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1 Summary

The aim of this paper is to understand the dynamics of a system involv-
ing two interacting species, to eventually model the outcomes of interaction
where the two populations compete against each other. Several mathe-
matical concepts will be explored, including matrix analysis and numerical
integration of equations.

First, a brief outline of some feautres of bacterial cells will be presented,
to develop a basic understanding of the way they grow. Moving forward, the
concepts of one and two species systems will be detailed along with methods
to solve them, before introducing an existing model of which the equilibria
can be calculated and analysed.

By extending the previously mentioned model to include the competitive
factor of each species, we will again calculate and analyse the stable equi-
libria of this system. The process of nondimensionalisation will be detailed
and applied to the system, before using the newly dimensionless equations
to model each potential outcome of the system, dependent on changing pa-
rameters. This will allow us to produce evidence of how each parameter can
affect the resultant equilibrium of the system.
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2 Biological Background

How different species are able to coexist in nature is one of the fundamental
questions posed in ecology. While there is evidence suggesting that many
environments possess a carrying capacity at a level that allows coexistence
of species, as well as evidence supporting the idea of cooperative interaction
between them, the consequences of special interaction remains relatively un-
known [3]. With regard to bacterial cells, modelling allows us to widen our
understanding of their growth and the way in which they interact. Modelling
the interaction of bacterial species has a diverse range of real world appli-
cations, including safe food production and medicinal uses. For example,
decades of antibiotic misuse has led to increasing levels of bacterial resis-
tance, resulting in a continuing need to find alternate solutions [9]. Since
bacterial interaction within and between species can hinder and prevent the
colonisation of the other populations, mathematical modelling of their in-
teractions allows scientists to generate an understanding of the conditions
and circumstances required for preventing and eliminating the colonisation
of opportunistic pathogens.

2.1 Bacterial Properties

There are many features specific to bacteria that make them unique and
complex organisms. These characteristics provide bacterial species with an
ability to survive and thrive in even the most hostile environments, making
them one of the most abundant life forms on Earth. Binary fission, a form
of asexual reproduction, is the process by which bacterial cells divide to
reproduce and grow its population. Similar to mitosis, this begins with the
cell replicating its DNA and elongating to twice its size, as the two sets of
DNA move to opposite ends of the cell. A septum then begins to form in
the centre of the cell, creating a division that allows it to divide into two
genetically identical daughter cells. These cells can then separate entirely to
exist and divide as independent cells, or remain joined and undergo further
replication to form a cluster of cells.

Furthermore, even from a very low initial value, bacterial species can
vastly grow their population. This stems from each bacterial cell possessing
the ability to divide into two daughter cells, meaning each stage of binary
fission doubles the size of the population. Over time, this creates a popula-
tion whose growth increases exponentially. Therefore, we can calculate the
number of cells that arise through binary fission starting from a single cell as;

Number of cells at n = Initial number of cells x 2n

where n is the number of stages of replication [9].
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A key characteristic of bacterial cells is their generation time, which
refers to the period of time it takes for the population of cells to double its
density [9]. While the variation in generation time between species can differ
significantly, most bacterial cells have a relatively short generation time of
1-3 hours. Combined with an exponential growth ability, this means mass
populations of bacteria can form from minimal cells in a short space of time.
Generation time is affected by several factors, with an optimal rate achieved
in an abundance of resources and physical space, as well as appropriate en-
vironmental conditions being required.

2.2 Bacterial Growth

Over time, the growth of a bacterial population can be visualised as a curve,
which describes the four distinct phases the population experiences during
its lifecycle. These are;

Lag Phase: Upon introduction to a fresh medium, initial growth rate
is low, producing a relatively flat initial gradient. Despite being metaboli-
cally active, the cells undergo a period of adjustment to acclimatise before
replication. The duration of this lag phase varies between species, as well
as being affected by the environmental conditions, for example availability
of resources and temperature, plus any potential interaction with additional
species.

Log Phase: As previously discussed, in ideal conditions a population of
bacteria can achieve its maximum growth rate and reproduce exponentially.
This creates a steep gradient in the graph due to high rate of division over
a short period.

Stationary Phase: Despite the ability to reproduce exponentially, en-
vironmental factors create a maximum stable capacity the population can
reach, for example resource availability and physical space. When reached,
this limit means the population doesn’t have the ability to continue its
growth, resulting in the reproduction rate equalling the death rate of cells.
This plateau in population size creates a flat section of the graph, where the
bacteria have essentially entered survival mode.

