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General introduction

In biological systems, individuals which belong to the same species can have different
sizes. However, the ratios between the different parts of individuals remain the same
for individuals of different sizes. For fully developed organism with segmented structure,
the number of segment across the size range of the individuals does not change. This
morphological scaling plays a major role in the development of the organism and it has
been the object of biological studies [18, 22, 74| and mathematical modelling [38, 54|
for many decades. Such scaling involves adjusting intrinsic scale of spatial patterns of
gene expression that are set up during the development to the size of the system [97].
On the biological side, the evidence of scaling has been demonstrated experimentally on
various embryos [88, 36]. For example, a Xenopus embryo was physically cut into dorsal
and ventral halves. The dorsal half which contains the “Spermann organizer” developed
into a small embryo with normal proportion [88]. Similar experiments carried out for
the case of the sea urchin embryo lead to a smaller size of individuals [55]. Also for flies
of different species, the number of stripes on their embryos during their development
remains the same although they are of different sizes. These stripes, which are visible
at an earlier stage of the embryonic development, correspond to the spatial pattern of
gene expressions and are the origin of the segmented body of the flies [51, 36, 4]. On
the mathematical side, Turing introduced the term morphogens (protein) which is a key
factor for pattern formation and he derived a model involving morphogens in which spa-
tial patterns arise under certain conditions. Since then, various mathematical models of
pattern formations have been developed. For the diffusion-based models, the spatial pat-
tern do not scale with size. For models using reaction-diffusion equations, (combination
of diffusion and biochemical reactions) a characteristic length scale is determined by the
diffusion constant and reaction rate. Thus, when the size of the embryo changes, the
spacing of the patterning remains fixed. This means that mathematical models based on

reaction-diffusion does not show scaling [91].

The motivation of this work is to introduce possible mechanisms of scaling in biologi-

cal systems and demonstrate those using mathematical models. After a discussion on



how the scaling is considered in a few continuous models, we introduce our definition of
scaling. We apply our definition of scaling to analyse properties of concentration profiles
arising in various continuous models. Upon analysis of these profiles, we introduce mod-
ifications of mathematical models, in particular, two famous continuous models (Turing

and Fitzhugh-Nagumo) to achieve scaling of their solutions.

Following a presentation of continuous models, a discrete model of pattern formation
based on a chain of logical elements (cellular automata) is also presented. This is more
appropriate to represent the discreteness of biological systems with respect to their scaling
properties: for a number of problems the issue of scaling doesn’t appear in the discrete
formulation. This model has been developed to take account of local interactions between

cells resulting into stationary pattern formation.

We conclude this thesis by comparing our scaling factor to other scaling factor mod-
els and we apply. We also conclude by applying our results to the different stages of the
development of the fly segmentation of the fly embryo.

The thesis is structured as follows:

Chapter 1 will discuss about the preliminary background. We will start with patterns
in non-biological and biological systems. This is followed by how biological patterns were
formed i.e. what mechanisms do we have for these pattern formations. Two of the main
properties of biological patterns, which are robustness and scaling, will be briefly dis-
cussed in the next section. The mathematical aspects will follow with some examples of

mathematical models. The final section will deal with a continuous model.

Chapter 2 will concern the scaling of the continuous models. First, we begin with
a simple one-variable model with a diffusion coefficient D and a decay coefficient k. We
will investigate whether this model scales with the Dirichlet and Neumann boundary con-
ditions. We consider two mechanisms of scaling of exponential profile. Then, we consider
scaling of the morphogen of the annihilation model. We consider the nuclear trapping

model and active transport model.

Chapter 3 will concern the two famous models: Turing model and Fitzhugh-Nagumo
(FHN) model. For the Turing model, different variants with two variables have been
considered. In the variant with three variables, we compute the solution for all variables

and then we calculate the scaling factor for one of them. For the FHN model, we start



with the two variables. Then, we move on to the three-variable FHN system. For this

latter case, we have computed the scaling factor numerically.

Chapter 4 will concern the presentation of a discrete model based on cellular automa-
ton. We consider the two-state model for which, we determine the transitions giving
stationary patterns from an initial periodic solution. Then, we determine the transitions
which give periodic stripes from initial random condition. Hereafter, we deal with three-
or more states. Biological implementation, of this model, will be discussed in the final

section.



Chapter 1

Introduction

1.1 Patterns in living organisms and non-living things

Patterns are defined as orders embedded in randomness or apparent regularities [17].

They can appear in various systems and in different forms.

Living nature is one of the domains very rich in patterns. For instance in animal world,
the zebra coat marking consists of a series of black and white stripes. The giraffe’s neck
has a spotted pattern. Some snakes have also a succession of multi colored ring along
their body. Also, patterns can be found on some butterfly wings [69]. These are only a
few examples but many more exist in animal world. Patterns can be found also in vegetal
world. For instance, on a leaf, the veins exhibit a pattern along the midrib. On the fruit

side, pattern is also shown on pineapple skin. Patterns can be seen as well on the flowers

of sunflowers or white marguerite [20]. Other examples can be found in vegetal world.

Figure 1.1: Patterns in Nature. A: Waves on the water surface - appear due to an interplay
of gravity and pressure when the dissipation of the mechanical energy is slow (low viscosity of
water). B: Sand ripples appear due to an interplay of wind and gravity causing an instability
in the shape of surface of the granular material [117].



Non-living nature is also full of patterns. Patterns can be observed at the surface of
bodies of water such as an ocean or a lake (see panel A in Figure 1.1). Patterns can be
observed at the surface of bodies of water such as an ocean or a lake. These patterns
are linked to the transfer of energy from the blowing wind to the water [47]. The size
of the resulting wave (so the pattern) depends on the speed and the duration of the
wind, and the fetch (length of the interaction area between the wind and the water) [21].
The pattern can have a two dimensional form (succession of rising and failing of water
level, for instance) [78, 13]. Steady three-dimensional patterns can exist as well at the
surface of the water under certain conditions (constant density, irrational flow, inviscid
fluid) [14, 54]. In addition to the wind, a ship cruising at a constant speed on a calm
water can induced wave pattern known as the Kelvin wave pattern [73]. Other forms of

patterns exist at the surface of water.

For sand, the patterns have the appearance of ripples which can have wavelengths in
the range of few centimetres to tens of meters and amplitudes from a few millimetres to a
maximum of a few centimetres [77, 48]. They can be observed in desert sand. The sand
patterns are believed to be the result of the action of the wind on loose sand [6]. When the
wind strength is large enough, the shear stress exerted by the wind on the sand surface
lifts individual sand particles [71]. During their flight, the particles have approximately
the velocity of the wind. During their impact with the sand surface, other sand particles
are ejected [86, 106]. For sufficiently large wind velocities, a cascade process happens,
and an entire population of saltating particles hopping on the sand surface emerges [93].
During strong winds, the layer of saltating particles can reach a thickness of more than
1 m [98, 61]. Sand ripple patterns can be found under water as well. For this case, the

role of wind is played by the water [117].

Apart from nature, patterns can be encountered in other domains as well. Chemical sys-
tem is one of them where the famous Belousov-Zhabontisky reaction is an example [49].
Belousov discovered, back in the 1950s, that some chemical reactions containing acid solu-
tion and bromate with the presence of a catalyst show a periodic change in concentration
of species [75]. This change of concentration is translated to a change of coloration. For
example, in the reaction between Cerium-catalysed Bromate and Malonic acid, the ratio
of concentration of the cerium(IV) and cerium(III) ions oscillated, causing the color of

the solution to oscillate between a yellow solution and a colorless solution [118, 29].

In fluid flow domain, the flow past a cylinder in two-dimensional domain exhibits a
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pattern which form depends on the Reynolds number. The Reynolds number is defined
as the ratio of the product of the cylinder diameter and the undisturbed free-stream ve-
locity flow and the viscosity of the fluid. When the free stream velocity is increased, a
succession of vortices propagates away behind the cylinder [100]. The flow past a cylinder
is one of the most studied in aerodynamics and has many engineering applications (see
Figure 1.2).

Figure 1.2: Flows past a circular cylinder. A: Birth of vortices behind the cylinder for a
Reynolds number of 2000. B: Two parallel rows of staggered vortices for Reynolds number of
150 [100].

1.2 Biological patterns

Biology is one of the domains rich in patterns and where the research on patterns has been
done extensively. For biological systems, patterns exist in the full spectrum range (from
embryo to individual). They have emerged in the origin of life and its evolution [45]. In

this part, we deal with more details with some of these domains.

1.2.1 Skin pattern

Skin patterns can have various appearances. Some examples are: stripes for zebras and
tigers, spots for leopards [68], patches for giraffes and rings for snakes [67, 2]. Some
pictures extracted from various internet sites are shown in Figure 1.3. For zebra, for
instance, the hair pattern is considered as black stripes on a white background (the
belly and unstriped leg regions are white). The width of these stripes varies, being
wide on the neck and narrow on the head. The patterns may differ from a zebra to
another or from a zebra specie to another. These different zebra patterns are shown
to be generated by a single mechanism forming stripes, operating at different times in
embryogenesis [7]. Turing has proposed a possible mechanism explaining how animals

get their skin patterns [94]).
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Figure 1.3: Examples of animal skin patterns. A: Black and white stripes for the zebra.
B: Spots for the leopard. C: Patches for the giraffe. D: Periodic patterns (orange and grey)
for the snake.

1.2.2 Shells of molluscs

The mollusc shell exhibits one of the more complicated patterns in higher organisms.
The patterns on mollusc shell are interesting in two aspects: pigmentation and relief.
These two aspects co-exist simultaneously [12]. Moreover, two molluscs of the same
species can have different shell patterns and two molluscs from different species can have
similar shell patterns. The patterns consist of lines, stripes and patches of different
pigmentations or of relief-like structures (ridges, knobs) [104]. The relief-like patterns
are believed to have a functional significance (for instance, used to increase friction with
sand during burrowing). Therefore, the environment has an effect on relief-like patterns.
The shell pattern is formed only on the growing edge of the mollusc shell and therefore,
it represents a protocol of what is happened at the growing edge of the particular animal.
The patterns are, therefore, space and time plots. More details of mollusc shell patterns

are given in [66]. Figure 1.4 shows an example of shells with patterns.
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Figure 1.4: Stripes due to shell pigmentation occurring at regular basis. Upper:
Stripes are parallel to the axis of the shell. Lower: Stripes perpendicular to the azis of shell [65].

1.2.3 Segmentation of the fly embryo (drosophila)

Drosophila embryo is one of the most studied systems for patterning [42]. For the
Drosophila embryo, the pattern occurs as a repeated structure called segments arranged
along the head to tail axis. These segments have their origin in spatially periodic pat-
terns of gene expressions which are visible at early stages of embryonic development [89].
The patterning in Drosophila embryo is controlled by gradients in the concentration of
maternal genes (bicoid, caudal, etc.) that arise soon after fertilisation [36]. These
genes, located on the poles of the embryo, diffuse spatially from the anterior (bicoid) and
posterior (caudal) poles of the embryo and control the spatial pattern of the transcription
of the gap genes (i.e. hunchback. Kriippel, knirps, etc.) [92]. These genes are amongst
the earliest expressed zygotic genes and they encode transcription factors. They act to
sub-divide the embryo into broad domains (anterior, middle and posterior). The gap
genes regulate each other and the next set of genes in the hierarchy which are the pair-
rule genes (even-skipped, hairy, fushi-tarazu, etc.). Pair-rule genes are expressed in
7 stripes of cell and establish the initial expression of segment-polarity genes (wing-
less, hedgehog, engrailed) [50, 87]. Segment polarity genes, in turn, are expressed
in 14 narrow stripes shortly before gastrulation. These stripes constitute a segmental
pre-pattern in that they determine the positions of morphological segment boundaries
which form later in development (see Figure 1.5) [76]. The position and identity of body
segments which take place during the embryogenesis are specified in the segmentation

process [52].
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Maternal Coordinate Genes

Terminal Gap Genes

Pair-Rule Genes

[Segment—PoIarity Genes

e on (blastoderm) En (germband)

Segment Determination

Figure 1.5: Hierarchy of Gene Control of Segmentation in Drosophila. The patterning
associated with the segmentation takes place in four levels: Concentration profiles of maternity
genes (bicoid, caudal, etc). These genes control the spatial patterns of transcription of the
gap genes. Spatial patterns of transcription of the gap genes (Hb, Kr, etc). The gap genes
requlate each other and the next set of genes in the hierarchy, the pair-rule genes (even-skipped,
hairy, etc.). Pair-rule genes - form seven stripes of transcription around each embryo. Pair-
rule genes determines the initial expression of segment polarity genes. Segment polarity
genes - form fourteen stripes of transcription around each embryo [52].

For the dorsal-ventral axis, the patterning of the Drosophila dorsal-ventral axis which is
controlled by the gradient of Dorsal protein is highest in ventral regions of the embryo [62].
Dorsal protein activates genes in a concentration dependent manner to establish early
patterning of the embryo [31, 60]. The patterns are refined by interactions between Dorsal
and other activators as well as repressors in both dorsal and ventral regions of the embryo.
In the early embryo, the translocation of dorsal protein into ventral nuclei produces a
gradient where the ventral cells with the most Dorsal protein become mesoderm. The
next higher portion becomes the neurogenic ectoderm. This is followed by the lateral and
dorsal ectoderm [33, 79]. The dorsalmost region becomes the amnioserosa (embryonic

layer surrounding the embryo)(see Figure 1.6) [34].

14



(A) Dorsal

e .
= Amnioserosa

—

Dorsal ectoderm
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Figure 1.6: Dorso-ventral regions of early embryo. In the early embryo, five distinct
regions, which are mesoderm, ventral ectoderm, lateral and dorsal ectoderm and amnioserosa
appear. Left: Lateral view. Right: Transversal view [34].

1.3 Mechanisms of pattern formation

Pattern formation is a central process in the development of living organisms. According
to Wolpert, it is the process by which spatial organization of cells is established and is
related to two other developmental processes which are cell differentiation and change
in form [110]. For instance, pattern formation determines where cartilage and muscle
will develop on the development of vertebrate limb [111]. The role of pattern formation
in the development process in biology can be explained using the concept of positional
information. The basic idea behind this concept is that cells acquire positional identities
as in coordinate system and then interpret their positions to give rise to spatial patterns.
One of the main mechanisms for setting up positional information is based on gradients
of morphogens, which are diffusible molecules produced by the cells, whose concentration
specifies positions [112]. If the concentration of the morphogen is fixed at the source,
then the distribution of its concentration at any point effectively provides the cells with

positional information [111].

Mechanisms of pattern formation have been classified into three categories [81, 32]:

1. Autonomous mechanism in which cells enter into specific arrangements (patterns)

without interaction.

2. Inductive mechanisms where cells interact with each other by secreting diffusible
molecules. This leads to change in pattern by reciprocal or hierarchical alteration

of cell phenotypes, and

3. morphogenetic mechanisms where pattern changes by means of cell interactions

that do not change cell states.
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In theoretical discussion of biological development, it is commonly accepted that pat-
tern formation has two components [108]. First, interaction mechanisms between cells
with different states and different spatial relationships using signaling in two and three
dimensions. Second, mechanisms that use cell behaviors other than signaling and action
previously established pattern to cause the formation of three dimensional tissues and

organs.

However, the morphogen gradients are typically dynamic and in many cases their dy-
namics are conditioned by the movement of cells. Gastrulation in the chick embryo is a
good example for which detailed data on the dynamics of gene expression patterns and
cell movement is available [5, 90, 16]. An extensive cell motion observed during gastrula-
tion all over the epiblast can be considered as having three distinct parts: (1) cell motion
along the embryo midline associated with progression and regression of the primitive
streak; (2) lateral movement of cells on both sides of the midline which is vortex-shaped
at early gastrulation and form lateral flows toward the midline at later stages and (3)
transformation of approaching the midline epithelial cells into mesenchyme which forms
a sink in the epiblast along its midline and gives rise to lateral flows formed my mes-
enchyme cells. As the movement involves different cell groups which express different
genes the forming morphogenetic patterns are dynamic and change following the reloca-
tion of domains of transcriptions. Furthermore, the movement of cells can, in turn, be
affected by morphogen concentrations, which is the case if the movement is chemotactic
and morphogens can act as chemotactic agents. These possibilities have recently been

explored in studies combining mathematical modelling and experiments [101, 43, 103].

1.4 Symmetry and symmetry breaking in biological

pattern formation

Mathematically, symmetry is characterised by a group of transformations that leave cer-
tain features of a system unchanged [63]. In physical systems, symmetry can be seen
as homogeneity [35] or uniformity [59]. It can be also characterised by the existence of
different viewpoints from which the system appears the same [3]. Also, the symmetry
properties may be attributed to physical law (equations) or to physical objects or states
(solutions) [15]. Symmetry plays fundamental role in physics, for instance, in classical

mechanics or quantum mechanics [41].
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Symmetry is a very important ingredient in a pattern formation model (spatial hid-
den symmetries in pattern formation). The application of the concept of symmetry has
been extended by Turing in biology. In his famous paper in 1952 [94], Turing showed
that, in biology, pattern formation is governed by reaction-diffusion systems involving two
chemical substances called morphogens. A spatially homogeneous distribution of these
morphogens is unstable if one of them (activator) diffuses more slowly than the other
(inhibitor). In this case, small stochastic concentration fluctuations are amplified, lead-
ing to a chemical instability (a “Turing instability”) and the formation of concentration
gradients (or patterns) [99]. These reaction-diffusion systems often possess symmetries.
Specifically, the equations which describe them are often left unchanged by certain groups

of transformations, such as reflection, translation or rotation.

The process by which the spatially homogeneous distribution is broken to generate a
more structured state is called symmetry breaking. For the presence of such structure, a
lower symmetry than the absolute one is needed: in the sense that symmetry breaking is
essential for the existence of structured things [15]. Symmetry breaking does not imply
that no symmetry is present, but rather that the situation is characterized by a lower sym-
metry than the original one. It refers to the situation in which solutions to the equations
have less symmetry than the equations themselves. There are two types of symmetry
breaking: spontaneous and explicit [15, 72, 59]. Spontaneous symmetry-breaking occurs
when the laws or equations of a system are symmetrical but specific solutions do not
respect the same symmetry. Here, spontaneous simply means endogenous to the dynam-
ics of the system and not catalyzed by some exogenous input as in the case of explicit
symmetry breaking. Explicit symmetry breaking means a situation where the dynamical
equations are not invarivant under the symmetry group [15]. It occurs when the rules
governing a system are not manifestly invariant under the symmetry group considered.

Also, in this case, the symmetry is broken by external objects.

1.5 Noise-induced pattern formations

Random fluctuations due to environmental effects are always present in natural systems.
In addition to deterministic events which lead to pattern formation, these random fluctua-
tions can also generate patterns. These pattern formations are explained as noise induced
in the sense that they emerge as a consequence of the randomness of the system’s fluctu-
ations. If the noise intensity is set to zero, the noise-induced patterns disappear and the
homogeneous stable state is restored. These random drivers have often been related to a

symmetry-breaking instability [84]. They destabilise a homogenous (and, thus, symmet-
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ric) state of the system and determine a transition to an ordered phase, which exhibits a

degree of spatial organisation.

In mathematical modelling of noise induced pattern formation, Gaussian white noise
is usually adopted as it provides a reasonable representation of the random fluctuation of
the real systems (the spatial and temporal scales of the Gaussian white noise are much
shorter than the characteristic scales over which spatio-temporal dynamics of the field
variable are evolving). At any point r(z,y) of the system, the spatio-temporal dynamics

of the state variable is described by the following equation [84]

0% _

5 = 1 (P) T 9(9)E(r 1) + DL[p] + &(r, ).

This equation contains three components.

e The deterministic local dynamics f(¢) which tends to drive the field variable to a

uniform steady state hence do not contribute to pattern formation

e the noise components which consist of the multiplicative part g(p){(r, ) and the
additive part &,(r, ¢) maintain the dynamics away from the uniform steady state,

and

e the spatial coupling term represented by DL[y] and which provides spatial coher-
ence. This spatial coupling is characterized by the operator L and its strength
D.

Gaussian white noise, with intensity s and zero mean, is usually adopted as it provides
a reasonable representation of the random fluctuation of the real systems (the spatial
and temporal scales of the Gaussian white noise are much shorter than the characteristic
scales over which spatio-temporal dynamics of the field variable are evolving) [84]. For

this Gaussian white noise, the correlation is given by

(E(r e ) =250 (r—r")d(t —t).

Additive noise
In the case of additive noise, the model is represented by

0
5 = @0+ DL+ Eu(r.1).
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The noise effect does not depend on the state of the system. The deterministic part of the
dynamics does not generate patterns for any value of a: if a < 0, the system is damped
to zero without showing any spatial coherence. If a > 0, no steady states exist and
the dynamics of ¢ diverge without displaying any ordered spatial structures. Additive
noise, &,, is able to keep the dynamics away from the homogenous deterministic steady
state even though in the underlying deterministic dynamics f(y) would tend to cause
the convergence to the homogenous state. In these conditions patterns emerge and are
continuously sustained by noise. These patterns are noise-induced in that they disappear

and the homogeneous stable state ¢ is restored if the noise intensity is set to zero [84].

Multiplicative noise
For this case, the model is represented by

¢ _

5 f(p) +9(p)é(r,t) + DL[y].

In the case of multiplicative noise, the evolution depends on the value of the state variable
. The cooperation between multiplicative noise and spatial coupling is based on two
key actions: (i) the multiplicative random component temporarily destabilizes the homo-
geneous stable state, g, of the underlying deterministic dynamics, and (ii) the spatial
coupling acts during this instability, thereby generating and stabilizing a pattern [84].
The key features of pattern formation induced by multiplicative noise are that for s lower
than a critical value s., the state variable ¢ experiences fluctuation about ¢y but noise
does not play any constructive role [83]. For s greater than s., the spatial coupling

exploits the initial instability of the system to generate ordered structures.

1.6 Robustness and Scaling of biological patterns

In biology, pattern formation results from the response of individual cells to a spatial
pattern (gradient) of chemical substances called morphogens [94]. According to Turing,
morphogens are responsible for the main phenomena of morphogenesis (generation of
form) [94]. Omne of the key properties of morphogen gradients is “robustness” [56, 95].
The term “robustness” quantifies the aptitude of the morphogen gradients (patterns) to
resist to the fluctuations due to internal and external factors [57]. During its development
the organ, composed of cells, is exposed to a certain “development noise” i.e. environ-
mental factor, genetic variability and random difference which can lead to variation in

gene expression level between individual [46]. Despite these fluctuations, the outcome
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of the organ is precise and reproducible, indicating that the mechanisms regulating pat-

terning and growth of organs are robust and able to damp the effects of the variations [85].

Another key property of morphogen gradients is scaling. In Drosophila, development
along the anterior-posterior axis is scaled with embryo length i.e. although individuals
vary substantially in size, the proportions of different parts of the individuals remain the
same, Figure 1.7 [36, 8]. This adaptation of proportion (pattern) with size is termed as
scaling. Experiments in scaling have been carried out towards the end of 19" century.
In 1883, Whilhem Roux killed one of two cells in a frog embryo and he found that the
rest gave rise to only part of the embryo [82]. Hans Driesch, in 1891, he cut two cells of
the sea urchin and each gave rise to full embryos (see Figure 1.7)[53]. Four years later,

Thomas Morgan repeated Roux’s experiment by removing one of two blastomere in a frog

embryo and he found out that the amphibian could give rise a complete embryo from half
an egg [114, 9, 25].

Normal development of sea urchin larva from two-cell stage

Driesch’s separation of cells at two-cell stage resulted in the death of one cell.
The surviving cell developed into a small but otherwise normal larva

AN
© » @

one of the
separated cells
A B usually died

Figure 1.7: Scalings of fly embryo and sea urchin. A: Fly embryo of different sizes with
the same number of stripes (segments). The upper and lower fly embryo have 485 pm and
844 pm respectively. Scaling was obtained by varying the lifetime of the lifetime of the bicoid
protein [36]. B: At the two-cell stage, one has the development of the sea urchin. Hans Drieschs
separated into two cells resulting that one cell is dead and the other has given rise to a smaller
sea urchin [113].

1.7 Mathematical models for pattern formation

Various mathematical models have been developed to help understand pattern forma-
tion. The first of these models was introduced by Turing and based on reaction-diffusion
equations of morphogens. According to Turing, morphogens react chemically and dif-
fuse through a tissue [94]. These morphogens are, through their gradient, responsible for

pattern formation in biological system.
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1.7.1 The French Flag Model

The classical illustration of how a morphogen can provide positional information is given
by the French Flag model suggested by Lewis Wolpert [110]. This model demonstrates
how a simple, linear concentration profile of a morphogen can set domains of cellular
determination in an otherwise homogeneous tissue. The linear concentration profiles
can form naturally in various settings. The simplest case is when the production and
degradation of morphogen take place outside the tissue on its opposing sides and the
morphogen passively diffuses along the tissue from the side where it is produced to the
side where it is degraded. Mathematically, the concentration of the morphogen in this
system should obey so called Laplace’s equation with Dirichlet boundary conditions,
which for a tissue represented by a one-dimensional domain of length L, is given by the

following mathematical formulation [103](Figure 1.8).

C b
¢ TC_0, clo)=c; c(1)=6
dx*
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I
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Figure 1.8: Linear gradient in the French Flag model forms due to passive diffu-
ston of the morphogen. z; and xp have T; and Ty for the threshold concentration values
respectively. C is the concentration of morphogen, D is the diffusion coefficient, C; and Cy are
the concentrations of the morphogen outside the two sides of the tissue and L is the size of the
tissue. We have Dirichlet boundary conditions at both ends.

In this model, C represents the concentration of the morphogen, D is the diffusion coef-
ficient and C; and Cy are the buffered concentrations of the morphogen outside the two
sides of the tissue. In this model, the pattern depends on the level of concentration. This
model does scale because if, for example, the size of tissue is doubled then the sizes of
all domains of cellular determination which are defined by the threshold concentration

values T and T3 will be also doubled. However, this linear shape is not confirmed by
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experimental observations.

1.7.2 Morphogen gradient in system with decay

The linear shape shown in the French Flag model, in the previous section, is not con-
firmed by experimental observations. Most commonly measurements point to an expo-
nential shape, as, for example, in the case of the transcriptional factor Bicoid in the
fly embryo [27, 39]. Formation of the exponential profile can be shown mathematically
under the assumption that the morphogen not only diffuses but also degrades inside the
domain. The concentration of morphogen can be buffered on the boundaries of the tis-
sue. Alternatively, we can assume that the tissue is isolated (no flows on the boundaries)
and the production of the morphogen takes place in a restricted area inside the domain.
These assumptions are perfectly reasonable for many studied objects. For example, the
maternal Bicoid mRNA in fly embryo is localised in a small region on its apical side
and the Bicoid protein produced in this region diffusively spreads and decays along the
entire embryo. Stationary concentration of the morphogen in this system will satisfy the

following equation [103](Figure 1.9).

In this model, C' and D have the same signification as previously, k represents the decay
rate, jo is a non-zero flux and p is the production of the protein in the apical side region
of size a. When the area of the production is small, we can replace it by boundary fluxes
(see proof in appendix A). This figure does not scale because of the characteristic length
of exponential profile. In other words, the distance required for the concentration to
reduce by a certain factor (i.e. e—times), depends only on the diffusion coefficient, D,
and the degradation rate, k, of the morphogen. For example, if, in the case shown in
Figure 1.9, we increase the size of the domain from L to 2L then the sizes of blue and
white sub-domains will not change while the red sub-domain will increase to cover all
added L units of length [103].
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Figure 1.9: Exponential profile when the diffusion is combined with the decay. C
is the concentration of morphogen, D 1is the diffusion coefficient, x; and xo have T; and Ts
for the threshold concentration values respectively and Cy is the concentration at x = 0. We
have production in the region between 0 and a with parameter p in the equation. And we have
Neumann boundary condition at both ends.

In an attempt to understand pattern formation in more depth, quantitative models of
gradient formation have been developed. The addition of a degradation term with rate
k to the Fick’s second law leads to the equation

oC 0?C

— =D—— —kC. 1.1

ot Ox? (1.1)
The steady state solution to this equation (1.1) with a production from localised source
has an exponential form

C(x) = Coe™ 7, (1.2)

where Cy, in equation (1.2) is the concentration at the source boundary (z = 0) and
A is the decay length given by A = \/D_//{i, i.e. the distance from source at which the
concentration is reduced to a fraction 1/e of Cy. Cj depends on the flux of molecules
across the source boundary jo, on the diffusion coefficient D and the degradation rate k
as shown in equation (1.3) [107]. _
Jo

vDk

Co = (1.3)
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1.7.3 Turing model

Turing was the first to propose reaction diffusion theory involving two species (mor-
phogens) as model for pattern formation. He suggested that chemicals can react and
diffuse in such a way as to produce steady state heterogeneous spatial patterns of chem-
ical or morphogen concentration [94]. His theory is based on the possibility of a stable
state against perturbation, with absence of diffusion phenomenon to become unstable

against perturbation in the presence of diffusion.

Turing’s pattern formation can be summarised as follows using two morphogen species, u
and v. The morphogen u is known as the activator because it is involved in the increase
of its own production as well as to the production of the second morphogen v. The second
morphogen v is called the inhibitor since it reduces the production rate of the activator
and it also enforces its own degradation. For a 2D system (u,v), it is characterised by

the set of ordinary differential equations.

du

E = f(u,v), (14)
L = gwo)

where f(u,v) and g(u,v) are non-linear functions. The equilibrium point (u,v) = (ug, vo)
is solution of the LHS=0 of system (1.4). By adding a simple exponential type pertur-

bation @, © = e to (ug,vy), we will find X from the characteristic equation

fu_/\ fv

=0,
Gu Gv — )\7

where f,, f., g, and g, are the derivatives with respect to u and v computed at (ug, vp).
This gives
)‘2 —A (fu + gv) + fugv - fvgu = 0.

From above, we have

2
)\1,2 = fu i I + \/<fu T g’U) - (fugv - fvgu)

2 4

In order to have stability, we need to request that Re A < 0. From the properties of the

roots of quadratic equations, we have the following conditions
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and

JuGv — fogu > 0. (1.6)

In the presence of diffusion phenomena, the set of previous ordinary differential equations
(1.4) becomes

ou

&= D,Au u,v),
{ ot + fluv) (1.7)

% = D’UAU + g(U,U),

where D,, and D, are the diffusion coefficients of v and v respectively. The equilibrium
point (u,v) = (ug,vp) is solution of the LHS=0 of system (1.7). To study the effect of

small perturbation, let

U = u— ug,
Vo= v—1.
Linearising around (ug, vp), we get
% = DAl + if, + f,, (1.8)
% = D,Av+ ug, + 09y,

where f,, fu, g, and g, are the derivatives with respect to u and v computed at (ug, vy).

