the numerical profile is compared against the four analytical
profiles obtained from different truncations, and the error between the two curves
is calculated according to (4.19).

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Comparison between the numerical and analytical profiles
of u(x) and v(x). (a): Numerical u-profile (solid) versus analytical u-profile
(dashed) obtained by truncating the system (4.18) at M = 1. Error between the
curves is ER = 1.3830. (b): Increasing the truncation to M = 2 significantly
reduces the error between the numerical and analytical u-profiles to ER = 0.0061.
(c): Further increase in truncation to M = 3 reduces the error between the two
curves to ER = 0.0035. Similar results for v-profiles: truncation at M = 1
with error ER = 0.6566 on panel (d), M = 2 with error ER = 0.0003 on
panel (e) and M = 3 with error ER = 0.0009 on panel (f). Parameter values:
D1 = D2 = 1, r1 = r2 = 0.1, χ = −10 and b1 = b2 = 0.7.

Figure 4.8 a-c show that solving the system (4.18) for M = 3 is sufficient
to accurately reproduce the u(x) pattern, as increasing the truncation further to
M = 4 results in solving a system of 10 simultaneous equations, which is more
computationally expensive and does not significantly affect the error between the
two curves. This result matches the one obtained through the numerical integra-
tion of the profile from simulations, as Figure 4.7 a shows that only coefficients up
to and including α3 influence the amplitude of the half spike. A similar analysis
is performed for the pattern produced by the second species, v(x), which has a
smaller amplitude compared to that of the first species, u(x) (see Figure 4.8 d-f).

Patterns forming in the case when b2 > 1 can also be found as solutions
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of the system (4.15). Again for M > 0 these solutions can’t be expressed as
an explicit function of model parameters. However, numerical solutions can be
found for fixed set of parameter values with the aid of Maple. We have made
such calculations for the set of parameter values D1 = D2 = 1, r1 = r2 =
0.1, χ = −10, b1 = 0.7, b2 = 1.7 and truncations M = 1, 2, 3 and 4 of the
system (4.18). In Table 4.2 obtained α coefficients (for a medium length L =
10, representing the half-wavelength of the numerically simulated pattern) are
compared against coefficients found by Fourier decomposition of the numerical
solution represented in Figure 4.7 b. It is evident that the truncation at M = 1
gives a significant discrepancy between the numerical and analytical coefficients,
indicating that the truncation needs to be increased to include contributions
from higher frequency modes. The coefficients obtained by truncating the series
at M = 2, 3 and 4 provide much better approximations of the numerical ones,
suggesting that this analytical solution is a closer representation of the numerical
solution. It is evident from comparison of the u-profiles, representing solutions
of (4.18) with the profile obtained in numerical simulations. The discrepancy
between these profiles can be calculated using equation (4.19).

L = 10 α0 α1 α2 α3 α4

Numerical 0.3234 -0.4206 0.2015 -0.0779 0.0283

M = 1 0.6419 -0.5806 0 0 0

M = 2 0.3248 -0.4128 0.2878 0 0

M = 3 0.3139 -0.4367 0.2208 -0.1080 0

M = 4 0.3208 -0.4419 0.2241 -0.0916 0.0342

Table 4.2: First five Fourier coefficients describing u-profile in the
case when the competition is not weak. Numerical coefficients are obtained
by Fourier decomposition of the simulated profile u(x), while analytical coefficients
are obtained by solving system (4.18) truncated at M = 1, 2, 3 and 4. Parameter
values: D1 = D2 = 1, r1 = r2 = 0.1, χ = −10, b1 = 0.7, b2 = 1.7 and medium
length L = 10.

Figure 4.9 provides a graphical comparison between the numerical profile from
simulations and the analytical profiles given as solutions of the system (4.18), in
the strong competition case when b2 > 1. As expected, Figure 4.9 a shows a
significant difference between the profile from simulations and the profile given
by the Fourier series truncated at M = 1, with the discrepancy between the two
curves being ER = 1.3928. In Figure 4.9 b, with M = 2 such that coefficient
α2 ̸= 0, there is a considerable improvement in the shape of the analytical profile,
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as well as a reduction in the discrepancy between the two curves, which is now
ER = 0.0717. The analytical profile in Figure 4.9 c represents the Fourier solution
when the series for u is truncated at M = 3, and the error between the curves is
further reduced to ER = 0.0155. Increasing the truncation further in Figure 4.9 d
does not significantly improve the error between the two curves, ER = 0.0113, but
it does produce a smoother analytical profile. Since increasing to M = 4 did not
have a substantial effect on the discrepancy between the curves, we conclude that
truncation at M = 4 is sufficient to capture the analytical solution corresponding
to species u(x) that emerges when b2 > 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Comparison between the numerical and analytical profiles
of u(x) and v(x). (a): Numerical u-profile (solid) versus analytical u-profile
(dashed) obtained by truncating the system (4.18) at M = 1. Error between the
curves is ER = 1.3928. (b): Increasing the truncation to M = 2 significantly
reduces the error between the numerical and analytical curves to ER = 0.0717.
(c): Further increase in truncation to M = 3 reduces the error between the two
curves further to ER = 0.0155. (d): Increasing the truncation to M = 4 does
not have a significant effect on the difference between the two curves, ER =
0.0113, but makes a smoother analytical profile. Fixed parameters: D1 = D2 =
1, r1 = r2 = 0.1, χ = −10 and b1 = 0.7, b2 = 1.7. Similar results for v-
profiles: truncation at M = 1 with error ER = 1.3482 on panel (e), M = 2
with error ER = 0.0031 on panel (f), M = 3 with error ER = 0.0047 on
panel (g) and M = 4 with error ER = 0.0019 on panel (h). Parameter values:
D1 = D2 = 1, r1 = r2 = 0.1, χ = −10, b1 = 0.7 and b2 = 1.7.

