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Statement of Originality

This dissertation was written by me, in my own words, except for quotations
from published and unpublished sources which are clearly indicated and ac-
knowledged as such. I am conscious that the incorporation of material from
other works or a paraphrase of such material without acknowledgement will
be treated as plagiarism, according to the University Academic Integrity Pol-
icy. The source of any picture, map or other illustration is also indicated, as
is the source, published or unpublished, of any material not resulting from
my own research.

Summary

This dissertation was focused on building upon the pattern formation anal-
ysis performed and demonstrated for reaction-diffusion systems, applying
methods used for these systems onto systems displaying chemotaxis, with a
particular focus on variants of the Keller- Segel model as described in [12]
for a certain set of parameters; as well as building upon the numerical meth-
ods used for modelling such systems and the procedures done to ensure the
stability and accuracy of a given numerical method applied. In the course of
this discertation, conditions for Turing pattern formation were obtained for
three states of the Keller-Segel model, including one exhibiting non-constant
chemotaxis. In addition, the isues surrounding two of these models were dis-
cussed, and were remedied.

In the following section, the numerical methods applied to model these sys-
tems were stated and derrived, with conditions for their stability being de-
fined by use of appropriate stability analysis methods. Considered too was
the accuracy of finite difference methods, especially for modelling advection,
which led to the utilisation of a staggered grid finite volume scheme for the
non-constant chemotaxis model, more specifically the two-step Lax Friedrichs
method.
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1 Introduction

1.1 Pattern formation

The modelling of pattern formation, biological or otherwise, is a problem
that is of great interest in the literature, especially concerning biological pro-
cesses such as the development of the embryo[20]. One may notice patterns
everywhere in nature, such as in the development of sand dunes or basalt
columns to name some non-biological cases, as well as biological cases such
as the aforementioned embryo and tiger stripes; but if one considers the pro-
cesses required for them to come about, they may seem unintuitive. The
field of developmental biology is especially concerned with these processes
for biological and chemical systems.

In this paper we are going to be looking at biological processes evolving over
time and space, namely ones involving chemotaxis, and pattern formation
which may arise from them. As such, it may be useful to summarise past
work done in the preliminary discretisation [13], considering that some of
the methods adopted for analysis and numerics of systems exhibiting Tur-
ing instability with simple diffusion will be applicable to systems exhibiting
chemotaxis.

Figure 1: Examples of Turing pattern formation exhibited in animals, in
alphabetical order: stripe pattern formation in zebra, spot patterns on a
leopard, patch pattern formation on a giraffe and ring patterns formed on a
coral snake [18] .
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The previous discretisation [13] had focused on Turing instability, which is a
process used to model biologically occurring pattern formation (for example
on zebras on in embryos) .It was introduced with a summary of Turing’s
original paper [20]: where a descriptive model was created for describing how
something like an embryo could develop into a more complicated creature,
more specifically how could stable bands or points of chemical concentrations
arise from what was initially considered a well mixed substance. Turing
approached this by assuming the part evolving through time were based
primarily on chemical processes, and adding a diffusion component on top
of that. In addition to this, Turing had simplified the chemical interactions
in the system, as the system in question would be affected by a great deal
of hormones and genes, even if they themselves are less acted upon and
assumed to be fully catalytic. Instead, they would be later accounted for in
the system’s kinematics. Therefore, for a 2 chemical system, the equations
would take the following form:

At = F (A,B) +DA∆A, (1)

Bt = G(A,B) +DB∆B. (2)

In this context, the equations F (A,B) and G(A,B) represent the reaction
part of the equation, and are called the kinetic terms of the equation, as
they evolve over time rather than space. They may be thought of as driving
the chemical interactions occurring within the system, hence the name. The
terms inside the equations, A and B represent the chemical concentrations
of the ”morphogens”, or the chemicals which are directly involved in pattern
generation. Finally, DA, DB represent the diffusion coefficients for the diffu-
sion terms to which they are attached. The diffusion component represents
the natural dispersion of the chemical through the membrane on which it
acts. Typically, DA is taken to be 1, and DB called d in the context of the
previous dissertation. It should also be noted that in actuality, there are
lots of catalysts, one sided reactions and side products often occurring at the
same time as the primary reactions modelled, which should be taken note
of when prescribing constants in the kinematics, even if the model doesn’t
address them explicitly. In addition, as our system is a system of PDEs, it
is necessary to form boundary conditions which act upon our model. The
model is taken with zero-flux boundary conditions, acting on the length of
the membrane, L and at 0.

Turing also went on to state that the initial assumption should be made
that the system is ”well-mixed”, or homogenous, that is to say that ∆A and
∆B should be assumed to be zero, and that the system should be stable for
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those conditions. He also went on to say that this assumption would break
down, and that another analysis should be performed, this time with diffu-
sion and with instability occurring at some point. This analysis formed the
backbone on the previous dissertation. Briefly covered too was the process
of non-dimensionalisation, which made analysing systems easier. Finally, a
numerical model was formed to describe the evolution of this system and
to demonstrate the exhibition of Turing Instability patterns. As the system
described before was non-dimensionalised, we should introduce also its non-
dimensionalised general form, where u and v represent non-dimensionalised
morphogen concentrations, f(u, v), g(u, v) represent our kinetics and t is a
non-dimensionalised variable representing our time component. In addition,
as mentioned before, our DA and DB were set as 1 and d respectively. Also
worthy of note is that in a ”homogenous” state, the delta components would
still be taken as zero.

ut = f(u, v) + ∆u,

vt = g(u, v) + d∆v.

The analytics were began by considering a ”well mixed” homogenous system.
This part is relatively simple as we do not have to deal with the diffusion
terms at all, and may treat this PDE system like an ODE to some extent
for its stability analysis. Our first problem is finding the fixed points of the
system, which we can do by setting its LHS to zero, and solving the resulting
system of equations for viable u and v in terms of our parameters. For
simplicity, we will call these fixed point values of u, v as u0, v0 respectively.

ut = 0 = f(u0, v0),

vt = 0 = g(u0, v0).

Having now obtained at least one fixed point about which we may con-
tinue our analysis, we linearise our system about the fixed point. If we con-
sider only the kinetics of ut, f(x, t), their linearised form will take f(u, v) ≈
f(u0, v0)+ufu(u0, v0)+vfv(u0, v0). The f(u0, v0) term is then eliminated, as
by definition of the stable points for the homogenous state, the kinetics must
be equal to zero. The same process is applied to vt = g(u, v), but will be
skipped for brevity. We then derived our Jacobian (a matrix of derivatives
of u and v for f and g), which left us with the following matrix, where our
derivatives had the fixed points derived earlier substituted into them:

J =

(
fu fv
gu gv

)
.
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We may now find the stability of this system, which we do by introducing
a stability parameter λ, and finding conditions when the following matrix
equation has λ < 0, which corresponds to a stable system: |J − λI| = 0.
Having achieved this, we found that we would have two conditions for stabil-
ity of the homogenous state, those being: fu + gv < 0, and (fugv− fvgu) > 0.
This part is essential in the analysis as it gives us conditions which must be
held to during the analysis of the distributive system in order to prevent it
from being completely unstable.

Having done this, we now consider the ”distributive” system, that is the ac-
tual case where diffusion is assumed to have an impact. The assumptions
made in order to arrive at the ”homogenous” model can not be maintained
for long as the system evolves in time and space. For instance, some small
differences in concentrations over the medium exist. However, some of the
results received from the ”homogenous” analysis may be directly applicable
to our distributive system, namely our derived conditions and our fixed point
parameters.

As the system has spatial components affecting it now, it may not be purely
analysed like an ODE system, and getting it to a state where it could be had
been a relatively heavy component of the 552 dissertation. As such, it will
be covered here in some more detail. First off, we need to linearise about our
fixed point once more, this time admitting functions in both time and space.
Let us call the linear functions substituted ξ(t, x) and δ(t, x), such that our
linearisation gives: u = u0 + ξ(t, x) , v = v0 + δ(t, x). Note that partial
differentiation of these terms in order to substitute them into the equation
system eliminates the constant term about which linearisation took place.

Having constructed our linearisation terms, we substituted them into our
distributive equation system to arrive at a linearised system of partial differ-
ential equations, after also linearising f and g:

ξt =ξxx + fuξ + fvδ,

δt =dδxx + guξ + gvδ.

As is evident by looking at the linearised system derived here, one of our
major problems is that it is still a partial differential system of equations. In
order to solve this, we will enter a substitution for ξ and δ, where we separate
them into an infinite series of multiples of two single-term equations. For
brevity, only ξ will be demonstrated here, however the exact same principles
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apply to δ:

ξ =
∞∑
i=0

ξ
(1)
i (t)ξ

(2)
i (x).

By making this substitution, we can approximate ξ
(2)
i (x) by the sum of the

sine and cosine of πix
L

, where L is the length of our medium. As we apply
zero-flux boundary conditions, we may eliminate the sine component, leaving
us with ξ

(2)
i (x) = cos

(
πix
L

)
, which simplified our linearised system of partial

differential equations into an infinite number of ODE systems, for i ∈ N0.
In real terms, this is directly proportional to our wave number, k, which we
define as k = iπ

L
. In order to prepare the system for the next part of our

analysis, it can be represented as a matrix equation:(
ξ̇i
δ̇i

)
= −k2

(
1 0
0 d

)(
ξi
δi

)
+

(
fu fv
gu gv

)(
ξi
δi

)
.

From this point on, we can take the Jacobian and solve it for a range of
unstable cases for some k , while keeping to the conditions necessary for the
homogenous state to be stable. These conditions were found to be the follow-

ing in the course of the dissertation: dfu+gv > 0 and (fugv−fvgu) < (dfu+gv)2

4d
.

The dissertation also describes obtaining the wave number at which the sys-
tem becomes unstable. Finally a simple PDE simulation was used, namely
the Euler method, to demonstrate the results obtained.

In [13] two specific models were analysed with respect to pattern formation:
the Schnakenberg model and the Meinhardt model. Not covered however
were their biological applications, nor what their terms sought out to model
and describe. It may therefore be valuable to cover this here.

The Schnakenberg model is a reaction-diffusion model designed to involve as
minimal a number of reactants and reactions as feasible, while being able to
exhibit limit cycle behaviour and be applicable to chemical problems [2]. To
this end, Schnakenberg found that at least 3 reactions would need to be tak-
ing place for his model to work as intended, with one being ”autocatalytic”,
that is for two chemicals A and B, the reaction taking place between A and
B would result in only B being produced [2]. The terms of the equation
therefore correspond to the relative concentrations of chemicals as they are
produced and recycled. For the model considered by [13], only the concen-
trations of two chemicals were considered.

The Meinhardt model, or Geirer-Meinhardt model is an activator-inhibitor
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model, that is to say a model where the two chemicals involved work in op-
position to another. These models are a subset of reaction-diffusion models,
discovered by the same [9]. Activator-inhibitor models, and specifically the
Meinhardt model, are used to describe the formation of chemical and biolog-
ical patterns, including those of animals such as stripes and spots [10].

1.2 Chemotaxis

Figure 2: An illustration of an E. coli bacterium and the mechanism by
which it is able to move. In alphabetical order: counter-clockwise flagellum
spin (forward movement), clockwise flagellum spin(tumbling mode), random
movement of an E.coli bacterium without chemical stimulus, movement of
an E.coli bacterium with a positive chemical stimulus [6].

The process that we will follow for the analysis of our system describing
chemotaxis is relatively similar to that which was followed for the analysis of
Turing instability formation in [13], although more on the different challenges
inherent in these systems will be described in greater detail later on. A brief
summary of the methods involved has been provided in the previous section
as well.
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Chemotaxis is a behaviour exhibited by certain cells and single-celled organ-
isms where they respond to a chemical stimulus such as a pheromone or a
poison. Consider a bacterium of a certain species. That bacterium will re-
quire some food to survive or perhaps also be able to avoid threats, and in
order to do that, it will need a mechanism by which it can detect higher con-
centrations of the food and move towards it, or be able to detect threats from
afar and avoid them. These processes are examples of chemotaxis, be that to
positive stimuli such as the food, or to a negative stimuli such as a poison.
Although the exact processes of chemotaxis vary by what kind of organism
is undertaking it (eukaryotic vs prokaryotic), the constant remains that the
process is based upon proximity to the chemical stimulus, more specifically,
the chemical gradient.