We are looking for solutions which can be represented as
u = Z a; e fi(x),
'17 — Z Bie)\itgi(l'),
where «; and f3; are constants. Now the functions f;(z) and g;(x) can be represented as
fi(z) = gi(x) = a; cos (k;x) + b; sin (k;x)

where a;and b; are constants and k; represents the wavelength. Assume that we have a
function which goes from 0 to L and we want to extend it evenly i.e. the function is
symmetric with respect the vertical axis. Then, in the solutions of f;(x) and g;(z), all

the sine functions will vanish. Therefore, the functions f;(x) and g;(x) can be written as

fi(z) = gi(x) = a; cos (k;x)
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and the full solutions of u and © can be represented as
- At T
u = et cos | —x | .
Poten ()
~ Aot 7T'l
o= et cos | —x | .
Yot ()

Any initial concentration profiles for both variables can be represented by above series.
These series would represent solution of the system (1.8) if each pair of corresponding
terms also satisfies this system. Therefore, we take one particular term from each of the

above series

oy cos (kx) e,

f31 cos (kx) e,

N
I

(S
I

and substitute them into equation (1.8), we obtain

A = —k*Dyay + fuon + [,
BN = —k*D,a; + gy + guBi-

The above equations are linear in «; and ;. Non-zero solutions only exist if the deter-

minant of the matrix M is zero i.e.

fu_/\_k2Du fv
Ju gy — A\ — K*D,

This gives a quadratic equation in .
N = A(fu+9o— k> (Dy+ D)) + (K*DyDy, — k* (fuDy + goDu) + fugo — fogu) = 0. (1.9)

In order to investigate how diffusion phenomenon (D,,, D, # 0) can destabilize the system,
let’s consider the coefficient of A and the constant term in (1.9). They are functions of
k* and denoted respectively as B (k?) and C (k?).

B (k) = fu+ gy — K (Dy+ D,), (1.10)

and

C(K*) = k*DyD, — k* (fuDy + guDy) + fugo — fugu = 0. (1.11)
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The function B (k?) is always negative for any value of k% according to (1.5). So, the
only way to have instability is that the function C (k?) is negative. To achieve that, we
require that f, D, + ¢g,D, > 0. This is necessary but not sufficient condition. A sufficient
condition is to have the minimum of C (k%) to be negative. The value of k? which gives

this minimum value, C,,;, is solution of the derivative of C (k?) with respect to k? i.e.
2k*D, D, — (f.D, + g,D,) = 0.

So the sufficient condition to get instability is

_ (fuDs+9.D.)*  (fuDyo + g.D.)°
Cmm, - 4DuDU 2DuDU + fug’u fvgu < 0.

After rearranging, we obtain

(fuDy + gDy’
4D, D,

> fugv - fvgw (112)

In other words, this condition leads to one of the eigenvalues to be positive.

The range of k% which corresponds to Turing’s instability is given by k% < k? < k2

where k? and k2 are zeros of C' (k?). Their expressions are given by

]{;2 quv + gvDu j: \/(quv + gvDu)2 - 4DuDv (.fugv - fvgu)
1,2 — .

2D,D,

This case corresponding to the instability is represented by the blue curve in Figure 1.10.
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Figure 1.10: Plot of DET wvs k®. The condition (1.12) is satisfied for the blue curve but not
satisfied for the green and red ones. The blue curve intersects the k* axis at k% and k5. The
instability occurs for k? between k% and k‘g i.e. one of the eigenvalues is positive. For the red
and green curves, no Turing’s patterns occur [69].

The values k; and ko are called the boundary wavenumbers. If k& < k; or & > ko the
perturbation due to the diffusion dies out without disturbing the homogeneous stable
stationary state. The instability means that any noise with the right wavelength will be
amplified by the system and leads to a spatial pattern with the matching wavelength.
Turing’s instability (pattern) exists not only in biological systems but also in domains

such as chemicals, physics, etc.

In summary, the conditions to get the homogeneous stable stationary state to become

instable with the presence of diffusion (diffusion driven instability) are as follows:

Jut g0 <0,
fugv - fvgu > O» (113)
quv + gvDu > 2\/DuD’U (fugv - f'ugu>

The special wavelength of the Turing pattern is defined by the diffusion and kinetics rates
of morphogens in equation system (1.9). Neither of these two change when the size of

the medium and therefore the patterns forming in the classical Turing model don’t scale.

1.7.4 Fitzhugh-Nagumo model

The Fitzhugh-Nagumo model (FHN) belongs to a general class of reaction-diffusion equa-
tions [26]. This model has different versions and was originally developed as a generic

model for signal propagation along a nerve fibre [30]. Its variant, which introduces the
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diffusion of the second variable, also serves as a generic model for morphogenetic pattern
formations [102]. It is described by the following system (1.14) which has been obtained
after time and space rescaling in order to allow the elimination of one of the diffusion

coeflicients and one of the kinetic rates

{ g_lz = Au+ f(u,v), (1.14)

% = DAv + eg(u,v).

In the above system, D is the ratio of the diffusion coefficients and ¢ is the ratio of the
kinetic functions f(u,v) and g(u,v). The kinetic term in the first equation is defined by
a cubic function f(u,v) = —k,u(u — a)(u—1) — v [70] while in the second equation, it is
simply represented by a linear function g(u,v) = k,u — v. k, and k, represent constants
related to the kinetic terms and « is a constant 0 < o < 1 which is called “excitation
threshold”.

Like in the Turing model, uv and v represent the activator and the inhibitor respec-
tively. Unlike the Turing model which patterns result from the difference of diffusion
rates, the FHN patterns are based on the excitable dynamics from the reaction terms.
By ignoring the diffusion terms, the above system has fixed points which are defined by
the intersections of the two nullclines f(u,v) = 0 and g(u,v) = 0. According to the
nature of the intersections, the kinetic system can be classified as excitable, bistable or
oscillatory. For a > 0, one or two steady state solutions can be obtained. The oscillatory
solution is obtained for example, by adding an extra term in the function f(u,v) so that

the nullcline will move up. These are shown in Figure 1.11.

0.6 v 0.6 v 4 v
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Figure 1.11: Nullclines for three different dynamical regimes described by the FHN
model. The blue curve is the cubic nullcline f(u, v)=0 for activator. The green curve corre-
sponds to the linear nullcline g(u, v)=0 for inhibitor. Three different type of system are shown.
A: The origin is the only equilibrium point. This describes excitable system. B: The cubic
nullcline has been shifted upward to give an oscillatory system. C: There are three equilibrium
points. One can have either two unstable and one stable or two stable and one unstable. This
system s bistable.

The model represented by the two equations above allows the understanding of pat-
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tern formation phenomena which occur in various chemical, physical and biological sys-
tems [102]. Different types of solutions can be obtained by changing the ratio of diffusion

D and ratio of kinetic rate ¢.

In Figure 1.12, four different scenarios are shown: propagating wave, vanishing spot,
pulsating spots and stationary spots. They were obtained with different values of D.
Propagating wave was obtained with D = 1. D = 2 is the case of the vanishing spot.
Pulsating spots was simulated with D = 3.2. All of these patterns can be classified into

four regions which is shown in panel E of Figure 1.12.
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Figure 1.12: Different 1-dimensional spatio-temporal patterns obtained from the solv-
ing of the scaled FHN equations according to the values of the parameters D and
e (Time: wvertical axis and space: horizontal axis). All patterns were stimulated at
the middle of the medium. A: Unstable patterns and the medium returns to the homogeneous
state. B: Pulsating spot. C': Stationary spots. D: Self-replicating waves. E: The location of
the domains, R;, Rs, Rs and Ry on the (5_1, D,) plane. D, is acting as the ratio of diffusions.
Dy, Dy and Dg specify the bifurcation parameters. The domain R; corresponds to the region
with propagating waves, Ro corresponds to the region where one a domain where the patterns
are unstable and the medium as a rule returns to the homogeneous state. Rg corresponds to the
domain where pulsating spots occur and R, corresponds to the domain where stationary spots
arise [102].
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1.8 Robustness of morphogen gradient

Mechanisms ensuring the robustness of dorso-ventral patterning in the Drosophila embryo
against the changes in production rates (gene dosage) of involved proteins (BMP and Sog)
have been studied both experimentally and theoretically in [28]. The analysis was based
on detailed consideration of the dynamics of BMP, which is produced on the dorsal side
of embryo, Sog, which is produced on the ventral side and inhibits BMP, and BM P/Sog
complex which is highly diffusive. The decay of Sog is mediated by Tolloid (Tld) -
another protein whose concentration is assumed to be constant. Interactions between

these substances can be graphically represented by the following:
Kk _p
Sog + Scw +— Sog — Scw,

Sog + Tld <= Tld,
Sog — Scw + Tld < tld + Scw.

Scw is the morphogen of interest. Sog inhibits the action of Scw by forming the complex
Sog — Scw. The protease Tld cleaves Sog [28].

Parivitelline Fuid

Figure 1.13: Cross section of the Drosophila embryo. DR means dorsal region, NE is
Neuroectoderm (source of Sog) and M is mesoderm.
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These lead to the three reaction-diffusion equations:

8[2?0] = DpypV?[Scw] — ky[Sog][Scw] + \[Tld][Sog — Scw] + k_y[Sog — Scw],
8[;:9] = DgsV?[Sog] — ky[Sog][Scw] + k_y[Sog — Scw] — a[Tld][Sog],
W = Dc¢[Sog — Scw] + kp[Sog|[Scw] — A[Tld|[Sog — Scw| — k_p[Sog — Scw],

where Dgyp, Ds and D¢ are respectively the diffusion rate constants for Sog, Scw and

Sog — Scw and ky, k_p, o and ~ are reaction rate constants.

They found out that 0.3% of the systems were stable. In these systems they show changes
of less than 10%. We have decided to reproduce their results using different values of
boundary fluxes to see if robustness occurs. The left panel shows three profiles with three
different values of boundary fluxes. All three profiles have different concentration inside
the domain. So there is no robustness. The right panel shows two profiles with two differ-
ent values of boundary fluxes. As we can see, the two profiles have the same concentration
everywhere. So, one can say that we have robustness (see Figure 1.14). Therefore, in this
model it was shown that high diffusion of the BM P/Sog complex enhances the dorso-
ventral transportation of the BMP (the term used by authors is “shuttling”). Shuttling is
obtained when the BM P ligand, binding with the inhibitor, Sog, diffuses. This binding
also facilitates the decay of Sog. This mechanism has two advantages. First, it gives rise
to a sharp gradient and second it allows robustness to fluctuation in gene dosage [8, 44].
A further modification of this model [11] with two additional equations describing the
dynamics of BMP ligand Admp, which also forms a highly mobile complex with the BMP
inhibitor, was used to demonstrate that a shuttling mechanism can also explain scaling

of BMP gradient in Xenopus embryo.
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Figure 1.14: Non-robust and robust profiles of proteins Screw (Scw) using different
values of boundary flures. A: Non-robust profiles. The Sog profile is represented by the
black dotted curve. The blue, red and green curves are three profiles of Scw with boundary fluxes
values of 10, 5 and 2.5 respectively. And the yellow horizontal profile represents the sum Scw and
its complex Scw-Sog. The values of the parameters are as follows: Dg=1, Dgyp=Dc=0.01,
ky=10, k_p=0.5, \=2 and a=10. B: It is robust almost everywhere except when £=0.5. The
values of the parameters are as follows: Dg=1, Dpyp=0.01, Dc=10, ky=120, k_,=1, A=200
and a=1. The Sog profiles is represented by the black dotted curve. The blue, red and green
curves are three profiles of Scw with boundary flures values of 10, 5 and 2.5 respectively. The
dotted blue, red and green profiles represents the sum of Scw and its complex. And the yellow
horizontal profile represents the sum Scw and its complex. C: The values of the parameters are
as follows: Dg=1, Dpyp=10", D=1, ky=10, k_y=1, A=1000 and a=1. The boundary fluzes
of the dotted blue and continuous red profiles are 10 and 5 respectively.

1.9 Scaling of morphogen gradient

Scaling is a particular case of robustness. Scaling of morphogen gradients is the phe-
nomenon which is persistently observed in experiments and represents one of the central
problems in today’s mathematical biology. Space-scaling would mean that the char-
acteristic length of morphogen gradient is proportional to the size of the tissue (see
Figure 1.15).

Xy X,

L, L,

Figure 1.15: Example of scaling with two patterns of different sizes. The ratio ©/L of
two similar points (x5 and xg) of the individual to their respective lengths (L; and Ly) remains
the same. In this figure x; is the distance between the blue and green stripes for the individual
of length L and x 2 is the distance between the blue and green stripes for the individual of length
Ly.

There is scaling if for the individuals in the same species, the ratio between the location

33



of one characteristic point to the length of the individual remains unchanged if we change

from an individual to another.

T X2
— = — = constant.
Ly L,

In general, if we call x the location of a characteristic and L the length of the individual,

then we have x/L = constant if we change from an individual to another.
= tant
— = constant.
L
We take the natural logarithm on both sides.
Inz — In L = In (constant) .

We take the derivative on both sides.

dr dL
===,
T L
dr dL
x L’
A os=1 B s<1 ¢ s>1
| | |
| | |
| |
- -t |
= i i I
; |
| |
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Figure 1.16: Different scenarios associated with different values of the scaling factor
S. In the first case S=1. The domain which spans 50% of a small embryo will also span 50% of
the bigger embryo. In the case of S < 1, that is hypo-scaling, a domain which spans 50% of the
smaller embryo will not expand enough in a bigger embryo. And in the case of hyper-scaling,
S > 1, a domain which spans 50% of the smaller embryo will not expand too much in a bigger

embryo [24).

The above formula shows that the fluctuations in embryo length, dL/L, are exactly
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compensated by fluctuations in position, dx/z, implying perfectly conserved proportions.
In this case [23], considered that S = 1 corresponds to perfect scaling. When S < 1 and
S > 1, they refer to the terms hypo- and hyper-scaling, respectively (see Figure 1.16).
Hypo-scaling means that there is not enough compensation for a change in embryo size,
meaning that in a bigger embryo the absolute position is not shifted enough posteriorward
to keep the correct proportions. Hyper-scaling is the tendency to overcompensate for a

change in embryo size [24].
g dx L

“dLa’
Assuming that the threshold concentration is fixed (implying dC' = (0C'/0z)dz+(0C/OL)dL =

0), where C' is the morphogen concentration and L is the embryo length), then it follows

(1.15)

from equation (1.15) that the scaling coefficient is

-1
ac) oe L (1.16)

1.9.1 Scaling in Annihilation model

Scaling of morphogen gradients can results from the non-linear interaction of involved
morphogens. Assume that the scaling of the Bicoid gradient is possible. This is be-
cause the Bicoid and Caudal are expressed in the opposite sides of the embryo, mutually

affecting their diffusion and/or degradation rate [52]. This is modelled as

ou 0%*u

— = D,— — 1.1
ov 0%v

— = D,— — )

ot Y 2 v

Here D, and D, are the diffusion coefficients and k, and k, specify the decay rates, D,,,

D,, k, and k, are constants. The boundary conditions are:
u(zr = 0) = up, u(x=1L)=up,

v(z = 0) = vy, v(x=1L) =g,

up and vy are the boundary values at x = 0 and u; and vy are the boundary values at

x = L. We shall focus on stationary state of equation (1.18).

d*u

d*v
Dv@ — k’UU'U = 0.
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As it is shown in the appendix C, the relationships between variables u and v is given by
the following:

X

k,Dyu — k,Dyv = (k,Dyup — k,Dyvp — kyDyug + kyDyvo) (L

) 4 kyDyig — kyDyvp.

We want to simplify the system (1.11) by considering D, = D, = D, k, = k, = k,

ur, = vy = 0 and vy, = up.

2

D%—kuv ~ 0, (1.19)
xXr
2

D%—kzuv = 0. (1.20)

In this system D is the diffusion coefficient, k is the decay and ug is the boundary
value. For quantitative analysis, we will consider the sum and the difference of the two

morphogens. First, we shall add equations (1.19) and (1.20).

d? (u+v)

D
dz?

— 2kuv = 0.. (1.21)

Now, we subtract equation (1.21) from (1.19)

d? (u —v)

dx?

D = 0. (1.22)

Let sy = u+wv and s_ = u—wv. Then the equations (1.21) and (1.22), in terms of s, and

s_, will become

d25+ 2]{

= —uv
dx? D
d?s_

= 0.
da?

The solutions of s, and s_ are written as

s_=wug(1—28). (1.23)

2 2r2,2
51 = 1o <—1 +4/1+ “OAj“) + ooz (—1 +4/1+ “TL) (1—2¢)° — 2210 (1 - 26)".
(1.24)

The solution s_ (see (1.23)) is a function of the relative position x/L, s_ = s_(x/L)
and therefore scales with the size of the medium. However, the solution s, (see (1.24))

does not scale since in addition to x/L it depends on the size, L, of the medium, s, =
si(x/L,L).
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1.9.2 Scaling by an expansion-repression integral feedback con-

trol

Most models of patterning formation by morphogen gradients do not exhibit the scaling
property. [10] show that the use of general feedback technology, in which the range of the
morphogen gradient increases with the abundance of some molecule, whose production,
in turn, is repressed by morphogen signalling. The derivation of their model is reproduced
here for sake of clarity. It uses a single morphogen M secreted from a local source and
diffuses in a naive field of cells to establish a concentration gradient that peaks at the

source. The distribution of this morphogen is governed by

o[M| 2 N
O[E] 2 — e
o = PV

where D)y, and Dg are the diffusion coefficients of M and E respectively, M and E are
the degradation rates of M and E respectively, E is the production rate of E, h is the

hill coefficient and T} is the threshold concentration.

B time=t, time=t, Steady state
0

3
10 O
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Figure 1.17: Dynamics of the expansion-repression mechanism. Initially, the mor-
phogen and the expander diffuse from opposite ends. The morphogen repressed the expression
of the expander when its level is above the threshold reference Tyep. The expander which is dif-
fusible and stable expands the morphogen gradient by increasing the diffusion and/or reducing
the degradation rate. At a later time, the expander accumulates, the gradient of the morphogen
expands and the production domain of the expander shrinks. At steady state, the expander has
accumulated and the gradient of the morphogen is wide enough to repress the production of the
expender everywhere [10].

It can be shown that the morphogen profile M (z) can be written as
M(x) = M(z/L, p),
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where L is the size of the medium and p the morphogen production rate. This depen-
dency of the morphogen profile M (x) to the ratio /L shows the scaling property of the
expansion-repression model. Perfect scaling occurs if the profile M is insensitive to p.
However, it has been noticed that this dependency is typically small [10]. This model is
not particularly good because the authors did not specify the natures of the morphogen
M and E. Hence, the relationship between them is highly speculative. And furthermore,
the expander, which is the red profile shown in Figure 1.17, takes too long to reach the
steady-state. Our simulations of this model confirm this tendency; it takes about 107
time steps to observe levelling of the morphogen in the medium using this model. In the

next chapter, we show that we can have scaling with only one assumption.

1.10 Concentration dependent diffusion and scaling

of morphogens gradients

In all of the previous reaction-diffusion models of pattern formation, the diffusion and
the degradation rates of the morphogens were assumed to be constant. Hence, starting

from the reaction-diffusion equation

om *°m

- _p. =
ot m gz~ K,

where D,, and k,, are respectively the diffusion and the reaction rates of the morphogen
m [97]. have shown that the conditions to achieve scale invariance throughout the domain
are that the quantities ¢/v/k, Dy, and k,,, L2/ D,,, must be independent of the length L. In
the first quantity, ¢ represents the input flux of the morphogen m. The second quantity
constitutes the ratio between the diffusion time scale L?/D,, and the reaction time scale
1/k,,. The second quantity implies that scale invariant distribution of morphogen can
be achieved by controlling the time scales of the diffusion and reaction. If each of the
parameters D,,, k,, and ¢ vary with L according to a power law, for instance D,,, ~ L®
where a is a power, then it can be established all possible ways of parameter variation

that lead to global scale invariance.

The above results are valid for a system containing other species in the patterning scheme.
A scaling factor for all diffusion coefficients and a scaling factor for all reactions must be

identified if the pattern of all species is to be scale invariant.

In order to assess how the change of the diffusion rate with the morphogen concen-

tration affect the scaling property of the morphogens gradient, different models involving
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a modulator which is used to adjust the characteristic times scales of diffusion and/or
reaction in a size-dependent manner have been introduced [95, 97]. The reaction diffusion

equations involving the morphogen m and the modulator M are given by

%—T = V.(Dn(M)V(m)) + k(M) R (m, M),
aa_]\f = DMV2M‘|‘Rm(m’M>'

The first equation describes the morphogen transport which includes modulation of diffu-
sion and reaction terms by M. The second provides the balance equation of the modulator
M which diffusion rate Dj; may or may not be regulated by the morphogen. It has been
shown that if the modulator hinders diffusion and/or enhances reaction rates, then scal-
ing can be ensured if M decreases in proportion to the tissue size by an appropriate
amount (Table 1.1). For instance, the diffusion and reaction rates are given respectively
by D, (M) = D,/ (1 4+ a1 M) and k(M) = k(1 + asM). The general requirements to

ensure scaling by modulation of D,,,(M) and k(M) are summarised in the table below

Description a; | g | Dy(M) k(M) M

Enhancer 0 | >0 | constant ~ M L2
Immobiliser || >0 | 0 ~ M~ | constant | L™*
Combination | >0 | >0 | ~ M1 M Lt

Table 1.1: Enhancer/Immobiliser.

Alternatively, if the modulator enhances diffusion and/or hinders reaction rates, then
scaling can be ensured if M increases in proportion to the tissue size by an appropriate
amount (Table 1.2). For instance, the diffusion and reaction rates are given respectively
by D, (M) = D, (1 +a1M) and k(M) = k/ (1 + asM). The general requirements to

ensure scaling by modulation of D,,,(M) and k(M) are summarised in the table below

Description a | ag | Dp(M) | K(M) | M

Inhibitor 0 | >0/ constant | ~ M~ | L?
Immobiliser || >0 | 0 ~ M ~M | L!
Combination || >0 | >0 ~ M ~M | L!

Table 1.2: Inhibitor/Mobiliser.
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Chapter 2
Scaling in continuous models

In the previous chapter, we have pointed out that biological patterns are commonly scal-
ing with the size of biological objects. We saw a few mathematical models and discussed
scaling properties of their solutions. Particularly, we have pointed out that the exponen-
tial profiles appearing as solutions of diffusion/decay models do not scale. The aim of
this chapter is to incorporate modifications into the model such that its solution scales.
A new quantity called “scaling factor” will be introduced to measure scaling properties

of morphogen gradients occurring as solutions of mathematical models.

The structure of this chapter is as follows. In section 2.1, we discuss robustness. Then in
section 2.2, we deal with a particular case of robustness that is scaling. In this section,
we also introduce our definition of the scaling factor. This is follows by a couple of exam-
ples. In section 2.3, we analyse the scaling properties of the one-variable model with all
the types of boundary conditions. Next, we introduce two mechanisms of scaling of the
exponential model in sections 2.4 and 2.5. In section 2.6, we deal with the annihilation
model. In section 2.7, we discuss about the nuclear trapping model. And we finish with

scaling of the active transport in section 2.8.

2.1 Defining robustness factor

An important aspect of development is robustness. Robustness is the ability of such
gradients to resist change in the face of genetic and environmental perturbations. In
terms of concentration profiles of morphogens, we can introduce the factor measuring the
robustness based on the relocation of the point in the following way. Suppose we change a
parameter from p to p+ Ap then this point shifts from z to z+ Ax. To illustrate this, let’s
assume that the morphogen profile depends on a certain parameter p and consider two

morphogen profiles corresponding to different values of the parameter (see Figure 2.1).
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Figure 2.1: On introduction of robustness factor. Hypothetical morphogene profiles for
two different values of parameter p are used as an illustration.

Figure 2.1 shows that the blue profiles is u(x, 1) and the red curve u(x,2). If u = wy
is a threshold for cell differentiation, then the boundary of differentiated cells domain
will shift by Az. Ax therefore describes robustness of the system (left panel). We have

developed a formula for robustness.

Definition. The profile is robust across the two objects if

u(x,p1) =u(x,p2) for a point =x.

Generally, this is not true and from u (z1, p1) = u (22, p2), it doesn’t follow that z; = xs.
For this case, we can introduce the scaling factor in the following way. Assume that

u(z1,p1) = u (xg,p2). Then, for small variations in p and in z, we can write:
u (T, pa) = u (x1,p1) + ), (T2 — 21) + U; (p2 — 1)

up, (9 — 1) 4+, (p2 — p1) = 0.
From the above formula, the relocation of the level point is given as:
ul
ol

Tog —T1 = —up (pz —P1)7

i.e. the deformation of the profile is proportional to the parameter p of the system with
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the coefficient of proportionality representing robustness factor:

OIGE

The above formula depends on parameter p and z. The robustness factor R tells us how
much shift there is at any point x. If there is no shift at point x, then we say that R = 0.
This means that we have good robustness. We shall apply the above formula to two
examples. The first example, we consider, is for two exponential profiles of u in the form
of e7P*. In order to determine the robustness factor R, we need to differentiate v with

respect to p and .

u, = —xe’,
u, = —pe”.
And, we apply the ratio between w;, and .
R(z,p) = L (2.1)
p
The plot of (2.1) is shown in Figure 2.2.
0 ' ' ' ' ‘ ‘ ‘ ' ' x
s 5 1 15 2 25 3 35 4 45 5
g -
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P
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45
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Figure 2.2: Plot of the robustness factor for the blue exponential profile in Figure 2.1.
As we can see, the robustness factor gives us a straight profile. This confirms the analytical
derivation. We see that at =0, the robustness factor is 0.

As second example, we consider the calculation of the robustness factor R for the case of
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two quadratic profiles of u. For a quadratic profile, the equation is written as
u(z,p) = pr(z — 4) + 4 = pr* — dpx + 4. (2.2)

The derivatives of u with respect to z and p are respectively.

2

w, = x°— 4z,
u, = 2pr—4p.
The robustness factor R is )
R(z,p) = Az (2.3)
by = 2px — 4p’ '

The above formula shows that at + = 0 and x = 4, R = 0 which means that we have

good robustness. The plots of (2.2) and (2.3) are shown in Figure 2.3.

4.0 - - 200 +
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0.0 : . ‘ ) -150 -
0 1 2 3 4
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Figure 2.3: Two quadratic profiles u=pz(x-4)+4 for different values of p and plot of
the robustness factor for the quadratic profiles of uw. A: p;=0.5 is the u concentration
for the blue profile and p2=0.6 is the u concentration for the red profile. B: The robustness
factor is 0 at the end since both profiles have the same concentration. In the middle, the scaling
factor is not defined. This is because in panel A, the derivative of u-profile at this point is zero.

2.2 Defining Scaling factor

In order to analyse scaling properties of morphogenetic gradients, we need to introduce
a formal definition of scaling. For this purpose, let us consider a morphogenetic profile
occurring in two objects of different sizes, L; and L. These profiles can be described by
functions u (€, L) and u (§, Le) where £ = /L represents a coordinate in the range [0, 1]
for both objects (see Figure 2.4).
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Figure 2.4: On introduction of scaling factor. Sample morphogen profiles for different
medium sizes (L1 and Lo ) are presented as functions of relative position (§ = x/L).

Definition: The profile is scaled across the two objects if

u(&r, L) =u (&, Ly) for a point &.

Generally, this is not true and from u (&1, L1) = u (&2, La), it doesn’t follow that & = &.
For this case we can introduce the scaling factor in the following way. Assume that

u (&1, L1) = u (&, Ls). Then, for small variations in L and in &, we can write:
u (527 L2) =u (617 Ll) =+ “lg (52 - 51) + ulL <L2 - Ll) )

ug (& — &) +up (Lo — Ly) = 0.
From the above formula, the relocation of the level point is given as:

!
Uy,

=& =—F (Ly— Ly),

o
3
i.e. the deformation of the profile is proportional to the change in the size of the system

with the coefficient of proportionality representing scaling factor:

@@

Thus the scaling factor S is a function of the length of the medium L and the relative
position £. Our definition of scaling factor is different from the one given by [23](formula
1.16) since it depends on x. Since & is between 0 and 1, we are working on dimensionless

value. The scaling factor S (see (2.4)) tells us how much shift there is at any point &.
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If there is no shift at point &, then we say that S = 0. This means that we have good
scaling. This formula is important because if during the development, the proportionality
is not maintained then the organism will be deformed. We will use this formula for this
and next chapter. Now, we consider a couple of examples of which profiles scale and
which do not.

Case 1: Linear profile

Assume that we have a linear profile u which is described by the French Flag model
in the form ©v = Az + B where A and B are constants to be determined. The Dirichlet
boundary conditions are u(0) = uy and u(L) = uy, with L the size of the tissue. The full

solution is given by
x

Za
with A = (uy, — ug) /L and B = uy. For the case of a slightly bigger medium size, L+ AL,

u = ug+ (ur, — up) (2.5)

the profile will have the same form u = Ax 4+ B. The Dirichlet boundary conditions now
will take a form: u(0) = up and u(L+ AL) = uy. The full solution for this case is written

as
T

L+ AL

As we can see, the coefficient B is equal to ug for both cases but for the medium of

u = up+ (ug, — up) (2.6)

larger size the coefficient A is smaller than for the medium of smaller size. For the case
of solution (2.5), we can replace x/L by £. But for the case of solution (2.6), we should
replace x/(L+AL) by £. Therefore, the solutions (2.5) and (2.6) in terms of £ are written
as

u=1ug+ (ugp — up) &.

The above solution is independent of L. The scaling factor for this solution calculated
according to the formula (2.4) shows that the scaling factor is 0 for all locations and all

medium sizes. This shows that we have perfect scaling.