Death Phase: Eventually, the depletion of resources in an environment,
coupled with the accumulation of waste products, causes the death rate of
cells to increase above the rate of replication. Thus, the population size be-
gins to decrease, producing a negative gradient along the growth curve. Over
time, the population will tend to extinction as all resources are exhausted [7].
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Figure 1: The general growth curve of a population of bacteria: four phases
in growth dynamics are indicated.

2.3 Special Interaction

As mentioned, the interaction of different species is an ever present occu-
rance in nature. Within this domain, there exist several contrasting types
of interaction that can arise, each of which entails different effects on the
associated populations.

Competition: Here, numerous populations exist in an environment
containing the same limited resources and space. Over time, interspecific
(between species) and intraspecific (within a species) competition arises due
to the contention for these resources, as each population aims to maintain
itself. While competition aims to eliminate one of the populations, differing
factors can mean coexistence is a possibility.

Predation: This involves one of the present species, the predator, re-
quiring the consumption of the prey species to maintain its population. This
type of interaction is beneficial to the predator population, while negatively
impacting the other. Such interaction can create an oscillatory effect on
the respective populations. In a system with a low number of predators,
the prey population thrives and begins to grow, in turn creating a greater
abundance of food for the predator population to consume. This causes the
number of predators to grow, meaning a greater consumption of prey species,
therefore decreasing the prey population. Less prey means less resources for
the predators, meaning they fight to survive and their growth rate declines.
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Repititions of these effects create the ever-oscillating population levels of
each respective species. This also highlights how the different species can
coexist, since the extinction of prey would result in the extinction of the
predator species.

Symbiosis: Generally the most common cooperative interaction in mi-
crobial systems, this occurs when the interaction of species results in the
maintenance of each population. Within this exist 3 types of symbiosis; mu-
tualism, which benefits all involved populations, commensalism, where the
benefit to one species has zero impact on the other, and parasitism, which
negatively benefits one species while leaving the other unaffected [9].
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3 Mathematical Background

Throughout the last century, the use of mathematical modelling in various
branches of biology has grown significantly in popularity. With regard to
bacterial species, modelling has become an important tool that opens up
the ability to understand the intricacies of their growth, transmission and
so on. Furthermore, mathematical models make it possible to investigate
mechanisms of interaction between species, as well as predict their strength
and probabilites. This type of data can be utilised in many aspects of life,
for example when trying to understand the impacts infectious diseases will
have on populations.

3.1 One Species System

In theory, the absence of a predatory population would result in the un-
bounded exponential growth of the prey population. This is where the
population’s per capita growth rate is maintained regardless of population
size, meaning the larger the size of the population, the faster it grows.

Exponential growth can be mathematically represented by:

dN

dt
= rN, (1)

where r represents the constant per capita growth rate, which means
how quickly the population grows per individual already in the population,
while N represents population size.

However, physical limitations, for example resource availability, means
there exists a limit on the maximum stable capacity of the population, known
as the population’s carrying capacity. This results in the population under-
going logistic growth, where its per capita growth rate declines as the overall
size tends to the carrying capacity. Under exponential growth, initial growth
rate is slow in a small population, but this increases rapidly meaning a plot of
population size over time produces a ’J-shaped’ curve with no limit. Mean-
while, under logistic growth, the population will experience a brief period of
exponential growth based on the abundance of resources and a lack of com-
petition. However, as the size approaches its physical limit, the growth rate
slows and begins to tend to zero. This creates an ’S-shaped’ curve, with a
steep exponential section that flattens off at the carrying capacity. The main
determining factor of a species carrying capacity stems from resource avail-
ability, which in turn creates intraspecific competition (competition within a
species). While this has little impact at low population size where resources
are plentiful, the strain of a large population intensifies competition.

As Verhulst derived in 1838, logistic growth can be mathematically rep-
resented [8] by the equation:
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dN

dt
= rN

(
1− N

K

)
, (2)

where K represents the species carrying capacity, r is a measure of the
rate at whichK is reached and r

(
1− N

K

)
represents the per capita birth rate,

which is dependent on N . Within this equation exist two stable points, at
N = 0 and N = K. Clearly, the trivial solution N = 0 can be ignored since
that would represent a population size of zero. Furthermore, substituting N

K
with x creates a nondimensionalised system, a process that will be described
further in Section 2, meaning all physical parameters have been removed.
Nondimensionalisation would create an ability to more accurately compare
the logistic growth of different species, with different population sizes etc.