In this section we has demonstrated that nonlinear Fourier analysis is a pow-
erful method for describing the periodic patterns forming in the model (4.4). We
obtained Fourier coefficients describing profiles for the species, u and v, both in
weak and non-weak competition cases. We have found that these coefficients
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found as roots of the algebraic system (4.18) is in good agreement with those
found by Fourier decomposition of profiles found in numerical simulations. A
comparison between numerical and analytical results has shown that to accurately
describe the pattern containing half spike a truncation of M = 3 is necessary in
the weak competition case and M = 4 in the case when b2 > 1. This result
was demonstrated for a certain fixed set of model parameters. Our next task is
to investigate the impact of model parameters on amplitude and wavelength of
forming periodic patterns.

4.5 Effect of model parameters on amplitude
and wavelength of periodic patterns

In this section, the effect of model parameters on amplitude and wavelength is
investigated. The system (4.18) can be solved only when it is truncated at low
numbers (M ≤ 4) and to make this truncation meaningful we have considered
patterns in small media containing only half of the spike. However, we note,
that the obtained results hold for patterns with multiple spikes. The effect of
parameters is explored by running simulations for different medium lengths, per-
forming Fourier decomposition of obtained profiles using (4.13), and detecting
the medium length L when the values of the dominating node, α1 and γ1, get
their highest values. The lengths that produce the largest node correspond to the
most unstable wavelength, which is the fastest-growing medium length, result-
ing in the highest pattern amplitude. Numerical results have been verified using
analytical Fourier analysis by solving system (4.18) for M = 4 and similarly in-
vestigating the effects of L on α1 and γ1, corresponding to the profiles u(x) and
v(x), respectively.

Figure 4.10 a and b show the effects of diffusion on the amplitude and wave-
length of the half-spike pattern found for both species, u(x) and v(x). Depen-
dences of the wavelength of pattern formed by profiles, u(x) and v(x), which are
obtained in numerical simulations, shown by the plots L(u, S) and L(v, S) in Fig-
ure 4.10 a. Same dependences, found analytically by solving the system (4.18)
truncated at M = 4. α1(n, S) shown by the plots L(u, S) and L(v, S) in the
same panel. Figure 4.10 b shows dependences of the amplitudes of both profiles
(u(x) and v(x)), as given by the plots of Fourier coefficients of the main mode
(which is a first mode for the pattern represented by the half-spike), which are
α1 for the u-profile and γ1 for the v-profile. Again, α1(S) and γ1(S) are plots
obtained by Fourier decomposition of profiles obtained numerically, while α1(A)
and γ1(A) are obtained analytically. If the absolute value of α1 increases, the
amplitude of u-profile also increases, and if the absolute value of α1 decreases,
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.10: Dependence of the wavelength and amplitude of periodic
patterns on model parameters. The effect of (a-b) the diffusion coefficient,
D1; (c-d) chemotaxtic sensitivity, χ; (e-f) competition rate, b1; (g-h) competi-
tion rate, b2; (i-j) proliferation rate, r1, and (k-l) proliferation rate, r2. Default
set of parameters: D1 = D2 = 1, r1 = r2 = 0.1, b1 = b2 = 0.7 and χ = −10.

the amplitude of u-profile also decreases. The same can be said about plots of
γ1 and the amplitude of v-profile. Figure 4.10 a and b demonstrate that the
wavelength of pattern increases with increasing diffusion of u, represented by D1.
An interesting characteristic of the patterns corresponding to species u and v is
that, for small values of D1, the most unstable wavelengths of the two species
differ significantly. This suggests that irregularities in the patterns are expected
if the diffusion of u is small.

Similarly, Figure 4.10 c and d show that an increase in D2 leads to an increase
in the most unstable wavelength, while the amplitude of the pattern decreases.
Additionally, irregularities are expected to appear for small values of D2. All pan-
els display good correlation between numerical and analytical results, indicating
that accurate solutions to system (4.4) can be found by solving (4.18).