Case 2: Exponential profile

Let’s consider and exponential profile which has an equation of the form u = e™#* = ¢=*L,

We apply the formula for the scaling factor. First, we differentiate v with respect to L.

uy = —k&e ML
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And then, we differentiate u with respect to &.
Uy = —kLe kL,
The calculation of the scaling factor gives
£
S=-=. 2.7
2 (27)

The above formula shows that at & = 0, we have good scaling. We can also have good

scaling as L gets bigger. The plot of (2.7) for the case of L = 1 is shown in Figure 2.7.
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Figure 2.5: Scaling factor for the exponential profile u = e~%. The scaling factor is 0 at
&£=0 meaning that we have good scaling. As & increases, the scaling factor decreases.

2.3 Scaling in one-variable model

The body plan of the fly embryo along the anterior-posterior axis is determined by a cas-
cade of regulatory events. Maternal mRNA (messenger Ribonucleic acid) such as bicoid
is required for early patterning. It is located at the anterior pole (x = 0). Once syn-
thesized, the Bicoid protein diffuses posteriorly forming a protein gradient exponentially.
This phenomenon can be illustrated by the single gradient model (see (1.1)) [64, 80]. We
want to investigate the scaling properties of this model. Let u be the concentration of

the morphogen which obeys the stationary equation of (1.1)(see (2.8)).

d*u

D,—
dx?

— kyu = 0. (2.8)

Here D, is the diffusion coefficient and k, is the degradation rate. Both D, and k,
are constants. The features of the solution including its scaling strongly depend on the

boundary conditions. Regarding this, let us consider a few different cases:
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Case A: We have the Dirichlet boundary conditions at both ends
u(zr = 0) = uyp, u(x=L)=up,

where uy and uy, are the boundary values at x = 0 and z = L respectively. The stationary
solution of u of equation (2.8) is
(ur, — upe ™) €™ + (upe — up) e

u =
el + e— LA ’

with A = \/k,/D,. We shall rewrite the solution of u as a function of £ in order to
determine the scaling factor.
U €5IA — g eLAED) gy oLAA—E) _ gy o ELA

u= T — . (2.9)

The formula of the scaling factor is too long for the general case. We have decided to take
some representative values of ug and uy, for example ug = 1 and u; = 0. The expression

of the scaling factor with these values is defined as

(€ = 2) (58 — e~¢) 4 £ (e LED) — L(6-D)
L

S=- (el — ¢ L) (eLE) 4 e~LED)

(2.10)

This formula shows that S is a function of both L and £. The plots of (2.9) and (2.10)

are shown in Figure 2.6.

1

T T T T
0.2 04 0.6 0.8 1
0.8 -0.02 4

-0.04 4
0.6
-0.06 4

0.4 -0.08 -

0.2 -0.10 4

-0.12 4

o r r r : . ﬁ
Ao 0.2 0.4 0.6 0@ 1|mis s

Figure 2.6: Plots of profiles for L=1 and L=2, and the scaling factor for L=1. A:
The blue and red profiles represent for L=1 and L=2 respectively. We use ky,=D,=1 to give
A=1. B: We see that the scaling factor at £€=0 and £=1 is zero. This is because the two profile
in panel A have the same concentration at these two points. Elsewhere, the scaling factor is
negative since the blue red profile is below the blue profile.
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Case B: So far, we had Dirichlet boundary conditions at both ends (x = 0 and z = L).
Now, one can have Dirichlet boundary condition at * = 0 and Neumann boundary
condition at x = L or vice versa. This is known as mixed boundary conditions. We
consider equation (2.8) with the following boundary conditions: Neumann boundary
condition at © = 0, v/(z = 0) = —jp and Dirichlet boundary condition at z = L,

u(zr = L) = uy is

(/\UL + joG_LA) e™ + ()\UL + jo@L)‘> e~ A
A (el + e~ 1) ’

where jo is the boundary flux at x = 0, uy, is the boundary value at x+ = L and \ =
Vku/D,. We shall rewrite the solution of u as a function of £ in order to compute the

scaling factor.

A+ doe— BN el & (Auy + joelt) e LEr
u— ( ur, v Jjo€ )6 ( ur, + Jjo€ )6 _ (2.11)
/\(€L>\+€—L/\)

The formula of the scaling factor will be too long for the general case. Therefore, we have

decided two subcases:

Case B;: For the first case, we choose jo = 0 and uy = 1. Therefore, the scaling

factor with these values is written as

(€—1) (eL(H—ﬁ) _ e—L(1+£)) +(E+1) (eL(5—1) _ eL(l_g))
L (el +e7L) (elf 4 e~L%)

S=_ (2.12)

This formula shows that S is a function of both L and £.The plots of (2.11) and (2.12)

are shown in Figure 2.7.
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Figure 2.7: Plots of profiles for L=1 and L=2 and the scaling factor for L=1. A:
The blue and red profiles represent for L=1 and L=2 respectively. We use k,=D,=1 to give
A=1. B: At £=0, the scaling factor is at infinity. As & increases, the scaling factor decreases
fast. This is because the two profiles are getting closer to each other. The scaling factor at £=1
is zero since the two profiles, in panel A, end up with the same initial concentration.
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Case B,: For the second case, we take jo = 1 and uy = 0. The scaling factor formula
with these values of j, and uy, is given as
(€ = 2) (eSF — e€L) 4 £ (M) 4 ¢~ LIE-2)

5= L (el —e=L) (el 4 e~ L(E-D)) ' (2.13)

The plots of (2.11) and (2.13) are shown in Figure 2.8.
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Figure 2.8: Plots of profiles for L=1 and L=2, and the scaling factor for L=1. A:
The blue and red profiles represent for L=1 and L=2 respectively. We use k,=D,=1 to give
A=1. B: As £ increases, the scaling factor gets smaller.

Case C: From Case A, we had Dirichlet boundary condition at both ends and from
Case B, we had mixed boundary conditions. From the latter case, we didn’t consider
the second type of mixed boundary condition (Dirichlet boundary condition at z = 0
and Neumann boundary condition at x = L) because the profiles with this type of
boundary condition will be symmetric compared in Figure 2.7 and Figure 2.8. One can
consider the Neumann boundary condition at both z = 0, (v'(z = 0) = jo) and z = L,

(u'(x = L) = jr). The solution of u with the Neumann boundary condition is written as

B (]L _joefL)\) ex)\ + (]L _joeL)\) efx)\
by (eL)\ _ e—L)\) )

where jo and j; are the boundary fluxes at * = 0 and x = L respectively and A\ =
Vku/D,. We shall rewrite the solution of u as a function of £ in order to compute the
scaling factor.

(jr — joe ™) eXr + (g — joe™) e~ 1A

uw= NCLy=_y . (2.14)

The formula of the scaling factor will be too long for the general case. We choose jo = —1
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and j; = 0. Therefore the scaling factor with these values is written as

- L (el — e L) (ele-1) — g=L(E-1)) : (2.15)

This formula shows that S is a function of both L and £.The plots of (2.14) and (2.15)

are shown in Figure 2.9.
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Figure 2.9: Plots of profiles for L=1 and L=2, and the scaling factor for L=1. A:
The blue and red profiles represent for L=1 and L=2 respectively. We use ky,=D, =1 to give
A=1. B: The scaling factor at £=0 is zero since the two profiles, in panel A, start with the
same initial concentration. Elsewhere the scaling factor is negative since the red profile is below
the blue profile. As & increases, the scaling factor decreases fast. This is because the two profiles
are getting away from each other. Furthermore, the scaling factor tends to —oo at £=1 since
the denominator of S is 0.

2.3.1 Effect of )\ for the Dirichlet boundary condition

Previously, we have investigated scaling for all boundary conditions. We see that in
Figure 2.6 to Figure 2.9, the exponential profiles and their scaling factor depends on
the values of L and A. Now, we will investigate the effect of A\ for scaling properties of
exponential profiles under the Dirichlet boundary condition. Let’s use the same values of

up and uy. The scaling factor S is given as follows.

(€ —2) (€M — e7 1) 4 ¢ (e7FMETD) — elAE=D)
L (elr — e=LA) (eLAME-1) 4 e—LAE-D)) ’

S = — (2.16)

where £ = z/L. Assume that A < 1 meaning that k, < D,,. Then, the first order of the

Taylor expansions of the exponentials gives
N 14+ €D,
e a1 — €L,
M) 1 4 LAN(=2+€) =1+ LA — 2L,
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e 1 — LA(=2+6) =1 — LA+ 2L,
e~ + LA,
e_L)‘ ~1-— L)\,
eI+ o 4 LA(=1+¢&) =1+ L\ — L),
e M) 1T — LA(—1+46) =1— LA+ L,
By substituting these approximations into the scaling solution S (2.16), we obtain

(€ —2)(1+ LEXN — 1+ LEN) + £ (1 — LEN + 2L — 1 — LA + 2L

Sl LOI+IAN=1—(1—=LA\) A+ LA — LA +1— LA+ L)
o 2LEN (£ — 2) + £ (—2LEN + 4L))
LI+LA—=1—(1—=LN)(1+LX —LA+1—LX+ L))’
o QLEIN — ALNE — 2LE2N + ALXE
LI+LN=1—(1=LN) 14+ LN —LAN+1—LX+ L))’
Therefore

S ~ 0.

We end up with S =~ 0 which implies that we have perfect scaling. The plot with three

different values of A is shown in Figure 2.10.
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Figure 2.10: Plots of u— profiles for two different medium sizes and three values of
A. The continuous and dotted profiles stand for L=1 and L=2 respectively. The green, red and
blue curves are plotted for A\=10, 1 and 0.1. As \ gets smaller, the two profiles get closer to
each other. Therefore, the scaling factor tends to zero. This is getting closer to the French Flag
model since in this model, there is no degradation term (see Figure 1.8).

2.3.2 Effect of )\ for the Neumann boundary condition

Previously, we saw that we had perfect scaling if the degradation rate k, is much smaller

than the diffusion rate D, for the case of Dirichlet boundary condition. Now, we shall
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analyze the scaling properties of exponential profile under the Neumann boundary condi-
tion. Let’s use the same values of j, and j;. The formula of the scaling factor including

A 1s written as

(€= 2) (5 4 ¢60) — € (eNE) 4 o~ LAED)

S =— L (eD — =) (elAE1) — ¢~ IAE-D) )

(2.17)

where ¢ = z/L. First, we assume that A\ < 1. Then, the first order of the Taylor

expansions of the exponentials gives
N 14+ €D,

e a1 — €L,

AT 1 f IAN(—24€) =1+ LA — 2L,
e IACHHO ] IA(=24€) =1 — L + 2L,
e =14 LA,
e~ 1—- L),

AT 1 IAN(—14€) =1+ LA — L,
e IACIH) o 1~ IA(—1+6) =1 — LA+ L.

The numerator of (2.17) can be approximated as

(€ —2) (e85 4 e788Y) — £ (el 4 o7 EMED)) & (€ = 2) (14 LEN+ 1 — LEN) — £ (1 + LEX — 2LA + 1 — LEA + 2L))
= —4.

The denominator of (2.17) can be approximated as

L(e" — e B) (efAE) — e LAC ) m L (1+ LA = (1 = LX) (1 + LA (§ = 1) = (1 = LA (£ — 1))

=4LPN\* (€ -1).
The scaling factor S can be approximated as

1

S%—L?’/\?(f—l)'

(2.18)

The above formula, for the case when A\ < 1, shows that at £ = 0, the scaling factor is

negative. As & = 1, the scaling factor is at —oo. Hence, scaling doesn’t occur at all. And
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second, we assume that A > 1. The numerator of (2.17) can be approximated as
(€ —2) (egLA +et) ¢ (eL)\(ng) 4 efLA(§f2)) ~ el — 2) — gemIMED),
And the the denominator of (2.17) can be approximated as

I (eLA _ efL/\) (eL,\(gq) . efLA(gq)) ro — Lol o—LME-1) _ _ [ LA2-€)

The scaling factor S can be approximated as

o EN(E-) N (9 ¢
~ Lelr2—6) T Lebr-9
-2 ¢
B L %
or after further simplifications
£

S~ ——. 2.19
d (219)

The above formula, for the case when A > 1, shows that at £ = 0, we have good scaling.
We can also have good scaling as L gets bigger. The plots of (2.18) and (2.19) are shown
in Figure 2.11.
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Figure 2.11: Plots of scaling factor for the Neumann boundary condition. A: Scaling
factor for the case when X\ is very small. As £ increases, the scaling factor tends to —oo since
at £=1, the denominator of (2.17) is zero. We used L=1 and A\=0.01. B: Scaling factor for the
case when X\ is very big. The blue, red and green profiles correspond for L=10, 100 and 1000
respectively. We have good scaling at =0 for all profiles. As L gets bigger, (see (2.18)) the
scaling factor tends to zero.

As we can notice, if A is very small then the scaling factor will be high which will not be

very good. If X is large, then the scaling factor will tends to zero under certain conditions.

23



Now, let’s come back to the solution of u

eLME-1) | o—LA(1—9)

by (eL)\ _ e*L)\>

u =

Assume that A\ < 1. Then, the exponential terms in the above solution u can be approx-

imated by

CLIHLAE-D)+1-LA(1—&) 1+ LN —LA+1+LA—LX 1
- A1+ LA —(1—1LN) B 2L\? LA

—_ Du
kL’

As we can see, the solution (2.19) is represented by a constant value (leveled up profile)

(2.20)

which is inverse proportional to the size of the medium. The solution (2.19) is not scaling
at all (scaling factor S = —o0). However it can be used for coupling with other variable
in a way that that variable is scaled. This technique will be demonstrated in the next

section.

2.4 Scaling of exponential profile (mechanism 1)

In the previous section, we found out that scaling occurs when J is very small for the case
of the Dirichlet boundary condition. For the case of the Neumann boundary condition,
there is no scaling at all when A is very small. And when X is large, scaling occurs if
L is large. We apply the solution (2.20) in this section. Assume that there is another
morphogen whose decay is affected by the first morphogen so that its concentration v is
given by the equation 2.21 [103].

d*v ) dv

DU@ — kyou® = 0; v(x = 0) = vy; = Jo- (2.21)

% z=L
where vy is the boundary at z = 0 and j, is the boundary flux at + = L. The solution
of equation (2.21) of v is written as a superposition of two exponents. But if the size of
the medium is large enough, then v(z) can be approximated by only one exponent (see

appendix B for full derivation).

[l e o Du [Ey _¢Du [Fn
v vge TV Dv = ype Dv = gge  *ulV Do = e SRV Dy, (2.22)

The solution of equation (2.22) is a function of the relative position £ = x/L rather than

the position = and therefore scales with the size of the medium. The plot of (2.22) is
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shown in Figure 2.12.
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Figure 2.12: Profile of v for two different medium size and scaling factor. In our
simulations, we chose the values for these parameters: D,=10, D,=1, k,=0.005, k,=1, vo=1
and j, =0 for two different medium sizes L=1 and L=2. A: The continuous curve is for L=1
and the dotted curve is for L=2. B: The scaling factor is zero everywhere since the two profiles
have the same concentration everywhere.

One of the mechanisms of scaling, (which is also behind the expansion-repression model [10]),
can be illustrated in a simple setting. Assume that the production rate of a certain mor-
phogen is constant and it degrades uniformly in the medium. Also assume that the
morphogen diffuses quickly so that its level is roughly the same over the entire medium.
If u denotes the concentration of the morphogen and it degrades with rate k,u at each
“point”, then the total degradation rate over the medium of size L is k,uL. If the total
production rate over the entire medium is p (and constant), then balance is achieved if
p = kyulL, indicating that the concentration, u, is inversely proportional to the size of the
medium u = p/k, L. Furthermore, assume that there is another morphogen whose decay

is affected by the first morphogen so that its concentration v is given by the equation [103].

2.5 Scaling of exponential profile (mechanism 2)

Assume that we have a domain of size L, where the morphogen with concentration u
is produced and diffuses. Furthermore, assume that there is a region of size a in the
middle of this domain where the morphogen decays. This setting can be illustrated by
Figure 2.13 and modelled by the following equation:

ou 9%u

where

k(a:):{ ku, for 5% < x < Lfe

0, otherwise.
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with the following boundary conditions.

@
ox

_8u

= — = 0.
o O

=L

=

Here D, represents the diffusion coefficient, p the production rate and k, the decay rate.

O @ O

0 (L-a)/2 (L+a)/2 L

Figure 2.13: Domain with production and decay in the middle. Region 1: Domain
where the morphogen with concentration u is produced with rate p and diffusing. Region 2:
Domain where the morphogen is decaying with rate k..

The analytical solution of u(x) is represented in three parts:

2 (Lfa)(2+e’a>‘+e‘”) 1 (L—a)? L—
p <_21Du + QADu(e_“A—eaA) + Fu + SDZ ) for x < Ta

AL+a) AML—a)
(L—a){e™ 2 +e 2z (ezk_,_e)\(l,fz))
u(z) =qp (— < ) + i , for 52 < 4 < Lo (2.23)

2,\Du(e(Lfa>A_e<L+a)A) 2

2 Lo, (L—a)(2+e P +e?) 1 (L—a)®  L(L+a) L+a
Kp <_2D“ + D7u + 2>\Du(€_°"\—€a)‘) + E _'_ 8Dy, o 2Dy ! for T = 2

where A\ = +/k,/D,,. For full derivation see appendix D.

For large diffusion coefficient D, the solution can be approximated (see appendix D)

as
. bL
~aky,’

which indicates that fast diffusion results to levelling up of the morphogen over the entire

u

domain so that its level is proportional to the size of the domain.

Now let us consider another morphogen whose dynamics is given by the following equa-

tion: 9 92 5
a—z:Dv—U—kv v(x = 0) = vp; !

o) = Ju- 2.24
o2 ”; J (2.24)

oz |,_;

where vy is the boundary value at x = 0 and j, is the boundary flux at x = L. In

26



order to have scaling, the decay is represented by the ration of v and u2. Although the
plots of u—profiles can be done using analytical solution for u (see (2.23)) in order to see
v—profiles, we had to numerically integrate equations (2.24). The plots of u and v from

simulations are shown in Figure 2.14.
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Figure 2.14: u- and v- profiles from numerical integration of equations (2.22) and
(2.23). Profiles (the blue and red curve stand for u and v profiles respectively) are presented
for two different medium sizes (L=1, solid line and L=2 dashed line) and two different values
of Dy, (Dy=1 on panel A and D,=0.01 in panel B). Values for other model parameters are
Dy=1, ky=1, p=0.01, k,=0.5, vp=1 and j,=0, for two different medium sizes L=1 and L=2.
In panel A, we see that the u-profile is constant but in panel B, the u—profile is not constant.

For both plots in Figure 2.14, we have calculated the scaling factor numerically using our
formula (2.4). The u—profile scales perfectly well for the case when D, = 1: the scaling
factor calculated for this case does not exceed 0.1. But for the case when D, = 0.01,
its scaling is increases rapidly to 10. Hence, this is much worse compared to the scaling
factor for D, = 1.

2.6 Scaling of morphogen in annihilation model

In section 1.7.1, we have dealt with scaling involving two morphogens which are expressed
in opposite sides of the embryo. In this model, v and v can be seen as representing Bicoid

and Nanos profiles in fly embryo respectively. We already know that only s_ can scale.
We can deduce the expression of u and v using the facts that s, (see (1.19)) is the

sum of v and v and s_ (see (1.19)) is the difference between u and v. The formulae of

sy and s_ in terms of u and v are given as s; = u+ v and s_ = u —v. We can compute
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the expressions of u and v by adding and subtracting the two equations respectively.

Sy =u+v 1
- }:>2u:s++s_:>u:—(s++s_),
S_=u—v 2

Sy =u—+v
(s4 —s_).

N | —

=>20=58; —5_.=>0V=
S.=u—v

Therefore the full expressions of u and v are

2
u=;<A;‘L2 <—1+~/1+W)+@(—1+~/1+W) (1—26)% — 2208 (1 —2¢)" 4w (1—2¢) |,

(2.25)

2 272,,2
o= (o (- VIS o st (14 TR -2 5020 w20
(2.26)

where ¢ = /L. Assume that A\> < 1, then the first term and the coefficient of (1 — 2¢)?
of the solution wu inside the bracket, in equation (2.24) can be approximated using the

binomial distribution.

8 A2L? 8 A2L?
(—1+ 1+ 22 >~ (—1+1+u08 )zuo

2L 2 4 T2

2

4 upA2L? 4 AL\ u2A\2L?
-1 1 ~ —14+1 = .

A2L2 ( TV T ) A2L2 ( T 16

So far u is approximated by

1 2)272 A2] 24,2
uz—(u0+u016 (1—26)° - 96u0(1—2§)4+u0(1—2§)).

As ) is small, we can neglect the second and the third terms and therefore, u is approxi-

mated by

U é (uo + uo (1 = 2¢)) = % (2u0 — 2uo€) = uo (1 —§). (2.27)

The solution of v in equation (2.25) can be approximated similarly to the solution of w.

Therefore v can be approximated by

v~ % (g — g (1 — 26€)) = % (2u08) = ot (2.28)

up in (2.27) and (2.28) is a constant. We see that u and v are independent of L. Hence,
the scaling factor will be zero for both approximations. The plot of equation (2.27) is

shown in Figure 2.15.
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Figure 2.15: Two plots for the annihilation model and scaling factor. In our simula-
tions, we use k=10"° and D=ugp=1. A: The continuous blue profile is for the case when L=1
and the red dotted profile is for the case when L=2. B: The scaling factor is 0 everywhere since
in panel A, we have two linear profiles.

2.7 Scaling of nuclear trapping model

Scaling of Bicoid gradient in Drosophila embryo is well established experimental fact [37].
Formations of Bicoid gradient have been addressed in a number of modelling studies [40].
Its exponential profile can be easy modelled and the real challenge is to construct a
model which shows scaling. It is known that one part of Bicoid molecules is located in
the syncytium and freely diffuses, while another part is bounded by the nuclei. The only
hypothesis concerning the scaling of Bicoid gradient is related to the predominant degra-
dation of Bicoid in nuclei compared to the degradation in syncytium [36]. This hypothesis
can be checked using the modification of so-called nuclear trapping model [19, 23] which

described the dynamics of free and bound Bicoid in the embryo (see Figure 2.16).

7 200

ki ok
D @
=] =]
o sV

:
k, =ap 1off ¢ :;'i
N 5120 % i I ; }
Q L]
BCdﬁ'ee BCdbound = 100t ¢ : ) ,I : :
AR
~ wiit] 11 1
k IRIR
- GOW ! ‘
40& Nl e
20 40 60 80 100
A B Time(min)

Figure 2.16: Nuclear trapping model. A: Bicoid exists in two states: freely diffusing and
immobile/nuclear bound. The forward nuclear trapping rate constant (k) is proportional to the
nuclear density [19]. B: Experimentally measured concentrations of free (red) and bound (blue
and green) Bicoid from [36].
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The fly embryo has a shape of ellipsoid [115, 58]. All the nuclei in the embryo are located
near the surface of the embryo in a layer called syncytium. Bicoid molecules are produced
at the anterior pole of the embryo and diffuse along the syncytium [1]. These molecules
are also captured by nuclei so that there are two fractions of Bicoid: free (u), where it
is moving with diffusivity D, and bound (v), where it is confined to the nucleus and can
be considered immobile. The transitions between the free and bound states are modelled
by first order processes with the rate constants k; and k_, the original equation of the
model can be found in [19]. We have extended the model by adding terms counting for

the degradation of Bicoid and by focusing on the stationary solution of the system.

ou 0*u
E — D@—kuu—p(kal _Uk:Q)v
ov

5% = uky — vky — vky,

where D defines the rate of free Bicoid diffusion, k, and k, are the degradation rates of
free and bound Bicoid, k£ and ks define the rate of nuclear trapping and release of Bicoid
respectively and p is the nuclei density (number of nuclei per unit length). The scaling
in this model is possible because the total amount of nuclei, N, in embryos of different
sizes is the same at the same developmental stage. Furthermore, the nuclei are located in
the thin (two-dimensional) syncytium covering the embryo and therefore their density is
inversely proportional to the square length of the embryo, p = N/L?. These equations can
be considered under different boundary conditions. For the mixed boundary conditions
u(z =0) =1 and v/(x = L) = 0, where u(z = 0) = 1 counts for the production of Bicoid

in the apical side of the embryo, the stationary solution of u(x) is given by

e LVB
W) = T v

which can be approximated as (see appendix E for full derivation)

_ ku 72 Nkqky
ur e VBT Dl (2.29)

The above approximation depends on both ¢ and L. If the first term, of solution (2.29),

under the square root is smaller than the second term then the solution would scale.

For the Neumann boundary conditions u/(z = 0) = —v and «/(x = L) = 0, the sta-
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tionary solution of u(x) is given by

fy <e(x_L)\/B + e(L_x)\/B>
VB (877 = 1)

u(z) =

The above solution can be approximated as (see appendix F for full derivation)

Fu Nk ko
u§, L) ~ L—= ! — eV B Dy (2.30)
DL+ 5ot

The above approximation depends on both ¢ and L. We have two possible scenarios both
not permitting the scaling of the u—profile. Indeed, if the first term, of the solution (2.30),
under the square root is smaller than the second term, then the exponential would scale
but not the coefficient since it depends on L. If the second term under the square root
is smaller compared to the first, then the coefficient of the exponential term would scale
but not the exponential itself. Therefore the solution cannot scale in opposition to [96]
since this author claimed that this solution would scale. In equation (2.29) and (2.30),
B = (ky (ko + ky) + k1ky) / (D (ko + ky)) and € = x/L. In order to check for scaling, k,
should be a very small number. We perform simulations for two different mediums sizes

for the mixed boundary condition. The results are shown in Figure 2.17.
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Figure 2.17: Profiles for mixed boundary conditions for two different medium sizes
and their scaling factor. The following parameters values are used: D=10, ko=2, k,=0.5 and
N=k;=p=1. A: Continuous and dotted profiles are for L=1 and L=2 respectively for the mized
boundary condition. The blue, red and green profiles are for k,=0.1, 0.01 and 0.001 respectively.
B: Scaling factor for the mized boundary condition. The blue, red and green profiles are for
ky=0.1, 0.01 and 0.001 respectively. The blue curve corresponds to the worst scaling out of all
three. The green profile has the best scaling factor out of all three since its scaling factor tends
to zero.
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2.8 Scaling in a system with active transport

To explore other mechanisms of scaling we can assume that all nuclei are connected by
microtubules which can enforce active Bicoid transportation which can be predominantly
oriented in the anterior-to-posterior direction. This is highly hypothetical statement but
we can show that it leads to the scaling of gradient even if don’t consider nuclear trapping.
The active transportation is mathematically represented by an advection term, so that
the Bicoid concentration, ¢, can be described by the modification of the equation in
Figure 1.9:

d*c

dc
D@—Fsp%—kc:(k cle=0)=1,

dc

Tle=1)=0, (2.31)

Here parameter s defines the strength of Bicoid flow due to the active transportation.
Since we are interested in a flow along the anterio-posterior axis, the nuclei density is
considered only in this direction and therefore it is inversely proportional to the size of the

embryo: p = N/L. The solution of the equation (2.3) is approximated by the exponent:

c 6—5(04-&-\/&2-"-,3)7 (232)

where @ = sN/2D and 3 = kL?/D. The above solution (2.32) scales with the size of
embryo if the rate of Bicoid transportation is high compared to its degradation rate. If
« is positive, then the active transport is directed to the left. If a is negative, then the
active transport is directed to the right. We can only have scaling for the case with
« positive, that is, when the advection flow is directed against the diffusive flow and
points towards the source emitting the morphogen. The plot of solution (2.32) is shown

in Figure 2.18.
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Figure 2.18: Profiles for mixed boundary conditions for two different medium sizes
and their scaling factor in active transport model. We chose D=k=1. A: Continuous
and dotted profiles are for L=1 and L=2 respectively for the mized boundary condition. The
blue, red and green profiles are for a=1, 2 and 5 respectively. B: Scaling factor for the mized
boundary condition. The blue, red and green profiles are for for a=1, 2 and 5 respectively. The
blue curve corresponds to the worst scaling out of all three. The scaling factor of the green
profile has the best scaling factor out of all three since its scaling factor tends to zero.

2.9 Summary

The aim of this chapter was to design a model such that its solution can be represented by
an exponential function which scales with the medium size. We have also developed a tool
which allows to measure robustness and scaling. Scaling is a particular case of robustness.
We have introduced our definition of scaling factor and tested it throughout this chapter.
We have tested our scaling factor for two simple cases. The first case was a linear profile
and the second case was an exponential profile. We have noticed the linear profile will
always scale no matter what the size of the medium is. However, the exponential profile
generally doesn’t scale. We have considered the one-variable model with all boundary
conditions. We saw that the solution can scale under the Dirichlet boundary condition.
This is getting closer to the French Flag model. For the case of Neumann boundary
condition, the solution doesn’t scale at all. But we can use the latter result for our two
mechanisms of scaling of exponential profile. In these two models, the morphogen u could
represent a hypothetical morphogen while v could reflect the bicoid concentration profile
in fly oocyte. These two mechanisms can illustrate the scenario where the bicoid protein
diffuse posteriorly forming a protein gradient. Bicoid is not only the only maternal genes
for early patterning. Nanos is another maternal gene which is located at the posterior
pole (x = L). It diffuses anteriorly. The annihilation model in section 2.6 allowed us
to illustrate this phenomenon. We have also shown that solutions for nuclear trapping

model and active transport model can exhibit good scaling properties for the mixed
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boundary conditions. The fact that we have Dirichlet boundary condition on one side,
in all our models, allows us to have scaling. In this chapter, we had good scaling with
only one assumption compared to [10]. Our assumption was if the degradation rate of
one morphogen is much smaller than the diffusion coefficient, then this morphogen will
diffuse faster and this enables a second morphogen to have its concentration scaled across
the profile.
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Chapter 3
Scaling of Turing patterns

In the first chapter, we have seen that the solutions of Turing and FHN models do not
scale similarly to exponential solutions of diffusion/decay model. In the second chap-
ter, we have introduced a few modifications of diffusion/decay models such that their
solutions are represented by exponential profiles having good scaling properties. The
objective of this chapter is to modify Turing and FHN models to allow scaling proper-
ties for solutions of new models. This could be seen as mathematical representation of
the fact that the patterning (number of stripe) remains the same for two individual of
the same species. The spatial positions of these stripes depend on the concentration of
morphogens. The Turing’s model is a prototype model commonly used for illustration
of stationary patterns appearing in inhibitor/activator systems. The second one is the
Fitzhugh-Nagumo model which is used for illustration of formation of excitation waves in
inhibitor /activator systems. We will analyse the link between these two models and show
that Turing’s model can be transformed into modification of FitzHugh Nagumo model
and also, we want see if scaling occurs using our formula (2.4). In the first chapter, we
have seen that the solutions of Turing and FHN models do not scale similarly to expo-
nential solutions of diffusion/decay model. In the second chapter we have introduced a
few modifications of diffusion/decay models such that their solutions are represented by
exponential profiles having good scaling properties. The objective of this chapter is to
modify Turing and FHN models to allow scaling properties. This could be seen as math-
ematical representation of the fact that the patterning (number of stripe) remains the
same for two individuals of the same species. The spatial positions of these stripes depend
on the concentration of morphogens. The Turing’s model is a prototype model commonly
used for illustration of stationary patterns appearing in inhibitor/activator systems. The
second one is the Fitzhugh-Nagumo model which is used for illustration of formation of
excitation waves in inhibitor/activator systems. We will analyse the link between these

two models and show that Turing’s model can be transformed into FitzHugh-Nagumo
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model and also, we will investigate if scaling occurs using our formula (2.4).