However, to solve the dimensional logistic equation, separation of vari-
ables is used: ∫

dN

N
(
1− N

K

) =

∫
rdt

To evaluate the left hand side, we must separate it using partial fractions
to give:

1

N
(
1− N

K

) =
K

N (K −N)
=

1

N
+

1

K −N
,

hence; ∫
dN

N
+

∫
dN

K −N
=

∫
rdt,

ln|N | − ln|K −N | = rt+ C,

ln

∣∣∣∣K −NN

∣∣∣∣ = −rt− C,∣∣∣∣K −NN

∣∣∣∣ = e−rt−C

K −N
N

= Ae−rt,

where A = ±e−C . From this, we get:

N(t) =
K

1 +Ae−rt

where A = K−N0
N0

. Now, e−rt → 0 as t → ∞, therefore N → K as
t→∞ for any N0, showing how a population will always tend to its carrying
capacity over time.
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(a) Exponential Growth
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(b) Logistic Growth

Figure 2: Figure (a) shows the exponential growth of a population starting
from N = 1 with a rate r = 0.1. Figure (b) displays a population expe-
riencing logistic growth starting from N = 0.3, with rate r = 0.1 and the
carrying capacity K = 10.

3.2 Two Species System

The general model for two interacting populations can be described as;{
ẋ = f(x, y)

ẏ = g(x, y)
(3)

with the change of each population over time described as two different
functions, both determined by the same variables x and y. The partial
derivatives of this system quantify the effects of each species;

• ∂f
∂x represents the self-replicating effect of species x, reproduction

• ∂g
∂y represents the reproductive effect of species y

• ∂f
∂y and ∂g

∂x represent the effect of species y on species x, and x on y
respectively.

The partial derivatives ∂f
∂y and ∂g

∂x determine the type of interaction that
can take place;

• ∂f
∂y < 0, ∂g

∂x < 0 indicates competition between the species

• ∂f
∂y > 0, ∂g

∂x < 0 represents species x preying on species y

• ∂f
∂y < 0, ∂g

∂x > 0 represents y preying on x

• ∂f
∂y > 0, ∂g

∂x > 0 indicates a symbiotic system

To further analyse the two species system, the stationary points that
exist can be calculated as solutions to{

f(x, y) = 0

g(x, y) = 0
(4)
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To calculate the exact values of x and y at which the system is at equilib-
rium, simultaneous equations are utilised. Having solved to find all station-
ary points within the system, the stability of each point can be evaluated
using the system’s Jacobian matrix, which is the matrix of all first order
partial derivatives of a function. For the two species system, this is;

J =

[
fx fy
gx gy

]
To determine the stability of each stationary point, the values of x and

y at each point must first be inserted into the Jacobian. The eigenvalues of
this matrix must then be calculated through the solution of its characteristic
equation, defined as

det(J − λI) = 0

The real parts of the resultant values of λ1, λ2 deduce the stability of
each point, with;

• λ1 < 0, λ2 < 0 indicating a stable node

• λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0 signalling an unstable saddle node, or

• λ1 > 0, λ2 > 0 indicating an unstable node

3.3 Lotka-Volterra Model

Ever since the publication of the papers of Lotka [4] and Volterra [11], which
focused on a predator-prey model that showed how the populations of species
could permanently oscillate, there has been a great interest in studying the
dynamic models of interacting populations. Since the interaction of species
affects the dynamics of each population, this interest has stimulated the de-
velopment of modelling approaches to analyse such effects. In real circum-
stances, there will generally be a large system consisting of many interacting
species, called a trophic web.

Within 2-species systems there exists three main types of interaction;

• Predator-Prey Situation- In this scenario, special interaction causes
the decline of one population’s growth rate, whilst increasing the rate of the
other population.

• Competition- Here, interaction results in the decline of both popula-
tion’s respective growth rates.

• Symbiosis- The result of this type of interaction is the enhancement of
both population’s growth rates.

To better understand the interaction of different populations, Volterra
proposed the simple Predator-Prey model which mathematically describes
the predation of one species by another. Letting N(t) and P (t) represent
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the populations of prey and predators respectively at time t, then Volterra’s
model is;

dN

dt
= N(a− bP ), (5)

dP

dt
= P (cN − d), (6)

where a,b,c,d are all positive constants [5].

This model is based on several assumptions. Firstly, in the absence of
predation, the population of prey grows unboundedly. This is denoted by
the aN term. Secondly, the effect of predation is the reduction in the prey’s
growth rate by a term proportional to the respective populations of prey
and predator, denoted by the −bNP term. Also, the absence of prey results
in an exponential decay of predator population, denoted by the −dP term.
Finally, the cNP term describes the prey’s contribution to the growth rate
of the predator population, again by a term proportional to the size of the
predator population and the availability of prey. In real terms, the NP
terms can represent the conversion of energy through the food chain, bNP
is taken from the prey and cNP accrues to the predators.