Pattern formation in a two-species system arises as a result of chemorepul-
sion. As a reminder, chemorepulsion needs to be strong enough for system (4.4)
to become unstable under perturbation. Therefore, the effects of chemotaxis on
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wavelength and amplitude are investigated. Numerical and analytical results are
represented graphically in Figure 4.10 c and d, which illustrates the effects of
chemorepulsion on the amplitude and wavelength of patterns resulting from the
disturbance of the coexistence steady state of system (4.4). Figure 4.10 c shows
that as chemorepulsion increases, the most unstable wavelength decreases. Ad-
ditionally, with increasing chemorepulsion, a significant difference arises between
the most unstable wavelength of species u and that of species v, indicating that
strong chemorepulsion leads to irregularities in pattern formation. Figure 4.10 d
demonstrates that the maximal amplitude of the pattern formed by both species
occurs at χ = −15. As chemorepulsion deviates from this value, the amplitude
of the pattern decreases. It is worth noting that the analytical Fourier solutions
predict a slightly larger pattern amplitude than the one obtained from simula-
tions, although there is a very good approximation between the numerical and
analytical results.

Next, the effects of interspecific competition are examined, as these parame-
ters play a crucial role in the formation of periodic patterns around the coexis-
tence steady state. Figure 4.10 shows the effects of interspecific competition on
the wavelength and amplitude of the half-spike pattern formed by an infinites-
imal perturbation of the coexistence steady state. In Figure 4.10 e and f, the
effects of the competition of v on u are investigated. As b1 increases, the most
unstable wavelength also increases, while the amplitude of the pattern decreases.
Conversely, Figure 4.10 g and h show the effects of the competition of u on v,
and in this case, as b2 increases, the most unstable wavelength decreases, and the
amplitude of the pattern increases. Additionally, in both cases, there are differ-
ences between the most unstable wavelength of u and that of v, which suggests
that pattern irregularities are likely to appear. It is also evident that b1 and b2

have opposite effects on the characteristics of the pattern: b2 enhances pattern
formation, leading to larger pattern amplitudes, while b1 leads to smaller ones.

The final set of parameters to investigate concerns the effects of reproduction
on pattern formation. As shown in Figure 4.3, periodic patterns are more likely
to appear when species u has a smaller reproduction rate, r1, and species v has
a larger reproduction rate, r2. This leads to the prediction that an increase in
r1 would decrease the amplitude of the pattern, while an increase in r2 would
enhance it. Figure 4.10 illustrates the effects of species reproduction on pattern
characteristics. Figure 4.10 i and j show that as the reproduction rate of the
first species increases, the most unstable wavelength decreases, along with the
amplitude of the pattern. These results are consistent with previous findings,
which indicated that, for this set of fixed parameters, pattern formation is not
possible for r1 > 0.15. Similarly, Figure 4.10 k and l show that as r2 increases,
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the most unstable wavelength also decreases; however, in this case, the amplitude
of the pattern increases. This aligns with earlier results showing that, for this set
of fixed parameters, pattern formation is not possible for small values of r2 < 0.8.
See Figure 4.3.

This section has focused on understanding how patterns are affected by changes
in parameters, specifically examining how characteristics such as amplitude and
wavelength are influenced. This has been demonstrated through methods of nu-
merical and analytical Fourier analysis, which show a good match between the
two sets of results. This indicates that truncating system (4.18) at M = 3 and
solving analytically accurately captures the characteristics of a half-spike pattern.
Additionally, it has been shown that the parameters which enhance the ampli-
tude of the pattern as they increase are b2 and r2, while all other parameters,
D1, D2, χ, b1, and r1, reduce the amplitude as they increase. It has also been
observed that species u and v exhibit different wavelengths under certain param-
eter regimes, suggesting that patterns formed from the coexistence steady state
of model (4.4) are likely to display irregularities.

This concludes the analysis of pattern formation around the coexistence steady
state, and the next section focuses on pattern formation around the extinction
steady states.

4.6 Discussion
Understanding interactions between two or more bacterial species is crucial in
the early stages of colonisation and biofilm formation. Systems of two competing
bacterial species are often referred to as Lotka-Volterra models, and the stability
of the steady states has been thoroughly analysed [76, 135]. In this chapter, the
Lotka-Volterra model and the Keller-Segel model [59, 60] have been combined to
investigate a system of two bacterial species, u and v, where the latter produces
a chemical agent, c, which chemotactically affects the former. These interactions
are modelled using a system of three partial differential equations (4.4), which
has four steady states:

