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Summary 

Epithelial tissues can be represented as unicellular layers which have distinctive topological 

characteristics (Patel, et al., 2009). The topological features of an epithelial tissue can be 

represented as a planar network where cell boarders form segments of straight lines (edges) 

and mathematicians can use polygons to represent individual cells when observed from the 

surface of a tissue. Hence the cross section of a cell in a monolayer epithelial sheet can be 

modelled mathematically as a k sided polygon (Xin and Karunarathna, 2018). Each cell has 

neighbours with other cells in their local neighbourhood, physically joined together by a 

junction. When tissues proliferate, cells in the tissue divide resulting in the generation of two 

daughter cells, each possessing a different number of edges. Therefore, the number of cells 

in a tissue double for every generation of tissue proliferation which means the distribution of 

k sided polygons in the tissue changes with time. When mathematicians study the topological 

distribution of a tissue, they measure the distribution of k sided cells with their neighbours, 

referred to as cell neighbour numbers (CNN) and we represent the distribution of various 

polygonal cells as a histogram (CEDH). Results from previous studies of proliferating epithelia 

show CEDHs from diverse organisms apparently stabilise to an equilibrium distribution at 

some point in time, where the majority are hexagonal. The values of k usually vary from four 

to nine in natural epithelia, where cells with less than four or more than nine edges are not 

commonly recorded. There are some instances where three and ten sided cells do appear, 

but their occurrences are negligible. Results from experiments with cells from various types 

of tissue drew the conclusion that the stabilised distribution which is reflected by the shape 

of the histograms seems to be universal across various organisms. This is an interesting 

concept to understand because due to the sheer diversity of living organisms it would be 

expected that, because of the mechanisms of cell division varying between species, the 
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distribution of daughter cells should naturally vary. However, this does not seem to be the 

case and is therefore an interesting phenomenon for scientific researchers to investigate.  

Models constructed upon mathematical concepts have been developed to gain a better 

understanding of the universal shape of the CEDHs. All models have focused their 

assumptions based on the observations documented by Lewis, who investigated the 

topological behaviour of proliferating epithelia from the epidermis of cucumbers. Lewis 

focuses his investigations of regular hexagonal cells of cucumber epidermis with unit length. 

He investigates, using Geometrical calculations and actual cucumber epidermis, how divisions 

influence the size and area of the dividing mother cells in addition to observing the shapes of 

daughter cells. Two main conclusions become of interest. Firstly, he shows that most resting 

cells in tissue of cucumber are hexagonal, while calculating the distribution of other shapes. 

Secondly the division of various polygons results in the formation of two corresponding 

daughter cells that impact the number of edges of neighbouring cells. Dividing mother cells 

that are not six-sided seem to divide more often, ensuring the hexagonal cell distribution is 

maintained. Evidence shows that tissues maintain this hexagonal topology during tissue 

morphogenesis within their geometry of cell packing but the mechanical forces at the 

junctional level of cells results in an altered distribution of neighbouring cells after cell 

division, where a documented mathematical study of this is the vertex dynamics model 

(Farhadifar, 2007). The GPNP model (Gibson, et al., 2006) hypothesises that cellular 

proliferation is the only mechanism which impacts the polygonal cell distributions. Therefore, 

the model does not consider any mechanical influences from forces at the junctional level, 

nor does it consider any spatial correlations between cell edges. They also investigate the 

topology of tissues from a group of diverse organisms (fruit fly, frog, and marine invertebrate) 

to validate their mathematical model. The GPNP model reproduces experimental results well 

since the shape of the histograms seem to follow similar patterns from histograms produced 

in previous experiments. However, there was one discrepancy when comparing the results 

with experimental data: no four-sided cells were observed during proliferation. Nevertheless, 

the stable equilibrium distribution obtained from the mathematical model seemed to fit well 

with the actual CEDH obtained from their experiments of the different organisms. This led to 

Sandersius’ attempts of improving the GPNP model by modifying the original assumptions. 

He was unsuccessful at making the GPNP model more biologically accurate. During the 

process of tissue growth, the number of edges within the population remains constant 

because, according to Lewis, tissues maintain their hexagonal cell shapes, but division of a k 

sided polygon can be affected by the division of neighbouring cells in the local neighbourhood, 

and therefore Gibson’s’ second documented investigations implemented a computational 

algorithm which randomly selects the orientation of the cleavage plane along which cell 

division takes place, using three separate methods; Uniform, Binomial and equal split.  

There were a few aims of this project, were the first was to determine a probability density 

function which can be fitted to the cucumber distribution examined by (Lewis, 1928). 

Secondly, we aimed to extend our analytical model which simulates epithelial tissue growth, 

initially represented by master equations, further by considering an extended range of 

dividing mother cell edges. We then improved our model by incorporating the exponential 

relationship which exists between the number of cell edges and the probability of mother cell 
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division occurring into the matrices, which results in a more accurate replication of the 

stabilised topology of epithelial tissue. Finally, a cellular automata model is constructed which 

computationally incorporates the events of cell division according to a set of rules which 

reflects the various scenarios. The results of the cellular automata model confirmed the 

results we obtained from the continuous analytical models based upon master equations. 

There is some biological background of cells and their functions in addition to tissues and their 

topology, which gives a solid foundation to understanding the concept of topology. 

Differential equations are used to construct continuous models of different scenarios of cell 

division. We aim to replicate the evolving distribution of CEDH in epithelial tissue cells with 

time. The computational software package MATLAB has been used to produce bar charts and 

to solve the ordinary differential equations used to model the different scenarios of cellular 

division. Our results seem to reproduce the results obtained through experiments well only 

when the exponential relationship is incorporated into the models. For all models the 

generated CEDs were mostly inconsistent with experimental observations when cells were 

assumed to divide uniformly and binomially. However, our results for all models seemed to 

be consistent with experimental observations when cells were assumed to divide equally.  
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Chapter 1. Background to dynamics of tissue topology 
 

In this chapter we will consider key biological concepts that drive the development of tissue. 

We will then observe the experimental findings of Lewis who used cucumber epidermis to 

understand the topology of natural epithelia, described by their cell edge distribution. 

Ultimately it is this distribution of cucumber cells which is recognised by mathematicians as 

the universal distribution across epithelial tissues and is used in this investigation to compare 

our model distributions with. Then we will review some mathematical models that have 

incorporated biological factors, which aimed to simulate the development of epithelial tissue 

and to confirm the results of previous experiments upon natural epithelia.  

 

Section 1.1 Biological background 

 

Section 1.1.1 Epithelial Tissue 
 

In multicellular organisms, the epithelia behave as a barrier between the body and the 

external environment which the organism is in direct contact with, protecting the body 

against various physical, chemical, and microbial threats (Vrana, et al., 2013). For example, 

the mucosal tissues have epithelia that defend against harmful pathogens by organisms 

breaking down the microbe via Phagocytosis. All epithelial cells form sheets of uniformly 

polarized cells (Rodriguez-Boulan and Macara, 2014) with the apical surface facing the 

external environment and the basal surface facing the basement membrane. In multicellular 

organisms they are spatially organized, where neighbouring cells are each bound via the 

direct physical interactions between cells (junctions), and this defines the limits between the 

apical and basal membrane (Le Bras and Le Borgne, 2014). The junctions are connected tightly 

in vertebrates, whereas the junctions are connected separately in invertebrates. The various 

interactions between cells of a tissue are what defines its topology. As previously mentioned 

already the cell junction between cells and their neighbours is important when considering 

the topology of a tissue since these junctions are what determines the geometry of cell 

packing. For example, plant cells associate with their neighbours not only by interactions 

between their cell walls but also with specialized junctions between their plasma membranes 

(Cooper, 2000). After cell division occurs their organisation is not impacted, due to there being 

no sliding between cells (Sahlin and Jӧnsson, 2010). Hence, the epidermal layer in plants gives 

scientists a convenient way of gaining information when investigating epithelial tissue 

topology. 

Cells of certain tissue work together cooperatively to perform a specific role. There are four 

main types of tissue that form the organs of animals. These are muscular, epithelial, nervous, 

and connective. Epithelial tissue covers the surfaces of organs including the skin, the trachea, 

the reproductive tract, and the digestive tracts’ inner lining. It has roles in absorbing water 

and nutrients, removing waste and secreting enzymes and hormones. Muscle cells are 
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responsible for the contraction of muscle that enable animals to move, which is highly useful 

if an animal needs to escape from a predator. In vertebrates there are three different types 

of muscle cells. Skeletal muscle is responsible for producing voluntary movements such as 

running, while cardiac and smooth muscle are responsible for producing involuntary 

movements, such as contraction of the heart. The epidermis of the skin is a stratified epithelial 

sheet where the cells are aligned in such a way that forms physical barriers on the body 

surface (Yokouchi, et al., 2016). Results from investigations relying upon microscopic methods 

show that cells in the monolayer epithelial sheets of different organisms resemble a polygonal 

cross section, varying in the number of edges and therefore the cell neighbour distributions 

can be visualised (figure 1.1).  

 

 

 

 

 

 

 

 

 

Section 1.1.2 Cell division 
 

During tissue development, monolayer epithelia physically expand due to increased cell size 

and divide which results in an increase in the number of cells, and therefore each generation 

of cell division results in topological changes. The complex hexagonal structure of epithelial 

tissues, according to Lewis, is maintained by this process of cellular division, but mechanical 

forces at the junctional level alters cell packing geometry and so every generation of cell 

division redistributes the cell neighbour numbers where (Farhadifar et al., 2007) has 

implemented a vertex dynamical model to investigate this mathematically.  

To understand why the division of a cell results in a change of these topological distributions, 

we need to investigate the physical process of cell division. In unicellular organisms, 

reproduction is the mechanism of cell division, whereas in multicellular organisms it is the 

growth and maintenance of tissues and hence is vital to the development of multicellular 

organisms. Multicellular development is governed by cellular differentiation which is the 

process of regulating gene expression and cell signalling that is vital for communication (Sahlin 

and Jӧnsson, 2010). As tissues grow these cellular communications are affected directly 

Figure 1.1 Microscopic image illustrating the apical surface of a monolayer epithelial sheet taken from epiblast of 
early chick embryo (Sandersius, et al., 2011). Edges between neighbouring cells of the tissue are represented by 
black lines, where the number of edges of each cell clearly varies across the tissue. 
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because of cellular proliferation and is responsible for maintaining a balance in the different 

numbers of polygons in epithelial cells which is vital for survival. Hence cell division underpins 

the evolution of CED. Tissue morphogenesis occurs when cell division causes mechanical 

properties of the cells to change. As epithelial tissue morphogenesis progresses the cells 

change their shape and divide, it can be extruded from the tissue and change the topology of 

neighbours (Lecuit and Lenne, 2007).  

The cell cycle involves the complex process of producing two genetically identical daughter 

cells from a dividing mother cell. Mitosis involves the division of the nucleus of the dividing 

mother cell and the cytoplasm via cytokinesis, enabling 50% of the copied DNA of the parent 

cell to be distributed to each of the two daughter cells. It is Mitosis which underpins the cell 

cycle. When cells divide in the plane, epithelial cells typically round up, constrict in the middle 

and divide symmetrically to produce two genetically identical daughter cells which form new 

apical junctions with their neighbouring cells (Ragkousi and Gibson, 2014). Figure 1.2 

illustrates the various stages involved in the cell cycle of a dividing cell, which summarises the 

main stages as: 

• Stage 1 – Cells are arranged in a polygonal arrangement in the monolayer epithelium 

before proliferation occurs. 

• Stage 2 – As the cells round up the nucleus of the dividing cell moves apically.  

• Stage 3 – The orientation of the mitotic spindles along the cleavage plane of a mother 

cell is dependent on the topology of the neighbouring cells in the local vicinity.  

• Stage 4 – Following the separation of chromosomes and cytokinesis, daughter nuclei 

move basally, and daughter cells form new junctions while elongating along the 

apicobasal axis.  

