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1 Summary

Since reaction-diffusion equations can describe the distribution of concen-
tration, mathematical models based on these equations can be developed
with a wide range of application. In population dynamics, the density and
spread of a species can be described by reaction-diffusion equations, in which
the reaction term refers to their reproduction, while the diffusive term de-
scribes the motion of individuals. From these equations, travelling wave
solutions can be derived to provide a clearer understanding of the dynamics
of a system. Physical applications of these methods include improving our
understanding of the movement of bacterial populations around the body,
or the growth and spread of tumours.

The aim of this paper is to accurately model competing bacterial species,
subject to varying parameters and conditions. The use of travelling wave
solutions as methods of solving parabolic equations is explored, with fo-
cus on solving and modelling the Lotka-Volterra competition model. The
Fisher and Fitzhugh equations will first be detailed to provide a base under-
standing of how to generate travelling wavefront solutions and how minimum
wavespeed requirements are derived. Analytic analysis of the Lotka-Volterra
model then uses the systems’ Jacobian matrix to determine the steady states
and resultant eigenvalues at each point, in turn providing the wavespeed re-
quirements of transitions involving each state. The explicit finite forward
difference method is then implemented to understand the numerical method
used in the later simulations, as well as the conditions necessary for stabil-
ity. Finally, numerical simulations are ran to explore the behaviour of the
system for different cases, along with understanding the results of wavefront
transitions between different steady states.
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2 Statement of Originality

This dissertation was written by me, in my own words, except for quotations
from published and unpublished sources which are clearly indicated and
acknowledged as such. I am conscious that the incorporation of material
from other works or a paraphrase of such material without acknowledgement
will be treated as plagiarism, according to the University Academic Integrity
Policy. The source of any picture, map or other illustration is also indicated,
as is the source, published or unpublished, of any material not resulting from
my own research.
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3 Introduction

In this section, the theory of travelling waves will be explored, with particu-
lar focus on their use as solutions to nonlinear partial differential equations.
Moving on, reaction-diffusion systems will be detailed before turning the
focus to the use of travelling waves as solutions to such systems, followed by
solving two example reaction-diffusion equations: the Fisher equation and
the Fitzhugh equation.

3.1 Travelling Waves

A travelling wave is a wave that moves in a particular direction, propagating
with a constant speed c. While there exist several different forms of travelling
waves, this paper will particularly focus on travelling wavefronts, waves that
move through space from one constant state to another without oscillation.
Due to being functions of space and time, travelling waves are fundamental
in many mathematical equations with applications in a wide range of fields,
with their use most fully developed for solving partial differential equations
[10]. Using travelling wave solutions for a system of PDEs allows us to model
and understand the dynamics of that system.

Travelling wave solutions are expressed as:

u(x, t) = U(z), z = x− ct (1)

where c represents the speed of the propagating wave and x and t represent
the spatial and time domains respectively. In the case of c = 0 the wave is
classed as stationary, meaning it does not propagate. For a travelling wave
solution to be classed as a travelling wavefront, we require

U(−∞) = uleft, U(∞) = uright, uleft 6= uright (2)

meaning the wave travels from one steady state at U(−∞) to another steady
state at U(∞).

3.2 Reaction-Diffusion Systems

Reaction-diffusion equations describe the change in space and time of the
concentration of one or more substances. As the name suggests, such equa-
tions are comprised of a reaction term and a diffusion term and arise in
systems involving interacting components, with a use in mathematical biol-
ogy when modelling interacting populations.

The simplest case of the nonlinear reaction-diffusion equation is

∂u

∂t
= R(u) +D

∂2u

∂x2
, (3)
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which is a partial differential equation representing a reaction-diffusion sys-
tem in one spatial dimension. The D ∂2u

∂x2
term describes the diffusion, in

which D represents the diffusion coefficient. The R(u) term represents a
function that describes a change in parameter u.

3.2.1 Fisher Equation

In 1937, Fisher suggested the equation

∂u

∂t
= ku(1− u) +D

∂2u

∂x2
(4)

to describe the spatial spread of a favoured allele in a population [8], however
it can also be applied to the spread of any biological population. The terms
ku(1−u) and D ∂2u

∂x2
are the reaction and diffusion terms respectively, while D

represents the diagonal matrix of diffusion coefficients. This equation is the
natural extension of the logistic growth model, to incorporate the diffusion
of a population in space.

To solve equation (4) and test for the existence of a travelling wavefront
solution, we must first nondimensionalise the equation by writing:

t∗ = kt, x∗ = x

(
k

D

) 1
2

Rewriting as

t =
t∗

k
, x = x∗

(
D

k

) 1
2

,

we can substitute these into equation (4) to give

∂u

∂
(
t∗

k

) = ku(1− u) +D
∂2u

∂
(

(x∗)2D
k

)
After bringing the constants out of the derivatives and cancelling down k

and D, along with omitting the asterisks for notational simplicity, equation
(4) reduces down to

∂u

∂t
= u(1− u) +

∂2u

∂x2
(5)

For the spatially homogeneous problem, when ∂2u
∂x2

= 0, there exist two
steady states at u = 0 and u = 1, which are unstable and stable respectively.
Combining this with the fact u < 0 is not physically possible, we must look
for a travelling wavefront solution in the region 0 ≤ u ≤ 1. Such a solution
will take the form seen in (1). However, the invariance of equation (5) if
x → −x means c can be positive or negative, so for simplicity we will use
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c ≥ 0. Substituting this form of travelling wave U(x− ct) into equation (5),
U(z) satisfies

U ′′ + cU ′ + U(1− U) = 0 (6)

As described in (2), a typical wavefront solution involves U at one end
being at a different steady state than at the other end. Therefore, we seek
a solution for which

lim
z→+∞

U(z) = 0, lim
z→−∞

U(z) = 1. (7)

Figure 1: Travelling wavefront diagram. A simple travelling wavefront,
moving from U(−∞) = 1→ U(∞) = 0.

To do this, we must transform (6) into two separate first order ODEs.
These are:

U ′ = V, V ′ = −cV − U(1− U) (8)

From these, we can calculate the phase plane trajectories as solutions of

dV

dU
=
−cV − U(1− U)

V
, (9)

with this equation containing two stationary points in the (U, V ) plane:
(0, 0) and (1, 0). For stability analysis, we must first linearise the equation
around each of these points by writing

U = U∗ + dU, V = V ∗ + dV (10)

where dU, dV represent the change in U and V respectively and the asterisk
indicates the fixed point around which the equation is being linearised. Next,
we form the Jacobian matrix
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d

dt

[
dU
dV

]
=

[ df
dU

df
dV

dg
dU

dg
dV

] ∣∣∣∣∣
∗

[
dU
dV

]
(11)

where f = U ′ = V and g = V ′ = −cV − U(1− U). Therefore, we have

d

dt

[
dU
dV

]
=

[
0 1

−1 + 2U −c

] ∣∣∣∣∣
∗

[
dU
dV

]
(12)

At (0, 0), this matrix reduces to[
0 1
−1 −c

]
which contains the eigenvalues

λ± =
−c±

√
c2 − 4

2
⇒

{
stable node if c2 ≥ 4

stable spiral if c2 ≤ 4

At (1, 0), we have [
0 1
1 −c

]
which produces the eigenvalues

λ± =
−c±

√
c2 + 4

2
⇒ saddle point

From this analysis, we can see that if c ≥ cmin = 2, the origin is a stable
node. If c2 < 4 then the origin is a stable spiral, meaning U oscillates around
this point. However, while travelling wave solutions exist for c < 2, they
do not represent real solutions since U < 0 denotes a negative population,
which is a physical impossibility. This is shown with the spiralling of the
trajectories around the origin, meaning they enter the negative quadrants
at certain points.

This analysis highlights that for a real travelling wave solution to ex-
ist, all wavespeeds must satisfy c ≥ cmin = 2. For our initial dimensional
equation (4), all wavespeeds must satisfy

c ≥ cmin = 2
√
kD (13)

However, the resultant wavespeed is also defined by the shape of the
wave profiles. For example, if the wave profile has the form e−αZ , changes
in α will change the shape of the profile and therefore affect the wavespeed.
In this scenario, the wavespeed will decay rather than be given by a step
function. The wavespeed can be any value, provided it is higher than the
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minimum requirement. The shape of the wave profile can also be affected
by changing the initial conditions of the system.