Sticking with bacteria for now, we may consider a real world example of an
E. Coli bacterium. The E. Coli bacterium has little ”tails” to aid its move-
ment, called flagella. These flagella can move in two directions: clockwise
or anti-clockwise, from the perspective of someone looking down the flagella
towards the bacterium. If they move anti-clockwise, the flagella will align
relatively straight, and the bacterium will move forward. If the flagella move
clockwise however, they will bundle apart, and the bacterium will move rel-
atively little, instead rotating or ”tumbling” [21]. The bacterium will switch
between the two states when no chemotaxis is taking place at a steady rate,
thus allowing the bacterium to wander aimlessly if no stimulus is to be found
[3]. However, if a stimulus is found, the bacterium will change the rate at
which it switches, depending on whether it’s going towards or away from the
stimulus, and whether the stimulus is positive or negative, enabling the bac-
terium to move to more favourable locations [4]. This behaviour is illustrated
in 2.

As mentioned before, chemotaxis is also exhibited in eukaryotic cells, which
are ones with a defined nucleus (such as those found in the animal kingdom),
albeit it is exhibited in oftentimes more complex ways, owing to the differ-
ent circumstance that these cells find themselves in, such as greater size,
multi-cellular structures and so on. A perhaps apt example (given the focus
of Turing’s paper on embryonic growth) of this may be the utilisation of
chemotaxis by sperm cells to reach the egg, although as with morphogenesis
and Turing patters, other important examples arise as well. For instance, in
the medical field chemotaxis plays a role in the modelling of many diseases
and ailments, even putting aside bacterial chemotaxis, improper chemotaxis
of certain cells like leukocytes and lymphocytes plays a role in inflammatory
diseases like asthma and arthritis [8] [17]. In addition to this, the natural

9



process of chemotaxis in a body may become subverted during cancer metas-
tasis [19]. Because of the role that chemotaxis plays in all this, its study and
modelling is important for mathematical biology.

Eukaryotic cells are often times quite a lot larger larger than prokaryotic cells.
Because of this, they can benefit from being able to sense differences in con-
centrations between two separate points [11]. This removes the need to ”run
and tumble” as the E. coli has to make do with, however it does create the
need for a ”dynamic and polarised distribution of receptors” [11]. Triggering
these receptors with a chemical gradient will result in movement towards or
away from the chemical, depending on whether it is a positive stimulant or
negative. As stated in the last paragraph, the role which chemotaxis plays
is key in biology, with deployment of mathematical models and techniques
to describe it ever increasing. For instance, chemotaxis is being used in de-
scribing the development of an embryo.

Relating this all back to our Turing system however, the key difference be-
tween the two classes of system when it comes to the mathematics is that
Turing reaction-diffusion systems only have one spatial component per equa-
tion: the diffusion component which is always the ∇2 of the concentration
which the LHS represents the first time differential of, multiplied by some
constant.

However, for chemotaxis, there is no such limitation. The spatial component
may include a ∇2 of another concentration, it may also be a ∇ of this con-
centration and the ∇ of another concentration, for example. As such, not
much changes in the homogenous portion of our analysis, except for different
models having different kinematics, but for our distributive system the mat-
ter of finding appropriate linearisations may prove more tricky. In addition
to this, some combinations of ∇ are difficult to model numerically, which is
why alternative schemes are covered further on for modelling such systems
numerically.

More specifically, the chemotactic system that this dissertation is concerned
with is the Keller-Segel model, introduced by Keller and Segel in the 1970’s
[12]. Though a more general form of this system will be described in de-
tail further on, a simplified example shall first be presented for digestibility
purposes. By taking the Keller-Segel system from [12] and having Ψ(u, v) ≡
1,Φ(u, v) ≡ α for all admissible values of u and v, we are left with the
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following system:

ut = du∇2u− α∇2v + k3(u, v), (3)

vt = ∇2v + k4(u, v)u− k5(u, v)v, (4)

where du is a constant of diffusion, α a constant of chemotaxis and k3, k4, k5

are the kinetics of the system.
The general version of this system is the following:

ut = ∇ · (duΨ(u, v)∇u− Φ(u, v)∇v) + k3(u, v), (5)

vt = ∇2v + k4(u, v)u− k5(u, v)v, (6)

where u and v denote cell population density and the concentration of a posi-
tive chemical stimulant. Additionally, Φ(u, v) represents the cell’s chemotac-
tic sensitivity, Ψ(u, v) represents the diffusivity of the cells, k3(u, v) denotes
the death and growth of the cells, k4(u, v) denotes the production of the chem-
ical stimulant while k5(u, v) denotes its degradation. Finally, du represents
the diffusion coefficient of the cell [1]. For the purposes of our further anal-
ysis, we will introduce the following constants k4(u, v) = β and k5(u, v) = γ.

Additionally, depending on whether the system exhibits logistic growth or
not, k3(u, v) will either be equal to ρu(δ − u) or zero respectively. Finally,
for systems with constant chemotaxis, Ψ(u, v) and Φ(u, v) will equal 1 and
α respectively, otherwise Φ(u, v) = αu. α, ρ, δ are all constants.
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2 Modelling pattern formation due to chemo-

taxis

2.1 Keller-Segel Model

The first model that we call consider is a simple case of the Keller-Segel
model, with kinetic terms k3 = 0, k4 = β and k5 = γ, as well as with
chemotactic sensitivity Φ(u, v) = α:

At = du∇2A− α∇2B, (7)

Bt = dv∇2B + βA− γB. (8)

Such a model would have a cell population influenced only by chemotaxis,
due to the kinetic for death and growth of the cells being always zero, as well
as having constant chemotaxis, irrespective of cell population density. In this
section, our first concern with this system will be to non-dimensionalise it,
which will aid with analysis of the system later on. To do this, we introduce
non-dimensionalisation constants and derive further substitutions from them:

u = AP,τ = RtL−2, uτ =
L2P

R
At, ∇2A =

1

PL2
∇2u, (9)

v = BQ,χ = xL−1, vτ =
L2Q

R
Bt, ∇2B =

1

QL2
∇2v. (10)

The constants introduced here are P,Q,R, L, for which we will find appro-
priate solutions such as to eliminate up to 4 constants from the original
equation system, although this number will be found to be lower in practise.
The non-dimensionalised variables introduced: u, v, τ, χ, represent the cell
population density, concentration of positive chemical stimulant, time and
space respectively. It should also be noted that ∇2 with respect to u and v
has also been non-dimensionalised by the above scheme. Having constructed
our non-dimensional terms, we substitute them into our equation system to
obtain the following:

uτ =
du
R
∇2u− αP

QR
∇2v, (11)

vτ =
dv
R
∇2B +

βL2Q

PR
u− γL2

R
v. (12)

Given this system, we are able to now pick our 4 non-dimensionalisation con-
stants to simplify down the system. We may start by making the substitution
R = dv and introducing a diffusion constant D = du

dv
, which will simplify our
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diffusion as much as it can be simplified. We may then focus on the kinet-
ics of the system, as make the substitution L2 = dv

γ
, which will reduce the

coefficient of the degradation of our chemical stimulant to 1. We will then
be left with two non-dimensionalisation constants P and Q, however in both
circumstances where they remain, one is divided by the other. In effect, this
means that we are given only 1 degree of freedom to make substitutions for
elimination. The substitution chosen is P

Q
= β

γ
, which reduces the coefficient

of the production of our chemical stimulant to 1. Finally, we group the con-
stant coefficients of the chemotaxis into one overall non-dimensional variable:
a = αβ

dvγ
.

Having obtained a non-dimensional form of this model, shown below, we
now move onto analysing it for pattern formation. For convenience, the
non-dimensionalised parameters τ and χ have been replaced with t and x
respectively.

ut = D∇2u− a∇2v, (13)

vt = ∇2v + u− v. (14)

We now make the assumption that our system is homogenous. Materially
speaking, this assumption posits that our system starts off well mixed, with
negligible differences in concentration over the medium. In practise, this
means that we may assume our chemotactic and diffusion parameters to be
zero, leaving us with just the kinetics of the system:

ut = 0, (15)

vt = u− v. (16)

In order to find stable homogenous solutions for the system, we must first
find the stable points of the system. This is done by finding the appropriate
values of u and v when ut, vt = 0. As such, we set the left-hand side of 15 to
zero as follows:

ut = 0 = 0,

vt = 0 = u0 − v0.

This system is very trivial to solve for an appropriate solution for our fixed
point. Namely, the solution is a set of points where v0 = u0.
Having found the fixed points, we may now move onto solving for stability.
To do this, we take the Jacobian matrix of 15 and subtract from it the
eigenvalue identity matrix, where λ is the eigenvalue:∣∣∣∣−λ 0

1 −1− λ

∣∣∣∣ = 0.
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We then solve this equation for λ, which returns us with two possible solu-
tions: λ = 0,−1. In order for the homogenous system to be stable, λ < 0
therefore we are left only with λ = −1 as a possible solution. This solution
is independent of any constants, therefore it is satisfied in all cases.

Having finished our homogenous analysis, we now move onto the distributed
analysis part. We begin by making a linear substitution, introducing ξ and δ
for u and v respectively (and although these were not present, eliminating all
terms of second order or greater). This leaves us with the following system,
given that the medium has only one spatial dimension:

ξt = Dξxx − δxx,
δt = δxx + ξ − δ.

Next we make a substitution for ξ and δ of ξ(x, t) =
∑∞

i=1 ξ
(t)(t)cos(πix

L
) and

δ(x, t) =
∑∞

i=1 δ
(t)(t)cos(πix

L
). In essence, we split up the terms into two:

a time component and a spatial component. From here, it is evident that
the spatial component will have a solution in terms of sines and cosines, and
we can eliminate the sines by our zero flux boundary conditions. Having
obtained this system, we cancel out the cos(πix

L
) turning our PDE system

into infinitely many ODE systems, for i ∈ N+. We also simplify our notation
of ξt(t) and δ(t)(t) to ξ(t) and δ(t), as well as letting k = iπ

L
, where k is the

wave number of our system:

ξ̇ = Dk2ξ − k2δ, (17)

δ̇ = k2δ + ξ − δ. (18)

As we did for the homogenous system, we take the Jacobian of the above
yielding us the following equation for λ:

λ =
k2(D + 1) + 1

−2
±
√

(Dk2 + k2 + 1)2 − 4h(k2)

2
, (19)

h(k2) =(Dk2)(k2 + 1)− ak2. (20)

From the above equation, we want to obtain a result for λ which is positive
for at least one of the roots. Inspecting the term outside of the square root,
we note that by conditions derived for the homogenous system, the term will
remain negative for all values of k2. Therefore the square root term must
be greater than the term outside the square root for some λ, and in order
for that to be the case, h(k2) < 0 is required, which gives us the following
required condition:

D(k2 + 1) < a. (21)
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If we consider our definition of k, namely k = iπ
L

where L represents the length
of the medium upon which our morphogens interact, we can further simplify
this resulting condition. For situations where the length of the medium is
large, that is L → ∞, our value for k must subsequently approach zero
for a given value of i. As a result, we are left with D < a as a simplified
approximate condition for cases where the medium of morphogen interactions
is very large. In order to avoid this in simulations, a relatively small medium
size of L = 20 was chosen.

Figure 3: Two simulations of morphogen concentrations over time. For
the first simulation, on the left, the conditions for Turing instability are
met, therefore the system exhibits characteristic stripes. The peaks demon-
strated here are increasingly tall, which would imply unchecked concentration
growth. Further issues are exhibited in the fact that much of the concentra-
tions are negative, which is inconsistent with observed reality. Parameters
are a = 5, D = 3. For the second simulation, the conditions are not met and
therefore no pattern development occurs. Parameters are a = −2, d = 5 .