 

 

 

 
 

 

 

 

 

 

Section 1.1.3 Lewis’ investigations 
 

Lewis investigated the topological characteristics of cucumber epithelia using various 

mathematical measurements. Lewis aimed to explain the geometrical properties of cucumber 

cells when they undergo cell division, in addition to observing the geometrical properties of 

Figure 1.2 Top row shows the apical cross section of a dividing mother cell. The bottom 
row shows the longitudinal view of the same dividing mother cell (Ragkousi and Gibson, 
2014). 
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the pairs of daughter cells when the mother cell divides, according to different ways the 

division plane is positioned. In the simple monolayer epithelial sheet of cucumber tissue, cells 

can be represented as polygons. Initially Lewis focuses on the geometrical properties of 

hexagons with edges of unit length and then later uses experimental methods to extract cells 

from the cucumber epidermis and aims to verify that his initial hypotheses, postulated using 

mathematical methods, were in fact valid in natural epithelia of cucumber tissue. Initially he 

constructs diagrams to illustrate cell division, where cells can divide with equal probability in 

either of three planes a, b, or c (figure 1.3, A). All the figures have been taken from the 

workings documented in (Lewis, 1926), (Lewis, 1928). The initial observations caused Lewis 

to postulate that if a single regular hexagon where to divide in the plane a, b or c it will 

produce a pair of daughter cells each possessing five edges and will cause two neighbouring 

cells to be heptagonal due to the addition of one edge (figure 1.3, B). If the six neighbouring 

cells should also divide in the planes a, b or c there would be altogether eight new hexagonal 

and six new pentagonal cells. This led Lewis to the first important hypothesis that divisions of 

the hexagons produce an equal number of pentagons and heptagons, were these return to 

six-sided cells as cell division continues. Lewis claims, from the early stages of tissue growth 

to the developed stages, the evolution of the fractions of hexagonal cells naturally balances 

the total loss and gain of edges in the population after each division of a mother cell, where 

the diagrams show that the average number of is therefore six (figure 1.3, C).  

 

Lewis shows that if various cells were to divide within various division planes, there is balance 

in the number of edges of these dividing cells and neighbouring cells in the local 

neighbourhood. Biologically, this observation corresponds to the importance of tissues 

maintaining their cell sizes to maintain constant dynamical equilibrium of nutrients and gasses 

leaving and entering cells by diffusion and other complex processes of transportation. They 

then decided to use their initial calculations of the areas of various polygons of unit length to 

compare with the geometry of cells extracted from the epithelial tissue. Lewis extracted a 

tissue from a cucumber composed of tetrakaidekahedral cells. Their geometric comparisons 

(A) (B) (C)  

 
 

 

Figure 1.3 Figure (A) shows three possible orientations of division, along three vertical planes a, b, and c. Figure 
(B) illustrates the division of a heptagonal mother cell producing equal numbers of heptagons and pentagons 
where neighbouring cells gain one extra edge. Figure (C) illustrates further cell divisions restoring the dividing 
cells back to their original hexagonal shape, illustrating the constant balancing of the removal and addition of 
edges during tissue proliferation. 
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of these many cells led to the conclusion that the average number of edges is exactly six, 

verifying previous observations made by Wetzel with natural epithelia. Lewis then shows the 

geometrical arrangement of hexagonal cells as shown in figure 1.4, reflecting the pattern of 

cells in the pigment layer of the retina. They demonstrate that increasing the area of the 

central cell will result in the neighbouring hexagonal cells becoming irregular. The central 

hexagon then divides, the resulting daughter cells are two pentagons while simultaneously 

making two adjacent cells heptagonal. By using their calculated areas of polygons Lewis 

concludes that cells in the centre of the array increase their areas to maintain the topology of 

all the cells. 

 

 

 

 

 

 

 

 

Up until now a few topological observations can be stated from Lewis’ geometrical 

investigations. If a mother cell divides along a division plane in the way represented in figure 

1.4, this results in the removal of one cell from the population while this simultaneously 

results in the addition of two daughter cells. Therefore, there is a net addition of one cell to 

the population. Since the average cell is hexagonal, this means that the total number of edges 

in the network has increased by six. Lewis observes that the sum of the daughter cell edges 

will be four more than the number of edges of the dividing mother cell. This is regardless of 

the shape of the polygon which represents the dividing mother cell, and he shows this 

mathematically (figure 1.5). During cell division of a six-sided mother cell the two edges, a 

and b, are removed from the population (figure 1.5, A). Hence there is a net loss of four edges 

from the population. Furthermore, due to the generation of two daughter cells the following 

five edges are added to the population: a1, a2, b1, b2 and c (figure 1.5, B). However, each of 

the daughter cells possess these edges and since there are two daughter cells this number 

must be doubled and then added to the total population, so there is a net gain of ten edges 

to the population. Therefore, the net addition of the total number of edges is six. In 

conclusion, the division of a mother cell, on average, results in the addition of a hexagonal 

cell to the population.  

 

Figure 1.4 Lewis’ attempt to show geometrically the balance of edges brought about by the division of the central 
hexagon into two pentagons, with the formation of two adjacent neighbouring heptagons, in the pigment layer of 
the retina originally observed by Wetzel.  
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(A) (B) 
  

Figure 1.5  (A) and (B) showing that whenever a mother cell divides the total number of new sides created is 
six. 

 

Section 1.2 Mathematical Background  

 

Section 1.2.1 Topology of epithelial tissue 

 

Topology is commonly understood by Mathematicians as the physical study of the properties 

that remain unchanged of an object in space if it was to be continuously deformed through 

motions, such as through twisting (Carlson, 2007). Topology has been used in the study of 

many physical structures in Biology, in particular the study of Morphogenesis. Morphogenesis 

investigates how biological structures evolve, where particular interest in experimental 

research for nearly over a century has been on understanding embryogenesis (Thom, 1969). 

Topology and Geometry are two important measurements to consider when understanding 

the mechanisms which stimulate the growth and development of epithelial tissue (Carter, et 

al., 2017). Mathematically, when we are considering the changes in the shape and size of a 

cell due to cellular division, we are studying the changes in the geometry of the cells. The 

Topology of a simple monolayer epithelium involves observing how these cells are connected 

within a planar network by studying the number of neighbouring cells for each polygonal cell 

in the tissue, corresponding to their defined geometries. Therefore, the topology of the 

epithelium is measuring how the distribution of cell neighbour numbers (CNN) changes over 

time due to cell division. When mother cells divide this directly affects the geometry of 

daughter cells in addition to the distribution of cell neighbour numbers within their local 

neighbourhood (Delannay and Le Caër, 1994). Changes in tissue topology refer to changes in 

the geometry of cells that are said to lose or gain edges brought about by the division of 

mother cells and the generation of two daughter cells (Yingzi, et al., 2012).  

Epithelial tissues are commonly represented by unicellular layers and have quite distinctive 

topological features. Cells, as seen from the tissue surface can be represented by polygons 

whose number of edges varies between four and nine (Lewis, 1926). This number is equal to 

the total number of nearest cells that the cell is neighbours with. Investigations into the 

changes that occur in the topological physical structure of mother cells undergoing cellular 
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division have allowed advancements to be made in understanding complex cellular processes. 

In the previous section it was shown that epithelial cells from these cucumbers exhibit a 

distinctive cell–edge distribution, with the majority being hexagonal. Upon experiments on 

embryonic epithelia tissues, from a range of organisms, it has been shown that the statistics 

of CED are universal in tissues where cellular proliferation is the primary cell activity 

(Sandersius, et al., 2011). Cellular proliferation is the process by which cellular division events 

increases the number of cells in the tissue, and is a highly complex, tightly controlled process 

of the cell cycle (Yang and Krafts, 2014). Experiments upon animal and plant tissue confirm 

that the distributions of cellular polygons are significantly similar when different epithelia are 

investigated (Patel, et al., 2009).  

When a mother cell divides into two identical daughter cells via a division line it is apparent 

that the number of sides of its two neighbours increases by one. It was shown in the previous 

section that the selection of the two affected neighbours comes from the orientation of the 

cleavage plane which seems to be influenced by the topology of cells in the local 

neighbourhood. Hence the division line crosses two edges of the dividing mother cell and so 

over time the number of edges of these cells, in addition to their fractions in the tissue 

evolves. Results recorded in the literature indicates that there is a point in time where the 

distribution of CED stabilises, indicating that further proliferation will no longer impact the 

distribution of CNN. A couple of mathematical models that aimed to describe the epithelial 

topology will now be discussed.  

 

Section 1.2.2 GPNP Model, Sandersius’ modifications, and cleavage patterns 

 
Gibson uses a continuous-time, non-spatial Markov model to demonstrate that the 

distribution of polygonal cell types in epithelia is a result of cell proliferation and aims to show 

that the different cell-edge distributions observed in epidermal tissue of cucumber in Lewis’ 

experiments is universal across different organisms. They show that cell neighbour numbers 

were highest for hexagonal cells and successfully replicated the CEDs observed in such 

experiments. Proliferating epithelia rarely show the honeycomb pattern in their cell 

arrangement, often forming irregular polygon arrays because of cell division. The GPNP 

mathematical model was constructed, based on the following assumptions, which seem to be 

consistent with experimental evidence: 

• Assumption 1 - Cells have a polygonal shape with a minimum of 4 sides.  

• Assumption 2 – Random orientation of division plane for each cell in tissue.  

• Assumption 3 – Synchronous cell division in discrete generations. 

• Assumption 4 – There are no spatial correlations between the sides of cells.  

 

However though, a few of the other assumptions do not seem to be consistent in biological 

systems, so the model is not completely successful in explaining the patterns of cell-edge 

distributions in proliferating epithelia. Cells with four edges do not appear in their 

observations which is not consistent with the polygon distribution observed in proliferating 

epithelia of diverse organisms. They predict, using a markov chain model that a stable 
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equilibrium distribution of polygons should emerge in proliferating epithelia, irrespective of 

the initial conditions. They use a discrete Markov chain to capture the stochastic nature of 

cell division (see MATH522). Sandersius and his co-workers investigated the CED generated 

from proliferating chick embryo which forms a monolayer epithelial like sheet during their 

early stages of development. They improve the non-spatial markov chain model proposed by 

Gibson by making the assumptions more biologically accurate. They do this by constructing 

three models referred as to as Neuman models (see MATH552).  

 The following histogram produced using MATLAB represents the polygonal distribution of 

cells generated from the GPNP model and the three separate Neuman models along with 

Lewis’ experimental observations:  

 

 

Figure 1.6 Comparison of CEDs generated from mathematical models, compared with cucumber distribution.  

The GPNP model clearly replicates the experimental observations well, with the only 

inconsistency being the model does not detect the presence of 4-sided cells in the 

proliferating tissue. Sandersius’ improvements to overcome this issue unfortunately failed at 

reproducing the statistics of the universal shape. The third model seems to overpredict 4, 8 

and 9 sided cells the most. However, this model performed the most effectively at predicting 

the frequency of 5 sided cells. The second model does not predict the presence of 4 sided 

cells, the same behaviour of the GPNP model. The first model is the least effective at 

predicting the topology of hexagonal cells.  

Gibson’s’ experiments of modelling cleavage patterns focus on observing the topological 

changes of proliferating epithelia by implementing a 2-D computational model, aiming to 

explain how various methods of cell division impacts the distribution of epithelial cell shapes 
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between different organisms. Gibson represents the monolayer epithelia as a planar network 

(figure 2.1) and investigates how the orientation of cleavage planes are chosen during various 

generations, under the hypothesis that the number of neighbouring cells and the shapes of 

proliferating mother cells both influence these orientations. These were first observed in 

Lewis’ experiments of cucumber epidermis. A few conclusions made from Lewis’ experiments 

and the GPNP model led to the natural decision for Gibson and his co-workers to try and 

explain how these orientations are chosen and the reason for such orientations. Gibson is 

interested in the number of neighbouring cells per cell in the network, which can be visually 

observed by the number of edges shared by cells. As already discussed in Lewis’ experiments, 

every time a mother cell divides, the topology of this planar network is changed by the 

addition of new vertices, edges, and faces. The “Cleavage plane regulation model” (CMP) is 

implemented to describe how a dividing cell selects the two edges that the cleavage plane 

bisects, which occurs uniformly at random (Figure 1.7). Based upon their previous 

experimental observation they define the following assumptions: 

 

• Assumption 1 – Cell division is the only event that influences the network. The 

rearrangements of junctions due to cellular mechanical processes between 

neighbouring cells are not considered.  

• Assumption 2 – For every division cycle implemented by the CPM, all cells in the 

network undergo division once. 

• Assumption 3 – Two vertices and one edge are added to the network to reflect the 

generation of two identical daughter cells for each division of a mother cell.  

• Assumption 4 – Three sided cells are not formed due to their negligible fractions 

observed in the literature, so the cleavage plane crosses any two non-adjacent cells of 

dividing mother cell.  