As mentioned in the two species system calculations, the stationary
points of this system are calculated as solutions to

dN

dt
=
dP

dt
= 0

which for the Lotka-Volterra model represents

N(a− bP ) = P (cN − d) = 0

Rewriting as aN = bNP , one can see that for this to hold, N = 0 or
P = a

b . Rearranging to give cNP = dP , we must have P = 0 when N = 0,

or N = d
c when P = a

b . Therefore, the stationary points for this system are

(0, 0) and
(
d
c ,

a
b

)
.

Through evaluation of the systems’ associated Jacobian

J =

[
a− bP −bN
cP cN − d

]
,

the stability of each stationary point can be determined. The point (0, 0)
has the associated Jacobian

J =

[
a 0
0 −d

]
,
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providing the eigenvalues λ1 = a and λ2 = −d. In this case, the char-
acteristic equation does not need to be solved, since the matrix is diagonal.
Defined as a matrix whose only non-zero elements run from the top left to
the bottom right, the eigenvalues of such a matrix are simply just the values
that run along the diagonal. Since the eigenvalues at (0, 0) are of different
signs, it can be concluded that this is an unstable saddle node. The other
critical point

(
d
c ,

a
b

)
, with

J =

[
0 − bd

c
ac
b 0

]
,

has the imaginary eigenvalues λ1,2 = ±i
√
ad. Since both values are com-

plex, but contain real parts equal to zero,
(
d
c ,

a
b

)
can be determined as a

centre point.

The phase trajectory equation for the point
(
d
c ,

a
b

)
is calculated through

solutions to dy
dx . This is

g(x, y)

f(x, y)
=
y(−d+ xc)

x(a− yb)
, (7)

where N and P have been substituted with x and y for simplicity. Now,
this is a separable equation, meaning it can be integrated to give us

f(x, y) = −dln|x|+ cx− aln|y|+ by = constant (8)

Thus, we can now construct the following portrait;
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Lotka-Volterra Phase Portrait

Figure 3: A phase portrait is a geometric representation of the trajectories of
a dynamical system. The above figure shows the change in each population
of species P and N over time, representing the predatory and prey species
respectively. The arrows indicate the direction of change. Taken from [1].
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4 Modelling Competing Bacterial Species

This section focuses on the 2-species Lotka-Volterra model that exists, de-
scribing the competition of two bacterial species N1 and N2. One can anal-
yse the system in which two species compete for resources, in turn affecting
each others growth rates. Considering the competition model with species
N1 and N2, both of whom have logistic growth in the absence of the other,
we generate a new model describing the interaction of populations by

dN1

dt
= r1N1

[
1− N1

K1
− a1

N2

K1

]
(9)

dN2

dt
= r2N2

[
1− N2

K2
− a2

N1

K2

]
(10)

where r1, r2,K1,K2, a1 and a2 are all positive constants. The r terms
represent the linear birth rates of the respective populations, while the K
terms represent the maximum carrying capacity of each species. The a1
and a2 terms measure the competitive effect of N2 on N1 and N1 on N2

respectively. The competitve effect of each species is defined as the number
of individuals of one population that are equivalent to one individual of the
other species, in terms of their use of resource. For example, if 1 member of
the N1 population is equal to 1

4 of an individual of the N2 population, then
a1 = 0.25. If a1 = a2 = 0, the species are said to be independent of one
another, since this indicates that there is no interspecific competition.

4.1 Nondimensionalisation

Nondimensionalisation involves removing the physical dimensions of an equa-
tion and replacing them with suitable variables, to help parametrise the
problem by making the system unitless. One benefit of nondimensionali-
sation includes scaling the quantities to compare results with greater ease,
relative to an appropriate unit. For example, since the values N and K are
physical quantites relating to population size, using a substitution which di-
vides N by K restricts the potential values of our new variables to between
0 and 1, with 1 indicating a population that has reached its carrying capac-
ity. Creating a dimensionless system also reduces the number of parameters
involved. Again, this creates a simpler basis for comparison of the results.

The system is nondimensionalised using the substitution of the terms;

u =
N1

K1
, v =

N2

K2
, τ = r1t

The u and v terms remove the population dimension from the equations.
Doing this restricts the value of u and v to between 0 and 1, meaning
comparing the relative populations in proportion to their maximum capacity

14



is made easier. Since the system is also dependent on time, as shown by the 1
t

in the left hand side of each equation, τ is used to nondimensionalise the time
parameter by equating the right hand side to the same time dependency.