Observing the figure, it becomes apparent that as time progresses, morphogen
concentration rises very quickly, overcoming our original disturbances by or-
ders of magnitude. In addition, the concentrations are below zero for some
parts of the graph, which is something that should be avoided as concentra-
tions of morphogens can not be negative. These two occurrences are some-
thing which obviously does not occur naturally, and they are a consequence
of a lack of kinetics in ut, which leads to the growth of ut being relatively
unchecked, beyond chemotaxis and diffusion, both of which are inadequate
to control its growth. As such, we should consider introducing a non-zero
term for k3 to make the growth and decay remain confined to a certain range.
This is the role that the term serves in the model, representing the growth
and decay of the cell population density. We will do this by introducing a lo-
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gistic term in the next subsection, which should help keep the cell population
density within a certain range.

2.2 Keller-Segel with logistic growth

In order to deal with the cell population problem, we will choose a different
function for the k3 term, representing the growth and death of the cells. The
function chosen is a logistic function, introducing the dimensional parameters
ρ and δ, in terms of the cell population density. The other terms were kept
the same :

At = du∇2A− α∇2B + ρA(δ − A), (22)

Bt = ∇2B + βA− γB. (23)

As done in the previous example, we first will non-dimensionalise the system
before proceeding onto analysing it for pattern formation. We will introduce
the non-dimensionalisation constants in the same way as before, along with
their derivations:

u = AP,τ = RtL−2, uτ =
L2P

R
At, ∇2A =

1

PL2
∇2u, (24)

v = BQ,χ = xL−1, vτ =
L2Q

R
Bt, ∇2B =

1

QL2
∇2v. (25)

The non-dimensionalisation constants here are P,Q,R, L which will enable
us to eliminate up to 4 constants from 22. u and v correspond to A and B
respectively (with their respective ∇ also being non-dimensionalised), as do
τ and χ to t and x respectively. We may now substitute them into 22, having
found our non-dimensionalisation constants, to give us the following:

uτ =
du
R
∇2u− αP

QR
∇2v +

L2ρ

PR
(δP − u)u, (26)

vτ =
dv
R
∇2v +

βL2Q

PR
u− γL2

R
v. (27)

We can now begin to choose dimensionally appropriate substitutions for our
non-dimensionalisation constants. Let us first focus on the logistic term. We
can easily eliminate δ by choosing P = δ−1, as δ only appears once in the
entire system. Focusing now on the diffusion terms of the system of equa-
tions, we can only eliminate one of du and dv by choosing an appropriate R.
As such, we decide to eliminate dv by choosing R = dv, and introducing the
non-dimensional diffusion ratio D = du

dv
.
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The next 2 selections focus primarily on the vτ kinetics. By making having
the L2 = dv

γ
we can eliminate the coefficients of v. We are then left with only

one non-dimensionalisation parameter, Q, for which we make the following
substitution: Q = γ

βδ
.

We are now left with no more non-dimensionalisation constants to assign
values to, however we can group up the constants which we have left, sim-
plifying our system with no loss of generality. These constants are the non-
dimensional chemotactic parameter, a = αβ

dvγ
and the non-dimensional logistic

growth and decay strength parameter b = ρδ
γ

. We will now also drop the τ
and χ in favour of t and x.

ut = D∇2u− a∇2v + bu(1− u), (28)

vt = ∇2v + u− v. (29)

Having obtained a non-dimensional system of equations, we now proceed with
pattern formation analysis. First we will make the homogeneity assumption
and presume that our chemotactic and diffusive terms have negligible impact:

ut = bu(1− u), (30)

vt = u− v. (31)

For the homogeneity part of this analysis we must find the conditions required
to ensure the system is stable. However, we must first find the fixed points
to analyse the stability of. This is relatively simple, as we can find them by
requiring ut, vt = 0 :

ut = 0 = bu0(1− u0),

vt = 0 = u0 − v0.

This gives us two point-solutions for the fixed points, namely u0 = 1, 0,
v0 = 1, 0.
Having found fixed points to perform stability analysis on, we now take the
Jacobian of the homogenous system, namely:∣∣∣∣b− 2ub− λ 0

1 −1− λ

∣∣∣∣ = 0,

and arrive at the following conditions for λ:

λ =
b− 2u0b− 1

2
±
√

(b− 2u0b− 1)2 + 4b(1− 2u0)

2
. (32)
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From the above system, we substitute our fixed point values to analyse them
for stability. The requirement for stability is that both λ solutions must be
less than zero.

u0 = 0 :

λ =
b− 1

2
±
√

(b− 1)2 + 4b

2
;

u0 = 1 :

λ =
−b− 1

2
±
√

(b+ 1)2 − 4b

2
.

By inspection we notice that in order to have λ < 0, the square root term
has to be less than the term outside, therefore the second term in the square
root must be negative, which is impossible if u0 = 0. Therefore we reject the
stable point at (u, v) = (0, 0) from our analysis, and from now on use the
substitution u0 = 1 exclusively . For this fixed point stability is assured so
long as b > 0, which is already an assumption being made.

Having concluded out homogenous analysis of the system, we now move onto
the distributed analysis part. The reason is that our homogeneity assumption
does not hold, requiring us to consider the dimensional terms, namely the
chemotactic and diffusive. Because these systems are strictly non-linear, a
linearisation is first required to perform stability analysis. First, we make
our linear term substitution and subsequent cancelling down, leaving us with
the following system (given that the medium acted upon has one spatial
dimension):

ξt = Dξxx − aδxx − bξ,
δt = δxx + ξ − δ.

Next we make a substitution for ξ and δ of ξ(x, t) =
∑∞

i=1 ξ
(t)(t)cos(πix

L
) and

δ(x, t) =
∑∞

i=1 δ
(t)(t)cos(πix

L
). Having obtained this system, we cancel out

the cos(πix
L

) turning our PDE system into infinitely many ODE systems, for
i ∈ N+. We also simplify our notation of ξt(t) and δ(t)(t) to ξ(t) and δ(t), as
well as letting k = iπ

L
, where k is the wave number of our system:

ξ̇ = −Dk2ξ + ak2δ − bξ, (33)

δ̇ = −k2δ + ξ − δ. (34)
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Rewriting this system of equations in matrix form, we obtain the following
system. For the next step, let us call the two-by-two matrix below M :(

ξ̇

δ̇

)
= −

(
Dk2 + b −ak2

−1 k2 + 1

)(
ξ
δ

)
.

Just as we had done for the homogenous system, we take the Jacobian:
more specifically we solve the matrix equation |M − Iλ| = 0, where λ is the
eigenvalue and I is the identity matrix. Rewriting this equation to find λ in
terms of k2 we obtain the following:

λ =
k2(D + 1) + b+ 1

−2
±
√

(Dk2 + b+ k2 + 1)2 − 4h(k2)

2
, (35)

h(k2) =(Dk2 + b)(k2 + 1)− ak2. (36)

From the above equation, we want to obtain a result for λ which is positive
for at least one of the roots. Inspecting the term outside of the square root,
we note that by conditions derived for the homogenous system, the term will
remain negative for all values of k2.

As such, the square root remains the only term which could cause a root of
λ to be negative. Therefore, we require that the square root term must be
greater than the term outside the square root for some λ, and in order for
that to be the case, we must have that h(k2) < 0. This gives us an inequality
in terms of k2. In order for the inequality to hold given that our parameters
are positive, the coefficient of k2 must be negative, giving us the following
condition:

k4D + k2(D + b− a) + 1 < 0 =⇒ a > b+D. (37)

In order to progress further, we must find conditions where k2 is a real,
positive number, and for which the inequality holds. In order to find this,
we should substitute the inequality with an equation , solve it for k2, and
then translate this result onto our inequality. On that last part, our equation
would have to have a ”u-shape” because of the k4 coefficient, and the solution
for the inequality would be everything below that line. Therefore, the roots
of the equation will form inequalities which will cover 2 separate, unbounded
regions, rather than cover one bounded region.
Solving the equation created by substituting the inequality for = 0 for k2 we
find:

k2 =
−(D + b− a)±

√
(D + b− a)2 − 4Db

2D
.

Because the condition we found before was insufficient, we need to find the
sufficient condition for our system. This can done by considering the equation

19



system solved above, specifically with respect to the square root term within
it. The square root needs to be positive in order for k2 to be real, therefore
the following inequality can be derived:

(D + b− a)2 − 4Db > 0. (38)

We may notice here that the term within the square root bares resemblance to
our first distributive condition, 37. As such, we may square root both sides
to obtain something resembling that condition, however we much be very
mindful of the inequalities here. In addition, we should eliminate the positive
square root term as we already know by condition 37 that the D+ b−a term
is negative. All things considered, we are left with the following inequality,
which leads onto our final condition for instability:

−2
√
Db > D + b− a =⇒ 1 <

a

DB + 2
√
Db

. (39)

We can also confirm this result by finding the minimum value of h(k2) for
some k2, and have it be less than 0 as a necessary condition for the distributive
system. We find the minimum value of h(k2) by taking its derivative in k2

and solving for 0, then substituting our result back into the equation for
h(k2). First we take the derivative of h in terms of k2 and solve for zero:

h′(k2) = 2k2D +D + b− a = 0.

We rearrange this result to find a minimum value for k2, namely k2 = a−D−b
2D

,
and we call this result for k2 as k2

min. Substituting this into our equation for
h(k2) we obtain the following, after simplification:

h(kmin
2) =

4Db− (a−D − b)2

4D
.

From this equation, considering the inequality h(kmin
2) < 0 , we note that if

we multiply both sides by 4D we come to the same inequality as in 38. As
such, further derivation will lead us to the same conditions as were attained
before.
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Figure 4: A simulation of morphogen concentrations over time, with the logis-
tic term added. For the first simulation, the conditions for Turing instability
are met, therefore the system exhibits characteristic stripes. They are not
very large, as the system is prone to collapsing for results with greater wave
forms. a = 4.02, b = 1, D = 2. For the second simulation, the conditions for
instability were not met, and therefore no stripe formation is observed. The
y axis was pinned to the same scale as the first image. a = 1.02, b = 2, D = 5
.

Something to note is that the conditions for stability are barely met. This is
due to our term responsible for chemotactic sensitivity, Φ being independent
of our u. As the system develops over time, there may occur a spike at which
point the value of u, the cell population density, goes negative. Because
the logistic term is not equipped to deal with negative values, it can not
contain the system within its bounds and our model fails. Specifically, when
presented with negative values for u, the concentration of it goes rapidly
towards negative infinity with no term being positive. When paused at a
certain time for conditions exhibiting this behaviour, this ”spiking” may be
observed in action. As all the terms in the first equation become negative, this
is something we can solve by altering our constant for chemotactic sensitivity,
which is what is carried out in the following subsection.

2.3 Non-constant Chemotaxis

The final model considered is a more advanced case of the Keller-Segel model,
with non-constant chemotaxis. The purpose of choosing this is to restrict the
cell population density from leading to the breakdown of the system due to
local negative values being present. The kinetic terms of the system are
k3 = +ρA(δ − A), k4 = β and k5 = γ, and its chemotactic sensitivity is
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Φ(u, v) = αA:

At = du∇2A− α(∇A∇B +∇2B) + ρA(δ − A), (40)

Bt = dv∇2B + βA− γB. (41)

Note that the chemotactic term has been expanded. Our first concern with
this system will be to non-dimensionalise it. To do this, we introduce non-
dimensionalisation constants and derive further substitutions from them:

u = AP,τ = RtL−2, uτ =
L2P

R
At, ∇2A =

1

PL2
∇2u,

v = BQ,χ = xL−1, vτ =
L2Q

R
Bt, ∇2B =

1

QL2
∇2v,

as well as ∇(A∇B) = 1
PQL2∇(u∇v) .The constants introduced here are

P,Q,R, L, allowing us to eliminate up to 4 constants from the original equa-
tion system. The non-dimensionalised variables introduced: u, v, χ, tau, rep-
resent the cell population density, concentration of positive chemical stimu-
lant, space and time respectively. It should also be noted that ∇ with respect
to u and v has also been non-dimensionalised in the above equations. Hav-
ing constructed adequate non-dimensional substitutions, we substitute them
into the equation system to obtain the following:

uτ =
du
R
∇2u− α

RQ
∇(u∇v) +

L2ρ

R
(δ − uP−1)u,

vτ =
dv
R
∇2B +

βL2Q

PR
u− γL2

R
v.