 

The epithelial topology is influenced by CPM in two different ways. The first is measuring how 

much of an impact the neighbouring cells have in selecting the cleavage plane orientation, 

computationally denoted as “Edge 1”. According to Lewis, cells with less than six edges have 

a greater influence on the orientation of the division plane to restore their hexagonal cell 

geometry and therefore neighbouring cells with a smaller number of edges tend to have a 

greater influence on mechanical cell processes during tissue morphogenesis (Farhadifar, et 

al., 2007). The second component of CPM is the symmetrical pattern of distributed 

neighbours to the other two daughter cells, denoted as “Edge 2”. Gibson implements cell 

division through the CPM algorithm by generating a new edge connecting “Edge 1” and “Edge 

2”. Gibson introduced four different methods the “Edge 1” could be chosen randomly using 

the algorithm, depicted in the top diagram of figure 1.8: 

 

Random: While not considering the local topology, the alignment of the mitotic spindle 

proceeds where “Edge 1” is chosen uniformly at random from all cell edges in the population, 
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reflecting the model that assumes neighbouring cells do not influence the choice of cleavage 

plane orientation. 

Smallest neighbour: The mitotic spindle aligns in such a position that division of a mother cell 

during the next cycle will add an extra edge to the neighbouring cell (“Edge 1”) with the 

smallest number of edges. 

Largest neighbour: This is the same as the previous scenario, with the only difference being 

the “Edge 1” is the neighbouring cell with the largest number of edges. 

Orthogonal: Cleavage plane is rotated by 90 degrees every time the mother cell undergoes a 

division cycle. “Edge 1” is selected to the neighbouring edge from the previous cycle of 

division.  

  

 

 

 

 

 

 

 

Gibson now considers “Edge 2” of the cleavage plane randomly selected, which impacts the 

symmetrical distribution of neighbours to the daughter cells generated for each cycle of cell 

division. They introduced four different methods for this random selected, depicted in the 

bottom diagram of figure 1.8: 

 

Strategy 1 – Random: For non-adjacent cells to the first edge, the second edge is chosen 

uniformly at random to avoid the generation of any three-sided daughter cells, where both 

symmetric and asymmetric cleavage planes are selected with the same probability. 

Strategy 2 – Equal Split: “Edge 2” is selected in such a manner that the generated daughter 

cells are as geometrically equal as possible. For an 𝑖 - sided mother cell that divides, both 

daughter cells will therefore be 𝑖 - sided.  

Figure 1.8 Top diagram illustrating the four methods of 
selection of the first edge using CPM. The selection of the 
second edge is shown in bottom diagram. Possible 
cleavage planes are shown as dashed white lines while the 
fractions correspond to the probabilities of choosing a 
cleavage plane (Gibson, et al., 2009).  

Figure 1.7 CPM for a hexagonal cell illustrating topological 
changes due to cycles of division along with the generated 
pairs of daughter cells. Its two adjacent neighbouring cells 
gain an extra edge (orange cells), (Gibson, et al., 2009).  
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Strategy 3 – Binomially orientated: “Edge 2” is selected in such a manner that follows the 

binomial expansion. Symmetric daughter cells appear more often than asymmetric daughter 

cells.  

 Strategy 3 – Unequal split: This is the same as equal split, but the generated daughter cells 

will be as unequal as possible. For an 𝑖 - sided mother cell that divides, one of the daughter 

cells will be 𝑖 – sided while the other daughter cell will be (𝑖-1) sided.  

The stabilised equilibrium distribution of polygonal cells using their computational models are 

shown below in figure 1.9.   

 

 

 

 

 

 

 

 

 

 

 

 

According to literature, every CPM should stabilise to an average topology of six sided cells 

due to the topology of cells in the local neighbourhood. By looking at figure 1.9 there seems 

to be differences in the ranges of the topology of each distribution generated from the three 

scenarios tested. Gibson shows that the corresponding level of symmetry of each scenario of 

cell division, which is defined by the symmetry of the orientation of the cleavage plane, is 

correlated with the variance of the distribution generated.  The distribution for the equal split 

scenario agrees well with universal shape of natural epithelia. Due to the symmetrical nature 

of the equal split scenario, the range in the topological distribution is reduced. This is to be 

expected since the generated pair of daughter cells are equal in size and so the number of 

generated hexagons should be large in comparison to the number of hexagons generated 

from the other two models. The variance of polygonal cell distributions generated from this 

scenario reflects the variance of the polygonal distribution in natural epithelia and therefore 

is a strong model to describe the statistics of epithelial cell topology. Gibson shows that for 

all “Edge 1” methods tested, the percentage of hexagons in the population increases with 

increasingly symmetric “Edge 2” CPM. CPMs generated from the binomial and uniform 

Figure 1.9 Topological distributions for all simulated CPMs, compared with 
experimental recordings of natural epithelia (Gibson, et al., 2009). 
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models do not stabilise to hexagonal cell shape. This is because of the unsymmetric properties 

of these two methods of division. 

They compared the results on the simulated CPMs with the stabilised distribution from 

natural proliferating epithelia in biologically diverse organisms included plant tissue. They 

conclude that the topology of natural epithelia displays low variance in the topology of 

polygonal cells, implying that various organisms may have distinct mechanisms to supress 

shape variability during proliferation and to maintain the hexagonal cell topology. To 

conclude this section, proliferation in different organisms clearly have different mechanisms 

to maintain the topology of their tissues and is now better understood, which will enable us 

to implement this topological framework as the basis for our mathematical model.  
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Chapter 2. Statistical Analysis of epithelial tissue topology 
 

In the following chapter we aim to determine if there is a probability density function that can 

describe the universal statistics of the topology observed in natural proliferating tissue by 

fitting three distributions to the raw data: Poisson, normal and log normal. We aim to 

determine the closest fit, which can enable us to describe the topology of a proliferating tissue 

more accurately over a defined period.  

 

Section 2.1 Introduction  
Cells, when represented as polygons, from the epidermis form physical connections between 

neighbouring cells in their neighbourhood, where the number of k sided cells connecting with 

neighbours varies during the process of tissue proliferation. The distribution of polygonal cell 

neighbour numbers (CNN) can be plotted as bar charts, where their shapes stabilise to a 

universal pattern between diverse organisms. The evolved distribution of CNN is recognised 

as one of the most used methods to describe tissue topology (Sandersius, et al., 2011). The 

earliest topological recordings were from Lewis in the 1920s where he investigated the effects 

of cell division on the shapes and sizes of cucumber epidermal cells which were represented 

as regular hexagons (figure 1.6).  

We initially present the raw data obtained from proliferating natural epithelial tissues in 

Drosophila, Xenopus and Hydra (Gibson, et al., 2006) along with the raw data obtained from 

cucumber epidermis (Lewis, 1928) and display their topological shape in the form of bar 

charts. We then draw visual conclusions from looking at the recorded patterns of topology 

for these tissues. Following on from this we use Chi-squared statistical tests to measure the 

deviation of each of the experimental distributions from the calculated average distribution. 

To conclude we fit three probability distribution functions to the raw data and present these 

using curves.  

Number of 
Cell edges 

(i) 

Observed 
Drosophila 

(𝑂𝐷𝑖) 

Observed 
Hydra  

(𝑂𝐻𝑖) 

Observed 
Xenopus 

(𝑂𝑋𝑖) 
 

Observed 
Cucumber  

(𝑂𝐿𝑖) 

Total observed 
number of cells 
per number of 

edges 

3 0 0 2 0 2 

4 64 16 40 20 140 

5 606 159 305 251 1321 

6 993 278 451 474  2196 

7 437 125 191 224 977 

8 69 23 52 30 174 

9 3 1 8 1 13 

10 0 0 2 0 2 

Total 
Observations 

2172 602 1051 1000 Sum of Total 
observations = 

4825 
Table 1 Table displaying observed cell topology obtained within experiments of natural epithelia (Gibson, et al., 
2006) and cucumber distribution (Lewis, 1928) along with the total number of cells per number of cell edges. 
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The following table displays fractions of the various experimental distributions which allow us 

to compare these with the fractions of the cucumber distributions. The table also includes a 

column displaying the total distributions for each number of cell edges.  

 

Number of 
Cell edges 

(i) 

Drosophila 
distribution  

(𝐹𝐷𝑖) 

Hydra 
distribution  

(𝐹𝐻𝑖) 

Xenopus 
distribution 

(𝐹𝑋𝑖) 
 

Cucumber 
Distribution 

(𝐹𝐿𝑖) 

Total observed 
number of cells 
per number of 

edges 

3 0 0 0.0019 0 0.000414 

4 0.0295 0.0266 0.0381 0.02 0.029016 

5 0.2790 0.2641 0.2902 0.251 0.273782 

6 0.4572 0.4618 0.4291 0.474  0.455129 

7 0.2012 0.2076 0.1817 0.224 0.202487 

8 0.0318 0.0382 0.0495 0.03 0.036062 

9 0.0014 0.0017 0.0076 0.001 0.002694 

10 0 0 0.0019 0 0.000414 

Sum 1.0 1.0 1.0 1.0 1.0 
Table 2 Table displaying fractions of cell topology obtained within experiments of natural epithelia (Gibson, et 
al., 2006) and cucumber distribution (Lewis, 1928) along with the total observed number of cells per number of 
cell edges. 

 

 

Figure 2.1 Bar chart illustrating CEDs obtained from various experimental observations (Gibson, et al., 2006) 
and (Lewis, 1928), compared with the total observations per number of cell edges.  

 

The bar chart presented in figure 2.1 which illustrates the cell-edge distributions of 

proliferating epithelia in Hydra, Xenopus, Drosophila, and cucumber are remarkably similar. 

The consistent nature of all experimental distributions is the tissues maintain a hexagonal cell 
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topology where cells with six nearest neighbours appear the most. A significant fraction of 

cells with five and seven nearest neighbours were also detected. However, the result for 

Xenopus indicates that a small fraction of cells with three edges and ten edges appear which 

is inconsistent with the universal shape, where no three or ten sided cells appear to exist in 

recorded experiments. The bars for cucumber topology and the bars for the total topology of 

Gibson’s’ experiments are similar in height where their overall shape of the average cell-edge 

distribution is right skewed. This indicates that the average evolved distributions of all 

proliferating epithelia stabilise to an average topology consistent with the universal shape of 

tissue topology.  

 

Section 2.2 Comparing experimental data with each other 
 

The Chi-Squared test measures how well a particular model can be fitted to actual observed 

data. The test statistic compares the size of any discrepancies between the expected results 

and the actual results, given the size of the sample and the number of variables in the 

relationship. We calculate degrees of freedom to determine if a certain null hypothesis (𝐻0) 

can be rejected based on the total number of variables and samples there are within an 

experiment. The negation of the assumed null hypothesis is known as the alternative 

hypothesis (𝐻1). As with any test statistic, the larger the sample the more reliable the results. 

For the 𝑋2 test statistic: 

 

𝑋2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

 

 

We will perform a chi-squared test to determine which of the fitted experimental 

distributions are the most like the cucumber distribution: 

 

• 𝑂𝑖 is the observed data from Lewis.  

• 𝐸𝑖 is the expected observations from the fitted experimental distributions.  

The test statistic follows approximately a chi-square distribution with (𝑘 − 𝑐) degrees of 

freedom where 𝑘 is the number of variables, and 𝑐 is the number of parameters: 

 

∑𝑂𝑖 =

𝑘

𝑖=1

∑𝐸𝑖

𝑘

𝑖=1
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• Test statistic: (8 − 𝑐) =  (8 − 1) = 7 

 

Therefore, the null hypothesis that the data are from a population described by experimental 

distribution is accepted if the following holds: 

 

Accept 𝐻0 if 𝑋2 > 𝑋2
1−𝛼,𝑘−𝑐 

 

Where 𝑋2
1−𝛼,𝑘−𝑐 is the chi-squared critical value with (𝑘 − 𝑐) degrees of freedom and 

significance level α, where we will use a significance level of 5%: 𝛼 = 0.05.  

 

Number of 
Cell edges 

(i) 

Observed 
Drosophila 

(𝑂𝐷𝑖) 

Expected  
Drosophila 

(𝐸𝐷𝑖) 

Observed 
Hydra  

(𝑂𝐻𝑖) 

Expected 
Hydra 
(𝐸𝐻𝑖) 

Observed 
Xenopus 

(𝑂𝑋𝑖) 
 

Expected 
Xenopus 
(𝐸𝑋𝑖) 

3 0 0 0 0 2 0 

4 64 43.44 16 12.04 40 21.02 

5 606 545.172 159 151.102 305 263.801 

6 993 1029.528 278 285.348 451 498.174 

7 437 486.528 125 134.848 191 235.424 

8 69 65.16 23 18.06 52 31.53 

9 3 2.172 1 0.602 8 1.051 

10 0 0 0 0 2 0 

Total 
Observations 

2172 2172 602 602 1051 1051 

Table 3 Table displaying the observed and expected data for all experimental observations which can be used to 
perform statistical tests with the aim of concluding which experimental distribution fits Lewis’ observations the 
best.  