(u, v, c) =
(0, 0, 0), (1, 0, 0), (0, 1, 1),

(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

) ,
where the trivial steady state is always unstable, while the other three steady
states are stable in the well-mixed system under specific conditions. Classical
Turing pattern analysis states that pattern formation occurs if an initially stable
steady state in the well-mixed system is driven unstable by a perturbation in
the full reaction-diffusion-advection system [128]. In this chapter, methods of
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linear analysis and nonlinear Fourier analysis have been used to demonstrate the
formation of periodic patterns around both the coexistence steady state (u, v, c) =(
b1 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1 ,

b2 − 1
b1b2 − 1

)
and the extinction steady state (u, v, c) = (1, 0, 0),

as a result of aggregation initiated by a breakdown of stability.
As demonstrated in the introductory chapter, the coexistence steady state

is stable in the well-mixed system if the interspecific competition between the
species is less than 1, i.e., b1, b2 < 1. This identifies the region of interest for
the formation of stationary periodic patterns. The first section of this chapter
focused on showing that model (4.4) at coexistence can be driven unstable by
infinitesimal perturbations within this region. Since finding analytical conditions
for instability proved difficult, the Routh-Hurwitz criteria [25] were used with
fixed parameters to identify a domain, δ2, in which the system is unstable and
exhibits pattern formation. Using numerical simulations, we have shown that for
competition rates b1, b2 ∈ δ2, stationary periodic patterns arise from infinitesimal
disturbances as a result of chemorepulsion. An important question that followed
was how to ensure we consider the largest domain of instability, δ2, in order to
capture all competition rates that lead to a breakdown of stability and initiate
aggregation. To address this, we found the most unstable wavenumber, k, which
represents the fastest-growing mode. By examining the intersection point between
a3 = 0 and (a3)k = 0, we determined the most unstable wavenumber k, as well
as the minimum competition rates b = b1 = b2 that lead to pattern formation.
This prompted further analysis of how the minimum b that leads to instability
changes with other parameters. This analysis was conducted through numerical
simulations and analytics, and the results showed strong correlation. As diffusion
increases, the minimum requirement for b also increases, meaning that faster
diffusing species require stronger competition to initiate aggregation. As the
strength of chemorepulsion increases, the minimum requirement for b decreases.
Additionally, an increase in the reproduction rate, r1, of the repelled species
u leads to an increase in the minimum requirement for b, whereas an increase
in the reproduction rate, r2, of the species producing the repellent reduces the
minimum requirement for b. This means that as species v reproduces faster, more
chemotactic agent is produced, and aggregation is initiated even with weaker
competition between species.

Classical Turing pattern analysis has provided conditions under which the sys-
tem is driven unstable by perturbation, leading to pattern formation. However, it
offers no information about the characteristics of the pattern, such as amplitude
and wavelength. Using nonlinear Fourier pattern analysis, the aim is to represent
solutions of model (4.4) as Fourier series and identify the fastest-growing mode.
Initially, the analysis was carried out numerically by integrating a simulated pro-
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file to find the coefficients corresponding to the Fourier series solution. It has
been shown that, in order to accurately reproduce a pattern formed by species
u containing i half-spikes, αi, α2i, and α3i must be determined, and similarly for
patterns produced by v and c. For a pattern with many spikes, these coefficients
are easy to obtain numerically, but much more difficult to derive analytically.
Therefore, to obtain the analytical coefficients corresponding to the Fourier se-
ries solution, the medium length was reduced to obtain patterns containing at
most one half-spike or a full spike. Analytical Fourier series are obtained by
truncating at some M , which represents the highest frequency mode, and the
goal is to determine which M provides a good approximation of the profile ob-
tained from simulations. It has been shown that truncating at M = 1 results
in a large discrepancy between the numerical and analytical profiles. However,
including one more term in the series and truncating at M = 2 produces a much
better approximation. Results were verified for truncations up to M = 4, and
we concluded that this is an acceptable truncation parameter for representing a
half-spike pattern, based on the discrepancy between numerical and analytical
solutions. The effects of model parameters on the most unstable mode have also
been investigated using numerical simulations and Fourier analysis. It has been
shown that the analytically obtained Fourier solution for a half-spike pattern
accurately captures the characteristics of the numerical solution. Moreover, for
certain parameter regimes, the two species u and v have different most unstable
wavelengths, a characteristic that explains why pattern irregularities appear in a
system of two bacterial species. The most unstable wavelength is the one corre-
sponding to the fastest-growing mode. This has been used to show that certain
model parameters, such as b2 and r2, enhance pattern formation as they increase,
meaning that the amplitude of the pattern increases. On the other hand, most
other model parameters reduce the amplitude of the pattern as they increase.