Given this system, we are able to now pick our 4 non-dimensionalisation
constants to simplify down the system. We may start by making the sub-
stitution R = dv and introducing a diffusion constant D = du

dv
, which will

simplify our diffusion as much as it can be simplified. We may then focus
on the kinetics of the system, and make the substitution L2 = dv

γ
, which will

reduce the coefficient of the degradation of our chemical stimulant to 1. We
should also set P = δ−1 as that will allow us to simplify down the bracket
in the logistic term. We will then be left with only Q. The substitution
chosen is Q = dv

γβρ
, which reduces the coefficient of the production of our

chemical stimulant to 1. Finally, we group the constant coefficients of the
chemotaxis, and the logistic term into one overall non-dimensional variable
each: a = αβγρ

d2v
and b = ρδ

γ
. Having obtained a non-dimensional form of this

model, shown below, we now move onto analysing it for pattern formation.
For convenience, we will replace the τ with t and χ with x from here on.

ut = D∇2u− a∇(u∇v) + b(1− u)u, (42)

vt = ∇2B + u− v. (43)
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The above system of equations is the fully non-dimensionalised form of the
equation system 40. The constants which remain: D, a, b represent the dif-
fusion rate ratio, the rate of chemotaxis and the strength of the death and
growth of the cells kinetic, our logistic term. With non-dimensionalisation
complete, we may begin our analysis for pattern formation for the system.
The first part of this process will be modelling the system as homogenous and
looking for conditions that make the system stable. This means that we will
assume that our gradients will be negligible, as such we may, temporarily,
assume that out system takes the following form:

ut = b(1− u)u, (44)

vt = u− v. (45)

We will need to find the fixed points of this system, which we can do by
solving the system of equations for u and v when ut = vt = 0. Doing so will
yield us with two fixed points:

(u0, v0) = (0, 0), (1, 1).

These two fixed points need to be analysed for whether they are stable or
unstable. In order to do this, we will linearise 44 and create a Jacobian for
the terms within. The matrix will then be solved for its eigenvalues (denoted
by the introduced parameter λ), which represent the stability of its solutions.∣∣∣∣b(1− 2u0)− λ 0

1 −1− λ

∣∣∣∣ = 0,

We may now consider our different cases for u0, taken from our 2 fixed points:

u0 = 0 :

0 = (b− λ)(−1− λ),

λ = b,−1;

u0 = 1 :

0 = (b+ λ)(1 + λ),

λ = −b,−1.

In order for a fixed point to be stable, both values of λ must be less than
zero for that fixed point. In the first case, while one fixed point is negative,
the other is b. Unless we have a negative logistic term (which is not usually
modelled for, and not something we will be modelling for), b must be greater
than zero, and as such this fixed point is unstable and may be rejected.
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For the second case, both values of λ are less than zero so long as our logistic
term is positive, giving us our fixed point: (u0, v0) = (1, 1) and our condition
for homogeneity: b > 0.

We now move onto the distributive case, for which we will need to consider the
spatial terms in our system as well. In order to do this, we must linearise our
system. This is started off, as before, by introducing linear approximations
for our u and v terms, namely ξ and δ, and substituting them into our
equations to give the following system:

ξt = Dξxx − aδxx − bξ, (46)

δt = δxx + ξ − δ. (47)

As this system has been linearised, we may apply the substitution used before
for ξ and δ, namely ξ and δ of ξ(x, t) =

∑∞
i=1 ξ

(t)(t)cos(πix
L

) and δ(x, t) =∑∞
i=1 δ

(t)(t)cos(πix
L

). From the resulting equations, we cancel out the cos(πix
L

)
terms leaving us with:

˙ξ(t) = −Dk2ξ(t) + ak2δ − bξ, (48)

˙δ(t) = −k2δ(t) + ξ − δ, (49)

where (πi
L

)2 = k2. k represents the wave number of the particular ODE under
consideration. For convenience, we may drop ξ(t) and δ(t) in favour of ξ and
δ respectively. This completes our preparation for the stability analysis of
this distributive model:

ξ̇ = −Dk2ξ + ak2δ − bξ, (50)

δ̇ = −k2δ + ξ − δ. (51)

For the stability analysis, we are looking for solutions where there exists a
value for λ that is greater than zero. This may also be found by obtaining the
Jacobian matrix of our system, and then checking its trace and determinant.
If the trace of the matrix is positive, then there has to be at least one positive
eigenvalue regardless of the determinant. However, if the trace is negative,
then the determinant of the matrix must be greater than zero for there to
exist a positive solution for the eigenvalue λ.(

−Dk2 − b ak2

1 −k2 − 1

)
. (52)

The trace of 52 is clearly negative, therefore we must find the determinant
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for positive values, which will give us our condition for Turing instability.

0 <− ak2 +Dk2 + bk2 +Dk4 + b, (53)

<k4 + k2(D + b− a) + b, (54)

k2
+ >
−(D + b− a) +

√
(D + b− a)2 − 4Db

2
, (55)

as the negative root moves away. For k2 > 0 we have as a necessary condition
that:

D + b− a < 0, (56)

as well as the sufficient condition that:

(D + b− a)2 > 4Db. (57)

Having found the conditions for pattern formation, we may now move onto
simulation. Attempting to use the scheme used in previous figures, we find
that it is inadequate for modelling this chemotactic model. Though this will
be covered in more detail in the next section, the reason for this occurring is
due to the presence of spatial derivatives in the first order, which under the
numerical modelling used for the previous two sections implies three possible
methods to be used, all of them inadequate. Instead, a different numerical
model was obtained, for which simulations were ran under conditions speci-
fied.

Figure 5: A simulation of morphogen concentrations over time, with the
logistic term added. For the first simulation, the conditions for Turing
instability are met, therefore the system exhibits characteristic stripes.
a = 4.02, b = 0.1, D = 2. For the second simulation, the conditions for
instability were not met, and therefore no stripe formation is observed. The
y axis was pinned to the same scale as the first image. a = 1.02, b = 2, D = 5

.

25



The simulations found that when the conditions of stability and instability
were met, there were indeed patterns exhibited on the medium by the mor-
phogens. Furthermore, when pattern conditions were not met, these patterns
disappeared. Unlike the models in sections 2.1 and 2.2, there were no prob-
lems noticed with respect to unexpected large growth of concentrations over
time, nor of the exhibitance of negative concentrations, which makes the
model suitable for the simulations of basic chemotactic systems.

Conclusion

Analysing the Keller-Segel model system of equations as described in sec-
tion 1.2 and in [12], we were able to obtain non-dimensionalised models for
three specific cases, as well as derive their conditions for pattern formation
and demonstrate that they do indeed hold under appricable numerical sim-
ulations. In addition, covered were the limitations of variants of this model
where chemotaxis is constant as well as variants without a term controlling
the growth and decay of one of the system’s morphogens. Specifically, lack-
ing a growth and decay term leads to patterns which may constantly grow
in amplitude as well as take on negative values.

Addressing this, however, without having a chemotactic term dependent on
morphogen concentrations can lead to problems, demonstrated here by a
logistic solution causing negative concentrations to lead to the model break-
ing down. Eventually, stable pattern formation results were derived for a
model exhibiting non-constant chemotaxis which dealt with the aforemen-
tioned problem. Stable pattern formation conditions were obtained under a
similar process followed in [13], where stable points and conditions for sta-
bility were found for a model not exhibiting chemotaxis or diffusion. These
conditions were then used in the stability analysis of the full model, with
functioning chemotaxis and diffusion, for unstable results. For the most ba-
sic model, with no logistic term and constant chemotaxis, the condition found
was that a

D(k2+1)
> 1, for a family of fixed points where u0 = v0.Overall, how-

ever, a non-dimensional system and conditions were found for stable pattern
formation with realistic cell population densities, as well as the conditions
for the existence of such a system. Further possible work in this area may
include the derrivation of conditions for pattern formation as described in
[20] of the general Keller-Segel model, or for more modes of non-constant
chemotaxis.
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3 Numerical Algorithms

Introduction

In this section we will discuss the methods approached for simulating the
models employed for chemotaxis in the previous section, as well as dis-
cussing the problems encountered in simulations and reasons for using certain
schemes, as well as their utility in obtaining solutions for pattern formation
problems. We will outlay the reason for implementation of numerical algo-
rithms as a tool for solving non-linear problems, as well as how they are
constructed from analytical problems. We will also describe the stability
of our solutions, the cases for which it does not suffice, as well as alternate
schemes which may remedy these issues. In terms of the schemes described, of
particular interest to us will be the Forward-Time Centred-Space scheme, as
well as the Lax-Friedrichs scheme for advection-containing problems, namely
that presented in section 2.3 with non-constant chemotaxis. Indeed, the ad-
vection arises from this, as the chemotactic term is no longer a∇2(v) , but
a∇(u · ∇v), expanding out to a∇2v + a∇u∇v where the medium is in one
spatial dimension.

Numerical methods are a powerful tool in the analysis of partial differential
equation systems. Because of the nature of partial differential systems, ob-
taining an exact analytical solution for the system presented can be difficult
if not impossible. One factor which complicates this is non-linearity of equa-
tions, that is systems which can not be rewritten purely in terms of a linear
combination of unknown variables found in them. For linear systems, numer-
ical methods can be avoided by performing row reduction, for instance, which
can be performed by computers with relative ease. However, this avenue is
often unavailable in the analysis of dynamical systems with which we are
concerned. In-fact, the bulk of systems appearing naturally are non-linear
[7], including all systems which experience Turing Instability [15]. As such,
numerical methods were utilised in obtaining approximate simulations of the
systems concerned.

3.1 Introductory example: Euler & Stability

In order to apply numerical methods to a system of equations, be they ordi-
nary or partial, the differential equations must first be turned into difference
equations. In order to do this, sufficient initial (or boundary in the event
of partial equations) conditions of the system must be known to satisfy the
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numerical model being employed.

For instance, let us consider one of the oldest explicit numerical methods
in existence, the forward Euler method on a 1st order ordinary differential
equation. While this method for solving ordinary differential equations can
be applied for n-th order differential equations with ease, this is not necessary
for the demonstration. In addition, while being an ordinary differential equa-
tion method, its operation is still useful for considering the workings of the
partial differential methods that were applied for the numerical simulations
of chemotaxis, as well as being a good entry point for analysis of stability
and stiffness. Let us therefore define such a function in differential terms,
namely:

df(t)

dt
=F (t, f(t)),

f(t0) =f0,

and assume that f(t) is continuous and its derivative finite. In order to ap-
proximate a numerical solution for this function, we are going to employ a
discretisation grid with evenly spaced argument values, that is to say we will
take time at the initial condition t0 and have further time inputs be of the
form ti = t0 + i∆t, where i ∈ N+, with ∆t representing the size of the time
step. Having done this, we may now rewrite our differential equation as a
difference equation, represented below:

df(ti)

dt
=F (ti, f(ti)),

f(t0) =f0.

In essence, the above equation allows us to obtain the gradient at a particular
point, given its f and t coordinates. As our initial conditions specify both
of those values at i = 0, we can easily obtain the gradient at the original point.