We start with section 3.1 by discussing the original Turing model. We shall, in sec-
tion 3.2, discuss about our extended Turing’s model. In sections 3.3 and 3.4, we shall
investigate the effects of the medium size and the diffusion of the inhibitor on the num-
ber of stripes. The stripes are used to characterise patterns. The three-variable Turing’s
model will be dealt in section 3.5. In this section, we also test the scaling problem. In
section 3.6, we move on to the standard Fitzhugh-Nagumo model. Section 3.7 will be
about the conversion of the Turing model to the Fitzhugh-Nagumo model. The three-
variable FHN model will be dealt in section 3.8. We also test the scaling formula for this

model.

3.1 Original Turing Model

Let’s find out the conditions for existence of Turing instability for the following system

(see (3.1)). .
OeG) e
a b

where A = and a, b, ¢ and d are real constants. The nullclines are determined
c

by equating the LHS to zero of (3.1). Hence, we have two straight nullclines

v o= —% for =0 (3.2)
¢
d

vo= — for v=0.

The first nullcline in (3.2) is for the case when du/dt = 0 and the second one is for the
case when dv/dt = 0. The equilibrium point is at the origin and for its stability, we
require that the trace = a4+ d < 0 and the determinant = ad — bc > 0. In total, we have
six cases for stability. These cases can be defined as the following. Assume that a > 0.
Then, d < 0, such that |a| < |d|, to satisfy trace < 0. Hence, it follows that if b < 0, then

¢ > 0 or other way around to satisfy determinant > 0. Thus, the first two cases are:

l.a>0,d<0,b<0and ¢c>0 or

2.a>0,d<0,b>0and c<0.

Now assume that a < 0. To satisfy trace < 0, d < 0. Hence, it follows that if, b < 0 then

¢ > 0 or other way around to satisfy determinant > 0. Thus, the next two cases are:
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3.a<0,d<0,b>0and c<0or

4. a<0,d<0,b<0andc>0.

The trace < 0 by assuming that ¢ < 0 and d > 0 provided that |a| > |d|. Hence, it
follows that if b < 0 then ¢ > 0 or other way around to satisfy determinant > 0. Thus,

the last two cases are:

5. a<0,d>0,b>0and c<0or

6. a<0,d>0,b>0andc<O0.

Let’s consider the first case, a > 0, d < 0 b < 0 and ¢ > 0. The trace is already satisfied

since the parameters a and d are opposite signs. We check for the case of the determinant.

ad—bc > 0

ad > be.

We shall divide by b on both sides. Since b is negative, the sign of the inequality will

change.

@ .
b .

Next, we shall divide by d on both sides. Again, since d is negative, the sign of the

inequality will change again.

a_ ¢
d= d
We shall multiply by —1 on both sides.
.
d d

As we can see, in order to have stability, the slope of du/dt = 0, —a/b should be less than

the slope of dv/dt = 0, —c/d. Now, we shall consider the reaction-diffusion system.

ou 0%u
o _ pZY
o uax2+’yl (au+ bv),
ov 0%

< - pZZ
BT V52 + 72 (cu + dv),
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where D,, D, are the diffusion coefficients of u and v respectively. Any solutions u(z,t)

are v(z,t) can be represented as a superposition of functions

ur(x,t) = fu(t)gr(z) =~ a(t)cos (kx),
vp(x,t) = fr(t)gr(z) =~ 0(t)cos (kx).

By substituting these two solutions into the above system, we will have

9
8—;‘ = KDy + 71 (aii + bd)
o

8—: = k2Dt + o (cii + db).

We can determine the two nullclines by equating 0u,/0t and 900/0t to 0.

—k*Dyt + 1 (a4 bd) =
—k*Dy0 + o (cti + db) =

From the above equations, we can write v as a function of .

kD, —ay .

~ cy N
- 9 4 3.4
YT D,y (34)

The first nullcline, 3.3), is for the case when du/dt = 0 and the second one, 3.4), is
for the case when dv/dt = 0. The parameters a, b, ¢, d, D,, D, and ~; and 7, have
arbitrary values. Since we have diffusion terms, we will have instability. The range of the

parameter k% which leads to instability is the solution of the inequality below.

k*D, — am - Y2
b71 k2Dv - d72

From the above inequality, we can get a quartic equation in terms of k.

k*D,D, — k* (ay, Dy, + dyeDy,) + 7172 (ad — be) .
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The critical points of k? are when the above equation is equal to 0. These solutions are

given by

ay1 D, + dy,D,, £+ \/(CL%DU — dv,Dy,)? + 4D, Dyy17ys (ad — be)
2D, D, '

k%,z =
Now, we shall consider these different cases.
Case 1. a>0,d<0,b<0and c> 0.

The graph on the left below shows the phase portrait without diffusion. This repre-
sents the stability. The relative position of the two slopes (—a/b < —c¢/d). On the right,
the slops intersect at two points called instability critical points. The unstable region

occurs between these two points (see Figure 3.1).
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Figure 3.1: Phase portrait for case 1. A: The u and v nullclines are represented by the blue
and green line respectively for the system with no diffusion. The arrows represent the phase
trajectory. B: Slopes of i and © versus k* for harmonic solutions of the equations (3.3) and
(3.4) containing cos(kz).

Case 2. a > 0,d < 0,b>0and c <0.

The graph on the left below shows the phase portrait without diffusion. This repre-
sents the stability. The relative position of the two slopes (—a/b > —c/d). On the right,
the slops intersect at two points called instability critical points. The unstable region

occurs between these two points (see Figure 3.2).
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Figure 3.2: Phase portrait for case 2. A: The u and v nullclines are represented by the blue

and green line respectively for the system with no diffusion. The arrows represent the phase

trajectory.

B: Slopes of @ and ¥ versus k? for harmonic solutions of the equations (3.3) and

(3.4) containing cos(kz).

Case 3. 4 < 0,d<0,b<0and c>0.

The graph on the left below shows the phase portrait without diffusion. This repre-

sents the stability. The relative position of the two slopes (—a/b < —c¢/d). The graph on

the right shows that the two slopes don’t intersect. Therefore, it will always be stable

(see Figure 3.3).
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Figure 3.5:

Phase portrait for case 8. A: The u and v nullclines are represented by the blue

and green line respectively for the system with no diffusion. The arrows represent the phase
trajectory. B: Slopes of i and © versus k* for harmonic solutions of the equations (3.3) and
(3.4) containing cos(kz).

Case 4. a

<0,d<0,b>0andc<0.
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The graph on the left below shows the phase portrait without diffusion. This repre-
sents the stability (—a/b > —c/d). The graph on the right shows that the two slopes

don’t intersect. Therefore, it will always be stable (see Figure 3.4).
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Figure 3.4: Phase portrait for case 4. A: The u and v nullclines are represented by the blue
and green line respectively for the system with no diffusion. The arrows represent the phase
trajectory. B: Slopes of i and © versus k? for harmonic solutions of the equations (3.3) and
(3.4) containing cos(kz).

Case 5. a < 0,d > 0,b> 0 and c <0.

The graph on the left below shows the phase portrait without diffusion. This repre-
sents the stability. The relative position of the two slopes (—a/b < —c¢/d). The graph on
the right shows that the two slopes don’t intersect. Therefore, it will always be stable
(see Figure 3.5).
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Figure 3.5: Phase portrait for case 5. A: The u and v nullclines are represented by the blue
and green line respectively for the system with no diffusion. The arrows represent the phase
trajectory. B: Slopes of i and © versus k? for harmonic solutions of the equations (3.3) and
(3.4) containing cos(kz).
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Case 6. a < 0,d > 0,b <0 and ¢ > 0.

The graph on the left below shows the phase portrait without diffusion. This repre-
sents the stability. The relative position of the two slopes (—a/b > —c/d). The graph on
the right shows that the two slopes don’t intersect. Therefore, it will always be stable
(see Figure 3.6).
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Figure 3.6: Phase portrait for case 6. A: The u and v nullclines are represented by the blue
and green line respectively for the system with no diffusion. The arrows represent the phase
trajectory. B: Slopes of i and © versus k* for harmonic solutions of the equations (3.3) and
(3.4) containing cos(kz).

In order to analyse the linear model, we will need to consider six cases when the model is
stable. Cases 1 and 2 give Turing instability. The other four cases will always be stable.
For case 1, u is called the activator because it is responsible for production of v and v
is called inhibitor because it is involved in the decay of u. Case 2 describes the kinetics

which are not directly associate with known interactions of biochemical substances [69].

3.2 Turing instability in the model extended with

cubic terms

In the linear model, the concentrations v and v tend to the infinity with time. To avoid

this, we extend the linear model (3.1) by adding cubic terms for both equations with

72



coefficients «,, and «,.

ou 0*u ou ou

—_— = D _— — 3. R = — = .
5 1522 + 7 (au + bv) — ayu”; oz, 9|, 0, (3.5)
ov v ov ov

BT 253 + v (cu + dv) — v, v7; S = 0, (3.6)

where D,, D, are the diffusion coefficients of v and v respectively, a, b, ¢, d are constant
parameters and ~; and 7, are parameters which we can change to see how many stripes

can have unstable modes in a medium of a given size.
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Figure 3.7: Cubic and linear nullclines of the system (3.5) and (3.6).The two top panel
are for the cases when o, =0.1 and a,=0. A: Both nullclines when k=0. B: Both nullclines
for k=0.5. The two above panel are for the cases when c, =0 and a,=-0.1. C: Both nullclines
when k=0. D: Both nullclines for k=0.5. Values of model parameters are as follows: a=1,
b=-2, ¢=3, d=-4, Dy,=1 and D,=20.

Figure 3.7 shows the nullclines of the system (3.5) and (3.6). Panels A and B show the
cases when a,, = 0. Panel A has one equilibrium point. This is stable. Panel B is similar
to panel A except that it has three equilibrium points. The origin is unstable and the

other two are stable. Panels C and D show the cases when «, = 0. The parameter «, in
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these two panels is negative otherwise we will never get the two extra equilibrium points.
Panel C has one equilibrium point. This is stable. Panel D is similar to panel C except
that it has three equilibrium points. The origin is unstable and the other two are stable.
In panels B and D, as the origin is unstable the direction fields around the origin will
be repelled. But since we have two stable equilibrium points, the the phase trajectories
which are repelled from the origin will be attracted to these two stable equilibrium points.
They will prevent the direction field to go to infinity. That’s why, we choose cubic terms.
Consider the case when one has square terms. For this case, we only have two equilibrium
points. One of them is stable and the other is unstable. The direction field at the unstable
point will be repelled and they will be attracted to the stable equilibrium point. But since
we only have one stable equilibrium point, some direction field will go to oco. That is the
reason why, we don’t consider square terms. The same argument applies for the general

case u*", where n is positive. We shall consider the cases when a,, = 0 and «, = 0.

3.3 Effect of the size of the medium on the number

of stripes

There can be many unstable special modes in the same system [69]. In section 1.5.3, the
condition to allow Turing’s instability has been shown by condition (1.12). By applying
the results obtained in section 1.5.3 to our model defined by (3.5) and (3.6), the two

bounds k% and k2 are given by

2 aDy,y1 + dDyyy + \/(aDv% + dDqu)2 — 4D, D, v yadet
1,2 — )

2D, D,

where det = ad — bc. The range of square wavenumber k? corresponding to Turing’s
instability is
k2 < k* < k3.

Using the expression of k? and k3, we obtain

aDyy1+dDyv2—+/ (aDyy1+dDyy2)?—4Dy Dy y2det 9 _ aDyy1+dDuy2+4/ (aDyyi+dDuv2)?—4D, Dyvyiy2det
DuDy <k < 2D Dy :

Since k is a wavenumber, it can be written as k = nn/L, when n is the number of stripes.

By substituting £ = n7/L into the above inequality and after rearranging, we get

L, [ aDvm1 +dDu'yz—\/(ava1 +dDy72)? —4Dy Dy y17y2det L, [ aDvm1 +dDu72+\/(aD/u'Yl +dDyv2)? —4Dy Dyy1y2det
L <n<= .
iy 2D, D, T 2D, Dy,

(3.7)
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Our first investigation consists of assessing the effect of the medium size on the number
of stripes. To do so, we fix a, b, ¢, d, D, and D,. For each set of value of v; and ~s, the

range of number of stripes n is given by (3.8)

L./ 20m —4’72—\/(2071+472)2—48O”y1’72 L,/ 20m —4’72—{-\/(2071+4’Y2)2—480’y172
= <n<=
T 40 s 40

(3.8)

From (3.8), the two bounds of the number of stripes are linear functions with respect to
L. The plots of bounds defined by the left and right hand side of inequality (3.8) for

different set of values of v, and 5 are shown in Figure 3.8.

number of number of
a stripes stripes
/ 9 /
6 / ,/ / 6 /
, / / . /
/ /
0 tho L
0 30 60 90 120 150 180 0 30 60 90 120 150 180
A B
number of number of
9 stripes stripes
/ ’
6 / //
/ d //‘ 6 / é/
3 / / / ’/ 3 //
0 tho t
0 30 60 90 120 150 180 0 30 60 90 120 150 180
C D

Figure 3.8: Graph showing the effect of the medium size L on the number of stripes
for four different sets of values of v, and v,. Each horizontal line between red and
blue lines corresponds to a pattern of different special periodicity. The blue and the red lines
correspond respectively to the left and right hand side of (3.8). Shown simulations are performed
using the following parameter values: a=1, b=-2, ¢=38, d=-4, D, =1, D,=20, a,,=0.1 and o, =-
0.1. A: v1=v2=0.06. B: v;=y5=0.04. C:~v;=0.053 and v2=0.04. D: v;=0.04 and v2=0.053.

Consider the case with both v; and 7, equal to 0.06. If we take for example L = 140,
several possibilities of number of stripes can occur (2.5 to 4 stripes)(see Figure 3.8 in
panel A). If we decrease the value of both 7, are v, to 0.04, the two curves get closer
and the number of stripes, for L = 140, is reduced (see Figure 3.8 in panel B). For this

case it can be between 2 and 3.5 stripes. Next, the value of 7, is increased to 0.053 and
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~v2 remains fixed to 0.04. The two curves are getting away for each other. For this case
the number of possible stripes increases (see Figure 3.8 in Panel C). In the last panel, if
we swap the values of 7; and s, the two curves get much closer. We can only get one
possible number of stripes. For L = 160, we can only have 2.5 stripes (see Figure 3.8
panel D). We are particular interested in panel D because for some medium size, it can
only have one possibility. This is shown by the graph below (see Figure 3.9). No matter
how many locations we stimulate, we will always get the same number of stripes. This
panel is particularly useful for scaling. For example if in a small medium we have two
stripes and in a bigger medium, we either have two or three stripes. Then scaling might
not be obvious. On the other hand, if we only have two stripes in a small and big medium
then scaling will occur.

number of 4 Tnumber of

stripes stripes
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A 0 30 60 90 120 150 180 B 0 3

— T 0
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Figure 3.9: Case of a unique unstable mode. By variation of model parameters, it is
possible to reduce the number of unstable modes (bringing the red and red lines closer bounding
the region of instability). A: v;=0.04 and v2=0.053. B: The effect of the size of the medium
on the number of stripes. Any perturbation of homogenous state will always get the same plots.

3.4 Effect of the diffusion of the inhibitor on the

number of stripes

We have previously investigated the effect of L on the number of stripes. By changing
the values of v; and 79, the blue and red lines in Figure 3.9 get closer to each other. This

has reduced the number of unstable modes.

Now, we examine the effect of the diffusion D, of the inhibitor v on the number of

stripes. To do so, We fix a, b, ¢, d, Dy, &y, @y, 71,72 and L. Their values are given below
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in Figure 3.10. The range of n given previously by (3.7) is written in terms of D, as

iy 2D, b

140 . [ 0.04D,—0.16—1/(0.04D,,+0.16)2—0.0384D,,
— <n 2D
v

< 140 \/O.O4Dv0.16+\/(0.04DU+0416)20A0384DU

(3.9)
The two limits of the range of n in (3.9) are non-linear functions of D,. Their plots are

shown in Figure 3.10 (blue lower limit and red higher limit).
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Figure 3.10: Graph showing the effect of the diffusion of the inhibitor D, on the
number of stripes for L=140. The blue and the red curves are the lower and higher limits
respectively. Simulations results are shown by green circles and purple crossings. The green
circles indicate patterns with 2.5 stripes and the purple crossings - with 8 stripes. The following
parameter values were used: a=1, b=-2, c¢=38, d=-4, D,=1, D,=20, a,=0.1, a,=-0.1 and
v1=72=0.04. For D,=15.2, we will always have 2.5 stripes no matter how many places we
stimulate. For D,=15.7, one can either have 2.5 stripes or 3 stripes.

3.5 Scaling of Turing patterns in the three-variable

model

All of our simulations confirm that adding cubic terms prevent the concentration from
going to infinity. Furthermore, our simulations confirmed the results from Figure 3.9 and
Figure 3.10. Changing the values of a,, and «, affect the amplitudes of the stripes. The
smaller the values of both «,, and «, are, the bigger the amplitudes of the stripes will be.
We will use our model (3.5) and (3.6) to perform scaling like in sections 2.4 and 2.5. To
introduce scaling into the Turing model, we extend it with a third variable z satisfying

the two following conditions:

1. z is maintained at a constant level which depends on the size of the medium and
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2. z affects the kinetics rate of two original variables so that the space scaling of the

pattern is proportional to the medium size.

The extended three-variable model is given by the system (3.10)

ou 0%u ou ou

_ = D _— — 3 2. _— = — —_=

81? uax2 + (7 (au + bU) QU ) Z ax 0 8.’17 el 0’

v 0*v s o Ov v

5 Dv@—l—(v(cu%—dv)—avv ) 2% dc|._ " o x:L_o, (3.10)
0z 0%z 0z . 0z ,

E — Dz@ - kzz7 % - = —Jo, % - = Jz

where D,,, D, and D, are the diffusion coefficients of u, v and z respectively, k. defines
the degradation rate of z and j, and j, specify the boundary fluxes of z at x = 0 and

x = L respectively. The plots of all three variables are shown in Figure 3.11.

For both medium sizes, they have the same number of stripes (4.5 stripes) with the
same magnitudes. Now, we want to determine the scaling factor, for u for instance.
Since there is no analytical formula for its scaling factor, we compute it numerically. The

plot of the scaling factor of w is shown in Figure 3.12.
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0.00 T T T T é 0.00 T T T T .&
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Figure 3.11: Scaling of the three-variable Turing model for system (3.10). The blue
curve represents the concentration u, the red curve is for v and the green curve is for z. For the
simulations, we used the following values for the following parameters: D, =1, D,=20, D,=50,
v=0.2, k,=0.00001, jo=j.=0.0001, a=1, b=-2, ¢=3, d=-4, a,=0.1 and a,=0.1. A: Plot for
L=1. B: Plot for L=2. The above graphs show patterns forming in the extended Turing model
for the case of two different medium lengths (La=2L;). The concentration zis constant. Profiles
of uw and v are identical for these two medium sizes-indicating the perfect scaling.
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Figure 3.12: Scaling factor for u-profile from Figure 3.11 across the relative position

&E=z/L.

Figure 3.12 leads us to 2 remarks. First, the scaling factor is zero almost everywhere
across the relative position (§ = x/L) except at the boundaries (¢ = 0 and £ = 1). At
both ends, the zero-flux boundary condition has been applied. At ¢ = 0, the concentration
does not change suddenly (Ou/0¢ = 0). This makes the denominator of the scaling factor
to be zero. At the other end, £ = 1, similar argument can be applied. And second, there

are crests at some points. This is because the derivatives at theses point is 0.

3.6 Fitzhugh-Nagumo model

All the analysis was done for the Turing model. The Fitzhugh-Nagumo model (FHN)

without the diffusion term transfers into the following system of ODEs:

du
il flu,v) = =kyu(u — a)(u—1) — v, (3.11)
& = glu) =<(lu—v)

where k, is the membrane conductance, o represents the threshold potential, € specifies

the recovery rate constant and [ is the positive slope of the v—nullcline.
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Figure 3.13: The two nullclines of the FHN model describing excitable system on the
(u, v) axis of system (3.15). The blue curve is the cubic nullcline, that is when du/dt=0.
The green curve is the linear nullcline, that is when dv/dt=0. For this case, a=0.05, ¢=0.05,
ky=8 and I=1.

The only equilibrium point, in Figure 3.13, is the origin. We want to show that this
is stable. We investigate the stability of this equilibrium point. To do so, we need to

calculate the Jacobian matrix at this point. This is written as

S (fu J%))
Gu  Gv

where the entries f, = —k,a, f, = —1, g, = le and g, = —e. The trace and the

determinant, computed at the origin, are defined as
trace = f, + g, = —kya — e <0,

det = fugv - fvgu = kya+1>0.

This shows that the origin is stable. Now, we modify the FHN model such that the
equilibrium point (point of intersection between cubic and linear nullclines) is not at the
origin. To do this, we add a term called up in the first kinetic term f(u,v). Furthermore,
we assume that there is only one equilibrium point, which can be ensured by either having

a high value of [ or sufficiently low value of k,.

du
i flu,v) = =kyu(u — a)(u—1) — v+ up, (3.12)
% = g(u,v) =e(lu—v).

The linear nullcline will be the same as in (3.11) but the cubic nullcline will be shifted

up. The plots of the two nullclines of (3.12) are shown in Figure 3.14.
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Figure 8.14: The two nullclines of the FHN model describing an oscillatory system
on the (u, v) plane of system (3.16). The blue curve is the cubic nullcline, that is when
du/dt=0. The green curve is the linear nullcline, that is when dv/dt=0. The equilibrium point
1s between the minimum and the mazimum of the cubic nullcline. For this case, we chose:
a=0.05, e=0.05, k,=3, I=1 and up=0.15.

At this equilibrium point, the Jacobian matrix has the same entries as the previous case

except for f,. This is because the value of f,, will be different at this equilibrium point.

()
le —¢

The trace and the determinant are defined by

This matrix is written as follows

trace = f,—¢,

det = e(l— fu).
In order to have stability, it is required

fu < &,
I > fa

In FHN model, it is assumed that ¢ is very small: ¢ < [. Hence, we can conclude that

the conditions for Turing instability is given by

0< fu<e.
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Now, we transform the FHN (3.12) model using the following change of variables
U= U — Ug,

V=170 — g,

where (ug, v) is the equilibrium point of system (3.12) and @ and v are the new variables

axes. We substitute them into the equations (3.12).

di . . . N

o —ky (20— uo) (0 — up — o) (&t — ug — 1) — (0 — vo) + up,
dv . -

a = g(l(U_UO)_<U_U0))‘

We can multiply out in the second equation.

d _
dt

El(ﬂ—uO)—g(’[}—Uo).
From the above, we can deduce that lug — vg = 0. This is because there are no constant
terms in the second equation of (3.12). Therefore, vy = lug. From the first equation, we

multiply out and collect terms containing power of @ .

@] ky =
4] Ku (1 + o+ 3ug) =0,
[a'] o (—ug (uo + @) — (2up + @) (ug + 1)) = a,
[a°] kyuo (ug + ) (ug + 1) = 0.

From the second equation, we can determine the expression of a.
o = — (1 + 3U0) .

The third equation says that the LHS is equal to a i.e. the kinetic term in (3.5). And
the last equation says that the LHS is equal to 0. The considered modification of FHN
model after adding diffusion terms is equivalent to the Turing model (3.5) and (3.6) by
taking the values of the following parameters as follows: a = f,, b= —1, c =le, d = —¢,

Y1 =7 =1and o, = k.
ou

5 — w-—vt Bu® — a,u®, (3.13)
% = cu+dv. (3.14)
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The above modification of the FHN models shows that we have a cubic and a linear null-
cline in the (u, v) plane. The two nullclines of (3.13) and (3.14) are plotted in Figure 3.15.

1 .

0.5 -

[e=]
“os

05 -

q

Figure 3.15: The two nullclines of the converted Turing model to FHN model. The
blue curve is the cubic nullcline (du/dt=0). The green curve is the linear nullcline (dv/dt=0).
The plot was obtained with o, =0.1, a=0.5, b=-1, c=c and d=-¢ with e=0.05 and $=0.05.

For the system without diffusion in (3.13) and (3.14) the matrix A computed at the origin

-0,

The trace and the de determinant are defined by

is given by

trace = a—¢

det = e(1—a).
In order to have stability

a < g,

a < 1.

These can be assemble as a < ¢ < 1 knowing that ¢ < 1.
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3.7 Transition from oscillations to stripes

As a result of Turing instability stationary inhomogeneous, solutions merge from stable
homogeneous solutions. In the case of FHN model, as we have shown in the previous
section, there can be observed oscillating solution. In order to have oscillating solution,
we require that the trace and determinant are both positive i.e. f, > ¢ and | > f,.
Assuming that € < [, we can assemble these two conditions to € < f, < l. To see if we
have Turing’s patterns, we add diffusion to the system (3.12). The full reaction-diffusion
for FHN model is shown below (see (3.15)).

du 0*u

5 = Du@ — kyu(u — a)(u—1) — v+ up, (3.15)
v 0*v

E = Dv@—i—a(lu—v)

Both trace and determinant depend on the sign of f,. For the case of the determinant,
it will remain positive no matter the sign of f, is. For the case of the trace, the sign of
fu can have different scenarios. They are shown in Figure 3.16. First if f, < 0, then we
will have nothing (blue region). If f, is between 0 and e shown by the orange region, we
start with stable solution and in the presence of diffusion, we have the classical Turing
instability. The green region shows that f, is greater than . In the absence of diffusion,

we have oscillating solutions. In the presence of diffusion, we may have stripes.

0.25 | determinant

0.2

trace

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.16: Graph (blue curve) showing relationship between trace and determinant
when f, is changed. The curve is represented by a linear function which is det=¢ (I-trace-).
The red curves is represented by a parabola det=trace?®/j separating regions with and without
oscillations. For this plot, =1 and e=0.1.

Instead of dealing with the standard FHN model (see (3.15)), we have decided to work
with the modification of the FHN model (see (3.13) and (3.14)). In (3.13), we choose
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B = 0. The full reaction-diffusion of this model is given as

ou 0*u 5

5 = Du@ + au + bv — au°, (3.16)
ov 0%

E = Dv@ + cu + dl),

where D,, and D, are the diffusion coefficients of u and v respectively and a, b, ¢, d and «,,
are constants. In Figure 3.16, we start from the second quadrant. By adding diffusions,
we will end up in the third quadrant. This is for the case of Turing model. For the case
of FHN model, we start from the first quadrant. The addition of diffusions means that
we may end up in the third quadrant. For the latter model, we did the following. For
three values of D, say 10, 20 and 30, we chose a few values of k starting from k& = 0.
For each value of k, we compute the values of B (k?) (see (1.10) and C (k?) (see (1.11).
Figure 3.17 shows that for k£ = 0, we are in the first quadrant. For the case D, = 10,
Turing’s instability doesn’t occur. This is because, there is no range of values of k£ which
satisfies B (k*) < 0 and C (k?) < 0. For the case D, = 20, there is a small range of k
which Turing’s instability occurs. And for the case D, = 30, there is a bigger range value

of k which Turing patterns appear (Figure 3.17).

DETERMINANT

TRACE 05

Figure 3.17: Graph showing relationship between trace and determinant. We use
a=0.1, b=-1, c=¢, d=-¢ with e=0.05 and D, =1. The blue, red, green, purple and orange curves
are simulations for the cases when D,=10, 20, 30, 40 and 50 respectively. The black curve is
represented by a linear function which is det=e(l-trace-c). The black dotted curve represents
det=trace®/j. For the case when k=0, we are situated in the first quadrant.

As a reminder, the Jacobian matrix A computed at the origin using (3.13) and (3.14) is

(07

Now, we investigate the possibility to have oscillating solution in the absence of diffusion.

given by
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We recall that without diffusion, the trace and the determinant of the Jacobian matrix

are respectively

trace = a— ¢,

det = e(1—a).

The case giving oscillatory solution require that the trace and the determinant are both

positive.

trace = a—¢ >0,

det = e(1—a)>0.

These lead to the following conditions: € < a and a < 1. Assuming that ¢ < 1, these

can be combined as € < a < 1. In the presence of diffusions, the Jacobian matrix B is

s_ (9~ k*D, -1 .
€ —e — k%D,

The trace and the determinant of matrix B are given as follows.

written as

traceB = —k*(D, + D,) + trace,
detB = K'DyD, — k*(aD, — ¢) + det.

In section 1.7.3, we saw that the only way to get instability is that equation (1.11) has
to be negative. Turing instability can be obtained if the trace and the determinant of

Jacobian matrix B are both negative.

traceB = —k*(D,+ D,) +a—¢ <0,
detB = k*D,D,—k*(aD, —¢) —e(1—a) <O0.