 

𝑋2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

 

 

• Null hypothesis 𝐻0: Lewis’s distributions are correct at fitting the experimental 

distributions. 

• Alternative hypothesis 𝐻1: Models do not fit the observed data.  

• Significance level of 5%: 𝛼 = 0.05 

• Significance level of 1%: 𝛼 = 0.01 

• Degrees of freedom: (𝑘 − 1) = 7 

• Critical value under null hypothesis: 𝑋5
2 = 14.067 

• Critical value under null hypothesis: 𝑋1
2 = 18.475 
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Test statistic for Drosophila:  𝑥2 = 
(64−43.44)2

43.44
+

(606−545.172)2

545.172
+

(993−1029.528)2

1029.528
+

                             
(437−486.528)2

486.528
+ 

(69−65.16)2

65.16
+

(3−2.172)2

2.172
= 23.3978 (4. 𝑑𝑝) 

 

Test statistic for Hydra:  𝑥2 = 
(16−12.04)2

12.04
+

(159−151.102)2

151.102
+

(278−285.348)2

285.348
+

                             
(125−134.848)2

134.848
+ 

(23−18.06)2

18.06
+

(1−0.602)2

0.602
=  4.2381 (4. 𝑑𝑝) 

 

Test statistic for Xenopus: 𝑥2 = 
(40−21.02)2

21.02
+

(305−263.801)2

263.801
+ 

(451−498.174)2

498.174
+

 
(191−235.424)2

235.424
+

(52−31.53)2

31.53
= 49.7116 (4. 𝑑𝑝) 

Hence for a random variable 𝑋2 which follows the 𝑋5
2 distribution, then 𝑃(𝑋2 > 14.067) =

0.05. If the experimental distributions do fit Lewis’ observations it can be shown that our test 

statistic 𝑋2 will follow the  𝑋5
2 distribution, so the 𝑋2 value should unlikely be greater than 

14.067 since there is only a 5% chance of this occurring. If we have a value of 𝑋2 greater than 

14.067 then we would conclude that the experimental distributions obtained by Gibson is 

statistically unlikely to produce such a large value, so there would be evidence at the 5% level 

that these distributions do not fit Lewis’ topological distribution well. In fact, the 𝑋2 value for 

our Hydra data is 4.2381 < 14.067. Hence there is no evidence at the 5% level and even at the 

1% level to reject the null hypothesis and we can be 99% confident that the Hydra distribution 

can be used to fit the CED obtained for 4-9 sided cells from Lewis. Since the calculated test 

statistics for both Drosophila and Xenopus are greater than the critical value, we reject the 

null hypothesis at the 5% and 1% level of significance and accept the alternative hypothesis 

with 99% confidence. The Hydra distribution can therefore be treated as the same distribution 

for cucumber epidermis. 

To further our analysis into these distributions we will compare the distributions of Drosophila 

and Xenopus to determine if these can be treated as the same distributions, where the 

necessary data has been presented in the following table: 
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Number of 
Cell edges 

(i) 

Observed 
Drosophila 

(𝑂𝐷𝑖) 

Expected  
Drosophila 

(𝐸𝐷𝑖) 

3 0 4.1268 

4 64 82.7532 

5 606 630.3144 

6 993 932.0052 

7 437 394.6524 

8 69 107.514 

9 3 16.5072 

10 0 4.1268 

Total 
Observations 

2172 2172 

Table 4 Table displaying the observed and expected data for Drosophila observation with the aim of concluding 
whether the drosophila and Xenopus distributions are statistically different.  

• Null hypothesis 𝐻0:  Distributions for Xenopus and Drosophila are statistically similar and 

so can be treated as the same distribution. 

• Alternative hypothesis 𝐻1: Distributions are not statistically similar.  

• Significance level of 5%: 𝛼 = 0.05 

• Significance level of 1%: 𝛼 = 0.01 

• Degrees of freedom: (𝑘 − 1) = 7 

• Critical value under null hypothesis: 𝑋5
2 = 14.067 

• Critical value under null hypothesis: 𝑋1
2 = 18.475 

 𝑥2 =
(64−82.7532)2

82.7532
+

(606−630.3144)2

630.3144
+

(993−932.0052)2

932.0052
+ 

(437−394.6524)2

394.6524
+ 

(69−107.514)2

107.514
+

(3−16.5072)2

16.5072
= 38.5726 (4. 𝑑𝑝) 

Since the calculated test statistic is greater than the critical value, we reject the null 

hypothesis at the 5% and 1% level of significance and accept the alternative hypothesis with 

99% confidence. Hence the Drosophila distribution is not statistically like the Xenopus 

distribution and therefore cannot be treated as the same distribution.  

To conclude this section, we have found that all three distributions display a CED shape which 

is like cucumber epidermis. By performing statistical tests, we have determined that the 

distribution of Hydra displays the CED shape of cucumber epidermis the most precisely, 

whereas Drosophila and Xenopus do not display the CED shape of cucumber epidermis 

enough to conclude they are good at reflecting this shape. We also see that the test statistic 

for Xenopus is more than twice as large as the test statistic for Drosophila. Hence the Xenopus 

distribution seems to reflect the shape of cucumber distribution significantly worse than 

Drosophila and as a final step we decided to test this difference. It was found that the 

distributions were statistically different and hence Xenopus is statistically poor while Hydra is 

statistically good at replicating the shape of the cucumber distribution.  
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Section 2.3 Comparing statistical distributions with experimental data.  
 

The aim of this section is to determine if tissue topology can be described using a statistical 

distribution. We will compare three statistical distributions; Poisson, Normal and Log-Normal 

which have been fitted to the data collected from Lewis’ investigation into the topology of 

cucumber epidermis (Lewis, 1928). Microsoft excel has been used to generate curves which 

enables visual comparisons of the distributions of the experimental data with the three 

statistical distributions. The method of least squares is described initially which measures how 

accurately the statistical distributions fit along the curve generated from the cucumber 

distribution. Then we use the chi squared test statistic to determine if the shape of the best 

of these three fitted distributions is statistically like the distribution of cucumber.  

 

Consider 𝑥 to be the number of cell edges of the dividing mother cell, which will appear on 

the x-axis. Then the frequency of events will be described by the y-axis and λ is the average 

number of events per interval (rate parameter). We will allow the values of 𝑥  to be 0, 1, 2, 3, 

4 and 5. This corresponds to cells with several edges which range from 4 to 9. We will allow 

the mean to be 2; λ = 2. Microsoft excel solver is used to display two curves. The first will be 

the experimental observations generated from Lewis (cucumber distribution), and the second 

will be the data after it has been fitted with each of the three statistical distributions. We will 

apply the method of least squares to generate a nonlinear curve which will reflect the line of 

best fit for our data. It is assumed that the curve has the minimal sum of errors from a set of 

data (Molugaram & Rao, 2017). If we have the following data points: (𝑋1, 𝑌1), (𝑋2, 𝑌2), (𝑋3, 

𝑌3), …, (𝑋N, 𝑌N) where 𝑋 is the independent variable and 𝑌 is the dependent variable, we can 

allow the nonlinear curve generated from the method of least squares to be 𝑓(𝑥). The error 

from each individual data point in the given data set can be represented as 𝑒i and is calculated 

by the following: 

• 𝑒1  = 𝑌1 − 𝑓(𝑋1) 

• 𝑒2  = 𝑌2 − 𝑓(𝑋2) 

• 𝑒3  = 𝑌3 − 𝑓(𝑋3)… up to the 𝑁th data point 

 

Hence the curve that is generated reflects the minimised sum of the squared errors:  

 

∑(𝑒𝑖)
2 = ∑[𝑌𝑖 − 𝑓(𝑋𝑖)]

2

𝑁

𝑖=1

𝑁

𝑖=1
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Poisson Distribution 

The first probability function that will be considered is the curve generated from the Poisson 

distribution. This discrete distribution is used to model the number of events occurring within 

a given time, given the average number of times the event occurs over that defined period. If 

𝑋 is a discrete random variable which represents the number of events 𝑥 observed over a 

given time for any non-negative integer 𝑥, the formula for this mass function is given as: 

 

 𝑝(𝑋 = 𝑥) =
𝑒−𝜆∙𝜆𝑥

𝑥!
 ∀ 𝑥 ∈ ℤ ≥ 0  

 

(1.3) 

 
 

A few parameters have been included in the formula, which can be defined as: 

• λ is the shape parameter which indicates the average number of events in the given 

time interval. It is the expected value of 𝑥: 𝐸[𝑋] = 𝜆. This is also equal to the 

variance.  

• 𝑥 is the number of occurrences.  

• 𝑥! is the factorial of 𝑥.  

• 𝑒 is Euler’s number (2.71828…) 

 

For each of the three statistical distributions we display the observed polygonal fractions from 

the cucumber epidermis along with the fitted distributions, including a column displaying the 

sum of squared errors (tables 5, 6 and 7). The fitted curves are presented in figures 2.2, 2.3 

and 2.4.  

 

X Fractions for 
cucumber epidermis 

(𝒀𝒐𝒃𝒔) 

Fitted Poisson 
distribution (𝒀𝒄𝒂𝒍𝒄) 

Error squared  

(𝒀𝒐𝒃𝒔 –  𝒀𝒄𝒂𝒍𝒄)𝟐 

4 0.02 0.120972 0.010195 

5 0.251 0.255516 0.000020 

6 0.474 0.269851 0.041677 

7 0.224 0.189993 0.001156 

8 0.03 0.100326 0.004946 

9 0.001 0.042381 0.004946 

Sum: 1.0 0.979 0.063 
Table 5 Table showing the fractions of cell shapes obtained from Lewis, where the Poisson distribution has been 
fitted to the data.   
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Figure 2.2 Two separate plotted curves showing the experimental observations recorded by Lewis (Blue) along 
with the fitted Poisson distribution (Orange). The method of least squares is used to plot the nonlinear curve 
using Microsoft excel solver.  

 

Running the solver programme to define the minimum value for the sum of squared errors 

by changing the value of λ generated a value of: 

 

𝜆 = 2.112199 

 

Due to there being an error value of 0.063, this corresponds to clear, significant, deviations 

in the shape of the fitted Poisson distribution away from the experimental observations. 

Therefore, we can conclude that the Poisson distribution is not useful at replicating the 

statistics of the topology of proliferating epithelial tissue. 

 

Normal Distribution  

The second probability function that will be considered is the curve generated from the 

normal distribution. This is one of the most common distributions that are used in nature to 

describe random variables whose distributions are not known, such as the height or weight 

of individuals. These random variables can be expressed as the sum of many random variables 

and the Central Limit theorem states that this sum will be approximately normal. In the same 

manner as for the Poisson distribution, the method of least squares is applied to fit the 

recorded experimental data and we will let 𝑥 be the number of cell edges. The random 

variable is parametrised by three statistical measurements: 
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• The mean of the data = 𝜇 = 0  

• Standard deviation = σ 

• Variance = 𝜎2 = 1  

 

The shape of the histogram is described as a bell curve where its width depends on the 

standard deviation. If 𝑋 is a continuous random normal variable, then we can say that 

𝑋~ 𝑁(𝜇, 𝜎2) and the P.D.F of this variable is described by the normal curve 𝑓(𝑥, 𝜇, 𝜎) which 

has the following formula: 

 

𝑓(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  

 

X Fractions for 
cucumber 

distribution (𝒀𝒐𝒃𝒔) 

Fitted Normal 
distribution (𝒀𝒄𝒂𝒍𝒄) 

Error squared  

(𝒀𝒐𝒃𝒔 –  𝒀𝒄𝒂𝒍𝒄)𝟐 

4 0.02 0.06076290 0.001662 

5 0.251 0.25510946 0.0000169 

6 0.474 0.40369971 0.004942 

7 0.224 0.24078758 0.000282 

8 0.03 0.05413193 0.000582 

9 0.001 0.00458687 0.0000293 

Sum: 1.0 0.958 0.006 
Table 6 Table showing the fractions of cell shapes obtained from cucumber distribution, where the Normal 
distribution has been fitted to the data.   
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Figure 2.3 Two separate plotted curves showing the topology of cucumber epidermis (Blue) along with the fitted 
Normal distribution (Orange). The method of least squares is used to plot the nonlinear curve using Microsoft 
excel solver. 