For equation 9, substituting in N1 = uK1, N2 = vK2, r1 = τ
t and t = τ

r1
provides

d(uK1)

d( τr1 )
=

τ
τ
r1

uK1

[
1− uK1

K1
− a1

vK2

K1

]
This system is now dimensionless, however the number of parameters is

further reduced with the substitution

b1 = a1
K2

K1

Now, the constant K1 in d(uK1) can be brought outside the derivative,
which allows all K1 values to be cancelled down. The τ values in the right
hand side of the equation can also be removed, giving us

du

d( τr1 )
= r1u [1− u− b1v]

Finally, bringing the value r1 out of the derivative allows us to remove
r1 from both sides of the equation, since

r1du

dτ
= r1u [1− u− b1v]

Meaning we are left with

du

dτ
= u [1− u− b1v]

For equation 10, which is

dN2

dt
= r2N2

[
1− N2

K2
− a2

N1

K2

]
the substitutions N1 = uK1, N2 = vK2 and t = τ

r1
create the dimen-

sionless equation

d(vK2)

d( τr1 )
= r2vK2

[
1− vK2

K2
− a2

uK1

K2

]
Again, K2 and r1 can be brought out of the derivatives to give

r1K2dv

dτ
= r2vK2

[
1− vK2

K2
− a2

uK1

K2

]
Cancelling down the K2 values and rearranging gives
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dv

dτ
=
r2
r1
v

[
1− v − a2

uK1

K2

]
A further reduction in parameters is again done using the substitutions

b2 = a2
K1

K2
, ρ =

r2
r1

Creating the equation

dv

dτ
= ρv [1− v − b2u]

This means we have created the dimensionless system

du

dτ
= u(1− u− b1v) (11)

dv

dτ
= ρv(1− v − b2u) (12)

4.2 Analytic Study

These equations form the basis from which we can calculate the steady
state equilibria and phase plane singularities, which are the solutions of
du
dτ = dv

dτ = 0.

These are;
u∗ = 0, v∗ = 0

u∗ = 1, v∗ = 0

u∗ = 0, v∗ = 1

u∗ =
1− b1

1− b1b2
, v∗ =

1− b2
1− b1b2

where u∗ and v∗ represent the solutions to equations 9 and 10 respec-
tively. The solution involving b1, b2 represents an equilibrium in which co-
existence of species is possible, but is only stable for values of b1, b2 < 1, any
other case is irrelevant.

However, the solution containing variables b1 and b2 are only of relevance
if u∗ ≥ 0 and v∗ ≥ 0 and are such that b1b2 6= 1.

The stability of these steady states is determined by the community
matrix, which is

A =

( ∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)
u∗,v∗

=

(
1− 2u− b1v −b1u
−ρb2v ρ(1− 2v − b2u)

)
u∗,v∗

16



We can now determine the stability of each steady point through calcu-
lating the eigenvalues λ of its community matrix, starting with (0, 0).

|A− λI| =
∣∣∣∣ 1− λ 0

0 ρ− λ

∣∣∣∣ = 0

Therefore the eigenvalues are λ1 = 1, λ2 = ρ. Since these values are
positive, this steady state is unstable.

For (1, 0), this calculation gives

|A− λI| =
∣∣∣∣ −1− λ −b1

0 ρ(1− b2)− λ

∣∣∣∣ = 0

Which generates eigenvalues of λ1 = −1, λ2 = ρ(1− b2)
This means that the point (1, 0) is{

stable, if b2 > 1

unstable, if b2 < 1
(13)

For the steady state (0, 1), the eigenvalues can be calculated as λ1 =
−ρ, λ2 = 1− b1.

Therefore, this point is{
stable, if b1 > 1

unstable, if b1 < 1
(14)

Finally, for the steady state at ( 1−b1
1−b1b2 ,

1−b2
1−b1b2 ), it has a matrix A when

it exists in the positive quadrant. That is;

A = (1− b1b2)−1

(
b1 − 1 b1(b1 − 1)

ρb2(b2 − 1) ρ(b2 − 1)

)
The eigenvalues of this matrix are;

λ1,2 =
(b1 − 1) + ρ(b2 − 1)±

√
[(b1 − 1) + ρ(b2 − 1)]2 − 4ρ(1− b1b2)(b1 − 1)(b2 − 1)

2(1− b1b2)

This equilibrium point is stable for all b1 < 1 and b2 < 1, since such
values would generate two negative eigenvalues.