Figure 2: Phase plane trajectories for equation (6). On the left, for
c > cmin = 2, the point (0, 0) is a stable node. On the right, for c2 < 4,
the point (0, 0) is a stable spiral, with the trajectories oscillating around the
origin. In both cases, the point (1, 0) is a saddle node. Taken from [?].

3.2.2 Fitzhugh Equation

Another example of a reaction-diffusion equation is the excitable kinetics
model represented by the Fitzhugh equation. This biological mechanism
models a biochemical ’switch’, where a large peturbation of Ca2+ (calcium)
ions moves the system from one steady state to another [7]. The reaction
diffusion equation for this model is:

∂u

∂t
= A(u− u1)(u2 − u)(u− u3) +D

∂2u

∂x2
(14)

which represents a cubic parabola, in contrast to the square parabolic Fisher
equation. Here, A is a positive constant representing the autocatalytic re-
lease of calcium ions, u represents the concentration of calcium with u1 <
u2 < u3, while again D is the diffusion coefficient. The terms u1, u2, u3 rep-
resent the respective steady states, with u1, u3 stable and u2 unstable. We
must now assume there exist wavefront solutions for equation (14), which
must be of the form

u(x, t) = U(z), z = x− ct (15)

for which

lim
z→+∞

U(z) = u1, lim
z→−∞

U(z) = u3 (16)
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Substituting this form of solution into (14) gives

DU ′′ + cU ′ +A(U − u1)(u2 − U)(U − u3) = 0 (17)

Again, we seek solutions of a simpler differential equation that U satisfies.
Therefore, we try to make U satisfy the first order differential equation:

U ′ = a(U − u1)(U − u3) (18)

Substituting this into equation (17), we obtain:

(U − u1)(U − u3)Da2(2U − u1 − u3) + ca−A(U − u2) = 0 (19)

which can be rewritten as

(U − u1)(U − u3)[U(2Da2 −A)− [Da2(u1 + u3)− ca−Au2]] = 0 (20)

For this to be true, we require:

2Da2 −A = 0, Da2(u1 + u3)− ca−Au2 = 0

From this, we can determine a and c as:

a =

(
A

2D

) 1
2

, c =

(
AD

2

) 1
2

(u1 − 2u2 + u3) (21)

Unlike the Fisher equation, the calculated wavespeed c of this equation
is unique.

Figure 3: Stationary bistable cubic parabola diagram. u1, u3 are
stable, u2 is unstable. Here, u2 is centred between u1 and u3, meaning the
wave is stationary.

Equation (14) can also be represented by a cubic parabola, which allows
us to calculate the wave velocity as a ratio of a constant multiplied by an
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integral, with the integral term representing the area between the curve
and the horizontal axis. The total area under the parabola gives indication
of the direction in which the wavefront is travelling. From the wavespeed c
calculation in equation (21), we can see that if u2 is exactly half way between
u1 and u3, then we have

c =

(
u1 − 2

(
u3 + u1

2

)
+ u3

)
= 0

hence we have a stationary wave, as shown in figure 3. For values of u2

closer to u1 than to u3, the overall area under the parabola becomes positive,
meaning the wave moves along the x axis in the positive direction. If u2 is
closer to u3, the total area is negative meaning the wave moves horizontally
in the negative direction.

(a) Positive Area (b) Negative Area

Figure 4: Travelling bistable cubic parabola diagrams.u1, u3 are sta-
ble, u2 is unstable. (a) and (b) show how the variance of u2 affects the total
area under the parabola. (a) involves a wavefront travelling right due to the
total positive area, while (b) indicates a wavefront travelling left.

Another method to solve equation (17) is to take the generalised equa-
tion:

U ′′ + cU ′ + F (U) = 0 (22)

with the aforementioned conditions

lim
z→+∞

U(z) = u1, lim
z→−∞

U(z) = u3 (23)

and regard equation (22) as a sum of three terms that total zero, with the
primes denoting derivatives over z. This equation can be multiplied by U ′

and integrated over z, from −∞ to ∞, giving us:∫ ∞
−∞

U ′′U ′dz + c

∫ ∞
−∞

U ′2dz +

∫ ∞
−∞

F (U)U ′dz = 0 (24)
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Integrating the first term gives U ′2

2 , meaning this integral term is zero
due to its saturation at ±∞. The second terms involves the wavespeed c
multipled by an unknown term

∫∞
−∞ U

′2dz. However, since the integral is of
a squared number, we can conclude the unknown term is greater than zero.
The final term

∫∞
−∞ F (U)U ′dz can be reduced down since

U ′ =
dU

dz
⇒ dU

dz
dz = dU

therefore, we have ∫ ∞
−∞

F (U)dU

Since we know that at −∞, U = u3 and at∞, U = u1, this term reduces
down to the integral from u3 to u1, which represents the shaded area under
the parabola seen in figures 3 and 4. We now have

c = −
∫∞
−∞ F (U)dU∫∞
−∞ U

′2dz

and since we know the denominator term is strictly positive, we can see
that the resultant wavespeed c is dependent on whether the area under the
parabola seen in figures 3 and 4 is positive or negative.
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4 Analytic Study of Lotka-Volterra Competition
Model

We can expand on the spatially homogeneous Lotka-Volterra competition
model to incorporate the diffusive terms of the respective species, M and
N . This creates the system:Mt = D1Mxx + r1M

[
1− M

K1
− a1

N
K1

]
Nt = D2Nxx + r2N

[
1− N

K2
− a2

M
K2

] (25)

where D1, D2, r1, r2,K1,K2, a1 and a2 are all positive constants. D1 and D2

represent the respective diffusion coefficient of each population, r1 and r2

represent the linear birth rates of each species and the K terms represent
the maximum carrying capacity of each population. The a1 and a2 terms
measure the competitive effect of N on M and M on N respectively. To
solve this system, it must first be nondimensionalised, to give:{

ut = uxx + u(1− u− b1v)

vt = dvxx + ρv(1− v − b2u)
(26)

where d is a ratio of the two diffusion coefficients D1 and D2 and ρ repre-
sents the ratio of proliferation rates r1 and r2. The b1 and b2 terms now
represent the competitive effect of each species, with their values providing
an indication to the type of competition that is present. For b1, b2 < 1 the
competition is described as weak. For either b1 < 1, b2 > 1 or b1 > 1, b2 < 1,
there is weak strong competition between the species. Finally, for b1, b2 > 1,
strong competition is occurring.

Currently however, system (26) will have infinitely many solutions, mean-
ing it requires initial conditions and boundary conditions to be complete and
provide a unique solution. The initial conditions will be specified and subject
to change throughout the numerical calculations. In contrast, the boundary
conditions remain constant throughout. Neumann boundary conditions are
being used, meaning the normal derivatives of each dependent variable are
specified at the boundary. To help implement this type of boundary condi-
tion, we introduce the ghost points U(1) and U(n) next to the boundary. In
the MATLAB code, we specify U(1) = U(2) and U(n) = U(n− 1), so that
the boundaries U(1) and U(n) are never touched. The boundary conditions
can also be described as zero flux, since the gradients between the points
U(1) and U(2), as well as between U(n) and U(n− 1), are zero.

Using the form of travelling wave solution u(x, t) = U(x− ct), system 26
satisfies
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{
cU ′ = U ′′ + u(1− u− b1v)

cV ′ = dv′′ + ρv(1− v − b2u)
(27)

To find the wavefront solution, we must first transform this system into
four first order ODEs:{

∂u
∂E = w, ∂w∂E = cw − u(1− u− b1v)
∂v
∂E = s, ∂s∂E = cs−ρv(1−v−b2u)

d

(28)

Using these equations, we can construct the systems’ 4x4 Jacobian ma-
trix from which the equilibrium points and their respective eigenvalues can
be calculated. This can be done using MATLAB to produce the following
matrix of equilibria: 

0 0 0 0
1 0 0 0
0 0 1 0

b1−1
b1b2−1 0 b2−1

b1b2−1 0

 (29)

with the columns representing the partial derivatives of each equation with
respect to [u,w, v, s]. As expected, the same four as in the spatially homo-
geneous case are present, but with zeroes for the variables w and s. These
are: the extinction state (0, 0), two monoculture states (0, 1) and (1, 0) and
the coexistence state ( b1−1

b1b2−1 ,
b2−1
b1b2−1).