Now we move onto obtaining approximations for further points from the ini-
tial conditions. Since ti+1 is given by adding the step size onto ti, and we
can derive the gradient at the following point from ti+1 and f(ti+1) the only
value that remains to be found is f(ti+1), which we will call fi+1 for brevity.
The forward-step Euler method relies on using the following numerical ap-
proximation

dfi
dti
≈ fi+1 − fi

∆t
, (58)
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to arrive at an estimate for fi+1 from already known variables. We call
this method ”forward Euler” because it uses ”forward difference”, or values
dependent (exclusively except for i) on i + 1 rather than i − 1 to obtain an
estimation for dfi

dti
. We may rewrite the above equation to give us an estimate

solution for fi+1:

fi+1 ≈ ∆t
dfi
dt

+ fi.

Combined with our solution for dfi
dt

, we have derived a numerical algorithm
for obtaining progressive estimates for fi as time progresses:

fi+1 ≈ ∆tF (ti, f(ti)) + fi,

where t0 and f0 are known by initial conditions. From this, we can rewrite
our function to denote that it has been discretised, allowing us to drop the
approximate for an equals and clearing up notation in stability analysis:

f̄i+1 = ∆tF (ti, f(ti)) + f̄i, (59)

where f̄0 = f0. This model is a relatively simple one, which does come
with its drawbacks. First, we should consider that it is a forward system,
or ”upwind” as it may also be called. This means that only values that are
preceding f̄i+1 are used to approximate it (f̄i, namely). While this makes
intuitive sense for schemes approximating time, it nonetheless introduces a
forward-bias into the system, which introduces more instability and error
into the system that could be had under a central difference scheme. Indeed,
this was a problem encountered further on in the modelling of chemotactic
partial differential equations, albeit in space rather than time.

Another key problem of note is the discretisation error of the system. Let
us first consider the forward finite difference approximation of equation 59,
provided in [16] :

df(t)

dt

∣∣∣
t=ti

=
d2f(t)

dt2

∣∣∣
t=T

∆t

2
+
fi+1 − fi

∆t
,

where T is a time within the range of times simulated, that is T = ti, i ∈ N0.
Our discretisation error is found by subtracting from this equation the ap-

proximation for df
dt

∣∣∣
t=ti

that was used to obtain our Euler method, namely

58, with ti being set as t0:

∣∣f̄1 − f1

∣∣ =
d2f(t)

dt2

∣∣∣
t=0

∆t

2
+
fi+1 − fi

∆t
− fi+1 − fi

∆t
,∣∣f̄1 − f1

∣∣ ≤M2
∆t

2
,
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where M2 ≥ d2f(t)
dt2

∣∣∣
t=0

. The term on the left hand side of the above equation

represents the local error of the system. What is apparent is that because
M2 is independent of the time step ∆t, the local error can be dependently
reduced by applying a sufficiently small step size.

Finally, the Euler method is an explicit method. Explicit methods have the
advantage of being relatively light in terms of required computing power and
being easier to set up than their implicit counterparts. However, this comes
at the cost of stability being more conditional, based on the equation being
modelled as well as the time step size. In effect, explicit methods have a
limited stability region, which can be derived by various methods.

For the explicit Euler method, we will utilise the test function method. This
method applies a test function df

dt
= λtf under the explicit Euler method

to obtain a function Φ(∆tλ) such that fi+1 = Φ(∆tλ)fi. In order for the
method to be stable, the function Φ must have an absolute magnitude less
than 1. For our explicit Euler method:

fi+1 =∆tF (ti, fi) + fi,

=∆t(λfi) + fi,

=(∆tλ+ 1)fi,

with Φ = ∆tλ+ 1, which implies that the region of stability for the explicit
Euler method is a unit circle centred around (−1, 0) in the complex plane.
With this it becomes apparent how explicit methods such as the forward
Euler scheme used here are prone to suffer from stiffness and instability of
solutions if these factors are not carefully controlled for.
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Figure 6: On the left: an illustration of an example of the forward-Euler
method. The brown line represents some function which is being approxi-
mated, while the black crosses represent the approximate solutions for f at
the given time. Note that these are based on the gradient of the line as ap-
proximated at the preceding point, leading to an increase in error over time,
especially at larger step sizes ( that is to say, larger ∆t.). This is because
as ∆t tends to zero, the numerical solution tends to the actual solution as
the system is continuous . The gradient at the point is represented by the
blue arrow at each point. The step size, ∆t is also shown. On the right: an
illustration of the stability diagram for an explicit Euler method. As pre-
viously derived, the stability region for this method is bound within a unit
circle about the point (−1, 0), the equation of which is given on the diagram,
on the complex plane. The vertical axis is imaginary.

3.2 PDEs: Forward Time Central Space scheme

Having introduced the principles of numerical schemes as they pertain to
ordinary differential equations and the limitations they come upon, we now
move onto partial differential equations and methods for their simulation
and stability analysis. In-fact, there is some overlap between the methods
and problems encountered for partial differential equations and ordinary dif-
ferential equations. However, in partial differential equations the matter is
complicated by the addition of a variable for space, as well as the compound-
ing of error and instability between the two independent variables. In the
following subsection we will discuss a partial differential scheme which fol-
lows fairly smoothly on from the forward time explicit Euler scheme.

The first partial differential scheme with which we are concerned is the
Forward-Time Centred-Space scheme. As the name suggests, the scheme
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essentially relies on the spatial components being approximated ”centrally”,
that is to say from both the left and the right , while approximating the
change in time as it evolves forwards (akin to the Euler method for ordinary
differential equations). Being a finite difference method explicit in time, it is
relatively light in terms of computations and well suited for solving parabolic
partial differential equations.

When simulating a partial differential equation system, it is important to
know what kind of system it is, that is whether it is hyperbolic, parabolic or
elliptic. The reason for this is that different numerical methods are applicable
to different types of systems. In order to ascertain whether the system is
parabolic, hyperbolic or elliptic, the equation on the left hand side is used,
where the equation being tested is of the form displayed on the right:

∆ =B2 − AC, for:

G =Auxx +Butx + Cutt +Dux + Eut + Fu,

where ∆ being positive, zero or negative corresponds to the equations being
hyperbolic, parabolic or elliptic respectively. In order to use the forward-time
centred-space scheme, the condition B2 − AC = 0 must be met, that is the
equation must be parabolic.Because the morphogens in the system are not
dependent on ∂2

∂x∂t
or ∂2

∂t∂t
, the parabolic condition is always satisfied.

Just as we had done for the Euler method, we will also draw a discretisation
grid. The points on this grid will be evenly spaced apart in space and in
time, but not necessarily the same spacing between the two, that is to say
the grid is made up of congruent rectangles.

Looking at the problem as it is presented on a discretisation grid, we can
think of the approximation as taking place in two parts. The first part is
the approximation of the spatial components, done through a central differ-
ence scheme as will be elaborated on further, and the second part is their
utilisation in approximating a forward time scheme, in a not too dissimilar
way to the Euler discussed in the previous subsection. As such, for now
it may be useful to consider the two parts separately, and then once the
scheme is laid out to bring them together and analyse for stability and any
drawbacks, as well as to demonstrate its applications as used in modelling
constant chemotaxis.

Temporal component
We will start off with the temporal component. As previously stated, the
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Figure 7: An illustration of a Forward-Time Centred Space grid. The hor-
izontal represents the spatial component, or the medium upon which the
morphogens act, while the vertical is a stand in for forward time. The black
dots represent the three points (x = i− 1, i, i+ 1 at t = j) whose values are
needed to generate the fourth point (x = i, t = j + 1) , represented in blue.

time component can be thought of as being similar to the explicit Euler
method which was solved for as an example. Consider a partial differential
system with one equation for now. This system can easily be written as

ut = F (x, t, u, ux, uxx, ...),

where ux is included, but later on it will be shown that problems exist for
all odd-numbered derivatives in x. Grouping all of the t-dependent terms
on the left, seperate from the space-dependent terms allows us to put their
analysis to one side temporarily and allows us to focus on the left hand side.
Discretising this system, we obtain the following system by making a forward
difference substitution for ut:

uj+1
i − uji

∆t
= F (x, t, u, ux, uxx, ...)

j
i ,

where uji refers to the value of u at x = xi, t = tj. For this system, like with
the explicit forward euler method, we multiply both sides by ∆t, as well as
move uji to the right hand side to obtain an at this time sufficient result for
uj+1
i in terms of u-s at t = tj.

uj+1
i = uji + (∆t)F (x, t, u, ux, uxx, ...)

j
i . (60)
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We can therefore use this result to calculate the numerical scheme, given
the function F (x, t, u, ux, uxx, ...), after it has been discretised. Because this
holds for different functions of F , we may use this result for different spatial
components, so long as they fit under the forward time central space scheme.
In the following part, we will be relying on our result for just that end, as we
will consider different functions for F (x, t, u, ux, uxx, ...), as well as expanding
our result to systems of two equations.

3.2.1 Spatial component and result: Heat equation example

Here, we are concerned with finding a numerical approximation to the spatial
components of the problem, given a certain time. To this end, we need to
find an appropriate, centrally fixed solution. We will start off by considering
a very simple example: the heat equation with only one spatial dimension
for demonstration purposes of methods employed in deriving the system:

ut = duxx,

where k is the diffusion coefficient, and the boundary conditions of the heat
equation are given by:

0 < x < L,where L is the length of the medium acted upon.

In order to obtain an approximation for the left hand side without changing
in time, we can think of our term on the right hand side as a function which
we are trying to approximate in space only, for a given time j. As such,
we can express our equation alike to how we had done previously for the
temporal component:

ut = F (x, t, u, uxx) = kuxx,

which we can discretise to yield (given that j is already given by the temporal
part):

Fi = d(uxx)i.

Because this method relies on the central difference scheme to operate, the
only substitutions for u and its derivatives that should be used are ones which
are ”balanced” between i + n terms and i − n terms, where n is a positive
integer. In this example, the only substitution that needs to be made is for
(uxx)i which can be done by finding the difference between the forward and
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backward difference:

(ux)i =
ui+1 − ui

∆x
,

(ux)i−1 =
ui − ui−1

∆x
,

(uxx)i =
(ux)i − (ux)i−1

∆x2
,

=
ui+1 + ui−1 − 2ui

∆x2
,

where ∆x is the space step size. We may then substitute to give us the
following for Fi:

Fi = d
ui+1 + ui−1 − 2ui

∆x2
. (61)

Having obtained a numerical approximation for the spatial components of
the model at a given time j, we may now move onto bringing them together
with the temporal components to form the forward time central space scheme
by substitution. Substituting 61 into 3.2.2, we obtain the following equation:

uj+1
i = uji + (∆t)d

uji+1 + uji−1 − 2uji
∆x2

,

which we can rewrite such that the ”step terms” ∆t and ∆x are grouped
together to give us the FTCS scheme for the heat equation:

uj+1
i = uji + d

∆t

∆x2
(uji+1 + uji−1 − 2uji ). (62)

Von Neumann Stability Analysis

Now that a scheme has been obtained, we turn to analysing its stability.
Because the scheme we are dealing with is one for a partial differential equa-
tion, different method are utilised for their stability analysis. The method
which we will be employing is the von Neumann stability analysis, also called
Fourier stability analysis.

The von Neumann method of stability analysis relies upon, like the method
for ordinary differential equations explored in the previous sections, upon
finding the ratio in error between the ”next step” and the current step.
However, because partial differential equations have at least two lines along
which steps progress, further work needs to be done to prepare the system
for such analysis. Specifically, a Fourier series is generated for the error term
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which separates the temporal and spatial components, which is then made
to cancel down in the analysis for finding the ratio between the next time
step and the current time step Fourier term. While the Fourier methods
play a part in obtaining the substitution, these methods have been covered
in section 2 for the linearisation fo the distributive system, and as such will
be only briefly covered.