To prove this, we will first look at each part of the equation individually.
(1 − b1b2) is always positive for b1, b2 < 1, since b1 multiplied by b2 is a
number smaller than one. Therefore, the denominator 2(1− b1b2) is always
positive, meaning the numerator must be always negative to generate two
negative eigenvalues. Since (b1 − 1) and (b2 − 1) will be negative, it follows
that their sum will also be negative. For future reference, we will use

(b1 − 1) + ρ(b2 − 1) = α.
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Now, looking at the terms under the square root, the first term

[(b1 − 1) + ρ(b2 − 1)]2 = α2

and is always positive since it involves squaring a negative value. For the
additional term we will use

4ρ(1− b1b2)(b1 − 1)(b2 − 1) = β

which will be strictly positive since the two negative terms (b1− 1), (b2− 1)
multiply to make a positive, meaning we have the positive value β being
subtracted from another positive value α2. Now there are two possibilities:

β < α2

β > α2

Looking at the first case, square rooting the value of α2 − β, where β < α2,
means the resultant value will be less than |α|, so for either case in which
it is added or subtracted from our initial negative value α, the result will
be negative. This means we have an always positive denominator, with an
always negative numerator, resulting in two always negative eigenvalues. For
the case β > α2, α2−β < 0 meaning the resultant square root is imaginary.
Therefore, we have our negative real value α ± our imaginary result in
the numerator. Combining this with our positive denominator means the
real part of both resultant eigenvalues is negative, with the stability being
determined by the real parts of the values. Since the resultant eigenvalues
are always negative, we can conclude that for any values b1, b2 < 1 the
equilibrium is stable.

Using the equilibrium calculations, we can now plot the schematic phase
trajectories near the steady states, which gives a visual representation of
how varying parameters can affect the dynamic behaviour of competing
populations satisfying the above model. The nullclines for the competition
model can be plotted and when combined with the stable points for each
case, can be used to find the domain of attraction. Nullcines are the sets
of points in the (u, v) plane at which du

dτ = dv
dτ = 0. For our system, this

represents

u(1− u− b1v) = 0

ρv(1− v − b2u) = 0

meaning we have u = 0, (1 − u − b1v) = 0 from the first equation, along
with v = 0, (1 − v − b2u) = 0 from the second. The points at which these
nullclines meet are the stable points of the system.
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Figure 4: The nullclines and direction fields near the equilibrium points for
the dynamic behaviour of the populations represented in equations 11 and
12. Taken from [9].

Figure 4 shows the phase trajectories for the four cases of dynamic be-
haviour of interacting populations. (a) represents b1 < 1, b2 < 1, where
there exists only one steady state S at which the coexistence of the com-
peting populations is possible. S is the only stable point in this case, with
all trajectories tending toward it. (b) represents b1 > 1, b2 > 1. Here exist
two stable points (1, 0) and (0, 1), with a separatrix passing through (u∗, v∗)
splitting their domains of attraction. In this case, the initial conditions dic-
tate which steady state is achieved. Initial conditions in domain 1 result
in u → 1, v → 0, while conditions in domain 2 tend to the other steady
state (0, 1). This system would eventually result in the extinction of one of
the competing species. (c) shows b1 < 1, b2 > 1, where there is only one
stable point (1, 0) and all trajectories tend toward it. The stronger compet-
itive effect of u dominates, causing it to reach its carrying capacity, while
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species v eventually becomes extinct. (d) represents b1 > 1, b2 < 1, where
the only stable point is (0, 1), again with all trajectories tending towards it.
Similarly to (c), the higher competitive effect of v results in it achieving its
carrying capacity while species u tends to extinction. Cases (b), (c) and (d)
represent competitive exclusion, where one species dominates to reach its
carrying capacity while the other is driven to extinction.

Figure 5: Visual representation of the domains of attraction for the four
cases of dynamic behaviour possible between interacting populations.

Figure 5 shows another way of representing the potential equilibria that
the Lotka-Volterra system can achieve. The orange panel contains the equi-
libria where stable coexistence is possible, relating to case (a) of figure 4.
Here, b1 < 1 and b2 < 1. The two light blue panels indicate systems that
each contain one stable equilibrium, at which one species is driven to ex-
tinction while the other reaches its carrying capacity. The top left panel is
achieved when b1 < 1, b2 > 1, while values of b1 > 1, b2 < 1 would result in
a point that lies in the bottom right panel. Lastly, the dark blue panel rep-
resents a system in which both b1, b2 > 1, with two stable equilibria existing
within this region. This is known as multistability, where the resulting equi-
librium is determined by the initial conditions of u and v, or by the relative
competitive effects b1 and b2, as shown later in figures 7a, 7b, 8a and 8b.
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4.3 Numerical Integration of Equations

Furthermore, we can use the nondimensionalised system of equations to gen-
erate MATLAB code that can create a graph to show how the populations
of each species changes over time, dependent on varying paramaters. Using
this code, we can alter the intial values of u and v, as well as assign differing
values to the competitve effect each species has on each other, b1 and b2, to
generate a group of graphs that show the different possible outcomes of the
system, as shown below.
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Figure 6: Numerical integration of the system of equations 11 and 12, for
concentrations of populations u and v. Here, b1 = 0.4, b2 = 0.6, u(0) =
0.1, v(0) = 0.5