Due to the coexistence equilibrium not being constrained to obvious
parameters, along with the eigenvalues for this state being simply too long
to be included, we only have interest in the points (0, 0), (1, 0) and (0, 1).
The eigenvalues for these states are calculated as:

e1 =



c
2 −
√

(c−2)(c+2)

2

c
2 +

√
(c−2)(c+2)

2
c+
√
c2−4dρ
2d

c−
√
c2−4dρ
2d

(30)

e2 =



c
2 −

√
c2+4
2

c
2 +

√
c2+4
2

c+
√
c2−4dρ+4b2dρ

2d
c−
√
c2−4dρ+4b2dρ

2d

(31)
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e3 =



c
2 −
√
c2+4b1−4

2

c
2 +

√
c2+4b1−4

2
c+
√
c2+4dρ
2d

c−
√
c2+4dρ
2d

(32)

where e1 corresponds to the state (0, 0), e2 corresponds to (1, 0) and e3

corresponds to (0, 1).

For travelling wavefront solutions to exist, all eigenvalues for each point
must be real. Therefore, we are required to find the minimum value of c that
satisfies this condition, in turn providing minimum wavespeed requirements
for each state.

For e1, we have four eigenvalues. c
2 ±
√

(c−2)(c+2)

2 requires

c > cmin = 2 (33)

with c < 2 indicating a spiral node. For the eigenvalues
c+
√
c2−4dρ
2d , we

require

c > cmin = 2
√
dρ (34)

Since these wavespeed requirements relate to the eigenvalues for the state
(0, 0), any travelling wavefront solutions that can be found will involve tran-
sitions from this state. However, it can be noted that there is a discrepancy
between the two wavespeed requirements, since they are only equal when
dρ = 1. This discrepancy will be explored in the numerical results section,
where it was found that the wavespeed requirement cmin > 2 applies only
to the wavefronts for species u, while cmin > 2

√
dρ applies to wavefronts for

species v, a fact that was not expected prior to investigation.

For e2, we require

c > cmin = 2
√
dρ(1− b2) (35)

This wavespeed requirement stems from the eigenvalues relating to the
state (1, 0), meaning any numerical simulations involving transitions from
this point will adhere to this wavespeed minimum. This wavespeed require-
ment can correspond to wave profiles of both species.

For e3, we require

c > cmin = 2
√

1− b1 (36)
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Any numerical results following this wavespeed requirement will involve
transitions from the state (0, 1). Again, this wavespeed requirement can
apply to wavefronts for both species.

The stability for each equilibrium is to be examined, where consideration
must also be given to the values of b1 and b2. The strict positivity of each
eigenvalue for the point (0, 0) indicates that it is an unstable node. For
values of b1, b2 < 1, there exists only one stable point for the system, the
coexistence equilibrium. Here, there is a travelling wave U(x− ct) with

U(−∞) = α, U(∞) = 0

indicating the wave transitioning from the steady state (0, 0) to the coexis-
tence point α.

For b1 > 1, b2 < 1 and b1 < 1, b2 > 1, the conditions only permit one
stable point, (0, 1) and (1, 0) respectively, with the other three equilibrium
points for each condition being unstable. Travelling wavefront solutions here
will involve transitions from these respective unstable steady states. For
b1, b2 > 1, the system is multistable containing two steady states (1, 0) and
(0, 1), with a separatrix splitting the domains of attraction to each point.
This means the systems’ initial conditions or parameters will determine the
resultant equilibrium and travelling wavefronts will transition between these
two states.
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5 Numerical Scheme

To be able to create computer simulations describing the time evolution of
the Lotka-Volterra competition model, the finite-difference method, a type of
numerical analysis, is utilised on the partial differential equations to approxi-
mate the solutions of the system at progressive time steps. More specifically,
the explicit forward difference method is used to determine the solutions.
This is a discretisation that solves the differential equations by approximat-
ing them with difference equations that finite difference approximates the
derivatives [9]. In contrast to implicit numerical methods, which use un-
known quantities at the next time step to approximate solutions, explicit
methods use known quantities from the previous time step for approxima-
tions. Using explicit methods as opposed to implicit makes the future coding
simpler, along with reducing the computational power required to generate
results.

To do this, the time and space components of the system are uniformly
partitioned so that consecutive points of each are separated by ∆t and ∆x
respectively. The partial differential equations are then converted into a
system of recurrence equations, by replacing the derivatives in the equa-
tions with approximations, that can be solved by matrix algebra techniques.
Using unj and vnj to denote the approximations of u and v respectively in

position j at time n, the method computes each progressive value of un+1
j

and vn+1
j as a function of the respective value at time n. The time derivative

∂u
∂t is estimated using

∂u

∂t
≈
un+1
j − unj

∆t
and the dispersion term is estimated using

∂2u

∂x2
≈
unj+1 − 2unj + unj−1

∆x2

The same approximations are also used for population v. These approx-
imations can now be substituted into system (26) to give us the recurrence
equations: 

un+1
j −unj

∆t =
unj+1−2unj +unj−1

∆x2
+ unj (1− unj − b1vnj )

vn+1
j −vnj

∆t = d
vnj+1−2vnj +vnj−1

∆x2
+ ρvnj (1− vnj − b2unj )

(37)

Solving for un+1
j and vn+1

j :

{
un+1
j =

(
∆t

∆x2

)
(unj+1 − 2unj + unj−1) + ∆tunj (1− unj − b1vnj ) + unj

vn+1
j = d

(
∆t

∆x2

)
(vnj+1 − 2vnj + vnj−1) + ∆tρvnj (1− vnj − b2unj ) + vnj

(38)
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Figure 5: The initial value problem. Following the arrows, successive
solutions are calculated as the system advances in time. Taken from [9].

Figure 5 provides a visual representation of the finite difference method.
The shaded circles denote the initial conditions of the system, which rep-
resent the intiation of the wave and will be stated for each case in the
numerical section. The hollow circles represent the successive solutions pro-
gressing upwards as time advances. On the right and left of the diagram are
the Neumann boundary conditions, represented by the crossed circles. As
stated in section 4, these are ghost points that lie just outside the domain
so that they are never touched. Neumann boundary conditions imply

du

dx
= 0,

dv

dx
= 0 (39)

when x = 0 or x = L, with 0 and L denoting the borders of the medium of
size L. Since the derivatives are equal to zero, the boundary has zero flux.
This corresponds to physical boundaries and means nothing can pass across
the boundary.

Returning to system 38 however, this method is unstable, meaning we
must introduce the Neumann stability analysis to provide a more applicable
method [9]. This local analysis treats the difference equation coefficients as
constant in both space and time, to create independent solutions of the form

unj = ξneikj∆x (40)

where k represents a real spatial wave number and ξ = ξ(k) is a complex
number dependent on k. Since the time dependence of each independent
solution is a successive integer power of ξ, the difference equations are un-
stable for ξ(k) > 1 due to the resultant exponential growth. The number ξ
provides the amplification factor at a given wave numer k. By substituting
40 into system 37, the amplification factor is found to be
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ξ = 1− 4D∆t

(∆x)2
sin2

(
k∆x

2

)
(41)

This equation dictates the result of disturbances to the system. As
mentioned, ξ(k) > 1 causes the system to blow up since it creates exponential
growth. For ξ(k) ≤ 1, the system collapses, leading to the stability criterion
requirement of

2D∆t

(∆x)2
≤ 1 (42)

Thus, for D = 1, the explicit method is convergent and numerically
stable for values of

∆t

∆x2
≤ 1

2
, (43)

meaning the MATLAB code must be tailored to achieve a value of ∆t
∆x2

as
close to 1

2 as possible. The calculations are optimised as 1
2 is approached,

leading to a faster algorithm and increasingly accurate results. Therefore, a
time step size of ∆t = 0.99hx2

2d has been selected, so that along with denoting
∆x2 = hx2, we get:

∆t

∆x2
=

0.99hx2

2

hx2
=

0.99

2
<

1

2

for d = 1. This value of ∆t
∆x2

is sufficiently close to 1
2 . Many space step

sizes were experimented with, in an attempt to generate results that are as
accurate as possible, in the shortest time, since long simulations are time
consuming. Therefore, a space step of hx = 0.1 was selected since it provided
an appropriate balance of duration and accuracy, generating results with an
acceptable error margin of 2%.
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6 Numerical Simulations

This section includes the MATLAB results produced when calculating the
wavespeeds for system (26) with varying parameters and conditions. Using
the finite forward difference method, the code plots the wavefronts of u and
v at different time steps, to visually represent the different evolutions of the
system over time. The code uses a medium of size 100 and a total time of
50. The space is divided up into equal segments to provide the space steps,
denoted hx, of size 0.1. The size of the time steps, ht, is given by 0.99hx2

2d .