The second part of the chapter has focused on pattern formation from the
extinction steady state (u, v, c) = (1, 0, 0) due to finite amplitude disturbance.
This extinction steady state is stable in the well-mixed system if b2 > 1 and
remains stable under the same condition in the full reaction-diffusion-advection
system. According to linear analysis, stationary periodic patterns do not emerge
if this steady state is perturbed by an infinitesimal disturbance. However, numer-
ical simulations have shown that if species v is perturbed by a finite amplitude
disturbance, ṽ, stationary periodic patterns emerge, provided the disturbance
is large enough. Initially, this phenomenon was analysed using computational
simulations, and one of the first questions addressed was how the minimum per-
turbation amplitude ṽ is affected by parameters. It was shown that if diffusion
increases, the minimum perturbation amplitude also increases. This means that
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for more diffusive species, a larger density of species v needs to be introduced
into the system to prevent it from decaying back to a homogeneous state before
aggregation is initiated. As expected, an increase in chemorepulsion strength
decreases the minimum perturbation amplitude required to initiate aggregation.
For an increase in b1, which represents the competition of v on u, there is a
decrease in ṽ, since this indicates that v is more competitive for resources and
is more likely to survive and produce enough chemical agent to initiate aggre-
gation. Conversely, for an increase in b2, which represents the competition of u
on v, there is an increase in the minimum perturbation amplitude required to
initiate aggregation. Similarly, an increase in the reproduction rate of the first
species, r1, results in an increase in ṽ, whereas an increase in the reproduction
rate of the second species, r2, decreases the minimum perturbation amplitude
required to initiate aggregation. Solutions around this steady state have been
investigated using nonlinear Fourier analysis, following the same procedure as for
patterns emerging from the coexistence steady state. In this case, exact analyti-
cal solutions were found by solving a system of simultaneous equations (4.18) for
fixed parameters, and it was shown that truncating the series at M = 4 produces
accurate results with small discrepancies between numerical and analytical pro-
files. The most important result of this section is that, contrary to linear analysis,
stationary periodic patterns can emerge from the steady state (n, v, c) = (1, 0, 0)
due to finite amplitude disturbances.

This chapter has focused on the analysis of stationary periodic patterns around
the coexistence steady state and one of the extinction steady states, (u, v, c) =
(1, 0, 0). However, there is one more extinction steady state, (u, v, c) = (0, 1, 1),
which is stable in the well-mixed system if b1 > 1. Classical Turing pattern anal-
ysis suggests that stationary periodic patterns can emerge from this steady state
if the system can be driven unstable by perturbation in the full reaction-diffusion-
advection system under the same condition. However, according to linear analy-
sis, this steady state remains stable when perturbed in the full diffusive system
for b1 > 1, and pattern formation is not possible. This result is consistent with
findings from computational simulations and nonlinear Fourier analysis, even in
the presence of finite amplitude disturbances.

In conclusion, this chapter has analysed pattern formation in a system consist-
ing of two bacterial species interacting with a chemical agent. Pattern formation
has been proven to emerge from two steady states, and characteristics of these
patterns have been identified using nonlinear Fourier analysis. Analytical results
have been supported by numerical computations.
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Chapter 5

Discussion

Pattern formation from an almost uniformly homogeneous steady state is one of
the fundamental questions in developmental biology. A key aim of this thesis
was to understand the mechanisms underlying spatio-temporal pattern forma-
tion and the conditions under which different patterns can emerge as a result of
a disturbance. The patterns thoroughly investigated in this work are stationary
periodic (Turing) patterns and travelling wavefronts. Mathematical models, as
well as computational simulations, have been used to investigate cell-cell and cell-
chemical interactions to show the conditions for the formation of spatio-temporal
patterns depending on model parameters, as well as to find information about
the characteristics of such patterns, such as amplitude and wavelength in the
case of Turing patterns, and minimum wave speed in the case of travelling wave-
fronts. In this final chapter, we present an overview of our main results and their
applications and discuss potential future work.

5.1 An overview of the research presented in
this thesis

This thesis began with an introductory chapter to present the motivation behind
this work, as well as to introduce the reader to some basic biological and math-
ematical concepts used throughout. This was then followed by three research
chapters.

Chapter 2 represents the first research chapter, and the aim was to thoroughly
investigate travelling wavefronts admitted as solutions to systems of partial dif-
ferential equations, representing single as well as two interacting bacterial popu-
lations. The formation and existence of travelling waves admitted as solutions to
biological systems have been thoroughly researched over the years, as this is one
of the simplest ways to describe the spatial distribution of biological species. For
a single species, it is common to use the well-known Fisher-Kolmogorov equation
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[33, 62] to describe its spatial distribution. Using linear analysis methods, it has
been shown that the minimum wave speed of a species with diffusion coefficient
D and reproduction rate r, transitioning from the unstable trivial steady state to
a stable steady state, is given by smin ≥ 2

√
Dr [86, 87]. On the other hand, by

expressing the solution of the Fisher-Kolmogorov equation as a sum of hyperbolic

functions, the wave speed has been shown to be s =
√

25Dr
6 [64, 121].