Before the von Neumann analysis is started, it is important to distinguish
clearly between the exact solution of the problem and the numerical approx-
imate solution generated. This wasn’t as much of a problem before due to
u (without superscript and subscript notation) denoting the prior while uji
denoted the latter, however to proceed with this method analytical solutions
for u need to be presented on the discretisation grid co-ordinate system. As
such, henceforth the numerical solution for the problem shall be denoted by
M j

i and the analytical by uji notation, on the same bounds as before.

Having established a clear notation, we can now define a term for the round-
off error of the system:

ηji = M j
i − u

j
i .

Having defined our round off error we may proceed to substitute it into
equation 62. We may substitute the error term because both of the terms
constituting it, M j

i and uji are solutions to the original equation.

ηj+1
i = ηji + d

∆t

∆x2
(ηji+1 + ηji−1 − 2ηji ). (63)

At this stage, we proceed by making a Fourier series substitution for η. This
results in us obtaining the substitution found in [14], where Ck(t) corresponds
to the terms dependent on time, and k is the wave number of the Fourier
substitution, for k ∈ Z:

ηji = Ck(t)e
kx
√
−1. (64)
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The above relation can then be used to generate appropriate substitutions
for each η, namely:

ηj+1
i = Ck(t+ ∆t)ekx

√
−1,

ηji+1 = Ck(t)e
k(x+∆x)

√
−1,

ηji−1 = Ck(t)e
k(x−∆x)

√
−1.

At this stage we are nearing the construction of our stability criterion. The
stability criterion is defined as a ratio between the value of η at the future
time step and it at the current time step. For a scheme to remain stable,
the magnitude of this ratio has to remain below one for all terms within it
as a necessary and sufficient condition. We can derive this ratio in terms
of our Fourier results by first solving for the ratio in terms of Ck, and then
rewriting 63 to find the ratio.
Let us start by deriving the stability criterion, which we will call G:

G =
ηj+1
i

ηji
=
Ck(t+ ∆t)ekx

√
−1

Ck(t)ekx
√
−1

=
Ck(t+ ∆t)

Ck(t)
.

From this result, we can establish that in order for our system 63 with sub-
stitutions for η derived from 64 to give us the ratio, we must solve it for
Ck(t+∆t)
Ck(t)

. We start off by writing 63 with appropriate substitutions derived
from 64:

Ck(t+ ∆t)ekx
√
−1 =Ck(t)e

kx
√
−1

+ dCk(t)
∆t

∆x2
(ek(x+∆x)

√
−1 + ek(x−∆x)

√
−1 − 2ekx

√
−1).

We can now divide both sides by Ck(t)e
kx
√
−1 to obtain the stability criterion:

Ck(t+ ∆t)

Ck(t)
= 1 + d

∆t

∆x2
(ek∆x

√
−1 + e−k∆x

√
−1 − 2). (65)

While this solution is technically correct, it can be simplified down further
before it is brought into an inequality. First off, the exponential identity for
cosine(2cosθ = eiθ + e−iθ) can be used to eliminate the exponential terms
and consolidate them into a single function. In addition, the trigonometric
identity (cosθ − 1 = −2sin2(θ ÷ 2)) can be used to bring all the partial
differential terms together into a single expression:

G = 1− d ∆t

∆x2

(
4sin2k∆x

2

)
. (66)
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Having obtained a relatively simplified expression, we may now solve the
inequality problem of |G| ≤ 1∀k. We can start off by noting that sin2 θ is
strictly positive, therefore we may discount the upper bound and solve for
G ≥ −1 only. Rearranging we arrive at::

1

2
≥ d

∆t

∆x2

(
sin2k∆x

2

)
.

Because the size of sin2 ranges between zero and one inclusively, and it being
equal to 1 puts the greatest constraint on the stability criterion (which as
aforementioned, needs to hold for all values of k), we let sin2 k∆x

2
= 1. This

gives us the most simplified form of our stability criterion, namely:

1

2
≥ d

∆t

∆x2
, (67)

that is, the ratio between the step size of time and the step size of space
must not exceed 1

2d
. In summary therefore, the forward time central space

scheme is stable for the heat equation given sufficiently small step sizes for
the condition in 67 to be met. This result demonstrates that diffusion-driven
systems are stable under the forward time central space scheme if there are
no other terms complicating the matter and the conditions are met.

In the following paragraph, we will be considering the Keller-Segel model
without advection terms, that is to say containing only 2nd order differen-
tiations besides non-differentiated terms. Unlike the heat equation problem
however, the Keller-Segel model is a system of two equations with a chemo-
tactic term, albeit one which is under constant chemotaxis.

3.2.2 Spatial component and result: Keller-Segel

Consider our non-dimensionalised equation system from section 2.2, the logistic-
termed constant chemotaxis system 28. As mentioned in previous sections,
the terms a, b,D correspond to the non-dimensionalised chemotactic term,
the logistic growth/decay term and the diffusion rate ratio respectively. This
system is given by:

ut = D∇2u− a∇2v + bu(1− u),

vt = ∇2v + u− v,

under zero flux boundary conditions acting on the medium, x ∈ [0, L]. It
is apparent from observing the system that our numerics will be concerned
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with only 2nd order derivatives in space, as well as points for which solutions
already exist. This is good news for us, as will be explained in more detail
later, because we will only have to approximate a 2nd order derivative with
a relatively simple to implement central scheme. In addition, it should be
noted, that our equation in section 2.1 differs from the one we are concerned
with here only in that it is missing the logistic term. As such, everything
covered here will apply equally to it for the purposes of modelling the nu-
merical scheme, as a substitution of b = 0 can be made to bring the system
to the form expressed in section 2.1.

As we have already calculated an appropriate scheme for the temporal com-
ponent, we can start off by focusing immediately on the spatial scheme. In
order for the system to be discretised, we will employ the same numerical
approximations for u and its derivatives as we had done previously for the
heat equation. However, unlike the heat equation for which they were de-
rived, the Keller-Segel model is a system of two equations. As such, these
same discretisations and difference approximations are made for the other
independent variable, v:

v(x, t) ≈ vji , vxx(x, t) ≈
vji+1 + vji−1 − 2vji

(∆x)2
.

The Keller-Segel systems analysed all have only one spatial dimension, there-
fore we can now substitute these approximations into the ”constant chemo-
tactic” Keller-Segel equation to give us the following scheme for numerical
approximation:

F j
i =

D

(∆x)2
(uji+1 + uji−1 − 2uji )−

a

(∆x)2
(vji+1 + vji−1 − 2vji ) + buji (1− u

j
i ),

Gj
i =

1

(∆x)2
(vji+1 + vji−1 − 2vji ) + uji − v

j
i .

This is, of course, incomplete, as the temporal components need to be added
into the scheme. In order to do this, the result derived previously in equation
may be used, expanded to accommodate a system of two equations:

uj+1
i = uji + (∆t)F (x, t, u, ux, uxx, ...)

j
i ,

vj+1
i = vji + (∆t)G(x, t, v, vx, vxx, ...)

j
i ,

into which we may substitute the spatial components scheme as obtained
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above:

uj+1
i =uji +D

∆t

(∆x)2
(uji+1 + uji−1 − 2uji ) (68)

− a ∆t

(∆x)2
(vji+1 + vji−1 − 2vji ) + b∆tuji (1− u

j
i ), (69)

vj+1
i =vji +

∆t

(∆x)2
(vji+1 + vji−1 − 2vji ) + ∆t(uji − v

j
i ), (70)

which gives us the numerical scheme used for modelling systems in section
2.1 and 2.2. This scheme remains stable on the condition that the ratio of
the time step and space step remain small enough during the simulations.

In order to run simulations of this code, MATLAB was used, with some
additional steps being taken. Firstly, constant initial conditions were given
for u and v at t = 0 or i = 0 except for a small perturbation about the
centre of the medium. The specific values in code were u0

i , v
0
i = 0.5 except

for a grouping of eleven coordinates for u0
i and v0

i each, centred around the
midpoint of the medium, L÷ 2.

In addition to this, the code simulated the development of the model through
time by giving a snapshot of the morphogen concentrations on the medium,
at set time intervals. Finally, the values for the space step size and the time
step size used were ∆ = 0.05 and ∆ = 1 ÷ 42000, giving a step ratio of
1 : 210, which should be sufficiently small that the stability criterion is met
for diffusion.

In summary, the forward time central space scheme is well suited to these
two problems exhibiting constant chemotaxis, however the scheme has thus
far only been applied to such problems in this disscertation. In section 2.2,
it was observed that constant chemotaxis was causing problems due to the
then newly introduced logistic term. As a result, an advection term was in-
stead added, and the forward time central space scheme we have thus far used
came upon some problems which will be further discussed in the next section.

3.2.3 Limitations: Upwind and Downwind Accuracy

The introduction of non-constant chemotaxis presents a problem for the for-
ward time central space scheme that it is not too well equipped to deal with.
To understand why, it would be good to first cover upwind and downwind
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schemes as they arise for first order and second order partial differential equa-
tions.

When constructing a difference equation to approximate the numerical result
of a differential equation, conventionally there are two ways to go about this.
Consider a first order differential equation. We are trying to obtain a value
for (ux)

j
i by taking the difference between two points where the time coor-

dinate remains the same . The first method, upwind, would go about this
by taking the point uji as well as the next point over to the right, uji+1, and
dividing them by the space step term ∆t. The second method, downwind,
would instead take the next point over to the left instead, uji−1.

There also exist other methods, such as the ”central difference”, which in-
volves taking the points uji−1 and uji+1 and dividing them by twice the space
step. All of these approaches have their downsides: the upwind and down-
wind schemes only consider points on the medium to the right or the left of
the gradient coordinate, which interferes with the pattern formation process
that is being modelled; the central difference scheme on the other hand has a
much larger effective step size which reduces stability, and will later be found
to be conditionally unstable.

(ux)
j
i =

uji+1 − u
j
i

∆x
, (ux)

j
i =

uji − u
j
i−1

∆x
, (ux)

j
i =

uji+1 − u
j
i−1

2∆x
. (71)

The equations above represent upwind, downwind and central difference re-
spectively. The problems which arise from the upwind and downwind schemes
can be better visualised on the discretisation grid, where it becomes appar-
ent that the upwind and downwind schemes are able to utilise less reference
points, especially for values of x approaching L for the upwind scheme, and
values of x approaching 0 on the downwind scheme.

Demonstration of issues with advection for the upwind space scheme:

To demonstrate the issues which arise from utilising an upwind or downwind
scheme for the spatial component of the numerical model, we will use the up-
wind scheme to generate simulations for the non-constant chemotactic model
used in section 2.3. The non-dimensionalised model used in that subsection
(equation 42) had the form:

ut = D∇2u− a∇(u∇v) + b(1− u)u,

vt = ∇2v + u− v.
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Figure 8: Discretisation grids for first order difference equations. From left
to right: upwind, downwind, central difference. Dotted lines represent which
points alower down in time are required to generate an approximation for
the corresponding point gradient. Black points are used to generate the
gradients at the red points, while the red points are used to generate the
gradients at the blue. Note that upwind and downwind approximations rely
on less points in general as the scheme evolves through time as compared to
the central difference scheme, and would only be able to interact with one
medium boundary.

First off, we should recall that the system operates in one spatial dimension.
As such, the advection term can be easily differentiated to give the following
system to be simulated:

ut = Duxx − a(uxvx + uvxx) + b(1− u)u,

vt = vxx + u− v.

As the numerical model for the system without advection was derived pre-
viously in this section, we will use that equation system with the upwind
scheme defined in 71 to obtain a numerical model for the system with advec-
tion, given by:

uj+1
i =uji +D

∆t

(∆x)2
(uji+1 + uji−1 − 2uji ),

− a ∆t

(∆x)2
((uji+1 − u

j
i )(v

j
i+1 − v

j
i ) + uji (v

j
i+1 + vji−1 − 2vji )) + b∆tuji (1− u

j
i ),

vj+1
i =vji +

∆t

(∆x)2
(vji+1 + vji−1 − 2vji ) + ∆t(uji − v

j
i ),

using the central scheme for second order terms. Based on our calculations
and numerical results in section 2, we should expect to see stable and sym-
metric patterns form along the length of the medium. However, running
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simulations of this code for the stable coefficients as used in figure 5 on page
25 (that is, a = 4.02, b = 0.1, D = 2) we find that the simulations behave
quite differently to what we would expect.