6.1 Transitions from trivial unstable steady state to coexis-
tence

The following figures involve wavefronts transitioning from the unstable
steady state (0, 0), where the minimum wavespeed requirement will stem
from equation (34), cmin = 2

√
dρ. In the case of dρ = 1, the wavefronts for

both species move with the same speed, where c = 2.

Figure 6: Wave profiles transitioning from (0,0) to coexistence. d =
ρ = 1, b1 = 0.4, b2 = 0.6. The initial conditions U(0) = 0.3, V (0) = 0.5
are true for the first five grid points, everywhere else they are zeroes. The
wavefronts are plotted at times 8, 16, 24, 32, 40 and 48.

Figure 6 shows the evolution of system (26), subject to the specified
parameters, in which the wavespeeds are calculated as c=1.9903. As pre-
viously mentioned, the wavefronts are moving with identical speeds since
dρ = 1. Since this speed is within 2% of cmin = 2, this speed is accept-
able. The terms U(0) and V (0) represent the initiation of the wave, with
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the initial conditions of U(0) = 0.3, V (0) = 0.5 true at the first five grid
points, everywhere else they are zeroes, the unstable trivial states. The
code was designed to plot the travelling wavefront at every j0 = 2000 time
steps. Since there are 6 wavefronts present in figure 6, these are at time
steps 2000, 4000, 6000, 8000, 10000 and 12000. By multiplying these values
by the time step size, ht = 0.004, we are able to calculate the corresponding
times of each wavefront in figure 6: 8, 16, 24, 32, 40 and 48.

As expected, the wavespeeds do not change for varying values of b1 and
b2, when b1, b2 < 1, with the speed being maintained at 1.99. The system
was tested first with b1 = 0.5 and values of b2 from 0.1 to 0.9, in increments
of 0.1. This was then repeated with b2 = 0.5 and altering the b1 values. Since
the c values of each calculation had a discrepancy of < 1%, the wavespeed
can be classed as constant. Since b1, b2 < 1, the wavespeed requirements
from the analytic calculations of cmin = 2

√
1− b1 and cmin = 2

√
d(1− b2)

are both less than 2
√
dρ. Therefore, the minimum required speed is based

on 2
√
dρ, meaning there is no dependency on b1 and b2, with the numerical

results confirming this statement.

The initial concentrations of u and v were also found to have no effect
on the resultant c. For the same values of d, b1 and b2 as seen in figure 6,
different initial conditions were tested to ensure wavespeed was maintained.
The tested values, along with their respective wavespeed were:

u = 0.1, v = 0.5⇒ c = 1.9936

u = 0.5, v = 0.2⇒ c = 1.9903

u = 0.8, v = 0.5⇒ c = 1.9903

As stated in analytics, the wavefront transitions from the unstable steady
state (0, 0) to the stable coexistence state. This was expected since for values
of b1, b2 < 1, there exists only one stable point at which the coexistence of
the competing species is possible, with all trajectories tending to this point.
Despite a lower initial population, the higher equilibrium state of u is a
result of its greater competitive effect on species v, than the opposing effect
of v on u.

Since the wavefronts involve transitions from the steady state (0, 0),
equation (34) indicates that the wavespeed c should follow cmin = 2

√
dρ.

Therefore, we can use MATLAB to test the effects of varying the values of
d and ρ on the resultant wavespeed in this case. There are two cases to
consider when testing the dependence on d and ρ:

• Wavefronts move with different speed

• Wavefronts move with equal speeds
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Therefore, the system will be tested in different ways to determine the
dependency on d and ρ. It can be observed that changing d when ρ remains
constant, or changing ρ when d remains constant, creates identical results.

6.1.1 Wavefronts moving with different speeds

In both of these cases, the wave profiles of each species will move with dif-
ferent speeds. Over time, this creates an increasing separation between the
wavefronts which results in the wave profiles transitioning between differ-
ent steady states. Therefore, the MATLAB code is adjusted to create the
ability to test the system for these two cases and understand what happens.
The medium size and total time are increased to 400 to allow the wavefront
speeds to saturate and ensure they aren’t affected by the boundary.

(a) d = 0.8, ρ = 1, c = 1.9903 (b) d = 1.2, ρ = 1, c = 1.7516

Figure 7: Wave profiles with multiple transitions. Wave profiles for
the two cases in which the wavefronts move with different speeds, when
b1 = 0.4, b2 = 0.6. The initial conditions are identical to those seen in figure
6 and the wave profiles of both figures are plotted at time 99.

Figures 7 (a) and (b) show the transitions between different steady states
when dρ < 1 and dρ > 1. The code was manipulated to only produce one
wave for each species, to provide a clearer view of the transitions between
different states. In (a), a diffusion coefficient less than 1 means the wave pro-
file of v moves slower than that of u, with v transitioning from (1, 0) to the
coexistence equilibrium, while u transitions from (0, 0) → (1, 0) → coexis-
tence. These new transitions in turn alter the minimum required wavespeed.
The wavefronts of v now follow cmin > 2

√
dρ(1− b2) due to moving from

the state (1, 0). The wavefronts for u here move with constant speed 2 since
they involve transitioning from (0, 0). In (b), dρ > 1 means the wavefronts
of v are moving faster than those of species u, with v transitioning from
(0, 0)→ (0, 1)→ coexistence and u moving from (0, 1) to coexistence. The
transition from (0, 0) for species v means it follows the minimum speed re-
quirement cmin > 2

√
dρ. Since the wavefronts of u move from the steady
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state (0, 1), equation (36) shows that the minimum speed requirement is
cmin = 2

√
1− b1, meaning it is independent of d and ρ.

Figure 8: Numerical wavespeeds of figure 7. The lines show how the
numerical wavespeed changes for varying diffusion coefficients d, when ρ = 1.

Figure 8 shows the numerical results of figure 7 for different diffusion
coefficients d, provided ρ remains constant. When d = 1 and ρ is changed
from 0.5 → 1.5, the numerical wavespeed calculations for u and v are the
same as the results seen above, as expected.

Figure 9: Analytic vs numerical wavespeeds when v < u, relating
to figure 7. The wavefronts of v are moving slower than those of u. The
analytic results stem from cmin = 2 and cmin = 2

√
dρ(1− b2) for u and v

respectively.

Figure 9 shows how the numerical wavespeeds for each species compare
to the analytic results, when dρ ≤ 1. The calculated wavefront speeds for
species u confirm the analytic results of cmin = 2 for all d. This high-
lights that the wavefront speeds of u are constant when u is moving faster
than species v. However, it can be observed that there are discrepencies
between the analytic and numerical results for species v. While this is
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unexpected, the numerical results do converge to the analytic minimum
cmin = 2

√
dρ(1− b2) as d decreases. As explained in section 3, wave pro-

files with exponential form result in wavespeeds that decay over time rather
than appear as step functions. Since the wave profiles for v in figure 7 decay
exponentially, this explains the convergence to the analytic results rather
than matching them exactly. Despite this, the analytic results only pro-
vide a minimum speed requirement, therefore the numerical results can be
classed as viable as they are above the analytic requirements.