 

Running the solver programme to define the minimum value for the sum of squared errors 

by changing the value of 𝜇 and 𝜎 generates values of: 

 

𝜇 = 1.97039 , 𝜎 = 1.01236 

 

Due to there being a smaller error value of 0.006 in comparison with the error value 

generated from the fitted Poisson distribution, this corresponds to less obvious deviations in 

the shape of the fitted Normal distribution away from the experimental observations. 

Therefore, we can conclude that the Normal distribution performs more accurately at 

replicating the statistics of the topology of proliferating epithelial tissue. However though, the 

symmetrical nature of the normal distribution is inconsistent with the unsymmetrical shape 

of the experimental histogram. In addition to this we know that 𝑥 ∊ ℝ for the Normal 

distribution whereas 𝑥 > 0 in the experimental data since 𝑥 represents the various cell 

shapes that were observed.  

 
Log-Normal distribution 

For the final statistical model, we will consider the log-normal fitted histogram. The random 

variable 𝑋 has a logarithm which follows a normal distribution. For the standard normal 

variable 𝑋 it has a mean 𝜇 = 0 and a variance 𝜎2 = 1 and can be defined as the following: 
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𝑋 = 𝑒  𝜇+𝜎𝑍 

 

∴ 𝑙𝑜𝑔𝑋 = log (𝑒  𝜇+𝜎𝑍) 

 

∴ 𝑙𝑜𝑔𝑋 =  𝜇 + 𝜎𝑧 

 

Since 𝑍 is normal, 𝜇 + 𝜎𝑧 is also normal which means that the logarithm of 𝑋 is normally 

distributed.  

The log-normal distribution, where 𝑥 > 0 satisfies the following equation: 

 

𝑓(𝑥, 𝜇, 𝜎) =
1

𝑥 ∙ 𝜎√2𝜋
𝑒

−
(𝑙𝑛 𝑥−𝜇)2

2𝜎2  

 

 

 

X Fractions for 
Cucumber 

distribution (𝒀𝒐𝒃𝒔) 

Fitted Log-Normal 
distribution (𝒀𝒄𝒂𝒍𝒄) 

Error squared  

(𝒀𝒐𝒃𝒔 –  𝒀𝒄𝒂𝒍𝒄)𝟐 

4 0.02 0.021062 0.00000113 

5 0.251 0.204428 0.002169 

6 0.474 0.465543 0.0000715 

7 0.224 0.242236 0.000333 

8 0.03 0.047396 0.000303 

9 0.001 0.037601 0.00134 

Sum: 1.0 1.018 0.004 
Table 7 Table showing the fractions of cell shapes obtained from cucumber distribution, where the Log-Normal 
distribution has been fitted to the data.   
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Figure 2.4 Two separate plotted curves showing the topology of cucumber epidermis (Blue) along with the fitted 
Log-Normal distribution (Orange). The method of least squares is used to plot the nonlinear curve using Microsoft 
excel solver. 

 

Running the solver programme to define the minimum value for the sum of squared errors 

by changing the value of 𝜇 and 𝜎 generates values of: 

 

𝜇 = 1.789103 , 𝜎 = 0.139965 

 

This model generates the smallest error value of 0.004 in comparison with the error values 

generated from the fitted Poisson distribution and the Normal distribution, where the shape 

of the fitted Log-Normal distribution is highly like the shape of the experimental observations. 

Therefore, we can conclude that the Log- Normal distribution performs the most effectively 

at accurately predicting the statistics of the topology of proliferating epithelial tissue. 

However though, the log-normal distribution is a continuous function whereas the 

experimental data is discontinuous. Since the data observed from Lewis’ experiments 

describes the distribution of cell-neighbour numbers, this is not a continuous variable.  

Therefore, this may account for the variations between the histograms generated from the 

three statistical models. Nevertheless, we know that the third statistical model performs the 

most effectively and therefore we can use the Chi-squared test to calculate how accurate this 

model fits the experimental data 
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Number of Cell edges Observed Cucumber 

distribution (𝑂𝐿𝑖) 
Log-Normal 

fit  
Expected Cucumber distribution 

(𝐸𝐿𝑖) 

4 20 0.011332 11.332 

5 251 0.250102 250.102 

6 474 0.474964 474.964 

7 224 0.217392 217.392 

8 30 0.041440 41.440 

9 1 0.004512 4.512 
Table 8 Table displaying the observed and expected data for the probability distributions fitted to the 
experimental distribution of cucumber epidermis. These can then be used to verify whether the log-normal curve 
does fit Lewis’ observations the best. 

 

• Null hypothesis 𝐻0: Log-Normal distribution does fit the observed data. 

• Alternative hypothesis 𝐻1: Log-Normal distribution does not fit the observed data.  

• Significance level of 5%: 𝛼 = 0.05 

• Significance level of 1%: 𝛼 = 0.01 

• Degrees of freedom: (𝑘 − 1) = 5 

• Critical value under null hypothesis: 𝑋5
2 =11.07 

• Critical value under null hypothesis:  𝑋1
2 =15.09 

 

Test statistic 𝑥2 = 
(20−11.332)2

11.332
+

(251−250.102)2

250.102
+

(474−474.964)2

474.964
+

(224−217.392)2

217.392
+

                                   
(30−41.440)2

41.440
+

(1−4.512)2

4.512
= 12.73 (4. 𝑠𝑓) 

 

Since the calculated test statistic is greater than the critical value at the 5% level but less than 

that at the 1% level, we accept the null hypothesis and reject the alternative hypothesis at 

the 5% level. We can be 95% confident that the Log-Normal distribution can be used to 

describe the fitted CED obtained for 4-9 sided cells. To conclude this chapter, we have 

discovered that the distributions of Drosophila, Xenopus and Hydra are like the distribution 

of cucumber. This confirms that natural epithelia do in fact display a topology which is 

universal across various tissue types. We then discovered that the log-normal distribution is 

the best probability density function out of the three to describe the universal shape of 

cucumber and hence it can be predicted that proliferating natural epithelia will display a 

topological distribution which can be described by a log-normal curve.  
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Chapter 3. Continuous mathematical model for topology 
 

In the preliminary report we defined mathematical equations which describe the changes 

made to the distribution of various polygonal cells during proliferation, such as the changes 

made to the number of edges of neighbouring cells due to the division of mother cells. We 

also explained the three scenarios of cell division based upon the investigations of (Gibson, et 

al., 2009). We then calculated a system of linear equations based upon the probabilities of 

various polygonal cells dividing, then applied Linear Algebra methods to solve these. We 

assumed that there are no cells in the population with more than nine edges or cells with less 

than four edges. In this chapter we initially alter our model slightly by allowing three sided 

cells to exist and summarise how extending the range of dividing mother cells shifts the shape 

of the stabilised CEDs. Finally, the exponential relationship between the number of edges and 

the probability of cell division is incorporated into the model assumptions, making the model 

equations non-linear, with the aim of making our analytical model based upon master 

equations more biologically accurate.  

 

Section 3.1 Master equations describing dynamics of epithelial tissue topology 
 

As a reminder we will define the terms used in the system of equations. If we were to allow 

three-sided mother cells to exist in the population this would mean that the division line 

would have to cross any two edges, including any adjacent edges. Therefore, the generated 

pairs of daughter cells for each possible random division event will be different in comparison 

with that for the four-to-nine-sided continuous model. For simplicity the only matrices that 

will be presented here will be that for the daughter cells. If we consider an 𝑖 - sided mother 

cell in the proliferating tissue, then according to previous literature cell division will result in 

the generation of two geometrically identical daughter cells with their number of edges 

totalling to 𝑖 + 4. If the two adjacent neighbouring cells are 𝑗 - sided then the division of this 

mother cell will add an extra edge to the shape of these two cells, each possessing 𝑗 + 1 

edges. As a reminder we will define the terms used in the linear system of equations: 

• The total number of all cell shapes at time any point in time, 𝑁(𝑡).  

• The number of 𝑖 - sided cells in the population of proliferating tissue, 𝑁𝑖(𝑡). 

• 𝑀𝑖: The balance from the removal of 𝑖 - sided mother cells and addition of two 𝑖 – 

sided daughter cells. 

• 𝑁𝑖: Considers the addition of edges of neighbouring cells after each division.  

• The fraction of 𝑖 - sided cells in the population of proliferating tissue, 𝑝𝑖(𝑡) =   
𝑁𝑖(𝑡)

𝑁(𝑡)
 

For each of the considered scenarios of cell division, we will have a system of linear ordinary 

differential equations describing the evolution of the polygonal cells in the tissue, previously 

stated to be �̇�𝑖. The coefficient of the matrix  �̅� is a combination of matrices which describe 

the topological changes due to tissue growth and can be described by the following 

expression:  
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[
 
 
 
 
 
 
�̇�3

�̇�4

�̇�5

�̇�6

�̇�7

�̇�8

�̇�9]
 
 
 
 
 
 

= (𝑀 + 𝐷 + 𝑁 − 𝐼) ∙

[
 
 
 
 
 
 
𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9]
 
 
 
 
 
 

 

 

 
(3.1) 

 

 

Here we have made use of the Identity matrix, I, and have made use of other matrices which 

can be expressed in the following matrices: 

 

 

𝑁 =

[
 
 
 
 
 
 
−2 0 0 0 0 0
2 −2 0 0 0 0
0 2 −2 0 0 0
0 0 2 −2 0 0
0 0 0 2 −2 0
0 0 0 0 2 −2
0 0 0 0 0 2 ]

 
 
 
 
 
 

 and 𝑀 = −𝐼. 

 
 
 
(3.2) 

 

 

 

Thus, we can express equation (3.1) as  �̇� = 𝐴�̅� where 𝐴 = 𝐷 + 𝑁 − 2𝐼 

UNIFORMLY ORIENTATED: The division line crosses any two edges of the mother cell, where 

for this scenario they all occur with equal probability. 

𝐷 =

[
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1
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3

0 0 0
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1
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0 0 0 0
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∴𝐴 = 𝐷 + 𝑁 − 2𝐼 =

[
 
 
 
 
 
 
 
 
 
 −3

2

3

1

2

2

5

1

3

2

7
0

3 −
10

3

1

2

2

5

1

3

2

7

1

3

0
8

3
−

7

2

2

5

1

3

2

7

1

3

0 0
5

2
−

18

5

1

3

2

7

1

3

0 0 0
12

5
−

11

3

2

7

1

3

0 0 0 0
7

3
−

26

7

1

3

0 0 0 0 0
16

7
−

5

3]
 
 
 
 
 
 
 
 
 
 

 

 

 

BINOMIALLY ORIENTED: The probabilities for different orientations of a cleavage line are 

non-uniform and given by a binomial probability. 

 

𝐷 =

[
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∴𝐴 = 𝐷 + 𝑁 − 2𝐼 =

[
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1
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1

4

1

8

1
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EQUAL SPLIT: The division line connects only two opposing edges of the mother cell. 

 

𝐷 =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

 

 

∴𝐴 = 𝐷 + 𝑁 − 2𝐼 =

[
 
 
 
 
 
 
−3 0 0 0 0 0 0
3 −2 1 0 0 0 0
0 2 −3 2 1 0 0
0 0 2 −4 1 2 1
0 0 0 2 −4 0 1
0 0 0 0 2 −4 0
0 0 0 0 0 2 −2]

 
 
 
 
 
 

 

 

For each of the considered scenarios of cell division, we now have a system of linear ordinary 

differential equations describing the evolution of the polygonal cells in the tissue of the from 

�̇� = 𝐴𝒑. We now solve the systems of equations in the same way for the previous four-to-

nine-sided model, where the entries of the matrix 𝐴 are the coefficients of the probabilities 

of a mother cell dividing into a pair of daughter cells with at least one of these being 𝑖-sided 

 

 

Section 3.2 Comparing the generated CED using various linear models.  
 