Figure 9: Simulations of the advection time utilising an upwind scheme for
advection, taken at t = 20, 100, 200, 2000 respectively for upper left, upper
right, lower left, lower right. Note that the scheme remains stable in this case,
however the result is shifted more and more to the right as time progresses up
to a point and is therefore inaccurate. This is most evident in the right hand
side of the latter systems, where the right peak collides with the boundary,
and remains at it for the remainder of the simulation. This is a result of
the way that the upwind scheme simulates points near the boundary: the
chemotactic term does not come into play as ujN is set as ujN = ujN−1 within
the simulations for j as simulated, where N = L/∆x. This means that at
the boundary, the result may only decrease with diffusion. The constants in
this equation are given by a = 4.02, b = 0.1, D = 2

First off, while the numerics remain stable as the simulation progresses, their
accuracy is questionable due to the trend in the middle part of the simulations
for the peaks generated to shift rightwards until the boundary is met. As
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the simulations start off, two peaks arise from the local disturbances created
by the model, clearly visible at t = 20. At this stage, these peaks resemble
any others generated in previous simulations however as time progresses, we
start to see an asymmetry arise between the left and the right peak. This is
caused due to the right peak hitting into the medium boundary and becom-
ing drawn towards it, as a result of having relatively fewer points to rely on,
making the result for advection less accurate. This is noticeable at t = 100,
and continues until around t = 200 when the right peak becomes centred
on the right boundary of the medium. Because of this, the advection term
is no longer able to be properly influence the growth of the right peak, and
it remains mostly stable in size and remains in position on the boundary.
The system now evolves very slowly in time and can be considered stable,
although the left peak moves very slowly rightwards as can be observed at
time t = 2000. Overall, this result is not very useful for accurately simulating
the behaviour of the non-constant chemotaxis model in section 2.3 and as
such was discarded.

Similar issues can be expected to occur for downwind simulations of advec-
tion, therefore these two simple numerical methods have been rejected for
simulations of non-constant chemotaxis. This leaves central difference as a
potential method for simulating advection under FTCS, although it too runs
into problems.

3.2.4 Limitations: Stability

Unlike the upwind and downwind schemes for advection, the central differ-
ence scheme does not demonstrate a clear bias for either the left or the right
of the medium, at least not by looking at the discretisation grid, however this
is insufficient for the scheme to be stable and accurate for the forward time
central space scheme. At the very least, stability should first be demonstrated
for systems displaying advection under the scheme. Performing analysis for
this end however demonstrates the opposite: that such a system is always un-
stable regardless of step size ratios or applicable coefficients. Further on, the
same issues will be demonstrated for the stability of the downwind scheme,
by utilising Neumann stability analysis.

Previous von Neumann stability analysis has shown that for diffusive-termed
systems, the Forward Time Central Space scheme remains stable, which we
have used to establish the stability of the systems in sections 2.1 and 2.2
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as the only partial differential terms in space included in them were second
order. However, as the advection term causes the generation of first order
PDE terms in space, a von Neumann stability analysis is necessary for such
a system driven by advection. To this end, we create and solve a simplified
advection problem along the lines of the heat equation problem solved for
earlier in this section. Let us start by defining our problem as:

ut = −aux,

where a is a constant. The explicit solution for u is easy to compute (u =
f(x − at), where f(x − at) is some unknown function), and represents a
solution to a wave propagation problem where the wave propagates along
the x axis in the positive direction. As we have already derived a temporal
scheme, as well as a central difference scheme for 1PDEs in 71, we may
substitute them here under the previously developed discretisation grid:

uj+1
i = uji − a

(
∆t

2(∆x)2

)
(uji+1 − u

j
i−1).

Having obtained the numerical scheme for our advection equation, we may
finally move onto analysing its stability. Just as we had done for the heat
equation, we make a substitution of ηji for our term uji , where ηji corresponds
to the local error of the given coordinate, or in other words the modulus
of the difference between the numerically approximated value for uji and its
analytical solution at the x and t values corresponding to the discretisation
coordinates i and j respectively. Furthermore, we had also obtained a Fourier
series substitution during the numerical stability analysis of the heat equation
which is applicable here due to both systems occurring on a finite, non-
periodic spatial boundary:

ηji = f(i∆x− aj∆t)− uji , ηji = Ck(t)e
kx
√
−1, (72)

where k represents the wave number π
L

. The reason for the utilisation of
√
−1

is that i and j have already been assigned roles in this notation. Substitution
into the advection equation gives:

Ck(t+ ∆t)ekx
√
−1 =Ck(t)e

kx
√
−1

− a
(

∆t

2(∆x)2

)
(Ck(t)e

k(x+∆x)
√
−1 − Ck(t)ek(x−∆x)

√
−1),

which can then be simplified by dividing by Ck(t)e
kx
√
−1 to give us the am-

plification factor for the advection equation.

Ck(t+ ∆t)

Ck(t)
= 1− a

(
∆t

2(∆x)2

)
(ek∆x

√
−1 − e−k∆x

√
−1),
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which we will call G. G may also be called the Courant condition for stability.
In order for the system to be stable, the absolute size of G must be less than
one. If it is not, the inaccuracies generated will compound and lead to an
unstable result. As we had done before, we will utilise exponential identities
for trigonometric functions to simplify the result:

G = 1− a
(

∆t

(∆x)2

)
(
√
−1sin(k∆x).

Because we are considering the absolute value of G, and the advection corre-
sponding term is strictly imaginary, our result for |G| must always be greater
than 1, its real component. This is regardless of the size of a, except for the
trivial result of a = 0, which would eliminate the advection term entirely.
As such, we have to conclude that the forward time central space scheme is
unconditionally unstable for advection terms, as is therefore unsuitable for
modelling the non-constant chemotactic system in section 2.3. Consequently,
alternative schemes were needed to be explored for its simulation. In the fol-
lowing subsection, such schemes were explored, specifically Lax methods.

First however, we may consider the same stability analysis for upwind and
downwind schemes. Recalling the upwind and downwind schemes, given by
the following equation, for upwind and downwind respectively:

uj+1
i = uji ∓ a

∆t

∆x
(uji − u

j
i∓1).

We may make the same substitution of 72 to obtain the following system,
where the same reasons for utilising

√
−1 apply as before:

Ck(t−∆t)ekx
√
−1 = Ck(t)e

kx
√
−1 ∓ a∆t

∆x
(ekx

√
−1 − ek(x∓∆x)

√
−1)Ck(t).

As we had done before, we may cancel this down to obtain the Courant
condition, G, given by:

G = 1∓ a∆t

∆x
(1− e∓∆xk

√
−1).

The condition for stability utilising G is |G| ≤ 1 therefore we will square both
sides of the equation, utilising once again the complex exponential form of
cosine:

|G|2 = 1∓ 2a
∆t

∆x
(1− e∓∆xk

√
−1) + a2

(
∆t

∆x

)2

e∓∆xk
√
−1(−2 + 2cos(∆xk)),
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which eventually becomes the following relation:

|G|2 = 1− 2a
∆t

∆x

(
±1− a∆t

∆x

)
(1− cos(∆xk)) ≤ 1.

Consider the right-most bracket. Because of the values that cosine may take,
this bracket will always remain positive. As a result, after subtracting 1 from
both sides to have the inequality be ≤ 0, we may divide by −2(1−cos(∆xk))
to obtain a more simplified form of the Courant condition for upwind and
downwind schemes respectively:

a
∆t

∆x

(
±1− a∆t

∆x

)
≥ 0.

From this condition, it is evident that upwind schemes remain stable so long
as 0 ≤ a∆t

∆x
≤ 1 is assured, while downwind schemes remain unconditionally

unstable. This result further solidifies the conclusion reached in the previous
subsection that the upwind and downwind schemes are inadequate for sim-
ulating advection terms for our equation (remember that both stability and
accuracy are needed for a scheme to be reliable). As previously mentioned,
this discounts the three finite difference schemes for modelling advection,
and as such an alternative scheme is considered in the following subsection,
namely the two-step Lax Friedrichs method which relies on a staggered dis-
cretisation grid, and uses five points instead of two or three to obtain its
numerics for advection.

3.3 Lax methods

Having failed to obtain a stable advection approach under the forward time
central space scheme, we will instead attempt a lax method. The lax method
we will be relying upon, the two-step Lax–Friedrichs method, relies upon the
substitution of coordinates at half steps on the grid space (called ”staggered
grids”), which leads to a greater number of points being needed to simulate
each next point than in the previously looked at approaches. For instance,
the central difference method relied on two points for the first step,while we
will eventually obtain five for the advection. In order to obtain the numerical
simulation for this, let us consider just the advection term from the system
analysed in section 2.3, in one spatial dimension and rewritten into a more
useful form:

ut = −a(uvx)x,

where v represents a second morphogen. In this subsection, we will concern
ourselves with establishing a two-step Lax Friedrichs numerical scheme for
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the above equation admissible under a forward time central space scheme,
along the lines of the methods presented in [5], in order so that it may then
be used to simulate the equation problem in section 2.3. We will start off
by noting that the forward time approximation would still need to hold,
therefore the simulation would take the form of equation 3.2.2 on page 39:

uj+1
i = uji − a∆t(uji (v

j
i )x)x.

From this numerical approximation, we may start to form a Lax approxima-
tion for the system. Firstly we make substitutions for uji and vji to separate
them into their respective half-terms. Note that because v exists only as a
first order differential term and will end up being called one step behind as
a result of the method employed for u, we can instead use a central approx-
imation for it on a half step, as it serves the same role:

uji = ûj
i+ 1

2

+ ûj
i− 1

2

, (vji )t =
vj
i+ 1

2

− vj
i− 1

2

∆x
,

which is then substituted into the equation to obtain the following. The
result was also turned from a differential equation into a difference equation
in the outermost x partial differential:

uj+1
i = uji −

a∆t

∆x

(
vji+1 − v

j
i

∆x
ûj
i+ 1

2

−
vji − v

j
i−1

∆x
ûj
i− 1

2

)
.

We must now find a way to approximate our values for (̂u). We can do this
for each ûji by considering two values derived from either side of ui, for which
we do have coordinates. We shall call them u−i and u+

i respectively, from left
to right. The exact values they hold is given by the ui term they correspond
to, from which is subtracted the difference between them and the next closest
point to ûji this side of the discretisation grid. As equations, they are given
by:

u+
i+ 1

2

= ui+1 −
ui+2 − ui+1

2
, u−

i+ 1
2

= ui −
ui−1 − ui

2
,

where j, the time grid coordinate, has been removed from notation for now
for clarity. We may use these results to define substitutions for û, given by
the following result, where α is later found to be zero, as as such is removed
from the system in the second step:

ûj
i+ 1

2

=
(
u+
i+ 1

2

+ u−
i+ 1

2

+ α(u+
i+ 1

2

− u−
i+ 1

2

)÷ vi+ 1
2

)
÷ 2,

=
ui+2 + ui+1 + ui−1 + ui

4
.
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In order to find values of ûj
i− 1

2

, one must only go back one step in space, that

is subtract 1 from every i. As such, we may now make our final substitution
of terms for û into the numerical scheme to obtain the final version of the
Lax scheme with all morphogens being in full step values:

uj+1
i =uji

− a∆t

(2∆x)2
(vji+1 − v

j
i )(ui+2 + ui+1 + ui−1 + ui)

+
a∆t

(2∆x)2
(vji − v

j
i−1)(ui+1 + ui + ui−2 + ui−1),

which allows us to move forward with numerical stability analysis. However,
first we should expand on the parameter α introduced previously. At that
time, we had taken α to be zero, though it was not explained nor expanded
upon what α was: it actually represents numerical dissipation, and is given
by:

α = max |aux| .
Because we already have a term for numerical dissipation in the numerical
scheme developed for the system in section 2.2 (the diffusion terms), utilis-
ing α is not required. Recall the FTCS scheme developed in the previous
subsection for the constant chemotaxis equation (equation 68), omitting the
chemotactic term. Onto this equation we will add the chemotactic compo-
nent developed under the Lax scheme:

uj+1
i =uji +D

∆t

(∆x)2
(uji+1 + uji−1 − 2uji ) + b∆tuji (1− u

j
i )

− a∆t

(2∆x)2
(vji+1 − v

j
i )(ui+2 + ui+1 + ui−1 + ui)

+
a∆t

(2∆x)2
(vji − v

j
i−1)(ui+1 + ui + ui−2 + ui−1),

vj+1
i =vji +

∆t

(∆x)2
(vji+1 + vji−1 − 2vji ) + ∆t(uji − v

j
i ),

which completes the numerical scheme for the system of equations in section
2.3.