Figure 10: Analytic vs numerical wavespeeds when v > u, relating
to figure 7. The wavefronts of v are moving faster than those of species u.
The analytic results stem from cmin = 2

√
1− b1 and cmin = 2

√
dρ for u and

v respectively.

Figure 10 shows the comparison between the analytic and numerical re-
sults when dρ ≥ 1. From this figure we can draw two conclusions. Similarly
to figure 9, there is convergence between the analytic and numerical results
for the slower wavefronts, in this case relating to species u, due to the shape
of the wave profiles. Again, since the analytic results provide a minimum
wavespeed requirement, the numerical results can be classed as viable since
they are not below the threshold of cmin = 2

√
1− b1. It is also found that

the wavefronts for species v move with speed c = 2
√
dρ, provided they are

moving faster than the profiles of species u. This is in contrast to species u
moving with constant speed when the speed of u is greater than species v.
To test if this fact also holds for dρ < 1, we must make a slight modification
to system (26): {

ut = 0.5uxx + u(1− u− b1v)

vt = dvxx + ρv(1− v − b2u)
(44)

By using a diffusive constant of 0.5 for species u, we ensure that the
wave profiles are always moving slower than those of species v, for all values
of d from 0.5 to 1.5.
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Figure 11: Wavespeeds of v in system 44. Line showing how the
wavespeed of species v changes for different diffusion coefficients d based
on our analytic and MATLAB results, subject to the conditions seen in fig-
ure 6 and when the wavefronts of v are always moving faster than those of
u. The analytic results stem from cmin = 2

√
dρ.

Figure 11 confirms that the numerical wavespeeds for species v follow
the analytic results of cmin = 2

√
dρ for varying values of d when ρ = 1. The

results would be identical for varying ρ provided d = 1.

Despite being slightly below the minimum required wavespeed based
on the analytic caluclations, the results follow the same general trend and
since the results are within an error margin of 2%, they are regarded as
accurate. There is always a minor discrepancy between analytic and nu-
merical results, stemming from the numeric calculations being approxima-
tions. Using smaller space steps in the MATLAB calculations would make
the scheme more accurate, however while the results will incrementally ap-
proach c = 2

√
dρ, they generally never reach it. The calculated wavespeeds

are as follows:
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Diffusion Analytic Numerical

0.5 1.4142 1.4078

0.6 1.5492 1.5416

0.7 1.6733 1.6661

0.8 1.7889 1.7809

0.9 1.8974 1.8915

1.0 2 1.9903

1.1 2.0976 2.0890

1.2 2.1909 2.1815

1.3 2.2804 2.2714

1.4 2.3664 2.3569

1.5 2.4495 2.4364

Table 1: The relative wavespeed for each diffusion coefficient from 0.5 to
1.5, based on analytic minimum cmin = 2

√
dρ and numerical results.

6.2 Transitions from trivial unstable steady state to mono-
culture states

The previous figures have involved a system in which the competition co-
efficients b1, b2 are less than one. We will now determine the effect on the
results of either one or both coefficients being greater than one.

(a) b1 = 0.4, b2 = 1.6 (b) b1 = 1.6, b2 = 0.4

Figure 12: Transitions from (0,0) to (1,0) and (0,1) case 1. Wave
profiles over time for two cases of varying competition coefficients, b1 <
1, b2 > 1 and b1 > 1, b2 < 1. d = ρ = 1 and U(0) = 0.3, V (0) = 0.5 are true
for the first 5 grid points, elsewhere they are zeroes. The wave profiles are
plotted at times 8, 16, 24, 32, 40 and 48.

Figure 12 (a) shows the wavefront transitioning from the steady state
(0, 0) to (1, 0). Figure 12 (b) shows the wavefronts moving between the
steady states (0, 0) and (0, 1). This is expected, due to the fact that in
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the case b1 < 1, b2 > 1, there exists only one stable point (1, 0) with all
trajectories tending towards this point, while for b1 > 1, b2 < 1, the only
existing stable point is (0, 1). The wavespeeds are calculated as c=1.9903 in
both (a) and (b), with (a) referring to the speed of u and (b) referring to
the speed of v. Since c is the same for both u and v, there is no detriment
to the results when using the code to measure for the different populations.
Again, the calculated speed is within 2% of cmin = 2, so it is deemed to be
acceptable.

Again, the MATLAB results prove that b1, b2 and the initial conditions
have no affect on the wavespeed. In (a), b2 > 1 means the wavespeed condi-
tion of cmin > 2

√
dρ(1− b2) becomes imaginary. Therefore, this condition

can be ignored since complex numbers are not ordered in the same way
as real numbers, meaning they cannot be similarly compared. This means
the minimum wavespeed required is maintained at 2

√
dρ, meaning the nu-

meric results validate the analytic results. Similarly in (b), the condition
cmin > 2

√
1− b1 becomes imaginary since b1 > 1, meaning the minimum

wavespeed required is maintained at 2
√
dρ. Therefore, since the wavespeeds

are only affected by the diffusion coefficient, the resultant speeds are the
same as seen in figure 11, hence plots of numeric data versus analytic data
are not required to avoid repetition.

The following figures will explore the outcomes of the system when
b1, b2 > 1. For this case, the resultant state of the system is depdendent
on two factors: the competition coefficients b1 and b2, as well as the initial
conditions U(0) and V (0).

(a) b1 = 1.4, b2 = 1.6 (b) b1 = 1.6, b2 = 1.4

Figure 13: Transitions from (0,0) to (1,0) and (0,1) case 2. Wave
profiles over time for the case when, b1, b2 > 1. In (a), b1 < b2. In (b),
b1 > b2. d = ρ = 1, U(0) = 0.5, V (0) = 0.5 for the first 5 grid points with
zeroes elsewhere. The wave profiles are plotted at times 8, 16, 24, 32, 40
and 48.

Figures 13 (a) and (b) highlight how the system is affected by the values
of the competitive factors b1 and b2, when the initial populations of u and
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v are equal. Figure (a) shows the wavefronts transitioning from (0, 0) to
(1, 0). Since the competitive effect of u on v, b2 is greater than the opposing
effect of v on u, b1, species u reaches its maximum carrying capacity. Figure
(b) highlights the opposite case, when the competitve effect of v on u is
greater than the effect of u on v. Here, the wavefronts move from (0, 0) to
the steady state (0, 1). In both cases, the wavefronts are always moving with
speed c = 1.9903, which confirms the analytic results of cmin = 2.

(a) U(0) = 0.5, V (0) = 0.3 (b) U(0) = 0.3, V (0) = 0.5

Figure 14: Transitions from (0,0) to (1,0) and (0,1) case 3. Wave
profiles over time for the cases when, b1, b2 > 1. In (a), U(0) > V (0).
In (b), U(0) < V (0), with the initial conditions true for the first five grid
points. d = ρ = 1, b1, b2 = 1.5. The wave profiles are plotted at times 8, 16,
24, 32, 40 and 48.

As mentioned, the initial conditions also impact the outcome of the sys-
tem. When b1 = b2, the species with the greater initial population density
will dominate, as shown in figures 14 (a) and (b). Again, (a) involves the
wavefronts moving from (1, 0) to (0, 0), while the wavefronts in (b) move from
(0, 1) to (0, 0). The wavefronts move with speed c = 1.9903. Transitions to
these respective steady states were expected, as for values of b1, b2 > 1 there
exist two stable points (1, 0) and (0, 1), with a separatrix passing through
that splits their domains of attraction. This means the resultant steady state
that is achieved is dependent on the domain in which the initial conditions
lie in, with u > v tending to (1, 0), while v > u tends to (0, 1).

As expected, all the numerical wavespeed results involving wavefronts
transitioning from the unstable steady state (0, 0) were found to have no
dependency on b1 or b2. This expectation stems from the analytic calculation
of minimum wavespeed cmin > 2

√
dρ seen in equation (34), where cmin only

depends on d and ρ.
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6.3 Transitions from unstable steady states (1,0) & (0,1)

So far, we have only explored cases which involve the wavefronts transi-
tioning from the steady state (0, 0). However, it is possible for the wave-
fronts to move between two other equilibria. In these examples, the cor-
responding minimum wavespeed will be different to the wavefronts involv-
ing transitions from (0, 0). Here, the minimum requirement will be based
cmin = 2

√
dρ(1− b2) and cmin = 2

√
1− b1, as stated in the analytic results

section.