From above, assuming that D, = 1, the conditions for k% to get Turing instability are

a—¢
K >
1+ D,’
aD, — ¢ — \/(aDv + 8)2 —4D,¢e 2 aD, — ¢+ \/(aDv + 6)2 —4D,¢e
2D, SRS 2D, :
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To find the limiting value of k2, we proceed as follow

2 2
2 _ 2 € . 3 4
\/(aDv—i—g) — 4D, = \/(aDv) <1+aDv) —4DU8—CLDU\/<1+GDD> _gaQDv'

Since ¢ is very small, we have

e \? 4 2e 4e € 2e
D, 1 — ~aDyy/1 — ~aD, (1 — )
“ ( + aDv) €a2Dv “4 \/ + aD, a*D, “ ( + aD, aZDv)

So, the lower bound k% can be approximated by

aDv—s—\/(aDere)Z—éLDvs aDv—&t—aDQ,(l—i-ﬁ—af—Bv)
2D, - 2D, '

1—a
k2 ~ .
! (aDv>8

And the higher bound k3 can be approximated by

K2 =

Therefore,

aD,—c+/(aD, +c —4D,e aD,—=+aD, (1+ 5 — )
- 2D, - 2D, '

k>

Therefore,

k? can be bounded between

1—a €
<k’<a-— . 3.17
( aD, > c “ aD, ( )
Let’s consider the LHS of (3.17), that is we estimate the minimal value of k, k.
1—a
< k2. 3.18
(S50 < Ko 319)

We already know that k., = T, /L. By substituting into (3.18), we obtain.

(2;:‘) e < (”"[’f"y (3.19)

From (3.19), L, a and D, are fixed. Hence, we can deduce that n? is proportional to .
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This is shown in equation (3.20)

o> () (2) 5

n2, ~c. (3.20)

min

or

Thus, the number of stripes increases when the kinetic rate increases. This is confirmed
by numerical simulations as shown in Figure 3.18. The graph below shows that as ¢

increases, the number of stripes increases quickly.
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Figure 3.18: Effect of € on the minimal number of stripes which can be stimulated
in the medium described by the equation (3.21). Model parameters are: D, =1, D, =50,
ky=4, a=0.05, up=0.1, I=1 and L=2000.

3.8 Three-variable FHN model

Previously, we started with oscillating solution and by adding diffusions, we have stripes.
This was done with our considered modification of the FHN model (see (3.16)). We will
use the proper FHN model (see (3.13)) to perform scaling. Like in Turing model, to
introduce scaling into the Fitzhugh-Nagumo model we have extended it with the third
variable with a diffusion coefficient D, and a decay rate k.. We assume that the kinetic
of the inhibitor in FitzHugh-Nagumo system is affected by the concentration of the third
variable (which has an exponential profile) and therefore in the second equation, we
multiplied the second term on the RHS by k?. So the extended FHN model is given by
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(3.21).

Ju u Ou o

% = D ka-a)--vew gl =T o

v 0z v 0

ot Dv@ —e(lu—v) 2% ox| _, Oz - 2
=0 z=L

0z 0z 0z o & '

a = DamhE g T, T

where D,,, D, and D, are the diffusion coefficients of u, v and z respectively, k, represents
the membrane conductance, « is the threshold potential, € is the recovery rate constant,
k. defines the degradation rate of z and jo and j. specify the boundary fluxes of 2z at
x = 0 and x = L respectively. The solution of z, provided that the ratio (k,/ Dz)l/ % is
very small, is given by: z = D, (jo + j.) /k.L. The concentrations u, v and z are plotted

in Figure 3.19.

1.0

D.S.NMN]NMMDE.MMMMMM

)

2 ANA
I M M MM N.A M \

£loo , : ; &J
S 0 VI A 1 K N M W A

Figure 3.19: Scaling of the three-variable FHN model. The values of the parameters
used to plots these profiles are: D,=1, D,=50, D,=50, k,=4, a=0.05, e=0.05, up=0.1, [=1,
k.=0.00001 and jy=j,=0.0001. The blue, red and green curves represent u, v and z profiles
respectively. A: Simulation for the case L=700. B: Simulation for the case L=1400.
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As we can see, the above graphs show that z is a constant solution. For u and v, they are
periodic solutions. For both medium sizes, they have the same number of stripes with
the same magnitudes. Now, we want to determine the scaling factor for v for example.
As no analytical formula exists for it we compute it numerically. Its graph is shown in

the Figure 3.20. As we can see, it is practically zero which corresponds to perfect scaling.
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Figure 3.20: Scaling factor for v.

3.9 Summary

In this chapter, we had considered two more continuous model namely Turing and
Fitzhugh-Nagumo models. Starting with the linear version of Turing model (two-variable),
we found that there were two cases which can give Turing’s instability. The first case
corresponds to the activator/inhibitor systems while the second for activator/substrate
ones. In our study, we have extended the activator/inhibitor system represented by a
Turing model with cubic nonlinearity and by FHN model to derive two counterpart mod-

els whose solutions exhibit good scaling property.

Generally the patterns forming due to Turing instability are not unique. There can
be many unstable special modes in the same system [69]. Extending the Turing model
with cubic terms on the RHS prevents the concentrations going to infinity arising for un-
stable modes of solution and observes patterns of different periodicity arising in the same
system. Coexistence of different patterns creates difficulties in maintenance of scaling.
By variation of model parameters it is possible to reduce the number of unstable modes.
To introduce scaling in Turing’s model, we added a third variable. The level of this third

variable remains constant across the field.
For the Fitzhugh-Nagumo model, it is converted to the Turing model using most of

its parameters. The transition from oscillating to stripes has been investigated. Then we

introduced scaling in the FHN model like in the Turing’s model.
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Chapter 4
Discrete model

Besides the continuous model based on reaction-diffusion equation systems, discrete
model also exist for pattern formation studies. Unlike the continuous models based on the
calculation of the gradient of morphogens (proteins), discrete models work on the cell-to-
cell contact. We can have scaling if the number of nuclei, in embryos of different sizes, is
the same. First, the model is based on cellular automata (CA). Cellular automaton is a
collection of cells on a grid which evolve on a number of discrete time-step according to a
set of rules based on the state of the cells. CA has been invented by John Von Neumann
in the 1940s [105]. A detailed description of cellular automaton can be found in [116].
And second, a derived version of the CA which is called the hybrid cellular automata
model. In this chapter, we will focus on the application of the cellular automata model
to describe pattern formation. The patterning is due to cell-to-cell contact. The out-
come of this contact depends on the genes contained in each cell. The objective of this
chapter is to see whether we can have stationary patterns using CA model. In section
4.1, we shall describe the technique of the cellular automata in pattern formation. This
is followed by the two-state model analysis presented in section 4.2. Section 4.3 deals
with Wolfram’s model followed by some of our simulation works. Section 4.4 deals with
the three-state model. This is followed by four- or more- state models in section 4.5.

Biological implementation will be discussed in section 4.6.

4.1 Technique of cellular automata

A cellular automaton technique requires a regular lattice of cell. This can have one, two
or three dimensions. The procedure of the application of cellular automata to pattern
formation is shown in Figure 4.1. In this flowchart, N represents the number of cells,
teng 18 the current time and tend is the end of simulation time. Before applying cellular

automata to pattern formation modelling, the following definitions are required.
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1. State: possible value a cell can have.

2. Neighbour: the set of cells which can interact with one cell.

3. Updating or transition rules: rules which define the future state of a cell according
to its current state and that of its neighbours. In the cellular automaton technique,

the reaction diffusion equation is transformed into updating rules.

This technique can provide nontrivial patterns including stationary, oscillating and prop-

agating waves.

Start: t=0,
initialize the states S; of
the cells, ie {1, N}.

Forie{1, N}.
Calculate the new
state S; of cell i
according to the
updating rule.

Figure 4.1: Flow chart of cellular automata technique applied to pattern formation.

4.2 Chain of logical elements

A one-dimensional regular lattice of cells is used in the modelling of pattern formation.
Each cell can have two or more states. A one-dimensional regular lattice with two-state
cells is called a chain of logical elements. The state S; of each cell ¢ can be denoted by
0 (black) or 1 as (white), i.e. the cell is represented by a logical element. In application
in biology, the state can reflect the expression of certain genes. The case of two-state

represents whether a simple gene is expressed or not.
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4.3 Wolfram’s model

Wolfram derived a one-dimensional variant of von Neumann’s cellular automata. This
consists of a regular lattice of cells which can have two states (S; = 0 or S; = 1). Each
cell is surrounded by only two other cells (its two closest neighbours). The state Si™ of
a cell 7 in the next generation is determined by the current state of cells i —1, 7, and i+ 1
according to a transition rule f defined by S/ = f (S, 5!, St ;) [109]. This Wolfram
model is called a two-state cellular automaton. A noise is introduced in order to assess
the robustness of the obtained pattern. This means that a probability equal to the noise

level is used to alter the result from the transition rule. An example of transition rule is

If (cell( — 1) =1 and cell( + 1) = 0) then cell(i) = 0.

A cell interacting with its two closest neighbours leads to the following findings.

e There are 23 = 8 possible configurations, which are 111, 110, 101, 100, 011, 010,
001, and 000.

e For the above configurations, the resulting states are as follows (function f is for

compactness is replaced by the arrow):

Configuration O:
Configuration 1:
Configuration 2:
Configuration 3:
Configuration 4:
Configuration 5:
Configuration 6:

Configuration 7:

(000) — (0S8,0)
(001) — (08;1)
(010) — (0850)
(011) — (0S51)
(100) — (18,40)
(101) = (1S51)
(110) — (1860)

(111) — (0S71)

e This set of transition rule can be characterised by a binary number S7S¢S554555251S0
which varies from 0 to 255. In other words, the configurations above allow 2% = 256

possible cellular automata.

e The binary number S7S5¢S5545352515p translated in decimal bases is taken to

be the transition rule number.

We want to find a set of rules which cause formation of stationary periodic patterns.
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4.4 Effects of initial condition and noise in the pat-

terning for two-state model

In order to assess transition rules for their ability to produce stationary periodic pat-
terns, we have performed a number of simulations. In the first set of simulations, we
aimed finding out transition rules which do not destroy already existing periodic pattern.
Therefore, these simulations have been started with two-periodic initial conditions (1
white + 1 black) shown in Figure 4.2.

E NN NN ENEEEENEEEEEEEEEEN

Figure 4.2: Pattern with periodicity of 2 in two-state model.

The results are as follows. Starting with initial periodic solution, 64 transition rules out

256 (25 %) wouldn’t destroy it. Their values are in decimal format are as follows

4,5,6, 7,12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 68, 69, 70, 71, 76, 77, 78, 79, 84,
85, 86, 87, 92, 93, 94, 95, 132, 133, 134, 135, 140, 141, 142, 143, 148, 149, 150, 151, 156,
157, 158, 159, 196, 197, 198, 199, 204, 205, 206, 207, 212, 213, 214, 215, 220, 221, 222
and 223.

Their binary expression is written in the form: X X0X X 1X X, where X can be 0 or 1.
Configuration 2: (010) — (0S20)
Configuration 5: (101) — (1.Ss1).

From one generation to the next, this pattern consisting of a repetition of black and white

remains the same.

The second set of simulations were aimed to find out transition rules such that when
we start with periodic initial conditions (see Figure 4.2) and apply a noise this rules will
let the pattern to recover from noise. The noise level of 0.1% has been applied meaning
that the state of one out of 1000 cells was altered each time step. Simulations show that
25 out of the above 64 transitions (which would keep the pattern when no noise is set)
would "resist” to the perturbation caused by the noise. These transition rules are given

by the following numbers:
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6, 13, 14, 15, 28, 30, 69, 70, 77, 78, 79, 85, 86, 92, 93, 134, 135, 141, 149, 197, 198, 199,
213, 214, and 215.

For the analysis of this set of rules, we shall point out that if the probability of changing
the state of one cell is small, then the probability of changing the state of two cells will
be smaller and therefore, we can neglect it. Other rules restore periodic patterns from
the noise in more than one time step, often taking the irregularity in a wave fashion to

the left or right border. Let’s consider rule 77. Assume we have the sequence

01010101. ..

Assume that the digit 1 will change to 0, due to noise, to give

01000101. ..

Assume that, the digit 0 will change back to 1.

01010101 ...

Let’s analyse the scenario when the 0 change back to 1. Let’s start with the first the
three digits 010. The one in the middle of 010 will stay as it is. This is because the
configuration says that (010) — (010). The next three digits are 100. The zero in the
middle of 100 will stay as it is. This is because the configuration says that (100) — (100).
The next three digits are 000. The zero in the middle of 000 will change into 1. This is
because the configuration says that (000) — (010). The next three digits are 001. The
zero in the middle of 001 will remain as it is. This is because, the configuration says that

(001) — (011). So far, the four configurations are configurations are
(010) — (010)
(000) — (010)
(100) — (100)

(001) — (011).

Now, let’s get back to the sequence
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0100101. ..

Assume that the digit 0 will change to 1, due to noise, to give

0110101....

Assume that, the digit 1 will change back to 0.

01010101 ....

Let’s analyse the scenario when the 1 change back to 0. Let’s start with the first the three
digits, 011. The one in the middle of 011 will stay as it is. This because, the configuration
says that (011) — (011). The next three digits are 111. The one in the middle of 111
will change into a 0. This is because the configuration says that (111) — (101). The
next three digits are 110. The one in the middle of 110 will remain as it is. This is
because, the configuration says that (110) — (110). The next three digits are 101. The
zero in the middle of 101 will remain as it is. This is because the configuration says that
(101) — (101) So far, the four configurations are

(011) — (011)
(111) — (101)
(101) — (101)

(110) — (110).

In total, the configuration rules are
(000) — (010)
(001) — (011).
(010) — (010)
(011) — (011)
(100) — (100)
(101) — (101)
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(110) — (110).

(111) — (101)

This binary number (01001101) is 77.

The third set of simulations aimed finding transition rules such that starting with random
initial condition the same periodic stationary patterns were obtained. These simulations

have shown that such transition rules exist and given by the following numbers:

15, 30, 85, 86, 135 and 149.

Two transition rules, 15 and 85, converge faster towards the periodic stationary pattern

(two time-steps to produce a new stripe).

Now let’s analyse in details how the transition rule 15 results into formation of sta-
tionary periodic structure from any initial conditions. Shown below is some example of

simulation forming periodic stationary patterns for transition rule 15.

t=010111111
t=110100001
t=210101111
t=310101001
t=410101011
t=5010101011

t=001011011
t=101010011
t=201010111
t=301010101
t=4 01010101
t=501010101

t=0
t=1
t=2
t=3
t=4
t=5

01000100
01011100
01010000
01010110
01010100
01010100

Figure 4.8: Three different types of simulation with three different ends at t = 5.

The table on the left shows that at t = 0, we start with 10111111. As the time increases,
the sequence 101 builds gradually. At ¢t = 4, we have the sequence 101 ... except on the
right hand side where we have a broken sequence 011. The table on the middle shows
that at ¢ = 0, we start with 01011011. As the time increases, the sequence 010 builds
gradually. At t = 4, we have the full sequence 101.... The table on the right shows
that at t = 0, we start with 01000100. At the time increases, the sequence 010 builds
gradually. At t = 4, we have the sequence 010. .. except on the right hand side where we

have a broken sequence 100.

We shall write 15 into the configuration rule.

15= 00001111
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(000)—(010)
(001)—(011)
(010)—(010)
(011)—(011)
(100)—(100)
(101)—(101)
(110)—(100)

(111)—(101).

PROPOSITION 1. For rule 15, starting from any initial conditions in the chain of k
elements, we will end up with two-periodic structures (010101... or 10101... ) coming
from the left which appears during k iterations. The final stationary sequence may have
either 00 or 11 on the right hand side. 1

Proof. We have noted that under the transition rule 15, periodic patterns form first on
the left and then expand over the chain from the left to the right. Therefore, we will
consider various initial combinations occurring on the left side of the chain and analyse
how they allow the growth of the periodic structure to the right. First, we consider four

cases starting with the first digit 1 on the left of the structure.

Case A: 100zx.
1002z — 101z. (1TS)

For Case A, one has initially 100z (white, black, black, z is either black or white). Let’s
start with the first three digits. The first digit, 1, is fixed. The next digit, 0, remains the
same. This is because the configuration says that (100) — (100). The next three digits
are 00z. Two configurations which contain 00z are (000) — (010) and (001) — (011).
Whatever the value of x is, the zero in the middle of 00z will turn into 1. At the end, we

obtain the sequence 101.

Case B: 101z.
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101z. (0TS)

For Case B, the sequence 101 is already established.

Case C: 110z.
1102 — 100x — 101zx. (2TS)

For Case C, one has initially 110z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns into 0. This is because the configuration says that
(110) — (100). The next three digits are 10z. Two configurations containing 10z are
(100) — (100) and (101) — (101). No matter what the value of x will be, the 0 in the
middle of 10z will stays the same. Thus, we obtain 100x. We need one more procedure
in order to reach 101z. The first digit is fixed. The next digit of 100z, 0, remains as
it is. This is because the configuration says that (100) — (100). The next three digits
are 00z. Two configurations containing 00x are (000) — (010) and (001) — (011). No
matter what the value of x will be, the 0 in the middle of 002 will turn into a 1. Thus,

we obtain the sequence 101.

Case D: 111z.
111z — 100z — 101zx. (2TS)

For Case D, one has initially 111xz. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns into 0. This is because the configuration says that
(111) — (101). The next three digits are 11z. Two configurations containing 11z are
(110) — (100) and (111) — (101). No matter what the value of x will be, the 1 in the
middle of 11z will change into a 0. Thus, we obtain 100x. We need one more procedure
in order to reach 101x. The first digit is fixed. The next digit of 100z, 0, remains as
it is. This is because the configuration says that (100) — (100). The next three digits
are 00x. Two configurations containing 00z are (000) — (010) and (001) — (011). No
matter what the value of x will be, the 0 in the middle of 00z will turn into a 1. Thus,

we obtain the sequence 101.
Cases E-H: For other cases when one has Ozx, if one starts with 000z, we will reach

010x with two time-steps. This is similar to case Case D, except that one replaces 1 by

0. For the case when one starts with 001z, we will reach 010z with two time-steps. This
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is similar to Case C,except that one replaces the 1 by 0 and the O by 1. If one starts
with 010z, then we already have the sequence 010x. For the case starting with 011z, we
will reach 010z one time-step. This is similar to Case A, except that one replaces the
1 by 0 and the 0 by 1.

Concerning the right hand side, one might have either 00 or 11. For the case when
one has two 00, the element before the two 00 can be either 0 or 1. If the element before
00 is 0, then one will have a full pattern. This is because the configuration in transition
rule 15 says that (000) — (010). If the element before 00 is 1, then one will have a
broken pattern. This is because, the configuration says that (100) — (100). Consider the
case when one might have 11 at the end. The element before the two 11 can be either
0 or 1. If the element before 11 is 1, then one will have a full pattern. This is because,
the configuration in transition rule 15 says that (111) — (101). If the element before 11
is 0, then one will have a broken pattern. This is because, the configuration says that

(011) — (011).

Thus, the slowest way of formation of periodic structure implies the formation of one
stripe during 2 time-steps. Therefore, in the medium containing k elements periodic

structure (containing k/2 stripes) forms during k iterations. O

We will consider the counterpart of 15 which is 85. We shall write 85 into the configura-

tion rule.

85 = 01010101
(000)—(010)
(001)—(001)
(010)—(010)
(011)—+(001)
(100)—(110)
(101)—(101)
(110)—(110)
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(111)—(101)

PROPOSITION 2. For rule 85, starting from any initial conditions in the chain of k
elements, we will end up with two-periodic structures (...101010 or ...010101) coming
from the right which appears during k iterations. The final stationary sequence may have
either 00 or 11 on the left hand side. 1

Proof. We have noted that under the transition rule 85, periodic pattern forms first on
the right and then expand over the chain from the right to the left. Therefore, we will
consider various initial combinations occurring on the right side of the chain and analyse
how they allow the growth of the periodic structure to the left. Let’s consider four cases

starting with the first digit 0 on the right of the structure.

Case A: x000.
z000 — 2110 — x101. (2TS)

For Case A, one has initially 2000 (z is either black or white, black, black, black). Let’s
start with the last three digits. The last digit, 0, is fixed. The next digit from right to left,
0, turns into 1. This is because the configuration says that (000) — (010). The next three
digits from right to left are x00. Two configurations containing 00 are (100) — (110)
and (000) — (010). Whatever the value of x is, the zero in the middle of 00 will turn
into 1. Thus, we have £110. We need to repeat the procedure in order to reach 010. The
last digit, 0, is fixed. The next digit from right to left, 110, 1, remains as it is. This is
because the configuration says that (110) — (110). The next three digits from right to
left are x11. Two configurations containing x11 are (011) — (001) and (111) — (101).
Whatever the value of x is, the one in the middle of #11 will turn into 0. Thus, we have

the sequence 010.

Case B: z010.
z010. (0TS)

For Case B, the sequence 010 is already established.

Case C: 2100.
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2100 — 2110 — 2010. (2TS)

For Case C, one has initially £100. Let’s start with the last three digits. The last
digit, 0, is fixed. The next digit from right to left, 0, changes to 1. This is because the
configuration says that (100) — (110). The next three digits from right to left are x10.
Two configurations containing x10 are (010) — (010) and (110) — (110). Whatever the
value of x is, the one in the middle of £10 will remain 1. Thus, we obtain x110. We
need to repeat the procedure in order to get 010. The last digit, 0, is fixed. The next
digit from right to left of 110, 1, remains as it is. This is because the configuration says
that (110) — (110). The next three digits from right to left are z11. T'wo configurations
containing 11 are and (011) — (001) and (111) — (101). Whatever the value of z is,

the one in the middle of 11 will turn into 0. Thus, we have the sequence 010.

Case D: z2110.
110 — 2010. (1TS)

For Case D, one has initially 2110. Let’s start with the last three digits. The last digit,
0, is fixed. The next digit from right to left, 1, remains the same. This is because, the
configuration says that (110) — (110). The next three digits from right to left are x11.
Two configurations containing z11 are (011) — (001) and (111) — (101). Whatever the
value of z is, the one in the middle of 11 will change to 0. At the end, we obtain the

sequence 010.

Cases E-H: For other cases when zzl, if one starts with 2001, we will reach 2101
with one time-step. This is similar to Case D, except that one replaces the 1 by 0 and
the 0 by 1. For the case when one has x011, we will reach 101 with two time-steps.
This is similar to Case C, except that one replaces the 1 by 0 and the 0 by 1. If one
starts with 2101, then we already have the sequence x101. For the case starting with
2111, we will reach 2101 with two time-steps. This is similar to Case A, except that

one replaces the 0 by 1.

Concerning on the left hand side, one might have either 00 or 11. The proof will be

similar to transition rule 15 except that, one starts from the right hand side. [

Let’s consider transition rule 30. We shall write 30 into the configuration rule.
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30 = 0001110
(000)—(000)
(001)—(011)
(010)—(010)
(011)—(011)
(100)—(110)
(101)—(101)
(110)—(100)

(111)—(101)

PROPOSITION 3. For rule 30, starting from any initial conditions in the chain of
k elements, we will end up with two-periodic structures (101010... or 010101...) which
appears from left to right during 4.5k iterations. The final sequence may have irregularity

or even oscillations of the second rightmost element in the sequence. 1

Proof. For the trivial case 0000...0...0 - nothing happens, that is rule 30 does not give
periodic structure from this initial condition. Any configuration 0000...01xxz, where
the first occurrence of 1 is on n'* location (n > 1), transfers into 010xzzx, (where first

and third elements in the chain are 0 and the second is 1), after (n — 1) time steps.

For the case when n = 2, 010 is already established and 011 transfers into 010 in

one time-step.

For the case when n = 3, the number of time-steps to reach 010z is 2.

001lzzz — Olzxx — 010zx. 2TS
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Let us use mathematical induction. Assume that the statement is true for n = i. Then,

let us prove the statement for the case n =1 + 1.
000...01xzx,
where the digit 1 is in position 2 + 1. Then
000...01zzx — 000...11zxzx.

At one time-step, the digit 1 will be at position n. But according to the previous case
(n = i), we require (n — 1) time-step to reach 010. In total, we need (n — 1+ 1 = n)

time-steps.
For any initial condition starting with 1zx, see appendix G.

Concerning the right hand side, one might have oscillation. This is because, the con-
figuration in transition rule 30 says that (100) — (110) and (110) — (100). Also, one
might have an irregularity (e.g. 11 at the end). This is because, if the element before the
11 is 0 the configuration says that (011) — (011). If the element before the 11 is 1, one
will have a full pattern since the configuration says that (111) — (101). O

Consideration for the transition rule 86 shows that it is very similar to the rule of 30
except, for transition rule 86, the pattern forms from the other direction. Therefore, we

can make the following proposition.

PROPOSITION 4. For rule 86, starting from any initial conditions in the chain of
k elements, we will end up with two-periodic structures (...101010 or ...010101) which
appears from right to left during 4.5k iterations. The final sequence may have irregularity

or even oscillations of the second leftmost element in the sequence. 1

Proof. For the trivial case 0000...0...0 - nothing happens, that is rule 86 does not give
periodic structure from this initial condition. Any configuration zzz10...000, where the
first occurrence of 1 is on n'™ location (n > 1), transfers into zzzz010, (where on the
right side, first and third elements in the chain are 0 and the second is 1), after (n — 1)
time-steps. For any initial condition starting with xz1, the proof will be similar to rule

30 except that we start from the right hand side.
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Concerning the left hand side, the proof will be analogous to 30 except that for 86,
we are dealing with the left hand side. O

For the two remaining transition rules (135 and 149) which cause the formation of sta-

tionary periodic structures, we can make the following propositions.

PROPOSITION 5.  For rule 135, starting from any initial conditions in the chain of
k elements, we will end up with two-periodic structures (101010...or 010101...) which
appears from left to right during 4.5k iterations. The final sequence may have irreqularity

or even oscillations of the second rightmost element in the sequence. 1

Proof. For the trivial case 1111...1...1 - nothing happens, that is rule 135 does not give
periodic structure from this initial condition. Any configuration 1111...10xzz, where
the first occurrence of 0 is on n'* location (n > 1), transfers into 101zzxx, (where first
and third elements in the chain are 1 and the second is 0), after (n — 1) time steps. The
proof is similar to transition rule 30 except that, we replace 1 by 0. This is also valid for
any initial condition starting with Oxz. Concerning the right hand side, the proof will be

similar to 30 except that in rule 135, one replaces the 1 by 0.

Concerning the right hand side, the proof will be similar to 30 except that in rule 135,
one replaces the 1 by 0. O

PROPOSITION 6. For rule 149, starting from any initial conditions in the chain of
k elements, we will end up with two-periodic structure (...101010 or ...010101) which
appears from right to left during 4.5k iterations. The final sequence may have irregularity

or even oscillations of the second leftmost element in the sequence. 1

Proof. For the trivial case 1111...1...1 - nothing happens, that is rule 149 does not give
periodic structure from this initial condition. Any configuration xxxz01...111, where the
first occurrence of 0 is on n'™ location (n > 1), transfers into zzzz101, (where on the
right side, first and third elements in the chain are 1 and the second is 0), after (n — 1)
time-steps. For any initial condition starting with xz0 the proof will be similar to rule
86 except we replace 1 by 0. Concerning the left hand side, the proof will be similar to
86 except that in rule 149, one replaces the 1 by 0. ]
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We have proved that all four transitions can form two-periodic structure of the form
(101010... or 010101...). The differences between 30, 86, 135 and 149 are: 86 forms
the patterns from the other direction compared to 30. For the case of 135, if one has
initially all 1 then nothing happens. But if there is at least one 0 on the n'*position,
then it transfers into 101zzxx, (where first and third elements in the chain are 1 and
the second is 0), after (n — 1) time-steps. For the cases of 30 and 86, it’s the opposite
way. For the case of 149, if one has initially all 1, then nothing happens. But if there is
at least one 0 on the n'® position, then it transfers into zxzz101, (where the first and
the third elements on the right side of the chain are 1 and the second is 0), after (n — 1)
time-steps. This is opposite to 135.

4.4.1 Formation of three-periodic stationary structures in the

general cellular automata (two-state model)

The previous results have been obtained with periodicity of 2 of the two-state model.

With a periodicity of 3, the following results have been obtained.

With initial periodic conditions shown on Figure 4.4, 32 transition rules conserve 2 blacks

and 1 white (see Figure 4.4). These transition rules are given by the following numbers:

4,5, 12, 13, 36, 37, 44, 45, 68, 69, 76, 77, 100, 101, 108, 109, 132, 133, 140, 141, 164,
165, 172, 173, 196, 197, 204, 205, 228, 229, 236 and 237.

Figure 4.4: Three-periodic pattern in two states (two blacks and one white)

All of these numbers have a binary expression in the form of

xxr0210x
Configuration 1: (001) — (001)
Configuration 2: (010) — (010)
Configuration 4: (100) — (100)
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32 transition rules conserve 2 whites and 1 black (see Figure 4.5). These transition rules

are given by the following numbers:

72,73, 74, 75, 76, 77, 78, 79, 88, 89, 90, 91, 92, 93, 94, 95, 200, 201, 202, 203, 204, 205,
206, 207, 216, 217, 218, 219, 220, 221, 222 and 223.

T [ [ O O BN O N [

Figure 4.5: Three-periodic pattern in two states (two whites and one black).

They have in common the binary expression in the form of

x10xlxxw
Configuration 3: (011) — (011)
Configuration 5: (101) — (101)
Configuration 6: (110) — (110)

Starting from random initial periodic solutions, there are four transition rules which can
produce 3—periodic patterns. These simulations have shown that such transition rules

exist and given by the following numbers:

45, 75, 89 and 101.

The transition rules 45 and 75 produce 3-periodic stationary pattern from left to right.
And transition rules 89 and 101 produce 3-periodic stationary pattern from right to left.
Transition rules 45 and 101 produce 2 blacks and 1 white patterns. And transition rules

75 and 89 produce 2 whites and 1 black patterns.
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4.4.2 General comment on periodic patterns in two-state model

Above we have considered in details two- and three- periodic structures forming in two-
state model. Simulations indicated that no structures of higher periodicity can form in

this model. Our analysis of this phenomenon brought to the following proposition.

PROPOSITION 7. The mazimum periodicity for stationary patterns forming in two-

state model is 3. 1

Proof. First, we will prove that 4-periodic structures can’t be stationary in this model.

Let’s consider the following 4-periodic patterns:
a102a30401020304 . . .,

where the above elements can be either 0 or 1. We have 16 possible cases for 4-periodicity

in two states. These are as follows:

0000, 0001, 0010, 0011, 0100, 0101, O110, O111, 1000, 1001, 1010, 1011, 1100, 1101,
1110 and 1111.