Figure 6 shows a system in which there exists a stable steady state where
the populations can coexist, since b1 < 1 and b2 < 1. Both population
levels reaching a steady equlibrium and all trajectories tend to this state,
as highlighted by case (a) of figure 4. The level of each equilibrium is
determined by the initial values of u and v, as well as the competitive effects
b1 and b2. In this system the initial conditions are u(0) = 0.1 and v(0) = 0.5,
while b1 = 0.4 and b2 = 0.6, indicating species u has a larger effect on v,
hence u plateaus at a higher point. The higher competitive effect of u on
v also explains the drop in population of v, with both populations growing
initially in an abundance of resources, but the level of v declines as u grows
up to its equilibrium point.
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(a) b1 > 1, b2 > 1, b1 < b2
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(b) b1 > 1, b2 > 1, b2 < b1

Figure 7: Figure 7a portrays a system where b1 = 1.1, b2 = 2, u(0) = 0.1 and
v(0) = 0.5. Figure 7b involves the same initial conditions, however b1 = 2
and b2 = 1.8.

Figures 7a and 7b show systems in which both b1 and b2 are both greater
than 1. In these systems, three non-trivial equilibria can exist, however
only two stable points exist, (0, 1) and (1, 0). A separatrix passes through
(as shown in the phase trajectories), separating the domains of attraction.
The resulting equilibrium is determined by their relative competitive effects.
Figure 7a shows a case where the effect of u on v is greater than the opposing
effect of v on u, hence species u grows to its carrying capacity despite having
a lower initial size, while the population of v tends to zero. Meanwhile, figure
7b represents the opposite case, where v has a greater impact on u, meaning
species u is driven to extinction while v reaches its maximum.
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(a) b1 > 1, b2 > 1, b1 = b2, u(0) > v(0)
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(b) b1 > 1, b2 > 1, b2 = b1, u(0) < v(0)

Figure 8: Figures 8a and 8b show systems in which the competitive effects of
each species are equal, with b1 = b2 = 1.5. However, the initial conditions for
figure 8a are u = 0.5, v = 0.1, while for figure 8b they are u = 0.1, v = 0.5.

However, figures 8a and 8b show how the steady state that each of these
systems achieves can also be dependent on the initial conditions, as the
domain in which they lie triggers the resultant equilibrium. The figures
highlight that when the competitive effects b1 and b2 are equal, the species
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with the greater initial population will flourish while the other one eventually
dies out.
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(a) b1 < 1, b2 > 1
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(b) b1 > 1, b2 < 1

Figure 9: Figure 9a: b1 = 0.4, b2 = 1.6, u(0) = 0.1, v(0) = 0.5. Figure 9b:
b1 = 1.4, b2 = 0.6, u(0) = 0.1, v(0) = 0.5

Figures 9a and 9b display the systems in which one species has a signifi-
cantly stronger competitive effect than the other. In figure 9a, the stronger
competition of u causes it to dominate while species v is driven to extinc-
tion, while figure 9b shows the opposite, where species v reaches its carrying
capacity while u eventually dies out. Both of these systems contain only one
stable equilibrium, with all trajectories tending towards them regardless of
initial conditions, as shown by the lower starting value of u in figure 9a.

To integrate the nonlinear system of equations 9 and 10, which pro-
duced the results seen above, the explicit Euler method was used. This
is one of the first order numerical methods, along with the implicit Euler
and other Runge-Kutta methods, that solves time-dependent ordinary dif-
ferential equations that include a given initial value, by approximating the
solutions at each time step. These methods are used when the differen-
tial equations cannot be solved analytically, so numerical approximation is
required to understand the general trend and long term behaviour of the
system.

There are several reasons for selecting to use the explicit Euler method,
as opposed to implicit. For one, it is the most basic method for numeri-
cal integration, making it easier to implement, therefore also easier to code
when generating the MATLAB results above. Implicit calculations are more
complex due to the solution being found by solving an equation involving
both the current and successive states of the system. Explicit calculations
use only the current state of the system to calculate the state at each suc-
cessive time step. Moreover, the explicit method tends to generate more
accurate results than the implicit calculations.
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5 Conclusion

The aim of this paper was to mathematically model the potential outcomes
of a system involving two competing bacterial species. Initially, the growth
of a single species without the external pressure of another population was
successfully calculated and modelled. Here, it was shown how in theory, a
population will continue to grow exponentially in the absence of a form of
competition. However, as shown, limiting environmental factors create a
maximum stable capacity for the population. Any point past this capacity
is unsustainable, meaning the population size will always tend to this value
regardless of the initial conditions. Furthermore, the interaction of two
species was explored, initially focusing on the theory of how to calculate
the stable points of said system. Building on this, the Lotka-Volterra model
was then introduced, providing us with a predator-prey based model from
which the stable points can be calculated, allowing us to then geometrically
represent the dynamics of the system over time in the form of the phase
portrait.