In the single species case, we considered a system of two decoupled partial
differential equations, one representing the density of the bacterial species, for-
mulated as the Fisher-Kolmogorov equation, and the second representing the
concentration of the chemical produced by the bacteria, which can decay. Our
work focused on understanding the effects of model parameters on the shape of
the fronts admitted as solutions in the absence of chemotaxis, as well as the effects
of chemotaxis on the minimum wave speed of the wavefronts when the chemical
produced by the bacteria acts as an attractant or repellent. In the case of no
chemotaxis, we showed that the distance between the two wavefronts, n and c,
increases as r increases but remains unchanged when D varies. Additionally, the
minimum wave speed increases as D and r increase, as expected and given by
the formula above. In terms of the shape of the fronts, a small reproduction co-
efficient results in significantly smoother fronts, while a small diffusion coefficient
results in slightly sharper fronts. These results are highly valuable for analysing
the chemotactic system, since we assume that for very small diffusion and repro-
duction, n ≈ c, as the distance between the fronts is assumed to be very small,
and the shapes are assumed to be similar. This allowed us to express n in terms of
an exponential function: n(z) = 1

1 + a exp(αz) and obtain a formula for the wave

speed of the fronts: s = −D
√

− r

2χ+
√

−rχ

2 +
√

−2χr, where χ < 0 represents the

case of chemorepulsion. One of the main results of this chapter was that as the
strength of chemorepulsion increases, the wave speed also significantly increases,
and we provided a comparison between the wave speeds obtained analytically and
those obtained from computational simulations.

The second section of this chapter focused on investigating travelling wave-
fronts in a two-species system, both with and without chemotaxis. The simplest
and most common way to describe the spatial spread of two competing species
is the well-known Lotka-Volterra system [76, 135]. The existence of travelling
wavefronts in systems with Lotka-Volterra dynamics has been thoroughly inves-
tigated, and minimum wave speeds (when waves transition from the unstable
steady state or one of the extinction steady states) have been found in terms of
model parameters using methods of linear analysis [86, 87]. In addition, an exact
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solution and wave speed of travelling wavefronts making the transition between
the two extinction states have been found by expressing the solution in terms of
hyperbolic functions [106]. This method is not as powerful as linear analysis since
the wave speed is given for fixed model parameters, providing only one possible
solution to the system. Other researchers have investigated the direction of in-
vasion and minimum wave speed dependence on model parameters in degenerate
and near-degenerate systems with Lotka-Volterra kinetics. In degenerate systems
(where one of the species is assumed not to diffuse), three zones of response have
been found: in the central zone, the direction of invasion depends on motility,
and in the outer two zones, it depends on competition [4]. On the other hand, in
near-degenerate systems (where the ratio of diffusion coefficients is very small),
the wave direction is determined by a general energy function for the full system
[2].

More recently, Lotka-Volterra systems with chemotaxis have attracted the
attention of researchers. Typically, these systems are represented by three partial
differential equations: two equations describing the interaction between the two
species and their response to the chemical agent, and a third equation describing
the change in the concentration of the bacterial agent. Travelling wavefronts have
been proven to exist when both bacterial species degrade a chemical agent that
acts as an attractant [73]. In this work, regions where travelling wavefronts appear
have been shown to depend on both chemotactic sensitivities and competition
between species. On the other hand, when the bacteria produce the chemical
rather than degrade it, the existence of travelling wavefronts has been proven
numerically using the perturbation method in computational simulations and
under the assumption that the chemical concentration does not change over time
[69, 123]. Moreover, the minimum wave speed of travelling wavefronts between
two spatially homogeneous steady states has been given as smin ≥ s

√
1 − b1 in

[53].
Rather than proving the existence of travelling wavefronts in systems with

Lotka-Volterra dynamics, our work has focused on finding the minimum wave
speed of fronts transitioning between various steady states. In the case where the
chemical has no effect on the spatial distribution of either bacterial species, we
have shown analytically, as well as numerically, that if Dr ̸= 1, then wavefronts
transitioning from the unstable trivial steady state to coexistence move with dif-
ferent speeds, and we have provided minimum wave speed formulas using linear
analysis methods. On the other hand, we have shown that when both competi-
tion rates b1, b2 > 1, coexistence is unstable, and wavefronts appear to transition
from coexistence to one of the stable extinction states. In this case, the mini-
mum wave speed has been obtained analytically using the dispersion curve as a
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function of the wavenumber. In the case of chemotaxis, we have assumed that
the chemical agent is produced by one of the species and has a chemotactic effect
on the other species. We have shown that when the system transitions from the
unstable trivial state, in the long run, waves tend to move at the same speed due
to chemoattraction, and the speed converges to that obtained in the case of no
chemotaxis. However, when waves transition from the unstable coexistence state,
as chemoattraction increases, the minimum wave speed also increases. This in-
crease has been proven analytically using the dispersion curve as a function of the
wavenumber. Additionally, the effect of model parameters on the minimum wave
speed has been investigated, and a comparison between numerical and analytical
speeds has been provided, which shows that the analytical speed obtained using
the dispersion curve accurately captures the speed of the waves from numerical
simulations.