The various systems of linear equations were inputted into MATLAB which replicates the 

evolving polygonal distributions of a proliferating virtual tissue. Boundary conditions were 

then inputted to reflect the topology of the tissue before development occurred. We assumed 

initially that the cells in the tissue were hexagonal. The following are the simulated bar charts 

for each of the stabilised CEDs for various ranges of mother cell edges after running the 

program for a few generations.  
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(A) 

 
 
  
(B) 

 

Figure 3.2 Illustrating the accuracy of simulated stabilised CEDs for Uniform, Binomial and Equal split scenarios 

of cellular division, respectively, for various ranges of mother cell edges using analytical models. (A) presents the 
stabilised results using the 3-to-9-sided model and (B) illustrates the stabilised results using the 4-to-9-sided 
model.  
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If we compare the evolved distribution generated from the three to nine-sided model (A) with 

that from the four to nine-sided model (B), there are significant differences between the 

shapes generated when mother cells divide according to the uniform scenario and the 

Binomial scenario. If we compare the evolved distribution generated from the three to nine-

sided model with that from the four to nine-sided model, there is no difference between the 

shapes generated when mother cells divide according to the equal split scenario. The number 

of discrepancies between all models seems to increase as the range of mother cell edges 

increases. By allowing three-sided mother cells to divide the three to nine-sided model still 

predicts that most polygonal cells for all scenarios in proliferating tissue are pentagonal 

whereas experimental observations show that most polygonal cells in organisms are 

hexagonal. The uniform orientated model generates a CED which significantly shifts the 

universal histogram, overpredicting a population size of four-sided cells and underpredicting 

a population size of six sided cells. 

 

Section 3.3 Including probability of division on sidedness 
 

Within the documented experiments of cucumber epidermis, (Lewis, 1928) calculated the 

respective ratios of dividing mother cells to resting mother cells for all polygons. If we consider 

the proportion of each of these ratios, we notice that dividing mother cells with a larger 

number of edges tend to have a greater chance of dividing which seems to be exponentially 

described. Hence mother cells that have more edges tend to undergo cellular division more 

frequently in comparison to the rate of division of mother cells with a smaller number of 

edges. Since the area of a cell increases with its number of edges, this implies that larger 

mother cells divide more often than smaller mother cells. Biologically, this relationship could 

be explained due to larger cells having a greater volume and a smaller surface area to volume 

ratio which reduces the maintenance of the dynamical equilibrium of vital nutrients and 

gases. Hence, these larger cells are more likely to divide to restore this equilibrium. 

Furthermore, mother cells are required to reach full maturity before division can occur and 

those cells in the population that are older have an increased number of edges over time due 

to the division of neighbouring cells.  
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Number of Cell 

edges (i) 

4 5 6 7 8 9 10  

1000 resting cells 20 251 474 224 30 1 0 1000 

1000 dividing 

cells  

0 16 255 478 224 26 1 1000 

Ratio of dividing 

cells to resting 

cells (𝐗𝐢) 

0 0.0637 0.538 2.1339 7.4667 26   

𝛔𝐢 =
𝐗𝐢

∑ 𝐗𝐢
𝟗
𝐢=𝟒

 
0 0.0018 0.0149 0.0589 0.2062 0.7182   

Table 9 Lewis` calculations illustrating the distribution, with respect to their number of edges, of polygons for 
1000 resting and dividing cells. Cells with a greater number of edges are more likely to divide. 

 

 

Figure 3.4 Plot of data presented in final row of table 9, which has been inputted into Microsoft excel. The trend 
line illustrates the increased probability of mother cell division as the number of cell edges increases which seems 
to be exponential.  

 

In this model we will alter our original formulas for the three scenarios of cell division which 

were presented in the preliminary report. We initially assumed that 𝑝𝑗  is the probability of a 

mother cell being 𝑖 – sided before cell division occurring and our model assumed no spatial 

correlations between the sides of cells, and hence all cells in the population had an equal 

probability of dividing for each generation of proliferation (Gibson, 2009). Therefore, we 

assumed that pi
* (t)= 𝑝𝑖(𝑡) where 𝑝𝑖(𝑡) =   

𝑓𝑖
𝑚(𝑡)

𝑓𝑖(𝑡)
 , which is the fraction of 𝑖 - sided mother 

cells in the population of proliferating tissue. It can be seen from figure 3.4 that the probability 

of a particular mother cell dividing increases at an exponential rate with an increase in the 

number of edges of cells.  We will now assume that the probability of a dividing mother cell 
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being 𝑖 – sided is proportional to 𝜎𝑖 ∙  
𝑓𝑖

𝑚(𝑡)

𝑓𝑖(𝑡)
 where the values of 𝜎𝑖  were calculated using the 

data in Table 9. Figure 3.4 illustrates this exponential relationship which exists between the 

probability of mother cell division and the number of cell edges. This alteration leads to the 

following expression. 

 

  

�̅�∗ = 
𝜎𝑖𝑝𝑖

∑ 𝜎𝑖𝑝𝑖𝑖
  

 

 
 

(3.3) 

 

If we were to incorporate this property into our model involving matrices this will result in a 

system of non-linear differential master equations, which means that we cannot solve them 

analytically, but we will be able to solve them numerically. We have done this using a 

constructed MATLAB code which relies upon a defined set of initial conditions to generate 

solutions to the equations. We used a loop within MATLAB to solve the system of nonlinear 

equations.  

 

At time t= 0,  �̅� = �̅�0 where the initial vector can be represented in the following form: 

 

�̅�0
∗
 = 

𝜎0�̅�0

∑𝜎�̅�
 

 

If we consider the rate of change of the vector containing the evolving fractions of dividing 

mother cells, we can express this as the sum of two matrices A and B. These are the 

coefficients of the probabilities of a mother cell dividing into a pair of daughter cells with at 

least one of these being 𝑖-sided. However, the incorporation of exponential dependence on 

the number of dividing mother cell edges does not influence the probability of neighbouring 

cells dividing, and hence the expression becomes: 

 

After using concepts of linear algebra, we can amend and substitute expression (3.1) for 4 to 

9 sided cells into the expression for the rate of change of evolving fractions of dividing mother 

cells (3.4) and we can incorporate the necessary matrices impacting the topology of the 

proliferating virtual tissue; dividing mother cells, generated daughter cells, neighbouring cells, 

and the identity matrix to give the following expression: 

 �̅�

∆𝑡
= �̇̅� = �̅� ∙ �̅�∗ + �̅� ∙ �̅� 

 
 

(3.4) 
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[
 
 
 
 
 
�̇�4

�̇�5

�̇�6

�̇�7

�̇�8

�̇�9]
 
 
 
 
 

= (𝑀 + 𝐷)

[
 
 
 
 
 
 
𝑝∗

4

𝑝∗
5

𝑝∗
6

𝑝∗
7

𝑝∗
8

𝑝∗
9]
 
 
 
 
 
 

+ (𝑁 − 𝐼) ∙

[
 
 
 
 
 
𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9]
 
 
 
 
 

 

 
 

 
 

 
(3.5) 

 
 

 

We can substitute the amended results for the matrices M, N, and I into equation (3.5) from 

equation (3.2) and obtain a system of three nonlinear equations where for each scenario of 

division the only matrix that will change is the matrix for the resulting daughter cells, D.  

 

 

UNIFORMLY ORIENTATED:             𝐷 =

[
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∴

[
 
 
 
 
 
�̇�4

�̇�5

�̇�6

�̇�7

�̇�8

�̇�9]
 
 
 
 
 

=

[
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3
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1
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0 0 0 0 0 −
2

3]
 
 
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝜎4𝑝4

𝜎5𝑝5

𝜎6𝑝6

𝜎7𝑝7

𝜎8𝑝8

𝜎9𝑝9]
 
 
 
 
 

∙
1

∑𝜎𝑖𝑝𝑖
+

[
 
 
 
 
 
−3 0 0 0 0 0
2 −3 0 0 0 0
0 2 −3 0 0 0
0 0 2 −3 0 0
0 0 0 2 −3 0
0 0 0 0 2 −1]

 
 
 
 
 

∙
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𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

𝑝9]
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BINOMIALLY ORIENTED:            𝐷 =

[
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+

[
 
 
 
 
 
−3 0 0 0 0 0
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EQUAL SPLIT:                                 𝐷 =

[
 
 
 
 
 
2 1 0 0 0 0
0 1 2 1 0 0
0 0 0 1 2 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0]
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The converged stationary solutions were found using the numerical simulation, normalized in 

a way that the sum of all its components equal one. The stabilised results were plotted to 

provide the following bar chart.  
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Figure 3.3 Simulated CEDs for all three scenarios, for 4 to 9 sided cells along with experimental recordings 

(Lewis, 1928), including dependence of the frequency of cellular division on the number of edges of the dividing 
mother cell.  

From looking at the results displayed in figure 3.3 the stabilised CEDs generated from our non-

linear models for each scenario of cell division reproduces the statistics of the experimental 

observations more accurately and are now more comparable, were less discrepancies 

between the experimental results and the modelled bar charts are observed. For all scenarios 

of cell division, the model predicts most polygonal cells in proliferating tissue are hexagonal, 

consistent with experimental observations. The equal split model gives a steady state 

converged solution which agrees with the experimental observations the most, indicating 

that this model performs the most effectively at predicting the stabilised topology. The 

uniformly orientated model generates a CED which is least like the universal shape, still 

overpredicting a population size of 4 sided cells and underpredicting a population size of 6 

sided cells. However, this model predicts the population size of 5-sided and 7-sided cells 

remarkably well. The binomially orientated model generates a CED which is more comparable 

to experimental results.  

To further our analysis, we will determine how similar the shapes of the stabilised CED 

produced from the equal split scenario of cell division and cucumber are. If these are 

statistically similar these can be treated as the same distributions which confirms our 

conclusion that the equal split scenario is the best model, where the necessary data has been 

presented in the following table: 
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Number of 
Cell edges 

(i) 

Equal split 
distribution 

(𝐹𝐸𝑖) 

Observed 
Cucumber 

distribution 
(𝑂𝐿𝑖) 

Expected  
Cucumber 

distribution 
(𝐸𝐿𝑖) 

4 0.0128 20 12.8 

5 0.2729 251 272.9 

6 0.4659 474 465.9 

7 0.2135 224 213.5 

8 0.0298 30 29.8 

9 0.0050 1 5 

Total 
Observations 

 1000 1000 

Table 10 Table displaying the observed and expected data for cucumber with the aim of concluding whether the 
equal split scenario of cell division (incorporating exponential relationship) and cucumber produce statistically 
similar CED shapes from non-linear model.  

• Null hypothesis 𝐻0:  Distributions for cucumber and equal split are statistically similar.  

• Alternative hypothesis 𝐻1: Distributions are not statistically similar.  

• Significance level of 5%: 𝛼 = 0.05 

• Significance level of 1%: 𝛼 = 0.01 

• Degrees of freedom: (6 − 1) = 5 

• Critical value under null hypothesis: 𝑋5
2 = 11.070 

• Critical value under null hypothesis: 𝑋1
2 = 15.086 

 𝑥2 =
(20−12.8)2

12.8
+

(251−272.9)2

272.9
+

(474−465.9)2

465.9
+ 

(224−213.5)2

213.5
+ 

(30−29.8)2

29.8
+

(1−5)2

5
=

9.6660 (4. 𝑑𝑝) 

Since the calculated test statistic is less than the critical value, we accept the null hypothesis 

at the 5% and 1% level of significance and reject the alternative hypothesis with 99% 

confidence. Hence the equal split distribution is statistically like the cucumber distribution 

and therefore can be treated as the same distribution.  

To conclude this chapter, we introduced Matrices which form a system of linear ordinary 

differential equations describing the evolution of the polygonal cells in the tissue for each of 

the three scenarios of cell division. We show that to produce stabilised CEDs from using our 

continuous analytical model which reflect the topological dynamics of proliferating tissue, we 

need to incorporate the mathematical observation that the probability of cellular division 

increases exponentially with the number of edges, by making our model non-linear. We used 

a statistical test to show that mother cells should divide and produce two equally sized 

daughter cells.  
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Chapter 4. Cellular Automata model 
 

The understanding of geometric interactions that exist between cells and their neighbours 

due to various orientations of the division plane can give Mathematicians a better 

understanding of tissue patterns observed in natural epithelia (Kachalo, et al., 2015). It is the 

combination of mathematical modelling using differential equations and computer 

programming using Cellular automata (CA) which have an important role in the study of 

biological systems (Souza-e-Silva, et al., 2009). These Biological systems have been 

successfully modelled using CA computational methods. CA will be used to define a 

population of cells as a discrete dynamical system in space and time, where individual cells 

will behave according to a set of rules incorporated into the program (Alemani, et al., 2012). 

In this section we will describe a computational algorithm which replicates the events of a 

growing virtual tissue due to multiple events of proliferation where we incorporate the 

random orientation of the division plane. We aim to verify that our evolved CEDs generated 

from the continuous models for the various scenarios of cellular division, which is based on 

master equations, are accurate. To simulate a growing tissue due to proliferation, we are 

required to simulate cell division. The program is initiated with 10 polygonal cells and MATLAB 

runs the code until the population reaches a maximum of 1000 cells. The program randomly 

selects a set of numbers between 4 and 9. Each of the mother cells in the population is 

therefore associated with an integer between 4 and 9, corresponding to their respective 

number of edges before division occurs. The following steps were taken to initiate tissue 

growth at each time step corresponding to a single division event: 

Step 1 – Randomly select a number from the existing set.  