For the first and last cases (0000 and 1111), these are trivial and essentially not periodic.
They are not interesting. For the cases 0101 and 1010, these are the two-periodicity
elements. For the cases 0001, 0010, 0100, 0111, 1000, 1110, 1101 and 1011, these are
acceptable. Now, for the last four cases which are 0011, 0110, 1100 and 1001, theses can

be represented as

(0011)™ or (0001)",

where n gives the number of recurrence of the sequence in the brackets. Let’s consider
the first case and look into the part of the sequence containing two periods 00110011.
The first three digits from left to right are 001. Between 0 and 1, one has 0. The next
three digits from left to right are 011. Between 0 and 1, one has 1. This is a contradiction
to the fact that between 0 and 1, one has 0 in the middle. Let’s consider the second case
(00010001zzx). The first three digits from left to right are 000. Between 0 and 0, one
has 0. The next three digits from left to right are 001. Between 0 and 1, one has 0. So,
this is fine. The next three digits from left to right are 010. Between 0 and 0, one has
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1. This contradicts the fact that between 0 and 0, one has 0 in the middle. The same

argument applies for 5- or more-periodicity. O

In summary, for the two-state model, the following have been noticed: the initial condi-
tion and the level of noise affect the number of transition rules leading to the periodic
stationary patterns. Without noises, two transition rules (15 and 85) converge faster to
the periodic stationary patterns than the others. The increase of the periodicity of the

solution reduces the number of transition rules.

4.5 Three-state model

The two-state model is expanded to allow three or more states per cell. The transitions
in a chain of logically elements having three states are given by a set of 27 configurations,
as each cell in the triple (considered cell and its two neighbours) has three possible states
(black, grey and white that is 0, 1 and 2 respectively). The three-state system can have

a periodicity of 3. One example is shown in Figure 4.6.

Figure 4.6: Pattern with periodicity of 3 in three-state model.

The three-state model gives the 27 following configurations:

Configuration 0: (000) — (0S,0)
Configuration 1: (001) — (0811)
Configuration 2: (002) — (0522)
Configuration 3: (010) — (0S50)
Configuration 4: (011) — (0841)
Configuration 5: (012) — (0S52)
Configuration 6: (020) — (0S60)
Configuration 7: (021) — (0S41)
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Configuration 8:

Configuration 9:
Configuration 10:
Configuration 11:
Configuration 12:
Configuration 13:
Configuration 14:
Configuration 15:
Configuration 16:
Configuration 17:
Configuration 18:
Configuration 19:
Configuration 20:
Configuration 21:
Configuration 22:
Configuration 23:
Configuration 24:
Configuration 25:

Configuration 26:

(022) — (0Ss2)

(100) — (1S40)

(101) — (1S101)
(102) — (18112)
(110) — (154120)
(111) — (18331)
(112) — (18142)
(120) — (15150)
(121) — (18161
(122) — (18172)
(200) — (28150)
(201) — (28101)
(202) — (28202)
(210) — (252,0)
(211) = (28521)
(212) — (28552)
(220) — (28240)
(221) — (28351)

(222) — (28262).

Each transition rule can be characterised by a number to the base of 3
S26525524523522521.520519518517516 515514513 51251151059 585756 55514535251 S0

which varies from 0 to 3% — 1 (3%7).

Similarly, we want to find which transition rules do not destroy existing patterns which
is shown in Figure 4.6. The results are as follows. Starting with initial periodic solution,
2 (3?%) transition rules out 3%7(4.7%) wouldn’t destroy it. Their expression in base 3 is

written in the form of
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XXXXXXX0OXXX2XXXXXXXXXIXXXXX
or

XXXXXIXXXXXXXXX0XXX2XXXXXXX

where X can be 0, 1 or 2.

Configuration 5: (012) — (012)
Configuration 15: (120) — (120)
Configuration 19: (201) — (201)

Examples of transition rules for the three-state are: 28698057, 28875204, 10460357577
and 10460889018. Similarly as in the two-state model, this pattern consisting of a repe-

tition of black, grey and white remains the same from one generation to the next.

We found that they are four transition rules, which take three time-steps to produce
stripes. These simulations have shown that such transition rules exist and given by the

following numbers:

387410647, 2053045476727, 3226214320571 and 3812605051931.

Transition rules 387410647 and 3812605051931 give periodic stationary patterns from left
to right like transition rule 15. And the other two 2053045476727 and 3226214320571
give periodic stationary patterns from right to left like transition rule 85. Let’s deal with

387410647.

387410647 = 000000000222222222111111111

(000) — (010)
(001) — (011)
(002) — (012)
(010) — (010)
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(011) — (011)
(012) — (012)
(020) — (010)
(021) — (011)
(022) — (012)
(100) — (120)
(101) — (121)
(102) — (122)
(110) — (120)
(111) — (121)
(112) — (122)
(120) — (120)
(121) — (121)
(122) — (122)
(200) — (200)
(201) — (201)
(202) — (202)
(210) — (200)
(211) — (201)
(212) — (202)
(220) — (200)
(221) — (201)
(222) — (202).
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PROPOSITION 8.  For rule 387410647, starting from any initial conditions in
the chain of k elements, we will end up with three-periodic structures (012012...or
120120. .. or 201201. .. ) coming from the left which appears during k iterations. 1

Proof. See appendix H O

PROPOSITION 9.  For rule 3812605051931, Starting from any initial conditions

in the chain of k elements, we will end up with three-periodic structures (021021...or

102102. .. or 210210...) coming from the left which appears during k iterations. 1

Proof. The proof is similar to the case of transition rule 387410647. By considering
twenty seven cases starting with the first digit 1 on the left of the structure, some of
them will end with three time-steps. The same proofs can be applied for the cases if one
starts with the first digit 0 or 2 on the left of the structure. [

PROPOSITION 10. For rule 2053045476727, starting from any initial conditions
in the chain of k elements, we will end up with three-periodic structures (...210210 or

... 021021 or ... 102102) coming from the right which appears during k iterations. 1

Proof. By considering 27 cases starting with the first digit 1 on the right of the structure,
some of them will end with three time-steps. The same proofs can be applied for the

cases if one starts with the first digit 0 or 2 on the right of the structure. O

PROPOSITION 11. For rule 3226214320571, starting from any initial conditions
in the chain of k elements, we will end up with three-periodic structures (...120120 or

... 201201 or ...012012) coming from the right which appears during k iterations. 1

Proof. The proof is similar to the case of transition rule 3226214320571. By considering
27 cases starting with the first digit 1 on the right of the structure, some of them will end
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with three time-steps. The same proofs can be applied for the cases if one starts with
the first digit 0 or 2 on the right of the structure. m

4.6 Four- and more- state models

The transitions in a chain of logically elements having four states are given by a set of
64 configurations. The four-state system can have a maximum periodicity of 6 as shown

in Figure 4.7.
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Figure 4.7: Pattern with periodicity of 6 in 4-state model.

As the number of state increases, the number of transition rule becomes astronomical.
For instance, with the four-state systems, the total number is 4% and with five-state
system the total number is 5'2°. The transition in a chain of logically elements having
n states thus would include n® configurations and will have in total n™ . We shall
make some preliminary analyses to find interesting transitions. As a guidance, the same
methodology as in analysis of two-state system can be used. This permits to make
reasonable assumptions on ”interesting” sets of rules for n-state systems and therefore to
avoid blind simulation of all possible transition sets.

As major findings on cellular automata with higher states, the number of transition rules

increases astronomically with the number of states.

4.7 Biological implementations

The results in patterning due to local interactions of logical elements can be used to ex-
plain biological pattern formations. Such interactions can represent contact (membrane-
to-membrane) interactions between cells in biological tissues resulting into differentiation
of cells. For example two-state model can represent chain of locally interacting cells,
where cells in state “1” express some particular gene while in state “0” don’t (see Fig-
ure 4.8). Therefore the modelled interactions can be seen as regulating the differentiation

of cells.

The periodic stationary pattern forming in a two-state model represents a chain of cells
where each second cell expresses the gene. These patterns can form under various inter-

actions (transitions) from wide range of initial conditions.
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Figure 4.8: Generation of two-periodic pattern. The black stripe has a cell which is not
expressed and the white stripe has a cell which is expressed.
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Figure 4.9: Generation of four-, five- and sixz-periodic patterns. A: The black stripe
element has two cells which are not expressed. The dark and light grey stripes have one cell
which is expressed and the other one is not. The white stripe has two cells which are expressed.
B: The black stripe element has two cells which are not expressed. The dark and light grey
stripes have one cell which is expressed and the other one is not. The white stripe has two cells
which are expressed. C': The black stripe element has two cells which are not expressed. The
dark and light grey stripes have one cell which is expressed and the other one is not. The white
stripe has two cells which are expressed.

The three-state model doesn’t have direct biological implementation, while the four-state
model can be viewed as modelling cells whose differentiation is associated with expression
of pair of genes. The four-periodic pattern (i.e. 0, 1, 2, 3, 0, 1, 2, 3, ...) or alternating
black, dark grey, light grey and white) can correspond to the following alternation
of gene expression (Figure 4.9 panel A). The four-state model can have a five-periodic
pattern that is 0, 1, 2, 3, 2,0, 1, 2, 3, 2, ... or alternating black, dark grey, light grey,
white and light grey (see Figure 4.9 panel B). The four-state model can also have a
six-periodic pattern that is 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ... or alternating black, dark
grey, light grey, white, light grey and dark grey (see Figure 4.9 panel C).

Formation of periodic stationary patterns in four-state model are extremely sensitive
to the initial conditions, i.e. these patterns forms only when very special initial condi-
tions are met. This may explain the multi- (four-) level of segmentation in the fly embryo
(Figure 1.5). The model can account for interactions between segment polarity genes

with specific initial conditions set by above three levels of patterning.
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4.8 Summary

The pattern formation which is governed by cell-to-cell interactions has been modelled
using a 1-dimensional chain of logical element. A cell is represented by a logical element
of the chain. The expression of gene inside the cell defines the state of the logical el-
ement. In this model, the cells interact with two closest neighbours according to a set
of rules. This model can be applied to simulate pattern formation in some biological
systems including segmentation. It allows the modelling of stationary patterns forming

in one dimensional chain of cells. The findings are as follows.

With a two-state model, the transition is characterised by a binary number which varies
from 0 to 255 which means, there are 256 transitions. 64 out of these 256 transitions gave
periodic stationary patterns using fixed initial conditions (preset stationary patterns are
not destroyed). Out of these 64 transitions, 25 are resistive to noise which represents the
external effect to the cells. Out of these 64 transitions, there were 6 which gave periodic
stationary patterns using random initial conditions. According to the initial condition,
the patterning can start from either side. Also, the initial condition affects the timescale

of the pattern formation.

For three-state model, a few transitions can produce three-periodic patterns. However,
they don’t have any direct biological implementation. Four-state model can be viewed as
modelling cells whose differentiation is associated with expression of pair of genes. The
allowance of multi-gene in a cell can be specified by four or more states. For instance,
four-state model expresses the presence of a pair of genes. All of these multi-state models

might exhibit stationary patterns.

116



Chapter 5
Conclusion and discussion

This thesis is devoted to study of scaling properties of morphogenetic patterns. For pat-
tern formations in biological systems, the robustness with respect to the developmental
conditions is an important property. One of the particularities of robustness is the scal-
ing with the size of developing object. This has been demonstrated experimentally in fly
and sea urchin embryos [55, 36]. Also, recent observations [74] confirm that scaling of
biological patterns takes place at the echelon of morphogen gradients. Biological pattern
formations have been the subject of extensive research for many decades (since Turing’s
work in 1952). Many research groups are working towards revealing the mechanisms
underlying robustness and scaling of biological patterns. In this thesis, a few hypothet-
ical mechanisms of scaling which can take place during morphogenetic patterning and
differentiation of cells in tissues have been explored. It was proposed that scaling in
continuous systems can take place due to interplay of morphogens such that the level of
one morphogen depends on the size of the medium and it modifies the kinetics of another
morphogen in a way that the second scales. Correspondingly, modifications of diffu-
sion/decay and Turing-type models have been designed (in chapters 2 and 3) such that
their solutions scale with the medium size. Also, we have designed a discrete-type model
(chapter 4) which relates the properties of patterns to number of interacting entities (i.e.
number of nuclei in fly oocyte) so that the forming patterns scale with the number of in-
teracting entities rather than with the physical size of the object and therefore insensitive

to the size (i.e. scale).

5.1 Summary

The motivation of chapter 2 was to modify the diffusion/decay model such that its ex-
ponential solution scales. This chapter is started with the analysis of scaling properties

of exponential profiles forming in simple diffusion/decay systems. We have shown that
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with the Dirichlet boundary condition, scaling occurs under certain conditions. For the
case of Neumann, the solution does not exhibit any scaling property. From the Neumann
boundary condition result, a new model called Scaling of exponential profile has been
derived. The analysis of the morphogens in annihilation model, where both variables
have the same diffusion and decay coefficients, has shown some scaling property. For the
nuclear trapping model, we found out that the solution for the case of mixed boundary
condition scales under some conditions. But for the case of Neumann boundary condi-
tion, the solution doesn’t scale. This contradicts to the result of [96] since he claims that
the solution can scale.

2" chapter can be summarised as the

The main mechanism of scaling studied in the
following. There is a morphogen which is produced in a region of fixed size with a con-
stant rate and this rate doesn’t depend on the size of the tissue. This morphogen is
degraded everywhere in the tissue with a functional rate which also doesn’t depend on
the size of the medium (however, the overall degradation rate as an integral over the
medium will increase with the size of the medium). In addition, this morphogen diffuses
quickly enough to maintain roughly constant level all over the tissue and this level is
inversely proportional to the medium size. This morphogen affects the kinetics rates of
another morphogen (also forming diffusion/decay system) responsible for patterning in
the tissue and therefore, the kinetics of the morphogen depends on the size of the tissue.
By tuning the interactions between morphogens, we can get the kinetics rate which is
inversely proportional to the size of the medium and then the forming morphogenetic

pattern scale perfectly well

The motivation of chapter 3 was to modify the Turing and FHN models in order that
scaling occurs i.e. the number of stripes is the same for two medium sizes. In this chapter,
the investigations were carried out with the original Turing model and FHN model. The
extension of the Turing model with addition of cubic terms prevents the concentrations
going to infinity. Turing patterns have been obtained from stable solution by “turning”
on diffusions. The objective is to assess the effects of the size of the medium L and the
diffusion of the inhibitor on the number of stripes. A third variable has been included
to measure scaling in the Turing model. For the FHN model, oscillating solution can be
obtained by shifting up the cubic nullcline. The FHN model is equivalent to the Turing
model by removing the second cubic terms in the latter model. In this equivalent model
(modified Turing model) without diffusion, Turing patterns have been obtained from os-

cillating solutions. A third variable is included in the FHN model to allow for scaling.

118



In chapter 4, the investigations focused on discrete model where the pattern formation
is governed by cell-to-cell interactions. The patterning can be affected by the noises and
the initial conditions. Also, the initial condition affects the timescale of the pattern for-
mation. The discrete model of pattern formation does consider scaling issue. However,
the scale of patterning (special periodicity) is related to the number of cells in the chain

rather than to cell sizes or size of the embryo.

5.2 Comparison of our definition for scaling factor

with others

In term of scaling, many indications show that it is based on the discrete nature (with
discrete entities represented by cells or nuclei) of biological objects. Some of the mathe-
matical models presented exhibit the scaling property (French Flag for instance) but oth-
ers do not satisfy this property (models allowing exponential profile forming in systems
with decay or Turing patterns). Following the investigation on how scaling is considered
in a few continuous models, we introduced a new formula of scaling factor (see (5.1))
and tested it in continuous models where analytical formula is not available. For our
scaling factor S, the perfect scaling is characterised by S = 0. This formula is different
from the one proposed by de Lachapelle and Bergmann [23] where the perfect scaling is
characterised by S = 1. In order to compare our scaling factor with theirs [23], we need

to convert theirs in terms of £. Their scaling factor in terms of £ (relative position) is

shown in (see (5.2)).
“- ()

RROICE

Our formula (5.1) does not show a singularity at £ = 0 (S tends towards infinity) which is
not the case for (5.2). Furthermore, for two symmetric profiles from two different lengths,
the scaling factor should be symmetric (see Figure 5.1). Consequently, our definition of
scaling factor (implying that perfect scaling correspond to S = 0) seems to be more

suitable for analysis of the concentration profiles.
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Figure 5.1: Two quadratic profiles u=0.5¢L?(¢-1)+4 for different values of L and
plots of the scaling factors for the quadratic profiles of w. A: The blue and red profiles
are for L=2 and L=4 respectively. B: The blue curve indicates our scaling factor and the red
curve indicates [23] scaling factor. In panel A, we have symmetric profiles. Our scaling factor,
calculated according to formula (5.1) and shown by blue line on panel B is also symmetric, while
scaling factor calculated according to (5.2) is not symmetric. The scaling factor at £=0.5 is at
infinity because the derivative at this point is 0. Furthermore, the scaling factor at both £=0
and £=1 is zero since the two profiles have the same concentration. Their scaling factor is not
symmetric at all. Furthermore, at both ends, their scaling factor has different values. That’s
why our definition is better than the one which has been done by [23].

5.3 Application of our result to the segmentation of
fly embryo

As discussion, the various mathematical models of pattern formations reported are of two
types: continuous one and discrete one. The application of these models to a biological
system where the scaling has been demonstrated is very useful to understand the scaling
property. The Drosophila embryo is one of the best understood of these biological systems.
The development of Drosophila embryo occurs in four levels of patterns (see Figure 1.5).
In the first level which consists of the maternity genes, the gradient of Bicoid after
fertilisation should be addressed by a continuous reaction-diffusion model (exponential
model) (see Figure 5.2). Models analysing possible interactions (mutual influence to
decay kinetics) between maternal genes could give some ideas on the mechanisms of
15t level scaling. The scaling of the 28 and 3™¢(and even 4') levels are, most likely,
preconditioned by the scaling in the 15 level. The second level involves the gap genes

which spatial patterns are controlled by the maternity genes. A good modelling tool is
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provided by the Turing model (see (5.3)).

ou 0*u du du

_— = D _— — 3 2. 27 = — —

(915 u8x2 + (7 (CL’U, + bU) QU ) = 61’ 0 ax ol O’

v 0*v 3 o O v

e DU@—F(v(cu—i—dv)—ozvv ) 2% p T p x:L—O, (5.3)
Dz 0%z

5 Dzw —k,z; z2(x=0)=2y, z(x=1L)=z,

where D, D,, and D, are the diffusion coefficients of u, v and z respectively, k. defines
the degradation rate of z, a, b, ¢, d, au, «,, 7 are parameters and z, and z;, specify the
boundary values of z at x = 0 and « = L respectively. The plot of system (5.3) is shown
in Figure 5.2. The third and fourth levels are well described by discrete models. The
third level which comprises the pair-rule genes is formed by stripes which are regulated
by the gap genes. The two-state discrete model permits the modelling of pair-rule genes
patterning (see Figure 4.2). The last genes on the hierarchy are the segment-polarity
genes. They consist of fourteen stripes of transcription around each embryo. The four-
state discrete model is well suited to describe segment-polarity genes (see Figure 4.7). The
logical interactions between cells, which we have explored here, are rather assumed (on the
basis of biological observations) to stabilise the fourth level patterning. Therefore, those
of explored here transitions which result into stationary patterns should be compared
with biological observations on interactions between 4" level genes to support and/or

complete those observations.

1+ concentrations

0.8 4
0.6 4
0.4 4

0.2 4

Figure 5.2: Graph modelling the first and second level of the fly embryo development.
The first level consisting of the maternity genes can be shown by the green curve. The second level
tnvolving the gap genes is represented by the blue and red curves. The concentrations u, v and
z are represented by the blue, red and green curves respectively. Zero—fluxz boundary conditions
are used for u and v, and Dirichlet boundary condition for z. A: The model parameters are
as follows: Dy=1, D,=20, D, =50, v=0.15, k,=0.02, a=1, b=-2, ¢c=38, d=-4, zp=1, z1,=0.6,
y=0.1 and a,=0.1. B: The model parameters are as follows: Dy,=1, D, =20, D,=50, v=0.2,
k,=0.02, a=1, b=-2, ¢=8, d=-4, z9p=1, z1,=0.6, o, =0.1 and o, =0.1.
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5.4 Future works

Concerning stationary patterns forming in FHN model, we have noted that different num-
ber of spikes can be initiated in the same medium. For these patterns, the spatial profiles
of spikes can be of different width while their amplitude is pretty much the same. This
gave us an idea of scaling mechanism which can take place when the stripe should fit a
limited space: that is, it is possible that under some conditions the width of the strip
is proportional to the space given and therefore scales. To check whether it is true, it
is proposed to stimulate a single stripe in the medium of small size and investigate its

scaling properties. The size of the medium will be varied.

For the discrete system, we have seen in the previous chapter that 25 out of 64 tran-
sitions were resistive to noise. There are two types of noises. The first type is that in
some transition, the disturbance to the stationary pattern is extinct locally. We have
already considered one example. And the second type is that the noise is expelled by
propagation towards their edge of the medium. We will investigate the latter one for

future work.

For the 3-periodic in two-state model, we saw that there were 32 out of 256 transi-
tions which would conserve 3-periodic stationary pattern stating from initial 3-periodic
solutions. But there were only 4 out of these 32 transitions which would exhibit patterns
stating from random initial condition. Some initial conditions give patterns and some do

not. This requires extensive research.

For the case of 4-state model, we have 4% transition rules. This number makes the
analysis of 4-state models to be a challenging task. One way in approaching this prob-
lem would be by reducing the problem to that in two-state system. That is, the state
of an element in 4-state system can be represented by a state of two elements each
taken from one of two two-state systems. That is, the sequence formed by 4-state ele-
ments (eq, es,...,e,) can be represented by two interlinked sequences of 2-state elements
(e1 = (x1,91),e2 = (2,92) ..., €n = (Tpn,yn)) as shown in Figure 5.3. The simplest case
to analyse is represented by rules such that they are represented by a pair of rules for
2-state systems, i.e.x,, is affected only by z, — 1 and z, + 1 and y, is only affected by
yn — 1 and y, + 1. The total amount of such transition rules is 2° (which is a tiny fraction

for 4% of all possible transition rules).
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Y1 Yo Y3 Ya Y5 ‘e Yn

Figure 5.3: Representation of j-state (e) elements by two 2-state (x, y) elements.
The pair (x, y) can have four states: 00, 01, 10 and 11.

This approach for example can allow us to find out all rules (out of those which can be
considered in a given way) resulting into periodic solutions. As pattern in each of the
sequences can be 2 or 3 periodic, the combined pattern can only be 2, 3 or 6 periodic. By
allowing interactions between elements from different sequences, we can consider other

transition rules. This is a large task to be considered in a future work.

123



Appendix A

One variable systems with decay

The maternal Bicoid mRNA in fly embryo is localised in a small region on its apical side
and the Bicoid protein produced in this region diffusively spreads and decays along the
entire embryo (Figure 1.9 is an illustration of this system). Here, we show that when the
area of the production is small, we can replace it by a boundary flux at x = 0 in which

this will be derived in this appendix.

For 0 < « < a, we have

d*C
D— —kC =0. Al
S+ (A1)
For a < & < L, we have
DdQ_C —kC =0 (A.2)
dx? o '

The solutions of the equations (A.1) and (A.2) are given respectively by C}(z) and Cy(x).

Clz) = { Ci(z) =Ae™ + Be™ + 2 0<z<a (A3)
Co(z) = Ee™ + Fe™, a<z<lL,

where A = (k/ D)l/ ?. Since we have four unknowns, we need four conditions. Two condi-
tions are the boundary fluxes at z = 0 and # = L: (Cy(x = 0)) = 0 and (Cy(x = L))" = 0.
The other two conditions are the continuity, i.e. C}(z) = Cy(x) and the derivatives i.e.
(Ci(z)) = (Cy(z))" at = a. First, we shall differentiate both solutions.

W) gz~ Bre, (A4)
dx
dcjix) = EXe™ — FAe ™™ (A.5)
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We compute equation (A.4) at x = 0.

=A—-B=0= A=DB.
dx

We compute equation (A.5) at © = L.

y = Fe™ — Fe ™™ =0 = Ee™ = Fe ™ = F = B\
X

We use the other two conditions: Cy(z) = Cy(z) and the derivative, (Cy(x)) = (Cy(x))’
of the function at + = a. We will use the first condition which is Ci(a) = Cs(a) in

equation (A.3).

Ae™ 4+ Ae % + % — Ee™ 4 B0 o
A (e“’\ + 6_“)‘) + % =F (e“)‘ + e’\(QL_a)) ) (A.6)

We shall use the second condition which is (Cy(a))" = (Cy(a))" in equations (A.4) and
(A.5).
AeaA _ Ae—a/\ _ Eea)\ . Ee)\(QL—a) =

A (e“’\ — e_“’\) =F (e‘IA — eA(zL_a)) . (A.7)
In equation (A.7), E can be written as

(eaA _ e—a)\)
b= cah _ oA2L—a)

Putting the expression of E into equation (A.6), we have

a —a p A —e ) (e + AT
A (6 ’ te A) + E - e — eA(2L—a) =

a —a A (ea)\ _ 6—(1)\) (ea)\ + e)\(2L—a)) D
A (e Ate ’\) - caX _ eA(2L—a) i =

) ((e“* . e_aA) - (ea,\ _ e—a)\) (ea)\ + eA(QL—a))) _ v

e’ — gA(2L—a) k

) ((e(z)\ + e—a)\) (ea)\ B eA(QL—a)) . (ea)\ . e—a)\) (6a)\ . eA(?L—a)))

ear — gA(2L—a)

2_9 ad+A(2L—a)
A= ( ‘ ) = —% =

ear — eA(2L—a)
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o2LA p
_6)\(2L a) ) Lk =

B ( 6)\(2L7a))
k(2 — 2e2L2)
We need to compute the expression of E.
a\ __ ,—al\
po_ 2l
2k (1 — e2LH)
We already know that
a\ __ ,—a)
F:Ee2L’\:—p(e € ) 2L

2k (1 — e2Lh) ©

In summary, the expressions of A, B, E and F are as follows

B B p (ea)\ _ e)\(ZL—a))
4= B=- 2k (1 — e2LA)
a)\ _—aA\
E = _p( 2% (1 62L)\))’
F - p( e ) o2
2% (1 — ew) '

By putting the expressions of A, B, E and F', the solutions of C(z) and Cy(z) are written

as

c (x) _ _p (ea)\ _ e/\(2L—a)) ex/\ B p (ea)\ _ e)\(QL—a)) eix/\ N B
! k(2 — 2e2L) k(2 — 2¢2L) K

Colz) = b (ea/\ - eiaA) o _ p (‘eaA - efa/\) 2L A
2k (1 — e2L) 2k (1 — e2L) '

By simplifying the above solutions, we get

Ci(z) = p (1 _ (eaA _ 6)\(2L7a)) (e“ _ e“)) |

K 2% (1= e2iN)
aX __ e—a)\) (exA _ e(2L—x)/\)

2k (1 — 2L

p(e

CQ(SL’) = —

We replace p by p/a in Cy(z).

P (ea)\ _ 67(1/\) (e:t)\ _ 6(2[/733))\)

Cof) = - 2ka (1 — e21H)
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As a gets smaller, we use the linear approximations of the exponentials.

e~ 14 al,

e~ 1 —al.

Substituting these linear approximations in Cy(z).

et _ 6(2L—ac)/\
CZ(x) ~ _p>\ ( L (1 _ €2L)\) )

Differentiating and symplifying Cy(x).

, P (613)\ _ 6(2L—x))\)
(OQ(‘T)) - D(l —_ €2L’\)
Evaluating (Cy(x)) at # = 0 and at = = L.
, P (1 _ 62L)\)
(Ca(x)) |$:0 = —m =
/ o (eLA _ 6(2L—L),\) p (eL,\ — el -
(Ca(2)) |x:L - 77D (1—e2d)  ~ D(1— ey 0.

Thus, we have shown that when the area of production, on the left side, is small compared

to the medium size, we can replace the internal production by a boundary flux.
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Appendix B

Scaling of exponential profile

(mechanism 1)

In Section 2.3, we have shown that the solution of u for the case of Neumann boundary
condition doesn’t scale at all. However, under certain conditions (when the diffusion is
too fast or decay is slow) this solution levels up to the value inversely proportional to the
medium size. We can use this result for coupling with another variable such that the latter
one can be scaled. In chapter 2, the solution of v(z) (see (2.22)) can be approximated by
only one exponent. It does scale indeed. In this appendix, we derive the solution (2.22).
We introduce a second reaction-diffusion equation for v and we multiply the decay term
by u? as shown below.
d*v dv
D,— — kou® =0; vz =0) = v e

v
dz?

(z = L) = ju, (B.1)

where vy is the boundary value at x = 0 and j, is the boundary flux at x = L. We

already know the approximation of u from section 2.3.2. We can put it into the equation

(B.1).
d*v D, 2

The solution of (B.2) is written as
v =C1e" 4 Che ™,

where C] and Cy are coeflicients to be determined and
ke (DL\?
T\ \krL)
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We need to compute the derivative of v in order to use the Neumann boundary condition

at x = L.

Vv = Crae™ + Chae ™.

We use the Dirichlet boundary condition at = 0 which is v(z = 0) = wy.
v(x =0) =Cy + Cy = vy.
We use the Neumann boundary condition which is v'(x = L) = j,,.

V'(x = L) = j, = Cre® — Coe 1 = =2,

QT

We can get C) from equation (B.3).
01 = Vo — CQ.
We can substitute the expression of C; into the equation (B.4).