Chapter 3 of this thesis was concerned with modelling stationary periodic
(Turing) patterns in a system of two partial differential equations, representing
one species producing a chemical agent. It is well known that pattern forma-
tion appears in such systems if cell migration is due to chemoattraction [59]. A
number of models have been presented as variations of the original Keller-Segel
model [60] from a biological perspective [46]. More recently, characteristics of
stationary periodic patterns such as wavelength and amplitude have also been in-
vestigated. For example, linear analysis methods for wavelength estimation have
been presented in [87]. As for the estimation of pattern amplitude, sophisticated
methods using the amplitude equation have been presented in [30, 137], and an
oversimplified method is described in [19].

In our work, we considered a number of nonlinear reaction-diffusion-advection
systems to describe the interaction of a single species with a chemical agent pro-
duced by itself. Using classical Turing pattern analysis, we obtained conditions
under which stability breaks down and aggregation is initiated, such that RT > 1
represents the threshold value for pattern formation. We presented the advan-
tages and disadvantages of various forms of chemotactic sensitivity and concluded
that the simplest way to represent migration due to chemotaxis from a biolog-
ically relevant perspective is to assume that the chemotactic sensitivity is pro-
portional to the density of the bacteria, χ(n, c) = χ0(ncx)x. In this chapter,
we also estimated the wavelength of the pattern using three different methods:
linear, nonlinear, and computational, and showed that nonlinear Fourier analy-
sis represents the most accurate method. Additionally, using nonlinear Fourier
analysis, we demonstrated that the three highest frequency modes are sufficient
to accurately reproduce the profiles from numerical computations. The highest
frequency mode is responsible for the amplitude of the pattern as well as the
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number of spikes produced. The impact of parameters on the pattern was also
analysed, and we proved that an increase in the diffusion coefficient results in an
increase in wavelength and a decrease in amplitude; an increase in chemotaxis
results in a decrease in wavelength and an increase in amplitude; and an increase
in reproduction results in a decrease in both wavelength and amplitude. We
believe this work to be highly important for understanding bacterial responses
to chemotactic agents and how spatial patterns can be affected by the diffusiv-
ity and proliferation properties of the species in question. Although the results
presented in this thesis are based on a one-dimensional model, we believe they re-
main relevant, as mathematical modelling on a line is a common starting point for
understanding and investigating biological processes due to its simplicity. These
basic models can be refined using experimental data for parameter estimation,
followed by comparisons of computational simulations with experimental find-
ings. Furthermore, to enhance the relevance of these results, this work could be
extended to higher dimensions, as biological models are often described in two-
and three-dimensional spatial systems. In addition, biological processes involve
numerous interacting variables and nonlinear dynamics, making them difficult to
study directly. Breaking these processes down into simpler, more manageable
mathematical models helps reveal underlying mechanisms and fundamental prin-
ciples while filtering out unnecessary complexity. This approach also improves
computational efficiency, enabling faster and more accessible analysis. This work
has been extended to model interactions between two species in the final research
chapter.

The aim of Chapter 4 was to investigate a competition model extended by
additional interactions between populations, given by chemotactic coupling, in
which one species produces a chemical agent that causes the taxis of the other
species. This is biologically relevant for understanding the formation of eco-
logical systems through competitive interactions between multiple species [66].
Researchers have shown spatial distribution due to diffusion and cross-diffusion
(cross-taxis) using models such as the SKT systems [113] or the Potts-Petrovskii
models [98]. In these cases, the formation of spatial patterns is due to the prop-
erties of the cross-taxis terms, which affect the speed, direction, and shape of the
travelling fronts [2, 4, 12, 71]. On the other hand, other mathematical models
have introduced an extra equation to model the change in the concentration of the
chemical produced by one of the species [61, 65]. It has been shown that Turing
instabilities can arise from extinction states when there is strong chemoattraction
and strong competition between the species [92, 128]. Conversely, where there
is weak competition between species and one of the chemotactic sensitivities is
sufficiently large, Turing patterns can emerge from the coexistence state by re-
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ducing the system to a two-variable model [60]. Recently, a novel result has been
presented in [70] showing that Turing instabilities can emerge from the coexis-
tence state if the species have mutually repulsive effects and chemorepulsion is
sufficiently strong. Additionally, the amplitude of the pattern has been discussed
using the amplitude equation.

The aim of our research was to better understand the conditions under which
stability breaks down and patterns emerge in a system of two competitive species,
where one produces a chemical agent affecting the other. Using methods of lin-
ear analysis, we identified instability domains (b1, b2) where Turing patterns can
emerge from the coexistence steady state. We demonstrated the importance of
considering the most unstable wavenumber to ensure the largest domain of in-
stability is obtained. Using these domains, we identified the minimum model
parameters that lead to the formation of stationary periodic patterns. Moreover,
employing nonlinear Fourier analysis, we obtained characteristics of the pattern
such as amplitude and wavelength. Supported by results from computational
simulations, we showed that an increase in any of D1, D2, χ, or b1 results in an
increase in wavelength and a decrease in amplitude. An increase in the repro-
duction rate of the first species, r1, results in decreases in both wavelength and
amplitude, while an increase in all other model parameters leads to a decrease in
wavelength and an increase in amplitude.