Step 2 - The randomly selected number from this existing set is replaced by two other 

numbers calculated according to the various scenarios of cell division. The original number 

corresponds to the number of edges of the mother cell and two new numbers corresponds 

to the number of edges of two daughter cells. 

Step 3 – At each time step which division occurs, two other cells are chosen randomly from 

the population corresponding to the neighbours of the dividing cell for adding an extra edge 

to each one. For the equal split scenario if the mother cell has an even number of edges, then 

each daughter cell has (𝑖 + 4)/2 edges. If the mother cell has an odd number of edges, then 

one daughter cell will have (𝑖 + 5)/2 edges and the other daughter will have (𝑖 + 3)/2 edges. 

At the end of each iteration, one mother cell disappears, two daughter cells appear, and two 

other cells receive an extra edge.  

The process of tissue proliferation is repeated many times and eventually stabilises to an 

equilibrium CED, where figure 4.1 shows these for the independent models.  
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Figure 4.1 Simulated stabilised CEDs for each respective scenario of cell division using the independent Cellular 

Automata code, in comparison with the experimental observations made by (Lewis, 1928).  

We can see that all the stabilised CEDs generated do not reproduce the shape of the 

cucumber CED. In the preliminary dissertation we concluded that the linear model 

represented by master equations assumes cells divide with a probability that does not depend 

on their edges. This is because the GPNP model which we relied upon for the construction of 

the linear model assumes that the probability of cell division is independent of the number of 

its edges. However, Lewis observed a natural law in proliferating cucumber epidermis; there 

is an exponential relationship between the probability of cells dividing and the cell shapes. 

Therefore, our bar charts which illustrates the evolution of CEDs does not reflect the 

experimental observations for the simple fact of the over simplicity in the CA assumptions. 

While we have successfully incorporated some biological assumptions of natural proliferating 

epithelia, this apparently is insufficient to successfully replicate the universal shape of the bar 

charts, presented in the Literature. Therefore, incorporating spatial correlations between 

cells may improve the accuracy of the bar charts obtained from the CA model. We will 

incorporate the exponential dependence of dividing mother cell edges by altering the 

independent cellular automata code slightly, including defining an array which contains the 

respective probabilities of each of the polygonal cells dividing. The stabilised CEDs for the 

dependent cellular automata model is displayed in figure 4.2.  
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Figure 4.2 Simulated stabilised CEDs for each respective scenario of cell division using the dependent Cellular 

Automata code, in comparison with the experimental observations made by (Lewis, 1928).  

 

From observation incorporating the exponential relationship into the cellular automata 

model generates stabilised CEDs that are representative of experimental observations, where 

we can now see that all models produce a hexagonal topology. Hence, we can be confident 

that it’s important to consider all factors when it comes to tissue proliferation, where we have 

considered the equal split method of mother cell division and the exponential relationship 

between the topology of dividing mother cells and their respective probabilities of division 

occurring in a random event. This also confirms our results that we obtained using the model 

constructed upon continuous master equations.   

In the same way as we analysed for the dependent model constructed upon master equations 

(see section 3.3), we will determine how similar the shapes of the stabilised CEDs produced 

from the equal split scenario of cell division and cucumber are. If these are statistically similar 

these can be treated as the same distributions which confirms our conclusion that the equal 

split scenario is the best model, where the stabilised CEDs from the equal split models is 

presented in figure 4.3.  
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Figure 4.3 Simulated stabilised CEDs for equal split cell division using both the dependent and independent 

Cellular Automata models, in comparison with the experimental observations made by (Lewis, 1928).  

 

The following table presents the raw data obtained from the produced stabilised distributions 

of cells by implementing the equal split scenario of cell division, required for the Xi-squared 

statistical test: 

 

Number of 
Cell edges 

(i) 

Equal split 
distribution 

(𝐹𝐸𝑖) 

Observed 
Cucumber 

distribution 
(𝑂𝐿𝑖) 

Expected  
Cucumber 

distribution 
(𝐸𝐿𝑖) 

4 0.008 20 8 

5 0.274 251 274 

6 0.473 474 473 

7 0.207 224 207 

8 0.036 30 36 

9 0.001 1 1 

Total 
Observations 

 1000 1000 

Table 11 Table displaying the observed and expected data for cucumber with the aim of concluding whether the 
equal split scenario of cell division (incorporating exponential relationship) and cucumber produce statistically 
similar CED shapes using CA model.  

• Null hypothesis 𝐻0:  Distributions for cucumber and equal split are statistically similar.  

• Alternative hypothesis 𝐻1: Distributions are not statistically similar.  

• Significance level of 5%: 𝛼 = 0.05 

• Significance level of 1%: 𝛼 = 0.01 

• Degrees of freedom: (6 − 1) = 5 

• Critical value under null hypothesis: 𝑋5
2 = 11.070 

• Critical value under null hypothesis: 𝑋1
2 = 15.086 
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 𝑥2 =
(20−8)2

8
+

(251−274)2

274
+

(474−473)2

473
+ 

(224−207)2

207
+ 

(30−36)2

36
= 22.3 (1. 𝑑𝑝) 

Since the calculated test statistic is greater than the critical value at the 1%, we reject the null 

hypothesis at the 1% level of significance and accept the alternative hypothesis with 99% 

confidence. Hence the equal split distribution is not statistically like the cucumber distribution 

and therefore can cannot be treated as the same distribution. To conclude this chapter, it is 

obvious that incorporating the exponential relationship into our CA models does significantly 

improve the shape of all stabilised CEDs and it confirms that the mother cells do divide roughly 

equally.                               
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Chapter 5. Discussion 
 

In this project we addressed how the dynamics of epithelial tissue topology could be 

described statistically and modified our analytical models’ assumptions to determine if the 

generated stabilised CEDs reflected the universal shape better. We also produced a cellular 

automata code based upon a set of rules which incorporates the random orientation of the 

division plane during tissue growth. It was discovered that the shape of the universal CEDs 

observed in natural epithelia can be described by a log-normal fit. This becomes useful for 

mathematicians when constructing models and explaining the topology of proliferating 

epithelial tissue. If we extend the range of allowed shapes to exist in the population, were we 

assumed three sided cells could divide, it was shown that there is no difference between the 

shapes generated when mother cells divide according to the equal split scenario. If the cells 

were assumed to divide according to the binomial and uniform scenario, it was shown that 

the shapes of the distributions are still right skewed, and the cells are still mostly pentagonal 

which is inconsistent with experimental observations, where natural epithelial tissues display 

a hexagonal topology.  

Lewis observed that there is an exponential relationship between the probability of cells 

dividing and the cell shapes in natural epithelia. We made a few modifications to our 

mathematical models. This involved altering our model assumptions by assuming cells divide 

with an exponential probability that depends on the number of dividing mother cell edges, 

making the model non-linear. The stabilised CEDs from the analytical nonlinear model were 

considerably more like the universal shape observed within the experiments of natural 

epithelia, displaying a hexagonal topology. We also discovered from the CA models that 

incorporating the exponential relationship between the sidedness of mother cells significantly 

improved the stabilised shapes of CEDs, again with mother cells appearing to divide according 

to the equal split scenario.  

In conclusion, we have successfully improved our models where cells seem to divide 

approximately equally by incorporating the exponential relationship between sidedness of 

cells into our models. However, though there are still inconsistencies when cells are assumed 

to divide binomially and uniformly. There are strong spatial correlations between cells which 

must be incorporated into the model assumptions to implement the cellular mechanical 

events that occur, such as those events that occur at the junctional level at the apical side of 

cells. The vertex model by (Farhadifar, et al., 2007) considers the changes to the cell packing 

Geometry due to forces at the apical junctions. Our model does not consider rearrangements 

at the junctional level of the epithelium, where we have assumed only cell division influences 

the topological changes of a tissue over a discrete time. It would be interesting to investigate 

more mathematical models that consider the rearrangement of cells within the monolayer of 

epithelial tissues, allowing us to gain a better understanding of the dynamics of tissue 

development.  
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Appendices 
 

All the graphs were generated from the computational software (Matlab, 2021). 

A.1 Appendix 1 
The following code solves the system of equations corresponding to the three scenarios of 

cell division for the three to nine cell sided model. 

%% 3 TO 9 SIDED CELL MODEL 
%% Determine the eigensolutions for the matrices of the three division 

scenarios. 
clear all; 
clc; 
close all; 
syms A B C V D W e 
% Eigensolutions for uniform scenario. 
% Define the Matrix A for the first scenario 
A = [-3 2/3 1/2 2/5 1/3 2/7 0; 3 -10/3 1/2 2/5 1/3 2/7 1/3; 0 8/3 -7/2 2/5 

1/3 2/7 1/3; 0 0 5/2 -18/5 1/3 2/7 1/3; 0 0 0 12/5 -11/3 2/7 1/3; 0 0 0 0 

7/3 -26/7 1/3; 0 0 0 0 0 16/7 -5/3]; 

  
e = eig(A); % Column vector containing the eigenvalues of first matrix A.   

  
[V,D] = eig(A); 

  
% Eigensolutions for Binomial scenario. 
% Define the Matrix B for the second scenario 
B = [-3 1/2 1/4 1/8 1/16 1/32 0; 3 -3 3/4 1/2 5/16 3/16 1/16; 0 5/2 -13/4 

3/4 5/8 15/32 5/16; 0 0 9/4 -7/2 5/8 5/8 5/8; 0 0 0 17/8 -59/16 15/32 5/8; 

0 0 0 0 33/16 -61/16 5/16; 0 0 0 0 0 65/32 -31/16]; 

  
e = eig(B); % Column vector containing the eigenvalues of second matrix B.   

  
[V_2,D_2] = eig(B); 

  
% Eigensolutions for Equal split scenario. 
% Define the Matrix C for the third scenario 
C = [-3 0 0 0 0 0 0; 3 -2 1 0 0 0 0; 0 2 -3 2 1 0 0; 0 0 2 -4 1 2 1; 0 0 0 

2 -4 0 1; 0 0 0 0 2 -4 0; 0 0 0 0 0 2 -2]; 

  
e = eig(C) % Column vector containing the eigenvalues of third matrix C.  

  
[V_3,D_3] = eig(C) 

  

A.2 Appendix 2 
The following code solves the system of equations corresponding to the three scenarios of 

cell division for the nonlinear analytical model. 

 

 function L=liverpool(S,C) 
if S==1 
   a4=1; a5=1; a6=1; a7=1; a8=1; a9=1; a10=1; 
else  
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  a4=0.004233693; 
a5=0.012209687; 
a6=0.042432599; 
a7=0.143233518; 
a8=0.363681421; 
a9=0.959153322; 

  
end 

  
P=[0 0 1 0 0 0]'; 
%   a4=a4/a9; a5=a5/a9; a6=a6/a9; a7=a7/a9; a8=a8/a9; a9=a9/a9;   
for i=1:1:100000; 
i; 
  s8=1/(a4*P(1)+a5*P(2)+a6*P(3)+a7*P(4)+a8*P(5)+a9*P(6)); 
    s4=a4*s8;s5=a5*s8;s6=a6*s8;s7=a7*s8;s9=a9*s8; 
%  s9=1/(a4*P(1)+a5*P(2)+a6*P(3)+a7*P(4)+a8*P(5)+a9*P(6)); 
%     s4=a4*s9;s5=a5*s9;s6=a6*s9;s7=a7*s9;s8=a8*s9;    
 if(C==1)   
%-------------------------------------------------------------------------- 
% display('Random Cleavage with the same probabilities') 
%--------------------------------------------------------------------------