(Uo - Cg) €La - C2€7La = j—L =
«Q

_ JL
—Chet — Che o = 22 _ ypel =

«Q
; Lo
_ JL — Ygoxe
_02 (eLa te La) —
«Q
jr — voaer®

Cy=—

a(ele 4 e—Ley

We can determine the expression of C; in equation (B.5) since we know Cs.

jr — voaeke vo (€5 + e7L) + jp — voae™™  jp 4 veae e

01:U0+

In summary, the coefficients C; and Cs are

i1+ vooe L
) JL 0 ’
a (el 4 el
. Lo
— Vpoee
C, = — JL 0 '
a (el 4 e=Le)
The full solution of v is
Jir + voae*La ro iL — voaeLO‘ .
— — e
a (eLa + e—La) a <€Loz + e—La)
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This can be simplified to

((jL + uooze*LO‘) T (jL _ uoaeLa) J—

o (eLa + e—La)

v =

We assume that L goes to infinity, Then, v can be approximated by

(jL + anefLa) e _ (]L _ aneLa) e T
v = - =
aer?
(jL + voae_La) ere (jL — voaeLQ) e T
V= 7 — 7 =
aet® aet
(jL _ UoOéeLa) e o
aeLa
Therefore,
v & yge” T

By putting back the expression of «, v can be approximated by

_5& [ kv
VR yge " ku V Du

Y

where ¢ = /L. Under the mixed boundary condition when L is large, the approximation

of v is written as a single exponent.
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Appendix C

Annihilation model

In this appendix, we show the derivation of the solutions (1.23) and (1.24) discussed in

section 1.9.1.

ou 0%u
E = Du_ax2 — kyuv, (C-l)
v 0%
E = Dv@ — kUUU, (CQ)

where D,, and D, are the diffusion coefficients and k, and k, specify the decay rates. D,

D,, k,, and k, are constants. The boundary conditions are:
u(z = 0) = uo, u(xr=L)=up,

v(z = 0) = vy, v(x=1L)=vg.

ug and vy are the boundary values at x = 0 and u; and vy are the boundary values at

x = L. We shall focus on stationary state of equations (C.1) and (C.2).

d*u
d*v
DU@ — k’UUU =0. (04)

We multiply equation (C.3) and (C.4) respectively by k, and k,. This will give

d*u
k’vDu@—kukaU = O, (05)
d*v
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After subtracting equation (C.6) from (C.5), this yields

d*u d*v
kyDy— — k,D,— =0
dz? dzx? =
d* (kyDyu)  d? (k,D,v)
dx? B dx? =0=
@* (k,Dyu — kyDyv) 0
dx? -
Integrating the above equation twice gives
k,Dyu — k,D,v = Az + B. (C.7)

Applying the boundary condition at z = 0 in equation (C.7), gives
B = k,D,ug — ky,D,vy.

Applying the boundary condition at x = L in equation (C.7), gives

kyDyur — k,Dyvr, = AL + ky,Dyug — ki, D,yvy.

We can get A from the above equation

_ kyDyup, — kyDyvp — kyDyug + ky Dyvg

4 L

The full solution of equation (C.7) is

X

k,Dyu — k,Dyv = (k,Dyup — k,Dyvp — kyDyug + kyDyvo) <L

) + k’vDUUQ - k’uDvUQ.

We want to simplify the problem by considering D, = D, = D, k, =k, =k, up, = vy =0
and vy, = up in equations (C.3) and (C.4).

d*u
d*v

with the Dirichlet boundary conditions



For quantitative analysis, we will consider the sum and the difference of the two mor-

phogens. The addition and subtraction of equations (C.8) and (C.9) lead respectively

to
d? (u+v)
D= — 2kun =0, (C.10)
d* (u —v)
v) _ o, 11
e 0 (C.11)

Let s = u+ v and s_ = u — v. Then, the equations (C.10) and (C.11), in terms of

s; and s_, will become

d25+ 2k'
d?s_

= 0. 1
- 0 (C.13)

The differential equation involving s; (see (C.12)) still has a term containing u and v

namely wv. So, we shall write uv in terms of s; and s_.

o — (u+v)* — (u—v)? :si—s_.
4 4

As we can see, uv is written as the quarter of the difference of the squares of s, and s_.

By putting the expression of uv in terms of s, and s_, the equations containing s, and

s_ will be
Ps Rl o5) (51_83), (C.14)
dx? 2D
d?s_
= 0. C.15
e (C.15)

The boundary conditions associated with s, and s_are derived from the boundary con-
ditions associated with v and v. For s, the boundary condition at x = 0 and x = L is
the sum of the boundary condition of u and v at these ends. For s_, it is the difference

of the boundary conditions of v and v at both x =0 and x = L.

sp(x=0) = ulx=0)+v(x=0)=u, (C.16)
si(x=L) = ulx=L)+v(r=L)=uy, (C.17)
s_(x=0) = ulx=0)—v(x=0)=um, (C.18)
s (x=L) = ulx=L)—v(x=L)=—um (C.19)
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We can integrate equation (C.15) twice.

d?s_

dx?

:O:>8720137+CQ.

S_ = Cll' + Cg. (CQO)

The solution of s_(C.20) is a linear profile. We use the boundary conditions involving s_

to determine the constants C; and Cs.
s_(x=0) =uy = Cy = uop.

CQ = Uo

s (x=L)=—up = —ug = LC, +ug = —2uy = LC; =
2u
Cl — —TO

Using the expression of the constants C; and Cy, the full solution of s_ is

s_ = g (1 - 2%) . (C.21)

Coming back to (C.13).
d*sy k(57 —5°)
dx? 2D

It is rewritten by putting all the terms containing s, on the left hand side. Knowing the

expression of s_ (C.21), and after its substitution into (C.14), one has

d*s, kE E 2
sy K o R 1_2_) _ .22
dz2 2D+~ “ap™ < L (C22)

Multiplying both sides by 2D/k in equation (C.21) gives

2D d*s, 9 2
T A= (-2g)

Let 8 = 2A\? where A\ = k/D. The above equation can be rewritten as

d’s T\ 2
B — st = (1 - QZ> . (C.23)

As s, is the sum of two continuous functions u and v (concentrations) in the interval
[0, L], it is a continuous function. Since we can’t solve (C.23) analytically, we use power

series method. s, can be approximated by a polynomial function. So, it can be written
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as
o)

n=0

s (1-2)

We shall differentiate the above series twice (see C.24).
2\ — AN
/ —
s, = —(Z);nsnO—QE) ,
2\ T\ "2
A ~1 n<1—2—) .
st (L) ; n(n—1)s 7
We square the power series of s, (see C.24).
2
X n
J(1-27))
s L )

We write a few terms from expression (C.26).

n=0

8sy 2455 T 485y x\2 80ss z\3
n_ 2% 1 2—) (1 . 2—) (1 . 2—)
T T ( L)t L) T2 L
120s¢ z\%4 168sy; r\° 224sg x\0
1— 2-) (1 _ 2—) (1 _ 2—)
2 ( ) 2 L) T ) "

22859 7
1—2% )
E ( ) "

Similarly, we write a few terms from (C.27).

s = sf+ 2051 (1 =27 ) + (3 + 2s0) (1 - 27

4 5

+ (53 + 25183 + 25054) <1 — 2%) + (25085 + 25154 + 25953) (1 — 2%)
6

+ (s§ + 25086 + 25155 + 25234) <1 — 2%) +

7
(25087 + 25186 + 25955 + 25354) <1 — 2%) 4.

Substituting all of the terms in (C.23)

852 2483
&) (F +

L2

3
80s5 (1 _ 23) +

120s¢ ( T
L2 L

i 1-2—

X
1—2—)
(1-27)+ I

(C.24)

(C.25)

(C.26)

(C.27)

2 T\ 3
) + (28083 + 28182) <1 — 2z>

)1...)

2 3
— (sg + 25051 (1 — 2%) + (5% + 25052) (1 — 2%) + (25053 + 25152) (1 — 2%) + - >

2
——u0(1—2L) .
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Identifying the coefficients of different powers of (1 — 2%) at both sides of the equality.

:1 - 2% " % _ 2=, (C.28)
:1 . 2% L 245253 D P— (C.29)
:1 — 2% ? : 4‘1_6284 — (87 + 2s052) = —ug, (C.30)
:1 — 2% ’ : 80£85 — (25083 + 25152) =0, (C.31)
:1 - 2% b 122586 — (53 + 2054 + 251535 = 0. (C.32)

Assuming that vy = vy, s; has a minimum at x = L/2. We write a few terms of equation
(C.24).

2 4 €T 6 T\ 2 8 x\3
A P 1—2—)—— (1—2—) _° (1—2—) S
T L82< L) 1% I L L

We substitute © = L/2 into this series

L
sﬁr(x:§>:02>31:0.

Putting s; = 0 in equation (C.29) will imply that s3 = 0. Substituting s; = 0 and s3 = 0
in equation (C.31) will lead to s5 = 0 and so on. In general, the coefficients s, 1, where

n € N, are equal to 0. The solution of s, will be written in the form

T2 r\4 z\6
s+=so+32(1—2z) +s4<1—2z) +86(1_ZZ) Foe (C.33)

We can write s, in terms of sy from equation (C.28).

8sy L%s?  L%s? N°L%s? N[22
Iz % TR 8(2) 16 7T 16

The coefficient s4 can be determined from equation (C.30).

8051 o , L2 (25080 —u2) L (250—A2f255 - u3>
T3 (57 + 25052) us = sy 155 (2

X2L% (2)2L2s3 — 16u2)

= %= 1536

136



Therefore,
SSLANY — 8L2u2 \?
Sy = )
! 768

The coefficient s¢ can be obtained from equation (C.32).

120556
L2

— (Sg + 28084) =0

L2 (8% -+ 28084)

= g5 =

0 1208

227242 2 374N4_gA2242
L? (< 1680) + 250 (—SO 768 u0>>

= 56 =

: 20(Z)

979 [ L*si\* 2L4siAt—1650 N2 L2u?

N AL ( 556 s O)

S fr—y

0 240

979 [ 3L*si)\* 2L4sAA*—1650 L2u2 A2
B AL ( 7os T BT ‘ >
B 240

A2]2 5A4L4s3—1650A2 L2u2 5A6L0s8—16sgua At L4
768 768
S = =
0 240 240
Therefore,
585 LN — 16squd LN
Sg = i
0 184320
Now assume that \> = k/D < 1. The coefficients sg, Sg, s10, etc will have terms

containing A of higher degree. Therefore, equation (C.33) can be approximated as

(C.34)

o~ st N[22 < :1;)2 N L < x>4.

1—2— 1—2—
16 L 96 L
In order to determine the expression of sy, we shall use the boundary conditions at z = 0

and x = L (see (C.16) or (C.17)).

NP2 N LA

- C.35
to =%+ g 96 (C-35)
We rearrange the equation (C.35) in order to have a quadratic equation in s.
N2L2 A2 L2u2
1—65(2) “+ S — (UO + 96 0) =0. (036)
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We have two possible solutions of s from equation (C.36).

—11\/1+4(A2L2)< o+ 2l )

So — 2)\2L2 . (C37)

The positive solution of equation (C.37) can be approximated by

8 A2L?
50 & (—1 /142 ) : (C.38)

A2L2 4

Using (C.38), the expression of s, from (C.34) becomes

2
w02 L2 w0 A2 L2 z\2  AL%u? z\4
s+:m2< 1+\/1+—0A4L)+A2L2< 1+,/1+0§TL) (1—2%)" — 252 (1-2%)".

(C.39)

After further simplifications, (C.39) can be written as

2
St = Am( 1+\/1+“°AjL2>+A2L2< 1+,/1+%) (1—22)2 - XL _gz)4,

In summary, the solution of s_ is given by

s_ =wug (1 —2¢),

and s, is approximated by

2
S+NA2L2< 1+\/1+“0AjL2)+A2L2( 1+,/1+%2L2) (1—2¢)?%— ““0(1—25)

where € = x/L, \* = k/D and vy is the boundary value from the boundary conditions
(C.16) to (C.19). These formulae are used in the section 2.6.
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Appendix D

Scaling of exponential profile

(mechanism 2)

In chapter 2, the morphogen with concentration v is produced and diffuses. We assume
that the morphogen decays in a region of size a in the middle. In this appendix, we shall
derive three solutions of u: One solution coming from region (2) and the other two coming
from region (1). From these solutions, we can show that all of them are proportional to

the size of the domain.

ONIOIENG

0 (L-a)/2 (L+a)/2 L

In region (1), we have

d*u
D,— = 0.
dx? TP
In region (2), we have
D d*u kw0
u T, T KU == U.
dx? P

The solution in region (1) for « between 0 and (L — a)/2 is written as

D 2
== ) 1
Uy 2Dux +Cz+ D (D.1)
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The solution in region (2) is written as

uy = Ae™ 4+ Be ™ + /{;£ (D.2)
The solution in region (1) for « between (L + a)/2 and L is written as
Uz = — L e (D.3)
2D,

In solution (D.2), A = (k./D,)"?. Since we have six unknowns (4, B, C, D, E and F),
we need six conditions. The first two conditions are the boundary fluxes at x = 0 and
x = L: u}(0) = uj(L) = 0. Two are the continuity at z = (L —a)/2 and x = (L + a)/2.
And the other two are the derivative at x = (L — a)/2 and x = (L + a)/2. Let’s use the

first two conditions. We need to derive solution (D.1).

/ ﬁ
=——a+C.
Uy ux

By using u}(0) = 0, we see that C' = 0. Hence, the solution (D.1) is

p

uy = —Eﬂfz + D.
We need to derive the expression (D.4)
Wy = —L g+ E. (D.4)
D,

We use uj(L) = 0.
p pL
0=-Lr+E=p="
D, D

u u

So far, the solution of ug is written as

L

_P F
5. Tp T

Uz =

We use the continuity at © = (L — a)/2 and ¢ = (L 4+ a)/2. First vy((L — a)/2) =
us((L +a)/2)

_P (L — “)2 + D= A5 4 g (559 & (D.5)

r
oD, \ 2 ky’
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Second, us((L + a)/2) = usz((L + a)/2)

2
p (L+a pL (L+a (£52)A ~(E%)A, P
— —— F=A B —. D.6
2Du(2>+Du(2>+ et r T4 BertE N (D.6)
Third, by equating the derivatives of u; and uy at x = (L — a)/2, we obtain
_ P (a5 g (B (D.7)
AD, 2
Similarly, by equating the derivatives of uy and ug at * = (L + a)/2, we obtain
p L+a pL (Lge) (Lo
— = Ae\ 2 B 2 D.8
>\Du<2)+/\Du ¢ (D-8)
Multiply (D.7) by (522
L—a
—p(L—a) o522 L—
— = Ael"" 9 — B. D.
2)D, ‘ (D-9)
Multiply (D.8) by 5,
L+a A
_p (L — a) e( 2 ) L
— = Aelltar _ B D.1
2)D, ‘ (D-10

Subtract (D.10) from (D.9).

A (e(L—a))\ _ 6(L+a),\) _ _1% (6(@&))\ + e(%))‘) .

We can deduce A from above.

p(L—a) <e<#)’\ + e(%)’\)

A= - 2AD,, (eL-aA — e(LFa))

Putting the expression of A into (D.7)

p (L—a p(L—a) (e(%))‘q—e(%))\)
D, ( 2 ) | T 2D, (eTox —elTran
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From above, B can be written as

oy (B 4 (5

_(L7a>)\7 p L_a _p(L a) <6 : +e ? > (L*(Z)A

Be 2 = e\l 2 .
AD, 2 2\D,, (ell=a)A — e(L+a)X)

5 _p (L—a) (e(%)/\ + e(L;Z))\) o (L a)

2AD,, (ell=®A — e(L+a)r) 2A\D,

(1591

We can simplify the above expression

5 p(L - a) (63(3L+a) + 6’2\(3L—a)>

o 2AD, e(L—a)x _ o(L+a)A

Since we know A and B, we can determine the coefficient D from equation (D.5).

p(L—a) <e(L2+a)>\+e< Lz“)*)

L—a)?2 _ L-a)\  p(L—a) e3BL+a) 3BL-a)\ _(L-a)y
~3b, (53%) +D=- 23D, (eT- X —e(LTax) el 5) — 53, (ei@—a)xtifua)x e (57 4

s

From above, D can be written as

p(L—a) (e([?l)A—Fe( =B )*)

QADu(e(L—a)/\—e(L+a)/\)

D=-—

L—a _ A(3L+a) | _2(3L—a) _(L-a N2
6( 2 )A— pész) (ei(L—a))\thL+a)A )6 ( 2 ))‘—Fﬂ‘i‘ 5 (M) )

This gives after further simplification

p(L _ a) (eL)\ + e(L—a))\) p(L _ a) (€>‘(L+a) + €L>‘) p P (L . CL)

D= _2)\Du (e(Lfa))\ _ e(LJra))\) o 2\D, (e(Lfa))\ _ e(L+a)/\) + k., 8D,

The full solution of u; is then

p 4, pL—a) (el + eE=@X)  p(L —a) (XD + )  p  p(L—a)
up = —2Dux T 9D, (eL—ax — e(LFa)r) " 2\D, (eT—aX — c(LFa)x) + k. + 8D
and the full solution of us is
Lta L-a
B p(L—a) (e( P (5 )A) . p(L—a) e3(L+a) 4 3 (3L—a) o p
Uz = — IAD,, (eT—0X — e(L+a)d) e - 2AD,, e(L—a)XA _ o(Lt+a)x € + k_u
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We can determine the expression of F' in equation (D.6).

(45, (572>
p_(Lta\? | pL (Lta) , p _ v - (L59)1 _ pll—a) (BBEt04 300\ _(Lze)y | p
— 5L ( : ) + E( = )+ —— QADu(e(L*a)Afe(L+a)>‘) e ~ XD, ( e(L—a)x _g(LFa)x )6 + ku
p(L—a)(e<L5a)A+e(L5a)k> (L a) ( ) 3(3L+a) 4 (3L—a) (L a) 2
— L-a)y L-a) (e2CrF0)1eaBEma) ) —(£32)) Lt L (Lt
F=_ IR, (e e\ 2 — pz,\Du (ee(L—nr)X,z(L+a)>\ ) etz + 1% + Zgu ( 2a) - %u ( 2a)

We can simplify the above expression

oo pL—a) (g e) p(L—a) (e p p(L+a)’ pL(L+a)

= — IND, (e(L—a)/\ _ 6(L+a))\) B 2\D,, (e(L_a),\ _ e(L+a)’\) +k_u+ 8D, — 5D, .
Therefore, the full solution of uz is written as

_ o p 2, pL,  PLo(TFMe) o pLoa)(ePteltY) ) p(Lia)®  pL(Lta)
Us = —gp,U" T 5T~ DNDy (b= —eLraX) 23D, (ell-DA—elLa)N) Tk T 8D, T 2D

Our three simplified functions are represented as

@) 72 (L—a)(?—l—e*“—i—e“’\)+1+(L—a)2
u(xr) = — — —+
! P\ 2D, IAD, (e~ — e ke 8D,
(L B a) <6ML2+a> n 6%@;)) (e“ + ex(sz)) 1
u2<l’> = P\ - 2/\Du(6(L—a)/\_e(L+a))\) +k_u
2 Lz (L—a)(2+e+e?) 1  (L+a)’ L(L
@) = pf b Eoo@re®e?) 1 (Lt L(L+a))
2D, D, 2AD, (e~ — e®}) ku 8D, 2D,

Assume that D, is large. Then, u; can be approximated by

(L—a)(24+e ™ +e?) 1
~ — — D.11
=P < 2AD,, (e~ — ) * kv, ( )

Assume that A is very small, then
e~ 1—a\

e ~ 1+ a\
( (L—a)(2+1—ar+1+a)) 1>
up~=p\—

D, (I—ar—1—ar) Tk

N 4(L—a) N 1
UEP\ T DLax |k,
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Assume that D, is large. Then, us can be approximated by

ugzp(—(L_a)@_}—ea —l—e“) 1).

D, (e —e) T

This is identical to the approximation of u; (see (D.11)). Therefore ug can be approxi-

mated by
~ PL
~ak,

(D.13)

us

Let’s come back to the solution wus.

(L—a) <€A(L2+a) + eA(LQ—G)) (ez,\ + e,\(L—z)) 1
2D, (eT—a\ — e(L+a)d) + k_u

us(x) =p

Assume that D, is large. Then, us can be approximated by taking the following approx-

imations of terms occurring in the above equation:

+1+>\(L——CL)

¢ 2 2

a —a AL
A(L2+)+€A<L2 ) (1+ (L +a)

):2+L)\

e+ M L gAN 1T+ A (L —2) =2+ L),

N (L—a)(2+ LN\ 1
un(z) ~ p <_ D, (—2an) k_u> !

and therefore:

which can be further approximated as:

o -2+ 1) ((L—a)(+LN) | 1)
“2(x)”p<_ IAD, (—2a)) +k_u>”p( ok +k:—u)N

(L—a) 1 L a 1 L 1 1 pL
P ( g ) P an T ) S s TR e Y (P

In this appendix, there are three solutions of u (uy, us and wug). When the diffusion is

large or the decay is small, all solutions level up and are proportional to the size of the
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medium. This allows for the solution of the second variable v (see (2.24)) to be scaled.
We see that the approximations (D.12), (D.13) and (D.14) are proportional to the size of

the medium.
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Appendix E

Nuclear trapping model (Mixed

boundary condition)

In chapter 2, one part of Bicoid molecules is located in the syncytium and freely diffuses,
while another part is bounded by the nuclei. Let u be the molecules which are moving
with diffusivity D in syncytium and v be the bounded molecule, where it is confined to
the nucleus and can be considered immobile. In this appendix, we want to show that u

scales with the mixed boundary condition.

ou 0%u
0
a_: = uki — vks — vk, (E.2)

Equating (E.2) to zero, we will have

uky — vky — vk, = 0= uky —v (ks + k,) = 0=

v — Uk'l
ke + ky

Equating (E.1) to zero and putting the expression of v from equation (E.3), we obtain

(E.3)

d?*u k1ky
D— k., ki — =0
g2 e ( o k) =
d2u kl (kQ + kv) - klkg d2U, klkv
D— —_— —_— p— D— _— —_— p—
i ( ko + i s ) 70T
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2 2
Diﬂ—u(m+-Mm”>:Diﬁ—u<mAb+k”+phm):o:>

dx? ko + k, dx? ko + ki
2
dx? D (k2 + kv)
The solution of u(z) from equation (E.4) is
u(z) = Ae®VP 4 Be™™VP, (E.5)
where
5= ky (ko + ky) + pkik,
B D (kg + k)
We apply the mixed boundary conditions which are u(x = 0) = 1 and u/(z = L) = 0.
Using the first boundary condition u(z = 0) = 1, we have
w(0)=A+B=1. (E.6)
Using the second boundary condition «'(z = L) = 0, we obtain
u(L) = Ae"VP — Bem1VE — 0. (E.7)
We can, for example, get B from equation (E.6).
B=1-A. (E.8)

Substitute B, from equation (E.8), into equation (E.7).

AelVP _ (1-A) e VB — AelVB _ o= LVB L pe=LVB — 4 (eL‘/B + e’L‘/B) _e VB .

LVB | —LVB LB e IVP
:>A(e +e ):—e :>A_6—L\/B_|_€L\/B
We can now compute the coefficient B in equation (E.8).
e~ LVB (e{VB+ehﬁ>—efM@ cLVB
B=1- e—LVB { elVB e~ LVB 4 eLVB T e LVB 4 eLVE
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In summary, the coefficients of A and B are

e_L\/B
A= —°
e~ LVB 4 elVB’

elVB
B = e

The full solution of u(z) from equation (E.5) is written as

e~ LvP

GL\/B
W) = v

zv/B -
e +—€—L\/E_€L\/Be

B, (E.9)

As L tends to infinity, u(z) from equation (E.9) can be approximated as

x—L)/B _ (L—x)VB zv/B
u(l‘)%e( ) 6( ) :_6 —|—€_z\/B%e_$\/B (E]_O)
eL\/B eZL\/B ’ ’

By putting the expression of g, in equation (E.10), u(z) is represented as
[ Eulea k) +pky ko
u(r) ~e Plkatho)
Here, if k, tends to 0 and p = N/L? then u(z) can be approximated as

z NkqFv
u(z) ~ e LV Dt (E.11)
i.e. u(z) does scale. The formal quantity to measure scaling of morphogen gradient is
g ou ou\ "
B oL o€ '
Since £ = x/L, the solution of u(z) from equation (E.11) can be written as

¢ NkqFo
U~ e °V Dkatky)

given by

The calculation of the derivatives of u with respect to & and L gives

ou

or Y
@ — Me_g \/ Dl(\llc};f]:v)’
o0& D (ks + k)

S =0,
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which shows a perfect scaling. Thus, under the mixed boundary condition when L tends

to infinity, scaling tends to be perfect (S — 0).
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Appendix F

Nuclear trapping model (Neumann

boundary conditions)

This is similar to the previous appendix except that we use Neumann boundary condition.

From here, we show that the solution u doesn’t scale.

ou 0*u
0
8—: = uky — vky — vk,. (F.2)

Equating (F.2) to zero, we will have

uky — vky — vk, =0 = uky —v (ks + k,) =0 =

v — uk1
ket ky

Equating (F.1) to zero and putting the expression of v from equation (F.3), we obtain

2
Dd—u—uk‘u—p<uku—M>:0:>

(F.3)

dz? ko + k
d*u k1ky
D—: —uk, — kh————— ] =0
az “p< ! k2+kv) ~
d2u kl (k’g + k?v) — kle d2u klkv
gz TP ( ko + ko dz TP\ e 1 ks ~
d*u pkik, d?*u ky (ks + ky) + pkik,
D— —u |k, =D— — =
e “( +k2+k;v> a2 “< Fo t ks ) 0=
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2 Ky (k2 + kK, K1k,
Fu (k2 + ky) + pky _0 (F.4)
Ox? D (kQ + kv)
The solution of u(z) from equation (E.4) is
u(z) = Ae®P + Be VP, (F.5)
where
5= ky (ko + ky) + pkiky
D (ks + k)
We shall use the Neumann boundary conditions which are «'(x = 0) = —y and v/(z =
L) =0. We need to compute the derivative of u(z).
u'(x) = A\/Be™VP — By/Be VP, (F.6)
Using the first boundary condition u/(x = 0) = —v, equation (F.6) is written as
f)/
A-B=--L, (F.7)
VB
Using the second boundary condition, u/(z = L) = 0, equation (F.6) is written as
AerVP — Bem VB = .. (F.8)
We can, for example, get A, from equation (F.7)
A=B- L. (F.9)

VB

Substitute A, from equation (F.9), into equation (F.8)
v LB ~LVB _ p IvB _ 1 LVB ~LVB _
B—-—]e — Be = Be — —=e€ — Be =0
(2~ ) 7

VE VB \ VP =i

We can now compute the coefficient A in equation (F.9).

( eI VP Rl 1) a4 (ewr?_(eLﬁ_e—Lﬁ))

L
:>B<6L‘/B—6_L‘/B>:leL\/B:>B:l(—e\/B )

— L
A_\/B

__evr ) - - O (_e¥Y7
eL\/B—e_L\/B> VB VB (eL\/B—e_L\/B VB eLvB_e~LVB

B\ elvB — o—LVB
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In summary, the coefficients of A and B are

v e hVP
A= L |—
VA=l A
p - (o
S VBV

The full solution of u(z) from equation (F.5) is written as

ry <€(1‘7L)\/B _|_ e(fo)\/B>

u(z) = NG (eL\/B — @—L\/B) (F.10)
As L tends to infinity, u(z) from equation (F.10), can be approximated as
(z—L)VB (L—WB)
e +e z\/B
U(ZE) ~ ! ( = l € + 6—50\/5 ~ le—l’\/ﬁ. (F.ll)
VG V3 \ v V3

By putting the expression of 3, u(x) can be represented as

,y —z ky (ko+ky)+pkyky
u(z) = e Vo Pt (F.12)

kay (k2 +kv)+pkl ky
D(k2+ky)

Here, if k, tends to 0 and p = N/L? then, u(z) from equation (F.12), can be approximated

as
oz Nk1ko
u(x) ~ L#e L\ DkaFko) |
Nkiky
D(ka+ky)

We can replace x/L by £. The solution of u(z) can be written as

wr LDy (F.13)

Nkiky
D(k2+ko)

The formal quantity to measure scaling of morphogen gradient is given by

g _ ou\ [ou\ "
N oL) \o¢)
Let’s compute the scaling factor of equation (F.13). We differentiate u with respect to L

and &.
ou ¥ e[ NEiFu
—_— = ¢ § D(ko+kv)
OL Nk ky ’
D(k2+ky)
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NF1 ko

ou e N ou\ "t €V DRk
— = —L'ye D(kot+kv) = — e ——

¢ ¢ Ly
¢ Nk ko ¢,/ ELky 1
e D(ko+kv) e D(ko+ky)
[Sp— i = - £0.
Nkiky L~y I, | Nkiky
D(k2+kv) D(k2+kv)

The above scaling factor formula depends on parameters in contrast with the formula
which was derived in the previous appendix. Scaling occurs if L, N, k; or k, is large.

Alternatively, we can achieve scaling if D or ks + k, is very small.
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Appendix G

Rule 30

In chapter 4, we have proved that, for the cases of transition rules 15 and 85, they will
take two-time steps to produce a new stripe 101. In this appendix, we want to show that
if we start with lxzzxx for the case of transition rule 30, it will take nine-time steps to

produce a stripe 101.

30 = 0001110
(000)—(000)
(001)—(011)
(010)—+(010)
(011)—(011)
(100)—(110)
(101)—(101)
(110)—(100)

(111)—(101)

Case A: 10000zx.

10000z — 11002 — 101z (2 TS)

Case B: 10001z.
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10001z — 11011z — 100102 — 1111z — 1000z — 110z — 10x. We need to consider

more elements.

Case B;: 100010z.

100010z — 11011z — 100102z — 1111z — 1000z — 1102z — 10z. We need to

consider more elements.

Case B;;: 1000100zx.

1000100z — 110111z — 100100z — 11111z — 10000z — 1100z — 101z. (6TS)

Case Bis: 1000101 z.

1000101z — 11011012 — 1001001z — 11111112 — 1000000z — 110000x — 10100z.
(6TS)

Case B,: 100011z.

100011z — 1101102 — 10010z — 1111z — 10002 — 110z — 10z. We need to

consider more elements.

Case By;: 1000110zx.

1000110z — 1101102 — 10010z — 1111z — 10002z — 110z — 10x. We need to

consider more elements.

Case Byj;: 100011002.

10001100z — 110100z — 100111z — 1111102 — 10000z — 1100z — 10100x. (6 TS)

Case B212: 10001101 .

100011012 — 11011001z — 1001011z — 11110100z — 1000010z — 110011z —
101110z. (6TS)

Case Bys: 1000111z.
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1000111z — 11011002 — 100101z — 1111012 — 100001z — 110011x — 101110z.
(6TS)

Case C: 10010z.

10010z — 1111z — 1000z — 110z — 10x. We need to consider more elements.

Case C;: 100100z.

100100z — 11111z — 100002 — 11002 — 101z. (4TS)

Case Cy: 100101 z.

1001012z — 111101z — 100001z — 110011z — 101110z. (4TS)

Case D: 10011x.

10011z — 111102 — 10002 — 110z — 10z. We need to consider more elements.

Case D;: 100110z.