Conclusion

In the preceding section numerous models for numerical simulations of prob-
lems considered analytically in section 2 were considered, as well as advan-
tages and problems associated with them. Firstly a brief introduction into
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the methods employed in numerical simulations was given on the basis of
a forward time Euler equation which was later used to expand onto the
Forward Time Centred Space (FTCS) scheme which was the centrepiece of
the numerical simulations employed in this dissertation. This included the
demonstrations of limitations and considerations made in the simulations of
numerical systems such as the conditionality of stability on factors such as the
time step or the implicity or explicity of the system. This was further built
upon in the analysis of Forward Time Centred Space systems where the von
Neumann method of stability analysis was employed to determine whether
the scheme was stable for the admitted orders of differential equations. It was
found that while stability was conditional for second order systems (which
formed the basis of subsections 2.1 and 2.2), it was unconditionally unsta-
ble for systems including first order spatial terms for the central difference
and downwind schemes. The issue was eventually solved by the utilisation
of a Lax method, for which simulations which were both accurate and sta-
ble were obtained. Considered too were upwind and downwind schemes for
numerical simulation of the problematic advection term, however these were
demonstrated to be, if not unstable for the upwind method, then sufficiently
inaccurate to discard.
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4 Conclusion

In this dissertation studies explored in [13] were expanded upon from those
concerning only reaction-diffusion systems to those displaying chemotaxis
both constant and non-constant, under the general umbrella of the Keller-
Segel model for the given kinetics and modes of chemotaxis. The biological
processes from which chemotaxis arises were explored, with a brief account of
the actions deployed by bacteria to move (specifically the E. coli bacterium)
were found to be caused by chemotaxis. The E. coli bacterium uses the gra-
dient between the concentrations of a stimulant at one point against another
to influence the rate at which is switched from moving, or ”running”, to
turning, or ”tumbling”.

Analysed too were the Keller-Segel models for analytical stability, in a process
not too dissimilar to the one utilised in [13], albeit involving a chemotactic
term which had not been the base before, leading to different conclusions
with respect to the stability of the solutions and their potential to generate
patterns. In all, three models were analysed. The first model was found
to, while being capable of pattern generation, lead to rapidly growing mor-
phogen concentrations which led to the model being modified with a logistic
term to limit their growth. This was the basis of the second model which
was also flawed on account of negative values for u being present leading to
its simulations failing, except for when conditions for pattern formation were
barely met. This was remedied with the third and final model, which used
non-constant chemotaxis to fix this issue. The specific reason for why the
issue arose was that for a negative u, the equation in ut had no terms which
could go positive under the influence of u once they all went negative.

The final part of this discretisation was concerned with obtaining numeri-
cal simulations for the models tested above, demonstrating the derivation
of such systems for the models presented, and analysing the stability and
accuracy issues which arose. The Forward Time Central Space scheme was
found to be adequate for simulating constant chemotaxis problems, given
an adequately small step size which was confirmed, however issues arose for
non-constant chemotaxis for the FTCS scheme. The scheme was found to
be unconditionally unstable for standard central difference and downwind
approximations, and inaccurate for upwind methods by numerical simula-
tion. An alternate method was found and demonstrated via the two-step
Lax Friedrichs method as described in [5], which gave stable and accurate
pattern results for appropriate parameters in line with section 2.3.
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5 Appendix: MATLAB simulations for nu-

merical schemes used

5.1 FTCS simulations

Non-Logarithmic, successful

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=200; % time max

D=5.;

dofx=0.05; % space step size

doft=dofx^2/(2.1*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);

%%

%System constants and initial conditions

alpha=5; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = 0.;

Du=3.; % diffusion coefficient

s12=doft/dofx^2;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);
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%inital conditions:

for i=1:n

uVec(i)=0.5;

vVec(i)=0.5;

end

for i=center-5:center+5

uVec(i)=0.6;

vVec(i)=0.6;

end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

for j= 1:nTime

%integration

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(1,1,txt);
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drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

title(sprintf(’time=%1.2f’, tMax), ’fontsize’, 16)

Non-Logarithmic, unsuccessful

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=100; % time max

D=5.;

dofx=0.05; % space step size

doft=dofx^2/(2.1*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);
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%%

%System constants and initial conditions

alpha=-2; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = 0.;

Du=5.; % diffusion coefficient

s12=doft/dofx^2;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=0.5;

vVec(i)=0.5;

end

for i=center-5:center+5

uVec(i)=0.6;

vVec(i)=0.6;

end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

for j= 1:nTime

%integration

for i=2:n-1

u=uVec(i);

v=vVec(i);
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uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(1,1,txt);

axis([0 20 -2.5 2.5])

drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

title(sprintf(’time=%1.2f’, tMax), ’fontsize’, 16)
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Logarithmic, successful

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=200; % time max

D=2.;

dofx=0.05; % space step size

doft=dofx^2/(2.1*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);

%%

%System constants and initial conditions

alpha=4.02; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = 1.;

Du=1.; % diffusion coefficient

s12=doft/dofx^2;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=0.5;

vVec(i)=0.5;

end
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for i=center-5:center+5

uVec(i)=0.6;

vVec(i)=0.6;

end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

for j= 1:nTime

%integration

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(1,1,txt);

drawnow

end

t=t+doft;

end

t2=t;
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for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

title(sprintf(’time=%1.2f’, tMax), ’fontsize’, 16)

Logarithmic, unsuccessful

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=200; % time max

D=5.;

dofx=0.05; % space step size

doft=dofx^2/(2.1*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);

%%

%System constants and initial conditions

alpha=1.02; % chemotactic strengh
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gamma = 1.;

betta = 1.;

rho = 2.;

Du=5.; % diffusion coefficient

s12=doft/dofx^2;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=0.5;

vVec(i)=0.5;

end

for i=center-5:center+5

uVec(i)=0.6;

vVec(i)=0.6;

end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

for j= 1:nTime

%integration

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));
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end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(1,1,txt);

axis([0 20 0.975 1.025])

drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

title(sprintf(’time=%1.2f’, tMax), ’fontsize’, 16)

5.2 Lax simulations

Successful

clear all
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%%

%Simulation parameters

L=20; % medium size

tMax=500; % time max

D=5.;

dofx=0.05; % space step size

doft=0.80*dofx^2/(2*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);

%%

%System constants and initial conditions

alpha=4.02; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = .1;

Du=1.; % diffusion coefficient

s12=doft/dofx^2;

s11=doft/dofx;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=1.;

vVec(i)=1.;

end

for i=center-5:center+5

uVec(i)=0.5;

vVec(i)=0.5;
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end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

uPlus = zeros(n-2);

uMinus = zeros(n-2);

vHalf = zeros(n-2);

fHat = zeros(n-1);

for j= 1:nTime

%integration

%Lax-Freidricht setup

for i=2:n-2

uPlus(i) = 0.5*(3*uVec(i+1)-uVec(i+2));

end

uPlus(n-1) = uVec(n-1);

for i=2:n-1

uMinus(i) = 0.5*(3*uVec(i)-uVec(i-1));

vHalf(i) = (vVec(i+1)-vVec(i))/dofx;

fHat(i) = 0.5*((uPlus(i)*vHalf(i))+(uMinus(i)*(vHalf(i))));

end

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s11*(fHat(i)-fHat(i-1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);
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uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(10,0.4,txt)

axis([0 20 0 2])

drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

Unsuccessful

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=500; % time max

D=5.;
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dofx=0.05; % space step size

doft=0.80*dofx^2/(2*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);

%%

%System constants and initial conditions

alpha=1.02; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = 2;

Du=1.; % diffusion coefficient

s12=doft/dofx^2;

s11=doft/dofx;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=1.;

vVec(i)=1.;

end

for i=center-5:center+5

uVec(i)=0.5;

vVec(i)=0.5;

end

%%

%Numerical simulation of system

t=0;

figure
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Q=0:dofx:L; % Defining space

j0=10000;

uPlus = zeros(n-2);

uMinus = zeros(n-2);

vHalf = zeros(n-2);

fHat = zeros(n-1);

for j= 1:nTime

%integration

%Lax-Freidricht setup

for i=2:n-2

uPlus(i) = 0.5*(3*uVec(i+1)-uVec(i+2));

end

uPlus(n-1) = uVec(n-1);

for i=2:n-1

uMinus(i) = 0.5*(3*uVec(i)-uVec(i-1));

vHalf(i) = (vVec(i+1)-vVec(i))/dofx;

fHat(i) = 0.5*((uPlus(i)*vHalf(i))+(uMinus(i)*(vHalf(i))));

end

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s11*(fHat(i)-fHat(i-1)) ...

+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(10,0.4,txt)

axis([0 20 0 2])
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drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)

5.3 Upwind advection

clear all

%%

%Simulation parameters

L=20; % medium size

tMax=2000; % time max

D=5.;

dofx=0.05; % space step size

doft=0.80*dofx^2/(2*D); % time step size

nTime=tMax/doft; % time steps

n=L/dofx+1; % nr grid points

center=int32(n/2);
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%%

%System constants and initial conditions

alpha=4.02; % chemotactic strengh

gamma = 1.;

betta = 1.;

rho = 0.1;

Du=2.; % diffusion coefficient

s12=doft/dofx^2;

uVec=zeros(n,1);

vVec=zeros(n,1);

uSol=zeros(n,1);

vSol=zeros(n,1);

%inital conditions:

for i=1:n

uVec(i)=1.;

vVec(i)=1.;

end

for i=center-5:center+5

uVec(i)=0.5;

vVec(i)=0.5;

end

%%

%Numerical simulation of system

t=0;

figure

Q=0:dofx:L; % Defining space

j0=10000;

for j= 1:nTime

%integration

for i=2:n-1

u=uVec(i);

v=vVec(i);

uSol(i)=u+ s12*Du*(uVec(i-1)-2*u+uVec(i+1)) ...

-alpha*s12*(((vVec(i+1)-v)*(uVec(i+1)-u))...

+(u*(vVec(i-1)-2*v+vVec(i+1)))) ...
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+doft*(rho*uVec(i)*(1. - uVec(i)));

vSol(i)=v ...

+s12*(vVec(i-1)-2*v+vVec(i+1)) ...

+doft*(betta*uVec(i) - gamma*vVec(i));

end

%BCs

uSol(1)=uSol(2); uSol(n)=uSol(n-1);

vSol(1)=vSol(2); vSol(n)=vSol(n-1);

uVec=uSol;

vVec=vSol;

if rem(j,j0) == 0

plot(Q(1:end),uVec,’b’,Q(1:end),vVec,’r’);

txt = {’t = ’ t}

text(10,0.4,txt)

drawnow

end

t=t+doft;

end

t2=t;

for i=2:n-1

if uVec(i)>0.5

p2=i*dofx;

end

end

%%

%Plot information

xlabel(’Medium’)

ylabel(’Morphogen concentration’)

legend({’= u’,’= v’},’Location’,’southeast’)
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