(a) b1 = 0.6, b2 = 0.4 (b) b1 = 0.4, b2 = 0.6

Figure 15: Transitions from (1,0) and (0,1) to coexistence. d = ρ =
1, U(0) = V (0) = 0.5 in the first five grid points, everywhere else they are
(1, 0) in (a), but (0, 1) in (b). The wave profiles are plotted at times 8, 16,
24, 32, 40 and 48.

Figures 15 (a) and (b) show the evolution of a system in which the wave-
fronts are moving between different steady states, when b1, b2 < 1. Since
b1, b2 < 1, one of the steady states involved will be the stable coexistence
state. In (a), the wavefronts transition between the coexistence equilibrium
and (1, 0), while in (b), they move between the coexistence equilibrium and
(0, 1). As expected, the wavespeed c is the same for both systems, with
c = 1.4668.

However, the wavespeed is found to be affected by the relative values of
b1 and b2. For case (a), the wavespeed is unaffected when b1 varies and b2
remains constant. For case (b), the wavespeed was found to be unaffected
when b1 remains constant and b2 is changing. By using the MATLAB code
when b1 = 0.6 and changing b2 from 0.1 to 0.9 in increments of 0.1, the
wavespeeds for case (b) were found to be:
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b1 b2 Analytic Numerical

0.1 0.6 1.8974 1.8858

0.2 0.6 1.7889 1.7721

0.3 0.6 1.6733 1.6610

0.4 0.6 1.5492 1.5363

0.5 0.6 1.4142 1.3993

0.6 0.6 1.2649 1.2470

0.7 0.6 1.0954 1.0717

0.8 0.6 0.8944 0.8712

0.9 0.6 0.6325 0.5922

Table 2: The wavespeed calculations for figure 15 (b), when b2=0.6 and b1
varies. The speeds are based on the analytic minimum cmin = 2

√
1− b1,

along with the MATLAB results.

Figure 16: Analytic vs numerical wavespeeds for figure 15. b1, b2 < 1.
Since the numerical results are identical when either b1 or b2 are changing,
along with identical analytic results, as d = ρ = 1, figure 16 applies to both
figures 15 (a) and (b).

These results are identical to the wavespeeds obtained for case 15 (a),
when b1 = 0.6 and b2 is changed from 0.1 → 0.9. Therefore, figure 15
(a) has a dependency on b2, while 15 (b) has a dependency on b1. From
equations (35) and (36), we can see this is expected since the eigenvalues for
(1, 0) depend on b2, while for (0, 1) the eigenvalues depend on b1. We can
conclude the numerical results are consistent with the analytic calculations.
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(a) b1 = 0.4, b2 = 1.6 (b) b1 = 1.6, b2 = 0.4

Figure 17: Transitions between states (1,0) and (0,1). d = ρ =
1, U(0) = V (0) = 0.5 in the first five grid points. The wavefronts move right
to left, from (0, 1)→ (1, 0) in (a) and from (1, 0)→ (0, 1) in (b). The wave
profiles are plotted at times 8, 16, 24, 32, 40 and 48.

Figures 17 (a) and (b) show the evolution of the system when either
b1 < 1, b2 > 1 or b1 > 1, b2 < 1, again with the wavefronts moving between
different steady states. This time however, the wavefronts are transitioning
from (0, 1) to (1, 0) in (a) and from (1, 0) to (0, 1) in (b). In these cases, it
is found that c = 1.4716. Similar to before, the MATLAB code was used
to investigate the effect of b1 and b2 on c. From our analytic minimum
wavespeed calculations for the points (1, 0) and (0, 1), we again expect to
find dependencies on b2 and b1 respectively. However, since either b1 > 1 or
b2 > 1, either equation (35) or (36) will become imaginary. As previously
stated, imaginary wavespeed requirements can be excluded.

It is found that the wavespeed in case 17 (a) is unaffected when b1 = 0.4
and the value of b2 varies from 1.1→ 1.9. The opposite is also true for case
17 (b). For case (a), the corresponding wavespeeds for varying b1 values are:

b1 b2 Analytic Numerical

0.1 1.6 1.8974 1.8902

0.2 1.6 1.7889 1.7819

0.3 1.6 1.6733 1.6661

0.4 1.6 1.5492 1.5421

0.5 1.6 1.4142 1.4054

0.6 1.6 1.2649 1.2558

0.7 1.6 1.0954 1.0854

0.8 1.6 0.8944 0.8841

0.9 1.6 0.6325 0.6643

Table 3: The wavespeed calculations for figure 17 (a), based on the analytic
minimum cmin = 2

√
1− b1, along with the MATLAB results.
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These results are identical to the speeds calculated for figure 17 (b),
but in this case b1 is constant while b2 varies. The analytic speeds for (b)
in this case would stem from cmin = 2

√
dρ(1− b2), where d = ρ = 1.

Therefore, it can be deduced that figure 17 (a) is dependent on b1, while
figure (b) is dependent on b2. This confirms the analytic results, since figure
17 (a) transitions from the steady state (0, 1), which has the minimum speed
requirement c > cmin = 2

√
1− b1, whereas figure (b) transitions from (1, 0),

which involves the minimum c > cmin = 2
√
dρ(1− b2).

Figure 18: Analytic vs numerical wavespeeds for figure 17 (a). b2 =
1.6, b1 varies. The results correspond to those seen in table 3. The analytic
results come from c = 2

√
1− b1.

The numerical results in figure 18 are found to be identical for the
wavespeeds relating to figure 17 (b) when b1 = 1.6, b2 = 0.4. This is ex-
pected since d = ρ = 1, meaning the minimum wavespeed requirements of
cmin = 2

√
1− b1 and cmin = 2

√
dρ(1− b2) are identical when b1 = b2 = 0.4.

6.4 Transitions between stable steady states (1,0) & (0,1)

In the cases when b1, b2 > 1, the states (1, 0) and (0, 1) are stable, while
the other two states (0, 0) and coexistence are unstable. Subject to these
conditions, wavefront transitions are possible from any of the four states to
either of the stable states (1, 0) or (0, 1). Since transitions from the unstable
(0, 0) when b1, b2 > 1 have already been discussed in figures 13 and 14, this
section will focus on transitions in a multistable system between the steady
states (1, 0) and (0, 1).
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Figure 19: Stationary profiles between steady states. d = ρ = 1,
b1 = b2 = 1.5. The initial conditions of the system are split between the
steady states (0, 1) and (1, 0) on the left and right respectively.

The wavespeed for this system is found to be c = 0. Since b1, b2 > 1, the
system is multistable containing two stable steady states (1, 0) and (0, 1),
with the systems’ parameters determining the resultant equilibrium. In
figure 19, b1 = b2 = 1.5, meaning there is symmetry and the system stabilises
between the two steady states, resulting in inert wavefronts. Therefore,
the calculated wavespeed c = 0 was expected and there are no travelling
wavefront solutions to be found. The wave profiles in figure 19 are plotted
at time 10. Up to this time the waves are slightly moving, before the system
freezes at equilibrium and the wavefronts become stationary. This is known
as a transient solution. If the profiles were stationary from time 0, step
functions would appear as opposed to the sloping wavefronts seen.
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(a) b1 = 1.6, b2 = 1.4 (b) b1 = 1.4, b2 = 1.6

Figure 20: Transitions between steady states (1,0) and (0,1). d = ρ =
1. (a) moves from left to right from (0, 1) → (1, 0) with speed c = 0.1138.
(b) moves right to left from (1, 0) → (0, 1) with speed c = −0.1138. The
initial conditions for the system are (0, 1) in the left half of the medium and
(1, 0) in the right half. The wave profiles are plotted at times 20, 40, 60, 80
and 100.