- 

     
   A=[s4-3  s5   2/3*s6    2/4*s7    2/5*s8     2/6*s9; 
       2    -3   2/3*s6    2/4*s7    2/5*s8     2/6*s9; 
       0     2  -1/3*s6-3  2/4*s7    2/5*s8     2/6*s9; 
       0     0   2        -2/4*s7-3  2/5*s8     2/6*s9; 
       0     0   0           2      -3/5*s8-3   2/6*s9; 
       0     0   0           0         2       -4/6*s9-1]; 

  
elseif(C==2) 
%-------------------------------------------------------------------------- 
% display('Bionomial') 
%-------------------------------------------------------------------------- 
   A=[s4-3  s5    2/4*s6    2/8*s7    2/16*s8     2/32*s9; 
       2    -3    s6        6/8*s7    8/16*s8     10/32*s9; 
       0     2   -1/2*s6-3  6/8*s7    12/16*s8    20/32*s9; 
       0     0     2       -6/8*s7-3  8/16*s8    20/32*s9; 
       0     0     0         2       -14/16*s8-3  10/32*s9; 
       0     0     0         0         2          -30/32*s9-1]; 

  
elseif(C==3) 
%-------------------------------------------------------------------------- 
% display('Equal Split(Middle)') 
%-------------------------------------------------------------------------- 
A=[ s4-3    s5  0       0       0       0; 
    2       -3  2*s6    s7      0       0; 
    0       2   -s6-3   s7      2*s8    s9; 
    0       0   2       -s7-3   0       s9; 
    0       0   0       2       -s8-3   0; 
    0       0   0       0       2       -s9-1]; 
else (C==4) 
%-------------------------------------------------------------------------- 
% display('Random Cleavage with the Using the simulation') 
%-------------------------------------------------------------------------- 
A=[s4-3    s5     0.248*s6     0.0313*s7    0.012*s8       0; 
    2     -3        1.5*s6     0.9665*s7    0.314*s8    0.0621*s9; 
    0      2       -0.748*s6-3 0.967*s7     1.346*s8    0.938*s9; 
    0      0          2       -0.9687*s7-3  0.3144*s8   0.938*s9; 
    0      0          0           2        -0.988*s8-3  0.0621*s9; 
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    0      0          0           0            2         -1*s9-1]; 
 end 

  
B=0.01*A+eye(6); 
P=B*P; 
end 
P; 
tot=sum(P); 
av_N=4*P(1)+5*P(2)+6*P(3)+7*P(4)+8*P(5)+9*P(6); 
N=P/sum(P); 
av_N=4*N(1)+5*N(2)+6*N(3)+7*N(4)+8*N(5)+9*N(6); 
tot=sum(N); 

  
T=table(s4,s5,s6,s7,s8,s9); 
E=eig(A) 
[V,D]=eig(A); 
normalizeFromEIGEN=V(:,1)/sum(V(:,1)) 
N 
T=table(s4,s5,s6,s7,s8,s9) 
end 

 

 

A.3 Appendix 3 
The following code is for the cellular automata models.  

clear all;  
MaxPopulation=5000; 
MinimalCell=4; 
MaximalCell=9; 
population_size=10; 
cells=randi([MinimalCell,MaximalCell],1,population_size); % 10 initial 

cells  
x = MinimalCell:1:MaximalCell;              % 6 categories - 4 to 9 number 

of cell sides.  
dd1=[]; 
 while (population_size<MaxPopulation) 
mother=randi([1,population_size]); 
mother_size=cells(mother); 
% equal split 
% if mod(mother_size,2)==0 
%     daugthers=[mother_size/2+2,mother_size/2+2]; 
% else  
%     daugthers=[(mother_size+1)/2+2,(mother_size-1)/2+2]; 
% end 
%% Binomial Division 
%Install Communications toolbox to make use of 'randsrc' 
if mother_size==4 daugthers=[4,4]; end 
if mother_size==5 daugthers=[4,5]; end 
if mother_size==6  
    dd=randsrc(1,1,[1,2,3;0.25,0.5,0.25]); 
    if dd==1 daugthers=[4,6]; end %Probability of 1/4 
    if dd==2 daugthers=[5,5]; end %Probability of 1/2 
    if dd==3 daugthers=[6,4]; end %Probability of 1/4 
%     dd1=[dd1,dd]; 
end 
if mother_size==7  
    dd=randsrc(1,1,[1,2,3,4;0.125,0.375,0.375,0.125]); 
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    if dd==1 daugthers=[4,7]; end %Probability of 1/8 
    if dd==2 daugthers=[5,6]; end %Probability of 3/8 
    if dd==3 daugthers=[6,5]; end %Probability of 3/8 
    if dd==4 daugthers=[7,4]; end %Probability of 1/8 
    %dd1=[dd1,dd]; 
end 
if mother_size==8  
    dd=randsrc(1,1,[1,2,3,4,5;0.0625,0.25,0.375,0.25,0.0625]); 
    if dd==1 daugthers=[4,8]; end %Probability of 1/16 
    if dd==2 daugthers=[5,7]; end %Probability of 1/4 
    if dd==3 daugthers=[6,6]; end %Probability of 3/8 
    if dd==4 daugthers=[7,5]; end %Probability of 1/4 
    if dd==5 daugthers=[8,4]; end %Probability of 1/16 
end     
if mother_size==9  
    

dd=randsrc(1,1,[1,2,3,4,5,6;0.03125,0.15625,0.3125,0.3125,0.15625,0.03125])

; 
    if dd==1 daugthers=[4,9]; end %Probability of 1/32 
    if dd==2 daugthers=[5,8]; end %Probability of 5/32 
    if dd==3 daugthers=[6,7]; end %Probability of 5/16 
    if dd==4 daugthers=[7,6]; end %Probability of 5/16 
    if dd==5 daugthers=[8,5]; end %Probability of 5/32 
    if dd==6 daugthers=[9,4]; end %Probability of 1/32 
end   
% random division 
 dd=randi([1,mother_size-3]); 
    if dd==1 daugthers=[4,mother_size]; end 
    if dd==2 daugthers=[5,mother_size-1]; end 
    if dd==3 daugthers=[6,mother_size-2]; end 
    if dd==4 daugthers=[7,mother_size-3]; end 
    if dd==5 daugthers=[8,mother_size-4]; end 
    if dd==6 daugthers=[9,mother_size-5]; end 
 cells(mother)=[]; 
neighbours=randi([1,population_size-1],1,2);  
while (neighbours(2) == neighbours(1)) 
    neighbours(2)=randi([1,population_size]); 
end 
%cells 
a1=neighbours(1); if cells(a1)<MaximalCell cells(a1)=cells(a1)+1; end 

%c1=cells(a1) 
a2=neighbours(2); if cells(a2)<MaximalCell cells(a2)=cells(a2)+1; end 

%c2=cells(a2) 
cells=[cells,daugthers]; 
population_size=length(cells); 
% Drawing 
if rem(population_size, 10) == 0 
    freq=zeros(1,6); 
    for i=1:1:population_size 
        freq(cells(i)-3)=freq(cells(i)-3)+1; 
    end 
    y = freq./population_size; 
    sum=0; 
    for i=1:1:6 
        sum=sum+y(i); 
    end 
%    bar(x,y) 
%    drawnow 
end 
 end 
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%CA model including exponential dependence of sides 
clear all;  
MaxPopulation=5000; 
MinimalCell=4; 
MaximalCell=9; 
population_size=10; 
pd=[0.,0.0018,0.0149,0.0589,0.2062,0.7182]; % 10 initial cells  
x = MinimalCell:1:MaximalCell;              % 6 categories - 4 to 9 number 

of cell sides.  
dd1=[]; 
 while (population_size<MaxPopulation) 
mother=randi([1,population_size]); 
mother_size=cells(mother); 
if rand<pd(mother_size-3) 
% equal split 
if mod(mother_size,2)==0 
    daugthers=[mother_size/2+2,mother_size/2+2]; 
else  
    daugthers=[(mother_size+1)/2+2,(mother_size-1)/2+2]; 
end 
%% Binomial Division 
%Install Communications toolbox to make use of 'randsrc' 
% if mother_size==4 daugthers=[4,4]; end 
% if mother_size==5 daugthers=[4,5]; end 
% if mother_size==6  
%     dd=randsrc(1,1,[1,2,3;0.25,0.5,0.25]); 
%     if dd==1 daugthers=[4,6]; end %Probability of 1/4 
%     if dd==2 daugthers=[5,5]; end %Probability of 1/2 
%     if dd==3 daugthers=[6,4]; end %Probability of 1/4 
% %     dd1=[dd1,dd]; 
% end 
% if mother_size==7  
%     dd=randsrc(1,1,[1,2,3,4;0.125,0.375,0.375,0.125]); 
%     if dd==1 daugthers=[4,7]; end %Probability of 1/8 
%     if dd==2 daugthers=[5,6]; end %Probability of 3/8 
%     if dd==3 daugthers=[6,5]; end %Probability of 3/8 
%     if dd==4 daugthers=[7,4]; end %Probability of 1/8 
%     %dd1=[dd1,dd]; 
% end 
% if mother_size==8  
%     dd=randsrc(1,1,[1,2,3,4,5;0.0625,0.25,0.375,0.25,0.0625]); 
%     if dd==1 daugthers=[4,8]; end %Probability of 1/16 
%     if dd==2 daugthers=[5,7]; end %Probability of 1/4 
%     if dd==3 daugthers=[6,6]; end %Probability of 3/8 
%     if dd==4 daugthers=[7,5]; end %Probability of 1/4 
%     if dd==5 daugthers=[8,4]; end %Probability of 1/16 
% end     
% if mother_size==9  
%     

dd=randsrc(1,1,[1,2,3,4,5,6;0.03125,0.15625,0.3125,0.3125,0.15625,0.03125])

; 
%     if dd==1 daugthers=[4,9]; end %Probability of 1/32 
%     if dd==2 daugthers=[5,8]; end %Probability of 5/32 
%     if dd==3 daugthers=[6,7]; end %Probability of 5/16 
%     if dd==4 daugthers=[7,6]; end %Probability of 5/16 
%     if dd==5 daugthers=[8,5]; end %Probability of 5/32 
%     if dd==6 daugthers=[9,4]; end %Probability of 1/32 
% end   
% random division 
% if mother_size==4 daugthers=[4,4]; end 
% if mother_size==5 daugthers=[4,5]; end 
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% if mother_size==6  
%     dd=randi([1,mother_size-3]) 
%     if dd==1 daugthers=[4,6]; end 
%     if dd==2 daugthers=[5,5]; end 
%     if dd==3 daugthers=[6,4]; end 
% end 
% if mother_size==7  
%     dd=randi([1,mother_size-3]) 
%     if dd==1 daugthers=[4,7]; end 
%     if dd==2 daugthers=[5,6]; end 
%     if dd==3 daugthers=[6,5]; end 
%     if dd==4 daugthers=[7,4]; end 
% end 
% if mother_size==8  
%     dd=randi([1,mother_size-3]) 
%     if dd==1 daugthers=[4,8]; end 
%     if dd==2 daugthers=[5,7]; end 
%     if dd==3 daugthers=[6,6]; end 
%     if dd==4 daugthers=[7,5]; end 
%     if dd==5 daugthers=[8,4]; end 
% end     
% if mother_size==9  
%     dd=randi([1,mother_size-3]) 
%     if dd==1 daugthers=[4,9]; end 
%     if dd==2 daugthers=[5,8]; end 
%     if dd==3 daugthers=[6,7]; end 
%     if dd==4 daugthers=[7,6]; end 
%     if dd==5 daugthers=[8,5]; end 
%     if dd==6 daugthers=[9,4]; end 
% end   
cells(mother)=[]; 
neighbours=randi([1,population_size-1],1,2);  
while (neighbours(2) == neighbours(1)) 
    neighbours(2)=randi([1,population_size]); 
end 
%cells 
a1=neighbours(1); if cells(a1)<MaximalCell cells(a1)=cells(a1)+1; end 

%c1=cells(a1) 
a2=neighbours(2); if cells(a2)<MaximalCell cells(a2)=cells(a2)+1; end 

%c2=cells(a2) 
cells=[cells,daugthers]; 
population_size=length(cells); 
end 
 end 
% Drawing 
if rem(population_size, 10) == 0 
    freq=zeros(1,6); 
    for i=1:1:population_size 
        freq(cells(i)-3)=freq(cells(i)-3)+1; 
    end 
    y = freq./population_size; 
    sum=0; 
    for i=1:1:6 
        sum=sum+y(i); 
    end 
%    bar(x,y) 
%    drawnow 
end 
%% Plot each CEDH for three scenarios 
%% Plot CEDH for Uniform scenario 
% bar(x,y) 
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% title('CED for Uniform scenario'); 
% xlabel('Number of cell sides'); 
% ylabel('Frequency of cells'); 

  
%% Plot CEDH for Binomial scenario 
% bar(x,y) 
% title('CEDH for Binomial scenario'); 
% xlabel('Number of cell sides'); 
% ylabel('Frequency of cells'); 

  
% Plot CEDH for Equal Split scenario 
bar(x,y) 
title('CED for Equal split scenario'); 
xlabel('Number of cell sides'); 
ylabel('Frequency of cells'); 

 

 