One of the most important results of this chapter was the formation of station-
ary periodic patterns when the species producing the chemical agent is initially
close to extinction. According to linear analysis, Turing patterns cannot emerge
from this steady state when b2 > 1; however, with the aid of computational sim-
ulations and nonlinear Fourier analysis, we showed that the steady state can be
driven unstable by finite amplitude disturbances rather than infinitesimal pertur-
bations. We used computational simulations to investigate the minimum distur-
bance required for a breakdown of stability and demonstrated its dependence on
model parameters. On the other hand, such patterns cannot emerge when the
species undergoing taxis is initially close to extinction.

5.2 Future work
So far, we have discussed important research regarding modelling pattern for-
mation in growing bacterial populations and how our work contributes to this
field. One of the most significant techniques developed in this thesis is the use
of nonlinear Fourier analysis to obtain information about the characteristics of
stationary periodic patterns, such as amplitude and wavelength. We have shown
that this technique can be used to identify the most unstable wavelength, which
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is responsible for the pattern with the highest amplitude and also determines the
number of half-spikes expected to be produced. Future research could focus on
using the amplitude equation to obtain further information about the amplitude
of a Turing pattern and comparing these results with those obtained from Fourier
analysis and numerical computations.

Future work could also involve applying the nonlinear Fourier analysis tech-
nique developed in this thesis to a broader range of mathematical models, such as
SKT models or systems combining bacterial diffusion, cross-diffusion, and chemo-
taxis. The latter model is more analytically sophisticated, and it would be in-
teresting to explore the conditions under which Turing patterns can emerge and
whether stability breakdown occurs as a result of cross-diffusion, chemotaxis, or
both. I believe this model is valuable for understanding spatial pattern forma-
tion, as bacteria are rarely stationary, and their motility is influenced by various
environmental factors and mutual interactions between species.

In the two-species system, we have shown with the aid of computational sim-
ulations and Fourier analysis that when b2 > 1, Turing instabilities can appear
when the species producing the chemical agent is initially extinct, under the influ-
ence of finite amplitude disturbances. We have demonstrated how the minimum
perturbation amplitude required for a breakdown of stability depends on model
parameters using results from computational simulations. In the future, I aim
to develop an analytical method to determine the minimum perturbation ampli-
tude required for pattern formation and compare this with the analytical results
presented in Chapter 4. Additionally, this thesis focuses on understanding the
effects of competition on pattern formation in a system of two species, one of
which produces a chemical agent that influences the other. Future research could
explore pattern formation in predator-prey models or investigate the effects of
symbiosis.

The results presented in this thesis primarily concern the use of a one-dimensional
system to study pattern formation in systems of one and two interacting bacterial
populations, with the computational simulations effectively illustrating pattern
formation on a line. While this approach is biologically relevant due to its simplic-
ity in breaking down complex biological systems into manageable mathematical
models, I would welcome the opportunity to extend these results and simulations
into higher dimensions, such as two- and three-dimensional models. To achieve
this, the numerical methods employed for the computational simulations in this
thesis would need refinement, and the numerical scheme would need to shift to
implicit methods, which are generally more difficult to implement, but faster and
more computationally efficient than explicit methods. Comparing results from
a one-dimensional model with those from a two-dimensional model would offer
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valuable insights into the strengths and limitations of each approach. Some ques-
tions that could be explored include: Would simpler, more time-efficient methods
be more appropriate for investigating processes like biofilm formation, or would
two-dimensional methods, which require more careful analytical and numerical
treatment, be more beneficial?

Moreover, investigating pattern formation is a crucial step in understanding
the early stages of biofilm formation and the interactions between species within
an ecosystem. While mathematical models provide a valuable tool for analysing
these processes by simplifying them into easier models to investigate fundamental
principles, there remains uncertainty regarding how environmental factors, rather
than just interspecies interactions and taxis, affect pattern formation. A promis-
ing area of development would be to refine mathematical models to incorporate
environmental factors such as temperature, light, nutrient availability, and sur-
face properties. For example, how does the smoothness of a surface influence
bacterial pattern formation? Are bacteria more likely to aggregate on rougher
surfaces, or do the effects of surface adhesion remain negligible?

Finally, throughout my research, I would have liked the opportunity to com-
pare my analytical results with experimental data, which I have not had the
chance to work with. In future work, I hope to validate the analytical and nu-
merical results presented in this thesis against experimental data, as the lack of
experimental validation in mathematical models remains a common challenge.
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