100110z — 111102 — 1000z — 110z — 10x. We need to consider more elements.

Case Dy;: 1001100z.

10011002 — 111101z — 100001z — 110011z — 101110z. (4TS)

Case Dy,: 1001101zx.

1001101z — 1111001z — 1000111z — 1101100z — 100100z — 111112 — 100002 —
1100z — 101z. (8TS)

Case D,: 100111z.

100111z — 111100z — 10001z — 11011z — 10010z — 1111z — 1000z — 110z — 10z.

We need to consider more elements.
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Case Dy;: = 1001110z.

1001110z — 1111000z — 10001z — 110011z — 10010z — 1111z — 10002 — 110z —

10z. We need to consider more elements.

Case Dy;;: 10011100z.

100111002 — 1111001z — 100011z — 1100110z — 100101z — 111101z — 100001z —
110011z — 101110z. (8TS)

Case Dy9: 10011101 2.

100111012z — 111100012z — 100010112 — 110110102 — 1001001z — 11111112z —
1000000z — 110000z — 10100x. (8TS)

Case Dj;: 100111 1.

10011112 — 1111000z — 100010z — 11011z — 100102 — 11112 — 10002 — 110z —

10z. We need to consider more elements.

Case D221: 10011110x.

100111102 — 1111002 — 1000102 — 11011z — 100102 — 11112z — 10002 — 110x —

10z. We need to consider more elements.

Case D2211: 100111100z.

100111100z — 1111001z — 10001011z — 11011010z — 1001001z — 1111111z —
1000000z — 110000z — 10100z. (8TS)

Case D2212: 100111101 .

1001111012 — 111100001z — 100010011z — 1101111102 — 10010000z — 1111100z —
100001z — 110011z — 101110z, (8TS)

Case Dyge: 10011111 2.
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100111112 — 111100002 — 10001002 — 1101112 — 1001002 — 11111z — 100002 —
1100z — 101z. (8TS)

Case E-H. For the cases of 101002, 10101z, 10110z and 10111z, the time step to reach
101 is 0.

Case I: 11000x.

11000z — 1010z. (1TS)

Case J: 11001x.

11001z — 10111z. (1TS)

Case K: 11010z.

11010z — 1001z — 1111z — 100z — 110z — 10x. We need to consider more

elements.

Case K;: 110100z.

110100z — 10011z — 111102 — 1000z — 1102 — 10x. We need to consider more

elements.

Case K;;: 1101000z.

11010002 — 1001102 — 11110z — 10002 — 1102 — 10z. We need to consider

more elements.

Case Kj;;: 11010000z.

11010000z — 10011002 — 1111012 — 100001z — 110011z — 101110z. (5TS)

Case Kji5: 11010001 2.

110100012 — 10011011z — 11110010z — 1000111z — 11011002 — 1001002 —
111112 — 100002 — 1100z — 101z. (9TS)*
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Case Ki9: 1101001 z.

11010012z — 10011112z — 1011000z. (2TS)

Case Kj: 110101z.

110101z — 100101z — 111101z — 100001z — 110011z — 101110z. (5TS)

Case L: 11011x.

11011z — 10010z — 11112z — 100z — 110z — 10x. We need to consider more

elements.

Case L;: 110110x.

110110z — 100102 — 11112z — 1000z — 1102 — 10x. We need to consider more

elements.

Case Li;: 1101100z.

1101100z — 100100z — 11111z — 10000z — 1100z — 101z. (5TS)

Case Liy: 1101101zx.

11011012 — 1001001z — 11111112 — 1000000z — 110000z — 10100z. (5TS)

Case Ly: 110110x.

110110z — 100100z — 111112 — 10000z — 1100z — 101z. (5TS)

Case M: 11100z.

111002 — 1001z — 1111z — 1002 — 110z — 10x. We need to consider more

elements.

Case M;: 111000z.
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111000z — 100102 — 11112z — 100z — 1102 — 102. We need to consider more

elements.

Case M;;: 1110000z.

1110000z — 100100z — 111112z — 10000z — 1100z — 101x. (5TS)

Case M5: 1110001z.

1110001z — 1001011z — 1111010z — 100001z — 110001z — 101z. (5TS)

Case Mj: 111001z.

111001z — 100111z — 111100z — 10001z — 11011z — 10010z — 1111z — 1000z —

110z — 10x. We need to consider more elements.

Case Mjy;: 1110010z.

1110010z — 100111z — 111100z — 10001z — 11011z — 100102 — 1111z — 1000z —

110z — 10z. We need to consider more elements.

Case Mjy;: 11100100z.

111001002 — 1001111z — 11110002 — 100010z — 11011z — 10010z — 1111z —

1000z — 110z — 10xz. We need to consider more elements.

Case Msjq1: 111001000z.

1110010002z — 10011110z — 1111000z — 100010z — 11011x — 10010z — 1111z —

1000z — 110z — 102. We need to consider more elements.

Case M21111: 1110010000x.

11100100002 — 1001111002 — 11110001z — 10001011z — 110110102 — 1001001z —
11111112 — 10000002 — 110002 — 10100z. (9TS)*

Case M21112: 1110010001 x.
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1110010001z — 10011110112 — 11110000102 — 100010011z — 1101111102 —
10010000z — 11111002 — 100001z — 110011z — 101110x. (9TS)*

Case M2112! 111001001 .

111001001z — 100111111z — 111100000z — 10001000z — 110111z — 100100z —
111112 — 100002 — 1100z — 101z. (9TS)*

Case Mjy5: 11100101 2.

11100101z — 10011101z — 11110001z — 10001011z — 110110102 — 1001001z —
11111112 — 10000002 — 1100002 — 10100z. (9TS)*

Case Myy: 1110011z.

11100112z — 10011102 — 1111002 — 10001z — 11001z — 10111z. (5TS)

Case N: 11101z.

11101z — 10001z — 110112z — 10010z — 1111z — 10002 — 1102z — 10x. We need

to consider more elements.

Case Nj: 111010z.

1110102z — 10001z — 11011z — 100102 — 1111z — 1000z — 1102 — 10x. We need

to consider more elements.

Case Ny;: 1110100z.

11101002 — 1000112z — 1101102 — 10010z — 1111z — 1000z — 1102 — 10x. We

need to consider more elements.

Case Nj;p: 11101000z.

11101000z — 1000110z — 1101102z — 100102 — 11112 — 10002 — 1102 — 10x. We

need to consider more elements.
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Case NHHZ 111010000x.

111010000z — 10001100z — ¢1101101z — 1001001z — 1111111z — 1000000z —
110000z — 10100z. (7TS)

Case N1112: 111010001 x.

111010001z — 100011011z — 1101100102 — 10010111z — 111101002 — 1000010z —
110011z — 101110z. (7TS)

Case N112: 11101001 x.

111010012 — 10001111z — 110110002 — 1001010z — 1111012 — 100001z —
110011z — 101110z. (7TS)

Case Nyp: 1110101x.

$1110101z — 1000101z — 1101101z — 1001001z — 1111111z — 1000000z —
110000z — 10100z. (7TS)

Case Njy: 111011z.

1110112 — 100010z — 11011z — 100102 — 1111z — 1000z — 110z — 10x. We need

more elements.

Case Ny;: 1110110z.

11101102 — 1000102 — 11011z — 100102 — 1111z — 10002 — 110z — 10x. We

need to consider more elements.

Case Njy;q: 11101100z.

111011002 — 10001012 — 11011012 — 10010012 — 11111112 — 10000002 —
110000z — 10100z. (7TS)

Case Nyjo: 11101101 .
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111011012 — 100010012 — 110111112 — 10010000z — 1111100z — 1000002 —
11000z — 1010z. (7TS)

Case Njp: 1110111 .

1110111z — 1000100z — 1101112 — 100100z — 111112 — 10000z — 1100x — 101zx.
(7TS)

Case O: 11110x.

11110z — 1000z — 1102 — 10z. We need to consider more elements.

Case Oq: 111100z.

1111002 — 10001z — 11011z — 10010z — 11112z — 1000z — 110z — 102. We need

to consider more elements.

Case Oq;: 1111000z.

11110002 — 1000102 — 11011z — 100102 — 1111z — 1000z — 110z — 10x. We

need to consider more elements.

Case 0111! 111100002x.

11110000z — 1000100z — 110111z — 100100z — 11111z — 10000z — 1100z — 101
(7TS)

Case 0112! 11110001 x.

111100012 — 10001011z — 11011010z — 1001001z — 1111111z — 1000000z —
110000z — 10100z. (7TS)

Case Oqy: 1111001z.
1111001z — 1000111z — 11011002 — 100101z — 1111101z — t100001z — 110011x —

101110z. (7TS)
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Case O,: 111101zx.

111101z — 100001z — 110011z — 101110x. (3TS)

Case P: 11111x.

11111z — 10000z — 1100z — 101z. (3TS)

We can see that the maximum number of time—steps to get 101xxz is 9. 10 is the

minimum number of cells to reach 9 time-steps.
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Appendix H

Rule 387410647

In chapter 4, we found that there are only four transition rules which give three-periodic
stationary pattern in three states using random initial conditions. In this appendix, we
want to see the maximum number of time-steps this transition takes to produce periodic

stationary patterns.

We have noted that under the transition rule 387410647, periodic pattern forms first
on the left and then expand over the chain from the left to the right. Therefore, we will
consider various initial combinations occurring on the left side of the chain and analyse
how they allow the growth of the periodic structure to the right. Let’s consider twenty

seven cases starting with the first digit 1 on the left of the structure.

Case A: 1000zx.

1000z — 1211z — 1202z — 1201z. (3TS)

For Case A, one has initially 1000x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns into 2. This is because the configuration says
that (100) — (120). The next three digits are 000. The 0 in the middle of 000 turns
to 1. This is because the configuration says that (000) — (010). The next three digits
are 00x. Three configurations containing 00z are (000) — (010), (001) — (011) and
(002) — (012). No matter what the value of x will be, the 0 in the middle of 00z change
to 1. Thus, we obtain 1211z. We start again. The first digit is fixed. The next digit,
2, remains as it is. This is because the configuration says that (121) — (121). The next
three digits are 211. The 1 in the middle of 211 turns to 0 because the configuration
says that (211) — (201). The next three digits are 11z. Three configurations containing
11z are (110) — (120), (111) — (121) and (112) — (122). No matter what the value
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of z will be, the 1 in the middle of 11x will change to 2. Thus, we obtain 1202x. We
need one more procedure in order to reach 1201x. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 022 will change to 1. Thus, we obtain the sequence 1201.

Case B: 1001z.

1001z — 1211z — 1202z — 1201z.  (3TS)

For Case B, one has initially 1001x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns into 2. This is because the configuration says
that (100) — (120). The next three digits are 001. The 0 in the middle of 001 turns
to 1. This is because the configuration says that (001) — (011). The next three digits
are 0lz. Three configurations containing 01z are (010) — (010), (011) — (011) and
(012) — (012). No matter what the value of x will be, the 0 in the middle of 00z will
remain as it is. Thus, we obtain 1211x. We start again. The first digit is fixed. The next
digit, 2, remains as it is. This is because the configuration says that (121) — (121). The
next three digits are 211. The 1 in the middle of 211 turns to 0 because the configuration
says that (211) — (201). The next three digits are 11x. Three configurations containing
11z are (110) — (120), (111) — (121) and (112) — (122). No matter what the value
of x will be, the 1 in the middle of 112 will change to 2. Thus, we obtain 1202x. We
need one more procedure in order to reach 1201x. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02z. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case C: 1002z.

1002z — 1211z — 1202z — 1201z. (3TS)

For Case C, one has initially 1002x. Let’s start with the first three digits. The first

digit is fixed. The next digit, 0, turns into 2. This is because the configuration says
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that (100) — (120). The next three digits are 002. The 0 in the middle of 002 turns
to 1. This is because the configuration says that (002) — (012). The next three digits
are 02x. Three configurations containing 02z are (020) — (010), (021) — (011) and
(022) — (012). No matter what the value of x will be, the 0 in the middle of 00z change
to 1. Thus, we obtain 1211z. We start again. The first digit is fixed. The next digit,
2, remains as it is. This is because the configuration says that (121) — (121). The next
three digits are 211. The 1 in the middle of 211 turns to 0 according to the configuration
(211) — (201). The next three digits are 11z. Three configurations containing 11z are
(110) — (120), (111) — (121) and (112) — (122). No matter what the value of = will
be, the 1 in the middle of 11z will change to 2. Thus, we obtain 1202x. We need one
more procedure in order to reach 1201x. The first digit is fixed. The next digit, 2,
remains the same because the configuration says that (120) — (120). The next three
digits are 202. The 0 in the middle of 202 remains the same since the configuration says
that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case D: 1010z.
1010z — 12122 — 12022 — 1201zx. (3TS)

For Case D, one has initially 1010x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(101) — (121). The next three digits are 010. The 1 in the middle of 010 remains as
it is. This is because the configuration says that (010) — (010). The next three digits
are 10x. Three configurations containing 10x are (100) — (120), (101) — (121) and
(102) — (122). No matter what the value of x will be, the 0 in the middle of 10z will
change to 2. Thus, we obtain 1212x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
The next three digits are 212. The 1 in the middle of 212 turns to 0 according to the
configuration (212) — (202). The next three digits are 12x. Three configurations con-
taining 12z are (120) — (120), (121) — (121) and (122) — (122). No matter what the
value of x will be, the 2 in the middle of 12z will remain as it is. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
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x will be, the 2 in the middle of 02z will change to 1. Thus, we obtain the sequence 1201.

Case E: 1011z.

1011z — 12122 — 12022 — 1201z. (3TS)

For Case E, one has initially 1011z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(101) — (121). The next three digits are 011. The 1 in the middle of 011 remains as
it is. This is because the configuration says that (011) — (011). The next three digits
are 11z. Three configurations containing 11z are (110) — (120), (111) — (121) and
(112) — (122). No matter what the value of x will be, the 1 in the middle of 11z will
change to 2. Thus, we obtain 1212x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
The next three digits are 212. The 1 in the middle of 212 turns to 0 according to the
configuration (212) — (202). The next three digits are 12z. Three configurations con-
taining 12z are (120) — (120), (121) — (121) and (122) — (122). No matter what the
value of x will be, the 2 in the middle of 12z will remain as it is. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 022 will change to 1. Thus, we obtain the sequence 1201.

Case F: 1012z.

1012z — 1212z — 1202z — 1201z. (3TS)

For Case F, one has initially 1012z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(101) — (121). The next three digits are 012. The 1 in the middle of 012 remains as
it is. This is because the configuration says that (012) — (012). The next three digits
are 12x. Three configurations containing 12z are (120) — (120), (121) — (121) and
(122) — (122). No matter what the value of z will be, the 2 in the middle of 12z will
remain as it is. Thus, we obtain 1212z. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
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The next three digits are 212. The 1 in the middle of 212 turns to 0 according to the
configuration (212) — (202). The next three digits are 12z. Three configurations con-
taining 12z are (120) — (120), (121) — (121) and (122) — (122). No matter what the
value of x will be, the 2 in the middle of 12z will remain as it is. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201x. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 022 will change to 1. Thus, we obtain the sequence 1201.

Case G: 1020z.

1020z — 1210z — 1202z — 1201z. (3TS)

For Case G, one has initially 1020z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(102) — (122). The next three digits are 020. The 2 in the middle of 020 will change
to 1. This is because the configuration says that (020) — (010). The next three digits
are 20z. Three configurations containing 20x are (200) — (200), (201) — (201) and
(202) — (202). No matter what the value of x will be, the 0 in the middle of 20z will
remain as it is. Thus, we obtain 1210z. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
The next three digits are 210. The 1 in the middle of 210 turns to 0 according to the
configuration (210) — (200). The next three digits are 10z. Three configurations con-
taining 10z are (100) — (120), (101) — (121) and (102) — (122). No matter what the
value of z will be, the 0 in the middle of 10z will change to 2. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case H: 1021z.

1021z — 12102 — 12022 — 1201z.  (3TS)
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For Case H, one has initially 1021z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(102) — (122). The next three digits are 021. The 2 in the middle of 021 will change
to 1. This is because the configuration says that (021) — (011). The next three digits
are 21z. Three configurations containing 21z are (210) — (200), (211) — (201) and
(212) — (202). No matter what the value of x will be, the 1 in the middle of 21z will
change to 0. Thus, we obtain 1210x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
The next three digits are 210. The 1 in the middle of 210 turns to 0 according to the
configuration (210) — (200). The next three digits are 10z. Three configurations con-
taining 10z are (100) — (120), (101) — (121) and (102) — (122). No matter what the
value of x will be, the 0 in the middle of 10z will change to 2. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the stripe 1201.

Case I: 1022x.
1022z — 12102 — 12022 — 1201zx. (3TS)

For Case I, one has initially 1022x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 0, turns to 2. This is because the configuration says that
(102) — (122). The next three digits are 022. The 2 in the middle of 022 will change
to 1. This is because the configuration says that (022) — (012). The next three digits
are 22x. Three configurations containing 22z are (220) — (200), (221) — (201) and
(222) — (202). No matter what the value of x will be, the 2 in the middle of 22z will
change to 0. Thus, we obtain 1210x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (121) — (121).
The next three digits are 210. The 1 in the middle of 210 turns to 0 according to the
configuration (210) — (200). The next three digits are 10x. Three configurations con-
taining 10z are (100) — (120), (101) — (121) and (102) — (122). No matter what the
value of x will be, the 0 in the middle of 10z will change to 2. Thus, we obtain 1202z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next

digit, 2, remains the same because the configuration says that (120) — (120). The next
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three digits are 202. The 0 in the middle of 202 remains the same since the configuration
says that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case J: 1100z.

1100z — 12212 — 12002 — 1201z. (3TS)

For Case J, one has initially 1100z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(110) — (120). The next three digits are 100. The 0 in the middle of 100 will change
to 2. This is because the configuration says that (100) — (120). The next three digits
are 00x. Three configurations containing 00z are (000) — (010), (001) — (011) and
(002) — (012). No matter what the value of x will be, the 0 in the middle of 00z will
change to 1. Thus, we obtain 1221x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 221. The 2 in the middle of 221 turns to 0 according to the
configuration (221) — (201). The next three digits are 21z. Three configurations con-
taining 21z are (210) — (200), (211)t0(201) and (212) — (202). No matter what the
value of x will be, the 1 in the middle of 21z will change to 0. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case K: 1101z.

1101z — 1221z — 1200z — 1201z. (3TS)

For Case K, one has initially 1101x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(110) — (120). The next three digits are 101. The 0 in the middle of 101 will change
to 2. This is because the configuration says that (101) — (121). The next three digits
are 0lz. Three configurations containing 01z are (010) — (010), (011) — (011) and
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(012) — (012). No matter what the value of x will be, the 1 in the middle of 01z will
remain as it is. Thus, we obtain 1221x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 221. The 2 in the middle of 221 turns to 0 according to the
configuration (221) — (201). The next three digits are 21z. Three configurations con-
taining 21z are (210) — (200), (211)t0(201) and (212) — (202). No matter what the
value of x will be, the 1 in the middle of 21z will change to 0. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case L: 1102x.
1102z — 1221x — 12002 — 1201zx. (3TS)

For Case L, one has initially 1102z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(110) — (120). The next three digits are 102. The 0 in the middle of 102 will change
to 2. This is because the configuration says that (102) — (122). The next three digits
are 02z. Three configurations containing 02z are (020) — (010), (021) — (011) and
(022) — (012). No matter what the value of z will be, the 2 in the middle of 02z will
change to 1. Thus, we obtain 1221x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 221. The 2 in the middle of 221 turns to 0 according to the
configuration (221) — (201). The next three digits are 21z. Three configurations con-
taining 21z are (210) — (200), (211)t0(201) and (212) — (202). No matter what the
value of x will be, the 1 in the middle of 21z will change to 0. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201x. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case M: 1110z.
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1110z — 1222z — 1200z — 1201x. (3TS)

For Case M, one has initially 1110x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(111) — (121). The next three digits are 110. The 1 in the middle of 110 will change
to 2. This is because the configuration says that (110) — (120). The next three digits
are 10x. Three configurations containing 10z are (100) — (120), (101) — (121) and
(102) — (122). No matter what the value of x will be, the 0 in the middle of 10z will
change to 2. Thus, we obtain 1222x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 222. The 2 in the middle of 222 turns to 0 according to the
configuration (222) — (202). The next three digits are 22z. Three configurations con-
taining 22z are (220) — (200), (221) — (201) and (222) — (202). No matter what the
value of x will be, the 2 in the middle of 22z will change to 0. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201x. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 002 will change to 1. Thus, we obtain the sequence 1201.

Case N: 1111z.

1111z — 12222 — 1200z — 1201z.  (3TS)

For Case N, one has initially 1111x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(111) — (121). The next three digits are 111. The 1 in the middle of 111 will change
to 2. This is because the configuration says that (111) — (121). The next three digits
are 11x. Three configurations containing 11z are (110) — (120), (111) — (121) and
(112) — (122). No matter what the value of = will be, the 1 in the middle of 11z will
change to 2. Thus, we obtain 1222x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 222. The 2 in the middle of 222 turns to 0 according to the
configuration (222) — (202). The next three digits are 22z. Three configurations con-
taining 22z are (220) — (200), (221) — (201) and (222) — (202). No matter what the
value of z will be, the 2 in the middle of 22z will change to 0. Thus, we obtain 1200z.
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We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case O: 1112x.

1111z — 1222z — 1200z — 1201x. (3TS)

For Case O, one has initially 1112x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(111) — (121). The next three digits are 112. The 1 in the middle of 112 will change
to 2. This is because the configuration says that (112) — (122). The next three digits
are 12x. Three configurations containing 12z are (120) — (120), (121) — (121) and
(122) — (122). No matter what the value of 2 will be, the 2 in the middle of 12z will
remain as it is. Thus, we obtain 1222x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 222. The 2 in the middle of 222 turns to 0 according to the
configuration (222) — (202). The next three digits are 22z. Three configurations con-
taining 22z are (220) — (200), (221) — (201) and (222) — (202). No matter what the
value of x will be, the 2 in the middle of 22z will change to 0. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 002 will change to 1. Thus, we obtain the sequence 1201.

Case P: 1120x.

1120z — 1200z — 1200z — 1201x. (3TS)

For Case P, one has initially 1120x. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(112) — (122). The next three digits are 120. The 2 in the middle of 120 will remain as
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it is. This is because the configuration says that (120) — (120). The next three digits
are 20x. Three configurations containing 20z are (200) — (200), (201) — (201) and
(202) — (202). No matter what the value of x will be, the 0 in the middle of 20z will
remain as it is. Thus, we obtain 1220z. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 220. The 2 in the middle of 220 turns to 0 according to the
configuration (220) — (200). The next three digits are 20x. Three configurations con-
taining 20z are (200) — (200), (201) — (201) and (202) — (202). No matter what the
value of x will be, the 0 in the middle of 20z will remain as it is. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case Q: 1121z.
11212z — 1200x — 1200x — 1201=x. (3TS)

For Case Q, one has initially 1121z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(112) — (122). The next three digits are 121. The 2 in the middle of 121 will remain as
it is. This is because the configuration says that (121) — (121). The next three digits
are 21z. Three configurations containing 21z are (210) — (200), (211) — (201) and
(212) — (202). No matter what the value of x will be, the 1 in the middle of 21z will
change to 0. Thus, we obtain 1220x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 220. The 2 in the middle of 220 turns to 0 according to the
configuration (220) — (200). The next three digits are 20z. Three configurations con-
taining 20z are (200) — (200), (201) — (201) and (202) — (202). No matter what the
value of x will be, the 0 in the middle of 20z will remain as it is. Thus, we obtain 1200zx.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.
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Case R: 1122x.

11222 — 1200z — 1200z — 1201x. (3TS)

For Case R, one has initially 1122z. Let’s start with the first three digits. The first
digit is fixed. The next digit, 1, turns to 2. This is because the configuration says that
(112) — (122). The next three digits are 122. The 2 in the middle of 122 will remain as
it is. This is because the configuration says that (122) — (122). The next three digits
are 22x. Three configurations containing 22z are (220) — (200), (221) — (201) and
(222) — (202). No matter what the value of x will be, the 1 in the middle of 21z will
change to 0. Thus, we obtain 1220x. We start over again. The first digit is fixed. The
next digit, 2, remains as it is. This is because the configuration says that (122) — (122).
The next three digits are 220. The 2 in the middle of 220 turns to 0 according to the
configuration (220) — (200). The next three digits are 20z. Three configurations con-
taining 20z are (200) — (200), (201) — (201) and (202) — (202). No matter what the
value of x will be, the 0 in the middle of 20z will remain as it is. Thus, we obtain 1200z.
We need one more procedure in order to reach 1201z. The first digit is fixed. The next
digit, 2, remains the same because the configuration says that (120) — (120). The next
three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 002 will change to 1. Thus, we obtain the sequence 1201.

Case S: 1200z.

1200z — 1201z.  (1TS)

For Case S, one has initially 1200z. The first digit is fixed. The next digit, 2, re-
mains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 200 remains the same since the configuration says
that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case S: 1201z.

1201x. (0TS)
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For Case T, the sequence 1201z is already established.

Case U: 1202z.

1202z — 1201x. (1TS)

For Case U, one has initially 1202x. The first digit is fixed. The next digit, 2, re-
mains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 202 remains the same since the configuration says
that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case V: 1210zx.

1210z — 1202z — 1201x. (2TS)

For Case V, one has initially 1210x. The first digit is fixed. The next digit, 2, remains
as it is. This is because the configuration says that (121) — (121). The next three
digits are 210. The 1 in the middle of 210 turns to 0 according to the configuration
(210) — (200). The next three digits are 10z. Three configurations containing 10x are
(100) — (120), (101) — (121) and (102) — (122). No matter what the value of = will
be, the Oin the middle of 10x will change to 2. Thus, we obtain 1202z. We need one
more procedure in order to reach 1201z. The first digit is fixed. The next digit, 2,
remains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 202 remains the same since the configuration says
that (202) — (202). The next three digits are 02x. Three configurations containing
02x are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 022 will change to 1. Thus, we obtain the sequence 1201.

Case W: 1211zx.

1211z — 1202z — 1201z.  (2TS)

For Case W, one has initially 1211x. The first digit is fixed. The next digit, 2, remains
as it is. This is because the configuration says that (121) — (121). The next three
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digits are 210. The 1 in the middle of 211 turns to 0 according to the configuration
(211) — (201). The next three digits are 11z. Three configurations containing 11z are
(110) — (120), (111) — (121) and (112) — (122). No matter what the value of z will
be, the 1 in the middle of 10z will change to 2. Thus, we obtain 1202x. We need one
more procedure in order to reach 1201z. The first digit is fixed. The next digit, 2,
remains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 202 remains the same since the configuration says
that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 022 will change to 1. Thus, we obtain the sequence 1201.

Case X: 1212zx.

1211z — 1202z — 1201x. (2TS)

For Case X, one has initially 1212x. The first digit is fixed. The next digit, 2, remains
as it is. This is because the configuration says that (121) — (121). The next three
digits are 210. The 1 in the middle of 212 turns to 0 according to the configuration
(212) — (202). The next three digits are 12z. Three configurations containing 12z are
(120) — (120), (121) — (121) and (122) — (122). No matter what the value of z will
be, the 2in the middle of 10z will remain as it is. Thus, we obtain 1202x. We need
one more procedure in order to reach 1201x. The first digit is fixed. The next digit,
2, remains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 202 remains the same since the configuration says
that (202) — (202). The next three digits are 02x. Three configurations containing
02z are (020) — (010), (021) — (011) and (022) — (012). No matter what the value of
x will be, the 2 in the middle of 02x will change to 1. Thus, we obtain the sequence 1201.

Case Y: 1220zx.

1220z — 1200z — 1201x. (2TS)

For Case Y, one has initially 1220x. The first digit is fixed. The next digit, 2, remains
as it is. This is because the configuration says that (122) — (122). The next three
digits are 220. The 2 in the middle of 220 turns to 0 according to the configuration
(220) — (200). The next three digits are 20z. Three configurations containing 20x are
(200) — (200), (201) — (201) and (202) — (202). No matter what the value of = will
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be, the 0 in the middle of 20x will remain as it is. Thus, we obtain 1200x. We need
one more procedure in order to reach 1201x. The first digit is fixed. The next digit,
2, remains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 200 remains the same since the configuration says
that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 002 will change to 1. Thus, we obtain the sequence 1201.

Case Z: 1221zx.

1221z — 1200z — 1201z.  (2TS)

For Case Z, one has initially 1221x. The first digit is fixed. The next digit, 2, remains
as it is. This is because the configuration says that (122) — (122). The next three
digits are 221. The 2 in the middle of 221 turns to 0 because the configuration says
that (221) — (201). The next three digits are 21z. Three configurations containing 21z
are (210) — (200), (211) — (201) and (212) — (202). No matter what the value of z
will be, the 1 in the middle of 21x will change to 0. Thus, we obtain 1200x. We need
one more procedure in order to reach 1201x. The first digit is fixed. The next digit,
2, remains the same because the configuration says that (120) — (120). The next three
digits are 200. The 0 in the middle of 200 remains the same since the configuration says
that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Case AA: 1222z.

1222z — 1200z — 1201x. (2TS)

For Case A A, one has initially 1222x. The first digit is fixed. The next digit, 2, re-
mains as it is. This is because the configuration says that (122) — (122). The next
three digits are 222. The 2 in the middle of 222 turns to 0 because the configuration
says that (222) — (202). The next three digits are 22x. Three configurations containing
22x are (220) — (200), (221) — (201) and (222) — (202). No matter what the value
of  will be, the 2 in the middle of 222 will change to 0. Thus, we obtain 1200x. We
need one more procedure in order to reach 1201x. The first digit is fixed. The next

digit, 2, remains the same because the configuration says that (120) — (120). The next
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three digits are 200. The 0 in the middle of 200 remains the same since the configuration
says that (200) — (200). The next three digits are 00x. Three configurations containing
00z are (000) — (010), (001) — (011) and (002) — (012). No matter what the value of
x will be, the 0 in the middle of 00x will change to 1. Thus, we obtain the sequence 1201.

Thus, the slowest way of formation of periodic structure implies the formation of one
stripe during 3 time-steps. Therefore in the medium containing k elements periodic
structure (containing k/3 stripes) forms during k iterations. For other cases when start-
ing from Ozxx and 2xxz, the procedures will be similar in order to reach 0120z and

2012z respectively.
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