In figures 20 (a) and (b), b1, b2 > 1 but b1 6= b2, meaning travelling wave-
front solutions exist since the wavefronts are no longer stationary. However,
the two contrasting cases highlight how in the case of b1 > b2, the wavefronts
are moving from left to right with positive speed, while in the case of b1 < b2,
the wavefronts move left with negative speed. In figure 19, the competition
coefficients are equal meaning the system stabilises in the centre. However
in this case, the species with the greater competitve effect will dominate,
causing the movement of the wavefronts.

b1 b2 Wavespeed

1.9 1.1 0.4738

1.9 1.2 0.3825

1.9 1.3 0.3063

1.9 1.4 0.2400

1.9 1.5 0.1800

1.9 1.6 0.1288

1.9 1.7 0.0813

1.9 1.8 0.0388

1.9 1.9 0

Table 4: The wavespeed calculations subject to the parameters b1, b2 > 1,
b1 ≥ b2, when b1 remains constant and b2 varies. The wavefronts are moving
left to right from (0, 1) to (1, 0).

The above table provides the resultant wavespeeds when b1 ≥ b2 and
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highlights how in this case, the wavefronts are moving from left to right with
positive speed. It is also clear that the wavefronts move with greater speed
when there is a larger discrepency between the competition coefficients, as
well as reaffirming that c = 0 when b1 = b2.

Figure 21: Plot of numerical wavespeeds seen in table 4. Line showing
the change in wavespeed when b1 = 1.9 and b2 varies, provided b2 > 1.

b1 b2 Wavespeed

1.1 1.1 0

1.1 1.2 -0.1188

1.1 1.3 -0.2038

1.1 1.4 -0.2688

1.1 1.5 -0.3225

1.1 1.6 -0.3675

1.1 1.7 -0.4063

1.1 1.8 -0.4413

1.1 1.9 -0.4763

Table 5: The wavespeed calculations subject to the parameters b1, b2 > 1,
b1 < b2, when b1 remains constant and b2 varies. The wavefronts are moving
right to left from (1, 0) to (0, 1).

The table above highlights the contrasting case when b1 < b2, showing
how the wavefronts move with negative speed due to transitioning from right
to left.
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Figure 22: Plot of numerical wavespeeds seen in table 5. Line showing
the change in wavespeed when b1 = 1.1 and b2 varies, provided b2 > 1.

As expected, the wavespeeds follow the same trend as the case when b1 >
b2, with the modulus wavespeeds of b1 = 1.9, b2 = 1.1 and b1 = 1.1, b2 = 1.9
being near enough identical.

While numerical simulations are possible and allow us to understand the
behaviour of the resultant travelling wavefronts in a system where b1, b2 > 1,
finding analytic solutions has proven to be very complex. Papers by Kan-On
[5] and Girardin [4] have explored this topic to try and determine the ana-
lytics of this case, but so far no exact solutions have been found. However,
Kan-On was successful in determining certain conditions applicable to the
results.

For a family (u, v)(E ; ρ, b1, b2) with s(ρ, b1, b2), where s(ρ, b1, b2) repre-
sents the wavespeeds dependent on the three variables ρ, b1 and b2:

• s(ρ, b1, b2) satisfies−2 < s(ρ, b1, b2) < 2
√
dρ, implying there is a defined

range in which the wavespeeds must fall

• ∂
∂ρs(ρ, b1, b2) > 0, ∂

∂b1
s(ρ, b1, b2) < 0, ∂

∂b2
s(ρ, b1, b2) > 0

• Each wavespeed is unique

While there are unfortunately no analytic solutions to use as a basis for
comparison for the numerical results seen in tables 4 and 5, the results are
consistent with the determined range of −2 < s(ρ, b1, b2) < 2

√
dρ.
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7 Discussion

Since travelling waves are a fundamental part of many mathematical areas,
especially in reaction-diffusion systems, the study of travellling wave theory
has been an area of growing interest. The recent advancements in technology
and computational methods has had a significant impact on their use in
mathematical models which have a wide range of applications. Being most
fully developed for systems of partial differential equations, travelling wave
solutions are of growing importance in mathematical modelling. One reason
for this is the fact that analytic results are often not possible to determine.
Therefore, numerical simulations allow us to understand the behaviour of a
system as it evolves over time.

In the beginning of this paper, the theory of travelling waves was de-
tailed, followed by the introduction of the Fisher equation as an example of
how to generate travelling wave solutions. This gave us a base understand-
ing of the process of deriving these results, including how to determine the
minimum wavespeed requirement for the system and what this means. We
then moved onto another form of reaction diffusion equation, the Fitzhugh
equation. In the same way as with the Fisher equation, travelling wavefront
solutions were derived, however in this case the wavespeed was found to be
unique as opposed to simply a minimum requirement. A second method
of solving this equation, as a product of integral terms, was also briefly
described.

Moving forward, the analytic study of the Lotka-Volterra competition
model was explored, with the process of nondimensionalisation utilised to
create a dimensionless system for later use. Through substitution of the
travelling wave solution form into this system, we were able to derive a sys-
tem of first order ODEs from the original second order system. This allowed
us to use MATLAB to construct the 4x4 Jacobian matrix of the system and
generate the respective matrix of equilibrium states, from which each cor-
responding set of eigenvalues was calculated. From these eigenvalues, we
were able to determine minimum wavespeed requirements of each steady
state, based on the condition that each eigenvalue must be real. For the
point (0, 0), there arose two unequal wavespeed conditions, cmin = 2 and
cmin = 2

√
dρ. While the discrepancy between the two conditions was not

initially understood, it proved to become one of the more interesting find-
ings of this paper. It was determined that the wavespeed requirements were
not shared by the wavefronts of each species, with the fronts for species u
adhering to one speed requirement, while the second requirement applied
to the wavefronts of species v. The same scenario was found to apply to
the wavespeed requirements involving transitions from the points (1, 0) and
(0, 1), with one wavespeed requirement applying to species u, while the other
applied to species v. For transitions involving the states (1, 0) and (0, 1),
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the wavespeeds were found to be dependent on the competition coefficients
b1 and b2, while transitions involving the state (0, 0) were independent of
these.

We then discussed the numerical scheme that was used in the later simu-
lations, the explicit finite forward difference method. This method solves the
differential equations through finite difference approximations of the deriva-
tives. By converting the system into a set of recurrence relations, it was
shown how approximations of the time and space derivatives were used to
create successive results. Since this system can be unstable, Neumann sta-
bility analysis was applied to find the set of values for which the system was
numerically stable and how this was applied in the MATLAB code.

In section 6, numerical simulations for the system were ran using MAT-
LAB, subject to varying parameters and conditions, to understand the be-
haviour and evolution of the system in different cases. Beginning with tran-
sitions from the trivial unstable steady state to the coexistence equilibrium,
we first explored the system when the wavefronts of each species are moving
with the same speed and plotted their evolution over time. Transitions be-
tween these states occur when both b1, b2 < 1. The system was tested using
varying competition coefficients and initial conditions to verify the results
were independent of these factors, as per the analytics. We then ran the
simulations for the case when the wavefronts of each species move with dif-
ferent speeds. As opposed to a single transition between steady states when
moving with equal speeds, it was found here that different speeds resulted
in multistage transitions of the wave profiles. Because of this, the minimum
wavespeed requirements changed due to the involvement of the steady states
(1, 0) and (0, 1), as opposed to simply transitioning from (0, 0). By deriving
the results for the cases when the profiles of u move faster and slower than
those of species v, we discovered how the two species can adhere to dif-
ferent wavespeed requirements, with cmin > 2 applying to species u, while
cmin > 2

√
dρ applies to species v. However, the wavespeed requirements

cmin > 2
√

1− b1 and cmin > 2
√
dρ(1− b2) can apply to wavefronts for both

species. To confirm that cmin > 2
√
dρ applies to species v, we created a

modified system that kept the wavefronts of u slower than v for all d or ρ,
with the results consistent with this minimum wavespeed requirement.