The practice from the standard Lotka-Volterra model created a basis
on which we could build when modelling the competition of two competing
bacterial species N1 and N2. Nondimensionalisation of the system first al-
lowed us to analytically produce each equilibrium point of the system, then
evaluate their respective stabilities. From these solutions, we were able to
visually represent the dynamics of the system in different ways. Secondly, we
were able to model each potential outcome based on the numerical integra-
tion of the equations. Using MATLAB, it was possible to create a loop code
that used our parameters, b1, b2, u and v to generate a graph that accurately
displays the resultant impact on each population, with an ability to adjust
the parameters to solve for different cases. However, each of the resultant
models were limited to spatially homogeneous cases, meaning the movement
of each competing population was not factored into the calculations.

The produced models allowed us to highlight how the resultant equilib-
rium of a system involving two competing bacterial species is dependent on
the relative strength of competitve effect of each species, b1 and b2. For the
case in which b1, b2 < 1, the outcome is a stable equilibrium in which the
coexistence of the two species is possible. Here, the population of the species
with the higher competitive effect plateuas at a higher point. When both
b1, b2 > 1, there exists two cases which determine the resultant equilbrium.
If b1 6= b2, then the species with the higher competitive effect will dominate,
with the other population dying out. However, if b1 = b2, then the species
with the greater initial population will dominate. Lastly, for the case in
which b1 < 1, b2 > 1 or b1 > 1, b2 < 1, then the species with the significantly
higher competitive effect will ultimately outcompete its rival and grow to its
maximum capacity. The latter three cases highlight competitive exclusion,
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in which one species grows to its carrying capacity while the other is driven
to extinction.

Finally, through completing this project, I have learned and developed
many new skills and techniques relating to dynamical systems and mathe-
matical modelling. I have enhanced my knowledge from MATH322 on how
to calculate stationary points of a system, then how to evaluate their re-
spective stability. Furthermore, I have developed an understanding of the
process of nondimensionalisation, what it means and why it is necessary,
as well as how to apply it to a system of equations. As seen throughout
the paper, I have developed an ability to visually represent the varying dy-
namics of a competitive system in several ways, as well as practicing the
skills relating to nullclines and domains of attraction I had also acquired in
MATH322. Lastly, I have developed new MATLAB coding skills, a soft-
ware I had never previously used, relating to the numerical integration of
differential equations and an ability to plot the results.

Mathematical modelling holds an important place in biology due to its
many benefits. The ability to test and understand systemic knowledge, as
well as use this to predict future outcomes based on varying parameters,
has an extensive range of real world applications. Modelling can also aid
in deepening our understanding of complex problems and make them seem
simpler, as well as making the analysis of anomalous results easier. There-
fore, mathematical modelling will continue to grow as an ever-present part
of biological studies.
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6 Appendix

The following code was used to generate the results previously seen in section
3.3.

clear;

t_end=30; % time

b1=2; % level of toxicity

b2=1.8;

ht=0.1; % time step size

%inital conditions:

u=0.1;

v=0.5;

nh=t_end/ht;

%--------------------------------------------

t=0; k=0;

U1=zeros(nh,1);

V1=zeros(nh,1);

for j= 1:nh

U1(j)=u;

V1(j)=v;

u0=u+ht*u*(1-u-b1*v);

v0=v+ht*v*(1-v-b2*u);

u=u0;

v=v0;

t=t+ht;

k=k+1;

end;

% Defining the time

E=0:ht:t;

% plotting the profiles

figure

plot(E(2:end),U1,’b’,E(2:end),V1,’r’);

xlabel(’Time’)

ylabel(’Relative Populations’)

legend({’= u’,’= v’},’Location’,’southeast’)

% Equations to quantify the success of invasions.

This specific code was used to generate the results seen in figure 7b.
However, by simply changing the values of b1, b2, u and v seen at the top of
the code, the outcome for each potential type of interaction can be produced.
The code has created a loop which solves the system of equations 11 and
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12 using the initial values of u and v, as well as the selected values of b1, b2,
then continues to solve at successive time steps of 0.1 to plot the changes in
respective populations over time.
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