Next, the system was tested when the wavefronts transition from the
trivial unstable steady state to one of the monoculture states (1, 0) or (0, 1).
The first case involved b1 < 1, b2 > 1 or vice versa, while case two involved
b1, b2 > 1. Again, since the system involves transitioning from the state
(0, 0), we expected the wavespeed results to be independent of b1 and b2,
which was found to be true. However, when b1, b2 > 1, we also confirmed
that the resultant steady state achieved by the system was dependent on
the competition coefficients and the initial conditions.
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We then made slight modifications to the MATLAB code to allow us
to test the system when transitioning from the unstable steady states (1, 0)
and (0, 1). In the first simulation we used b1, b2 < 1, meaning the sys-
tem transitioned to the stable coexistence state. Since the wavefronts were
transitioning now from the states (1, 0) and (0, 1), we found a wavespeed
dependency on b1 and b2, as expected. The next set of simulations involved
wavefronts transitioning between the states (1, 0) and (0, 1), when one state
is stable and the other is unstable. Transitions between these states in this
scenario occur when b1 > 1, b2 < 1 or vice versa. Again, the numerical re-
sults confirmed the wavespeed dependency on b1 and b2, as per the analytic
study.

Finally, the multistable system in which wavefronts transition between
the two steady states (1, 0) and (0, 1) was explored. In this system, the
steady states (0, 0) and coexistence were unstable. Transitions between these
steady states were possible when b1, b2 > 1, with the resultant equilibrium
achieved is dependent on the relative values of the competition coefficients.
We initially demonstrated that when b1 = b2, the system stabilises between
the steady states, meaning the wavefronts are motionless and there is no
existence of travelling wavefront solutions. We then moved on to show how
the relative size of the competition coefficients affects the direction in which
the wavefronts move. For b1 > b2, the wavefronts transition from (0, 1) to
(1, 0), moving left to right with positive speed. For b1 < b2, the wavefronts
transition from (1, 0) to (0, 1), moving right to left with negative speed.
As expected, the wavefronts were found to move faster as the discrepancy
between b1 and b2 increased. In contrast to the previous sections however, it
has not yet been possible to determine analytic solutions for the case when
b1, b2 > 1, despite numerous attempts. However, Kan-On was able to define
a range in which the results should lie, with our results being consistent with
his findings.

When using computer simulations to model a system, the numerical
results will never exactly match the analytic calculations. Reasons for this
include the numerical calculations being approximations at each space step,
which will always result in slight discrepencies. Therefore, provided the
numerical results are within an error margin of 2% when compared to the
analytics, the results are deemed as acceptable. Throughout this paper,
our MATLAB results were within this acceptable margin except for two
interesting cases, seen in figures 9 and 10. Here, when v moves slower then
u, the numerical results for species v converged to the analytic results as d
decreased. For the case when v moves faster than u, the wavefront speeds
for species u converged to the analytic minimum as d increased. While these
results were not expected, they can be deemed acceptable since the analytic
study simply provides a minimum wavespeed requirement and the numerical
results are found to be faster than this minimum.
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Through completion of this project, I have managed to enhance my cur-
rent knowledge relating to systems of partial differential equations and their
solutions, as well as learn valuable new skills and mathematical techniques.
I have developed a sound understanding of travelling waves and how to use
them as a method of solving PDEs, allowing us to better understand the
dynamics of the system. I have enhanced my knowledge on deriving the
steady states and resultant eigenvalues of a system, in turn bettering my
understanding of stability analysis and what this means with regard to min-
imum wavespeed requirements. Building on this, I have acquired knowledge
relating to a new numerical scheme, the finite forward difference method,
along with how to implement his onto a system. This method also built
on my knowledge from MATH421 of Neumann boundary conditions and
their importance, as well as providing me with a basic understanding of the
Neumann stability analysis method. The extensive use of MATLAB when
deriving numerical results throughout this project has increased my profi-
ciency with using this software, building on the basic skills I acquired when
completing the MATH552 project. Finally, thanks to my supervisor, I have
developed a better understanding of how to present my findings in a suitable
and coherent way, along with how to structure and format a mathematical
paper.
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9 Appendix 1

The following code was used to calculate the matrix of equilibrium points
seen in (29) and their respective eigenvalues.

syms u w v s b1 b2 c r d

SYS= [w==0,c*w-u*(1-u-b1*v)==0,s==0,(c*s-r*v*(1-v-b2*u))/d==0];

vars=[u w v s];

QQ=solve(SYS, vars);

P=[QQ.u(:) QQ.w(:) QQ.v(:) QQ.s(:)]

A=jacobian([w,c*w-u*(1-u-b1*v),s,(c*s-r*v*(1-v-b2*u))/d],[u w v s]);

N=sym(’X’,[1,4]);

A(N) = subs(A,[u, w, v, s],N);

J1=A(QQ.u(1),QQ.w(1), QQ.v(1), QQ.s(1));

J2=A(QQ.u(2),QQ.w(2), QQ.v(2), QQ.s(2));

J3=A(QQ.u(3),QQ.w(3), QQ.v(3), QQ.s(3));

J4=A(QQ.u(4),QQ.w(4), QQ.v(4), QQ.s(4));

e1=eig(J1)

e2=eig(J2)

e3=eig(J3)

e4=eig(J4)
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10 Appendix 2

The following code was produced to generate the numerical results of sys-
tem 26 and create the previously seen figures that show the evolution of
the resultant wavefronts over time. The wavespeed is calculated by tak-
ing the distance between two wavefronts at the points when the waves for
species v become greater than 0.5, then dividing this value by the time that
has lapsed between the waves. The systems’ parameters were changed to
solve the system for varying cases and conditions. By reducing the size of
the medium L and the total time tend, the code was refined to reduce the
time taken to generate the results without impacting their accuracy. The
diffusion coefficient D, the competition factors b1 and b2, along with the
initial conditions U1(i) and V 1(i) were simply changed to test the system
for different cases. However, the wavespeed c that is calculated using this
code tended to have an error margin of around 4 − 5%, a level too high
for acceptability. Therefore, slight adjustments were made with additional
code to reduce this error to an acceptable level of 1−2%. This new code ac-
counted for a moving frame of reference when calculating the speed, rather
than a stationary reference point that was used in the code seen below.

clear;

L=100; % size of the medium

t_end=50; % total time

D=1.;

hx=0.1; % space step size

ht=0.99*hx^2/(2*D); % time step size

nh=t_end/ht; % number of time steps

n=L/hx+1; % number of grid points

% center=int32(n/2)

b1=0.4; % competition factor

b2=0.6; % competition factor

Du=D; % diffusion coefficient

Dv=D; % diffusion coefficient

s1=ht*Du/hx^2;

s2=ht*Dv/hx^2;

U1=zeros(n,1);

V1=zeros(n,1);

UB=zeros(n,1);

VB=zeros(n,1);
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%inital conditions:

for i=1:5 %center-2:center+2

U1(i)=0.3;

V1(i)=0.5;

end;

%--------------------------------------------

t=0;

figure

E=0:hx:L; % Defining space

j0=2000

for j= 1:nh

%integration

for i=2:n-1

u=U1(i);

v=V1(i);

UB(i)=u+s1*(U1(i-1)-2*u+U1(i+1))+ht*u*(1-u-b1*v);

VB(i)=v+s2*(V1(i-1)-2*v+V1(i+1))+ht*v*(1-v-b2*u);

end;

%boundary conditions

UB(1)=UB(2); UB(n)=UB(n-1);

VB(1)=VB(2); VB(n)=VB(n-1);

% update

U1=UB;

V1=VB;

if rem(j,j0) == 0

plot(E(1:end),U1,’b’,E(1:end),V1,’r’);

hold on

end;

t=t+ht;

if j==j0

t1=t;

for i=2:n-1

if V1(i)>0.5

p1=i*hx;

end;

end;

end;

end;

t2=t;

for i=2:n-1

if V1(i)>0.5

p2=i*hx;

end;

end;
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speed=(p2-p1)/(t2-t1);

% plotting the profiles

% plot(E(1:end),U1,’b’,E(1:end),V1,’r’);

hold off

xlabel(’Space’)

ylabel(’Population Densities’)

legend({’= u’,’= v’},’Location’,’southeast’)

% Equations to quantify the success of invasions.
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